Neutrosophic Sets and Systems

Volume 35

7-31-2020

Full Issue

Neutrosophic Sets

Follow this and additional works at: https://digitalrepository.unm.edu/nss_journal

Recommended Citation

Sets, Neutrosophic. "Full Issue." Neutrosophic Sets and Systems 35, 1 (2020).
https://digitalrepository.unm.edu/nss_journal/vol35/iss1/34

This Article is brought to you for free and open access by UNM Digital Repository. It has been accepted for inclusion in Neutrosophic Sets and Systems by an authorized editor of UNM Digital Repository. For more information, please contact amywinter@unm.edu, Isloane@salud.unm.edu, sarahrk@unm.edu.

Volume 35, 2020

NeatrosophicSetsand Systems
 An International J ournal in Information Science and Engineering

ISSN 23316055 (Print)
ISSN 2331608X (Online)

International Association (NSIA)

Neutrosophic

Sets

and

Systems

An International Journal in Information Science and Engineering

University of New Mexico

Neutrosophic Sets and Systems

An International Journal in Information Science and Engineering

Copyright Notice

Copyright @ Neutrosophics Sets and Systems

Abstract

All rights reserved. The authors of the articles do hereby grant Neutrosophic Sets and Systems non-exclusive, worldwide, royalty-free license to publish and distribute the articles in accordance with the Budapest Open Initiative: this means that electronic copying, distribution and printing of both full-size version of the journal and the individual papers published therein for non-commercial, academic or individual use can be made by any user without permission or charge. The authors of the articles published in Neutrosophic Sets and Systems retain their rights to use this journal as a whole or any part of it in any other publications and in any way they see fit. Any part of Neutrosophic Sets and Systems howsoever used in other publications must include an appropriate citation of this journal.

Information for Authors and Subscribers

"Neutrosophic Sets and Systems" has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.

The submitted papers should be professional, in good English, containing a brief review of a problem and obtained results.
Neutrosophy is a new branch of philosophy that studies the origin, nature, and scope of neutralities, as well as their interactions with different ideational spectra.

This theory considers every notion or idea $<\mathrm{A}>$ together with its opposite or negation <antiA> and with their spectrum of neutralities <neutA> in between them (i.e. notions or ideas supporting neither $<$ A $>$ nor $<$ antiA $>$). The $<$ neutA> and $<$ antiA $>$ ideas together are referred to as <nonA>.
Neutrosophy is a generalization of Hegel's dialectics (the last one is based on $<\mathrm{A}>$ and <antiA> only).
According to this theory every idea $<\mathrm{A}>$ tends to be neutralized and balanced by $<$ antiA> and $<$ nonA> ideas - as a state of equilibrium.
In a classical way $<\mathrm{A}>,<$ neutA $>,<$ antiA $>$ are disjoint two by two. But, since in many cases the borders between notions are vague, imprecise, Sorites, it is possible that <A>, <neutA>, <antiA> (and <nonA> of course) have common parts two by two, or even all three of them as well.

Neutrosophic Set and Neutrosophic Logic are generalizations of the fuzzy set and respectively fuzzy logic (especially of intuitionistic fuzzy set and respectively intuitionistic fuzzy logic). In neutrosophic logic a proposition has a degree of truth (T), a degree of indeterminacy (I), and a degree of falsity (F), where T, I, F are standard or non-standard subsets of $J^{-} 0, I^{+}[$.

Neutrosophic Probability is a generalization of the classical probability and imprecise probability.
Neutrosophic Statistics is a generalization of the classical statistics.
What distinguishes the neutrosophics from other fields is the <neutA>, which means neither <A> nor <antiA>.
<neutA>, which of course depends on $<\mathrm{A}>$, can be indeterminacy, neutrality, tie game, unknown, contradiction, ignorance, imprecision, etc.
All submissions should be designed in MS Word format using our template file:
http://fs.unm.edu/NSS/NSS-paper-template.doc.
A variety of scientific books in many languages can be downloaded freely from the Digital Library of Science:
http://fs.unm.edu/ScienceLibrary.htm.
To submit a paper, mail the file to the Editor-in-Chief. To order printed issues, contact the Editor-in-Chief. This journal is non-commercial, academic edition. It is printed from private donations.
Information about the neutrosophics you get from the UNM website:
http://fs.unm.edu/neutrosophy.htm. The
home page of the journal is accessed on
http://fs.unm.edu/NSS.

Neutrosophic Sets and Systems

An International Journal in Information Science and Engineering
** NSS has been accepted by SCOPUS. Starting with Vol. 19, 2018, the NSS articles are
indexed in Scopus.
NSS ABSTRACTED/INDEXED IN
SCOPUS,
Google Scholar,
Google Plus,
Google Books,
EBSCO,
Cengage Thompson Gale (USA),
Cengage Learning (USA),
ProQuest (USA),
Amazon Kindle (USA),
University Grants Commission (UGC) - India,
DOAJ (Sweden),
International Society for Research Activity (ISRA),
Scientific Index Services (SIS),
Academic Research Index (ResearchBib),
Index Copernicus (European Union),
CNKI (Tongfang Knowledge Network Technology Co.,
Beijing, China),
Baidu Scholar (China),
Redalyc - Universidad Autonoma del Estado de Mexico (IberoAmerica),
Publons,
Scimago, etc.

Google Dictionaries have translated the neologisms "neutrosophy" (1) and"neutrosophic" (2), coined in 1995 for the first time, into about 100 languages.

FOLDOC Dictionary of Computing ($\mathbf{1 , 2) , \text { Webster }}$
Dictionary (1, 2), Wordnik (1),Dictionary.com, The Free
Dictionary (1), Wiktionary (2), YourDictionary (1, 2),OneLook Dictionary (1, 2), Dictionary /
Thesaurus (1), Online Medical Dictionary (1,2), Encyclopedia (1, 2), Chinese Fanyi Baidu
Dictionary (2), Chinese Youdao Dictionary (2) etc. have included these scientific neologisms.

Recently, NSS was also approved by Clarivate Analytics for Emerging Sources Citation Index (ESCI) available on the Web of Science platform, starting with Vol. 15, 2017.

Clarivate Analytics
1500 Spring Garden St. $4^{\text {th }}$ Floor Philadelphia PA 19130
Tel (215)386-0100 (800)336-4474
Fax (215)823-6635

March 20, 2019

Prof. Florentin Smarandache
Univ New Mexico, Gallup Campus

Dear Prof. Florentin Smarandache,

I am pleased to inform you that Neutrosophic Sets and Systems has been selected for coverage in Clarivate Analytics products and services. Beginning with V. 15 2017, this publication will be indexed and abstracted in:

- Emerging Sources Citation Index

If possible, please mention in the first few pages of the journal that it is covered in these Clarivate Analytics services.
Would you be interested in electronic delivery of your content? If so, we have attached our Journal Information Sheet for your review and completion.

In the future Neutrosophic Sets and Systems may be evaluated and included in additional Clarivate Analytics products to meet the needs of the scientific and scholarly research community.

Thank you very much.
Sincerely,

Marian Hollingsworth
Director, Publisher Relations

Editors-in-Chief

Prof. Dr. Florentin Smarandache, Postdoc, Department of Mathematics, University of New Mexico, Gallup, NM 87301, USA, Email: smarand@unm.edu.
Dr. Mohamed Abdel-Basset, Faculty of Computers and Informatics, Zagazig University, Egypt,
Email: mohamed.abdelbasset@fci.zu.edu.eg.

Associate Editors

Dr. Said Broumi, Laboratory of Information Processing, Faculty of Science Ben M'Sik, University of Hassan II, Casablanca, Morocco, Email: s.broumi@flbenmsik.ma.
Prof. Dr. W. B. Vasantha Kandasamy, School of Computer Science and Engineering, VIT, Vellore 632014, India, Email: vasantha.wb@vit.ac.in.
Assoc. Prof. Dr. Huda E. Khalid, Head of Scientific Affairs and Cultural Relations Department, Nineveh Province, Telafer University, Iraq,
Email: dr.huda-ismael@uotelafer.edu.iq.
Prof. Dr. Xiaohong Zhang, Department of Mathematics, Shaanxi University of Science \&Technology, Xian 710021, China, Email: zhangxh@shmtu.edu.cn.

Editors

Yanhui Guo, University of Illinois at Springfield, One University Plaza, Springfield, IL 62703, United States, Email: yguo56@uis.edu.
Giorgio Nordo, MIFT - Department of Mathematical and Computer Science, Physical Sciences and Earth Sciences, Messina University, Italy, Email: giorgio.nordo@unime.it.
Le Hoang Son, VNU Univ. of Science, Vietnam National Univ. Hanoi, Vietnam, Email: sonlh@vnu.edu.vn.
A. A. Salama, Faculty of Science, Port Said University, Egypt, Email: ahmed_salama_2000@sci.psu.edu.eg. Young Bae Jun, Gyeongsang National University, South Korea, Email: skywine@gmail.com. Yo-Ping Huang, Department of Computer Science and Information, Engineering National Taipei University, New Taipei City, Taiwan, Email: yphuang@ntut.edu.tw. Vakkas Ulucay, Kilis 7 Aralık University, Turkey, Email: vulucay27@gmail.com.
Peide Liu, Shandong University of Finance and Economics, China, Email: peide.liu@gmail.com. Jun Ye, Department of Electrical and Information Engineering, Shaoxing University, 508 Huancheng West Road, Shaoxing 312000, China; Email: yejun@usx.edu.cn.
Memet Şahin, Department of Mathematics, Gaziantep University, Gaziantep 27310, Turkey, Email: mesahin@gantep.edu.tr.
Muhammad Aslam \& Mohammed Alshumrani, King Abdulaziz Univ., Jeddah, Saudi Arabia, Emails magmuhammad@kau.edu.sa,
maalshmrani@kau.edu.sa.
Mutaz Mohammad, Department of Mathematics, Zayed University, Abu Dhabi 144534, United Arab Emirates.
Email: Mutaz.Mohammad@zu.ac.ae. Abdullahi Mohamud Sharif, Department of Computer Science, University of Somalia, Makka Al-mukarrama Road, Mogadishu, Somalia,
Email: abdullahi.shariif@uniso.edu.so.
NoohBany Muhammad, American University of Kuwait, Kuwait,
Email: noohmuhammad12@gmail.com.
Soheyb Milles, Laboratory of Pure and Applied Mathematics, University of Msila, Algeria, Email: soheyb.milles@univ-msila.dz.
Pattathal Vijayakumar Arun, College of Science and Technology, Phuentsholing, Bhutan, Email: arunpv2601@gmail.com.
Endalkachew Teshome Ayele, Department of Mathematics, Arbaminch University, Arbaminch, Ethiopia, Email: endalkachewteshome83@yahoo.com. Xindong Peng, School of Information Science and Engineering, Shaoguan University, Shaoguan 512005, China, Email: 952518336@qq.com. Xiao-Zhi Gao, School of Computing, University of Eastern Finland, FI-70211 Kuopio, Finland, xiaozhi.gao@uef.fi.
Madad Khan, Comsats Institute of Information Technology, Abbottabad, Pakistan, Email: madadmath@yahoo.com.
Dmitri Rabounski and Larissa Borissova, independent researchers, Emails: rabounski@ptep-online.com,
lborissova@yahoo.com.
Selcuk Topal, Mathematics Department, Bitlis Eren University, Turkey, Email: s.topal@beu.edu.tr. G. Srinivasa Rao, Department of Statistics, The University of Dodoma, Dodoma, PO. Box: 259, Tanzania, Email: gaddesrao@gmail.com. Ibrahim El-henawy, Faculty of Computers and Informatics, Zagazig University, Egypt, Email: henawy2000@yahoo.com.
A. A. A. Agboola, Federal University of Agriculture, Abeokuta, Nigeria, Email: agboolaaaa@funaab.edu.ng. Abduallah Gamal, Faculty of Computers and Informatics, Zagazig University, Egypt, Email: abduallahgamal@zu.edu.eg.
Luu Quoc Dat, Univ. of Economics and Business, Vietnam National Univ., Hanoi, Vietnam, Email: datlq@vnu.edu.vn.
Maikel Leyva-Vazquez, Universidad de Guayaquil, Ecuador, Email: mleyvaz@gmail.com. Tula Carola Sanchez Garcia, Facultad de Educacion de la Universidad Nacional Mayor de San Marcos, Lima, Peru, Email: tula.sanchez1@unmsm.edu.pe. Tatiana Andrea Castillo Jaimes, Universidad de Chile, Departamento de Industria, Doctorado en Sistemas de Ingeniería, Santiago de Chile, Chile, Email: tatiana.a.castillo@gmail.com.
Muhammad Akram, University of the Punjab, New Campus, Lahore, Pakistan, Email: m.akram@pucit.edu.pk.

Irfan Deli, Muallim Rifat Faculty of Education, Kilis 7 Aralik University, Turkey, Email: irfandeli@kilis.edu.tr. Ridvan Sahin, Department of Mathematics, Faculty of Science, Ataturk University, Erzurum 25240, Turkey, Email: mat.ridone@gmail.com.
Ibrahim M. Hezam, Department of computer, Faculty of Education, Ibb University, Ibb City, Yemen, Email: ibrahizam.math@gmail.com.
Aiyared Iampan, Department of Mathematics, School of Science, University of Phayao, Phayao 56000, Thailand, Email: aiyared.ia@up.ac.th. Ameirys Betancourt-Vázquez, 1 Instituto Superior Politécnico de Tecnologias e Ciências (ISPTEC), Luanda, Angola, Email: ameirysbv@gmail.com. Karina Pérez-Teruel, Universidad Abierta para Adultos (UAPA), Santiago de los Caballeros, República Dominicana, Email: karinapt@gmail.com. Neilys González Benítez, Centro Meteorológico Pinar del Río, Cuba, Email: neilys71@nauta.cu. Jesus Estupinan Ricardo, Centro de Estudios para la Calidad Educativa y la Investigation Cinetifica, Toluca, Mexico, Email: jestupinan2728@gmail.com. Victor Christianto, Malang Institute of Agriculture (IPM), Malang, Indonesia, Email: victorchristianto@gmail.com.
Wadei Al-Omeri, Department of Mathematics, Al-Balqa

Applied University, Salt 19117, Jordan, Email: wadeialomeri@bau.edu.jo.
Ganeshsree Selvachandran, UCSI University, Jalan Menara Gading, Kuala Lumpur, Malaysia, Email: Ganeshsree@ucsiuniversity.edu.my.
Ilanthenral Kandasamy, School of Computer Science and Engineering (SCOPE), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India, Email:
ilanthenral.k@vit.ac.in
Kul Hur, Wonkwang University, Iksan, Jeollabukdo, South Korea, Email: kulhur@wonkwang.ac.kr. Kemale Veliyeva \& Sadi Bayramov, Department of Algebra and Geometry, Baku State University, 23 Z. Khalilov Str., AZ1148, Baku, Azerbaijan, Email: kemale2607@mail.ru, Email: baysadi@gmail.com. Irma Makharadze \& Tariel Khvedelidze, Ivane Javakhishvili Tbilisi State University, Faculty of Exact and Natural Sciences, Tbilisi, Georgia. Inayatur Rehman, College of Arts and Applied Sciences, Dhofar University Salalah, Oman, Email: irehman@du.edu.om.
Riad K. Al-Hamido, Math Department, College of Science, Al-Baath University, Homs, Syria, Email: riadhamido1983@hotmail.com.
Faruk Karaaslan, Çankırı Karatekin University, Çankırı, Turkey, Email: fkaraaslan@karatekin.edu.tr. Morrisson Kaunda Mutuku, School of Business, Kenyatta University, Kenya
Surapati Pramanik, Department of Mathematics, Nandalal Ghosh B T College, India, Email: drspramanik@isns.org.in.
Suriana Alias, Universiti Teknologi MARA (UiTM) Kelantan, Campus Machang, 18500 Machang, Kelantan, Malaysia, Email: suria588@kelantan.uitm.edu.my. Arsham Borumand Saeid, Dept. of Pure Mathematics, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman, Kerman, Iran, Email: arsham@uk.ac.ir.
Ahmed Abdel-Monem, Department of Decision support, Zagazig University, Egypt, Email: aabdelmounem@zu.edu.eg.
V.V. Starovoytov, The State Scientific Institution «The United Institute of Informatics Problems of the National Academy of Sciences of Belarus», Minsk, Belarus, Email: ValeryS@newman.bas-net.by. E.E. Eldarova, L.N. Gumilyov Eurasian National University, Nur-Sultan, Republic of Kazakhstan, Email: Doctorphd_eldarova@mail.ru.
Mohammad Hamidi, Department of Mathematics, Payame Noor University (PNU), Tehran, Iran. Email: m.hamidi@pnu.ac.ir.

Lemnaouar Zedam, Department of Mathematics, Faculty of Mathematics and Informatics, University Mohamed Boudiaf, M'sila, Algeria, Email: l.zedam@gmail.com.
M. Al Tahan, Department of Mathematics, Lebanese International University, Bekaa, Lebanon, Email: madeline.tahan@liu.edu.lb.
Rafif Alhabib, AL-Baath University, College of Science, Mathematical Statistics Department, Homs, Syria, Email: ralhabib@albaath-univ.edu.sy. R. A. Borzooei, Department of Mathematics, Shahid Beheshti University, Tehran, Iran, borzooei@hatef.ac.ir.
Sudan Jha, Pokhara University, Kathmandu, Nepal, Email:
jhasudan@hotmail.com.
Mujahid Abbas, Department of Mathematics and Applied Mathematics, University of Pretoria Hatfield 002, Pretoria, South Africa, Email: mujahid.abbas@up.ac.za.
Željko Stević, Faculty of Transport and Traffic Engineering Doboj, University of East Sarajevo, Lukavica, East Sarajevo, Bosnia and Herzegovina, Email: zeljkostevic88@yahoo.com. Michael Gr. Voskoglou, Mathematical Sciences School of Technological Applications, Graduate Technological Educational Institute of Western Greece, Patras, Greece, Email: voskoglou@teiwest.gr. Angelo de Oliveira, Ciencia da Computacao, Universidade Federal de Rondonia, Porto Velho Rondonia, Brazil, Email: angelo@unir.br. Valeri Kroumov, Okayama University of Science, Okayama, Japan, Email: val@ee.ous.ac.jp. Rafael Rojas, Universidad Industrial de Santander, Bucaramanga, Colombia, Email: rafael2188797@correo.uis.edu.co.
Walid Abdelfattah, Faculty of Law, Economics and Management, Jendouba, Tunisia, Email: abdelfattah.walid@yahoo.com.
Akbar Rezaei, Department of Mathematics, Payame Noor University, P.O.Box 19395-3697, Tehran, Iran, Email: rezaei@pnu.ac.ir. Galina Ilieva, Paisii Hilendarski, University of Plovdiv, 4000 Plovdiv, Bulgaria, Email: galili@uni-plovdiv.bg. Paweł Pławiak, Institute of Teleinformatics, Cracow University of Technology, Warszawska 24 st., F-5, 31155 Krakow, Poland, Email: plawiak@pk.edu.pl. E. K. Zavadskas, Vilnius Gediminas Technical University, Vilnius, Lithuania, Email: edmundas.zavadskas@vgtu.lt.
Darjan Karabasevic, University Business Academy, Novi Sad, Serbia, Email: darjan.karabasevic@mef.edu.rs.
Dragisa Stanujkic, Technical Faculty in Bor, University of Belgrade, Bor, Serbia, Email: dstanujkic@tfbor.bg.ac.rs.
Luige Vladareanu, Romanian Academy, Bucharest, Romania, Email: luigiv@arexim.ro. Hashem Bordbar, Center for Information Technologies and Applied Mathematics, University of Nova Gorica,

Slovenia, Email: Hashem.Bordbar@ung.si. Quang-Thinh Bui, Faculty of Electrical Engineering and Computer Science, VŠB-Technical University of Ostrava, Ostrava-Poruba, Czech Republic, Email: qthinhbui@gmail.com.
Mihaela Colhon \& Stefan Vladutescu, University of Craiova, Computer Science Department, Craiova, Romania, Emails: colhon.mihaela@ucv.ro, vladutescu.stefan@ucv.ro.
Philippe Schweizer, Independent Researcher, Av. de Lonay 11, 1110 Morges, Switzerland, Email: flippe2@gmail.com.
Madjid Tavanab, Business Information Systems Department, Faculty of Business Administration and Economics University of Paderborn, D-33098 Paderborn, Germany, Email: tavana@lasalle.edu. Saeid Jafari, College of Vestsjaelland South, Slagelse, Denmark, Email: jafaripersia@gmail.com. Fernando A. F. Ferreira, ISCTE Business School, BRUIUL, University Institute of Lisbon, Avenida das Forças Armadas, 1649-026 Lisbon, Portugal, Email: fernando.alberto.ferreira@iscte-iul.pt.
Julio J. Valdés, National Research Council Canada, M50, 1200 Montreal Road, Ottawa, Ontario K1A 0R6, Canada, Email: julio.valdes@nrc-cnrc.gc.ca. Tieta Putri, College of Engineering Department of Computer Science and Software Engineering, University of Canterbury, Christchurch, New Zeeland. Mumtaz Ali, Deakin University, Victoria 3125, Australia, Email:
mumtaz.ali@deakin.edu.au.
Phillip Smith, School of Earth and Environmental Sciences, University of Queensland, Brisbane, Australia, phillip.smith@uq.edu.au.
Sergey Gorbachev, National Research Tomsk State University, 634050 Tomsk, Russia, Email: gsv@mail.tsu.ru.
Willem K. M. Brauers, Faculty of Applied Economics, University of Antwerp, Antwerp, Belgium, Email: willem.brauers@uantwerpen.be.
M. Ganster, Graz University of Technology, Graz, Austria, Email: ganster@weyl.math.tu-graz.ac.at. Umberto Rivieccio, Department of Philosophy, University of Genoa, Italy, Email: umberto.rivieccio@unige.it.
F. Gallego Lupiaňez, Universidad Complutense, Madrid, Spain, Email: fg_lupianez@mat.ucm.es. Francisco Chiclana, School of Computer Science and Informatics, De Montfort University, The Gateway, Leicester, LE1 9BH, United Kingdom, Email: chiclana@dmu.ac.uk.
Jean Dezert, ONERA, Chemin de la Huniere, 91120 Palaiseau, France, Email: jean.dezert@onera.fr.

Contents

Ibrahim Yasser, Abeer Twakol, A. A. Abd El-Khalek, Ahmed Samrah and A. A. Salama COVID-X: Novel Health-Fog Framework Based on Neutrosophic Classifier for Confrontation Covid-19 1
A.A. Salama, Ahmed Sharaf Al-Din, Issam Abu Al-Qasim, Rafif Alhabib and Magdy Badran, Introduction to Decision Making for Neutrosophic Environment "Study on the Suez Canal Port, Egypt"..... 22
Remya. P. B and Francina Shalini. A, Neutrosophic Vague Binary BCK/BCI-algebra 45
Masoud Ghods and Zahra Rostami, Introduction to Topological Indices in Neutrosophic Graphs 68
A. Sahaya Sudha, Luiz Flavio Autran Monteiro Gomes and K.R. Vijayalakshmi, Assessment of MCDM problems by TODIM using aggregated weights 78
Prakasam Muralikrishna and Surya Manokaran, MBJ - Neutrosophic - Ideal of - Algebra 99
Nidhi Singh, Avishek Chakraborty, Soma Bose Biswas, Malini Majumdar, A Study of Social Media linked MCGDM Skill under Pentagonal Neutrosophic Environment in the Banking Industry. 119
Rakhal Das and Binod Chandra Tripathy, Neutrosophic Multiset Topologica Space 142
Nidhi Singh, Avishek Chakraborty, Soma Bose Biswas and Malini Majumdar, Impact of Social Media in Banking Sector under Triangular Neutrosophic Arena Using MCGDM Technique. 153
Nilabhra Paul, Deepshikha Sarma, Akash Singh and Uttam Kumar Bera, A Generalized Neutrosophic Solid Transportation Model with Insufficient Supply 177
Fatimah M. Mohammed and Sarah W. Raheem, Generalized b Closed Sets and Generalized b Open Sets in Fuzzy Neutrosophic bi-Topological Spaces 188
Muhammad Riaz, Florentin Smarandache, Faruk Karaaslan, Masooma Raza Hashmi and Iqra Nawaz, Neutrosophic Soft Rough Topology and its Applications to Multi-Criteria Decision-Making. 198
Kousik Das, Sovan Samanta, Kajal De and Xavier Encarnacion, A Study on Discrete Mathematics: Sum Distance in Neutrosophic Graphs with Application 220
Nivetha Martin, Florentine Smarandache, I.Pradeepa, N.Ramila Gandhi and P.Pandiammal, Exploration of the Factors Causing Autoimmune Diseases using Fuzzy Cognitive Maps with Concentric Neutrosophic Hypergraphic Approach. 232
Aiman Muzaffar, Md Tabrez Nafis and Shahab Saquib Sohail, Neutrosophy Logic and its Classification: An Overview 239
Abhijit Saha, Florentin Smarandache, Jhulaneswar Baidya and Debjit Dutta, MADM Using m- Generalized q-Neutrosophic Sets 252
Abhijit Saha, Irfan Deli, and Said Broumi, HESITANT Triangular Neutrosophic Numbers and Their Applications to MADM 269

Mohsin Khalid, Florentin Smarandache, Neha Andaleeb Khalid and Said Broumi, Translative and Multiplicative Interpretation of Neutrosophic Cubic Set .299

Md. Hanif PAGE and Qays Hatem Imran, Neutrosophic Generalized Homeomorphism. 340

Shilpi Pal and Avishek Chakraborty, Triangular Neutrosophic Based Production Reliability Model of Deteriorating Item with Ramp Type Demand under Shortages and Time Discounting 347
S. Satham Hussain, Saeid Jafari, Said Broumi and N. Durga, Operations on Neutrosophic Vague Graphs 368
Hanieh Shambayati, Mohsen Shafiei Nikabadi, Seyed Mohammad Ali Khatami Firouzabadi andMohammad Rahmanimanesh, Partner Selection in Virtual Enterprises using the IntervalNeutrosophic Fuzzy Approach387
Mujahid Abbas, Ghulam Murtaza, and Florentin Smarandache, Basic operations on hypersoft sets and hypersoft point 407
K. Porselvi, B. Elavarasan, F. Smarandache and Y. B. Jun, Neutrosophic א -bi-ideals in semigroups. 422
Chinnadurai V and Sindhu M P, A Novel Approach for Pairwise Separation Axioms on Bi-SoftTopology Using Neutrosophic Sets and An Output Validation in Real Life Application435
K.Radhika and K.Arun Prakash, Ranking of Pentagonal Neutrosophic Numbers and its Applications to solve Assignment Problem 464
Said Broumi, Malayalan Lathamaheswari, Ruipu Tan ,Deivanayagampillai Nagarajan, Talea Mohamed, Florentin Smarandache and Assia Bakali, A new distance measure for trapezoidal fuzzy neutrosophic numbers based on the centroids 478
Nivetha Martin and Florentin Smarandache, Introduction to Combined Plithogenic Hypersoft Sets 503
Qays Hatem Imran, R. Dhavaseelan, Ali Hussein Mahmood Al-Obaidi, and Md. Hanif PAGE, On Neutrosophic Generalized Alpha Generalized Continuity 511
Suman Das and Surapati Pramanik, Generalized neutrosophic b-open sets in neutrosophic topological space 522
Madad Khan, Muhammad Zeeshan, Saima Anis, Abdul Sami Awan and Florentin Smarandache, Neutrosophic Soft Fixed Points 531
M. Sarwar Sindhu, Tabasam Rashid and Agha Kashif, Selection of Alternative under the Framework of Single-Valued Neutrosophic Sets 547
Rajesh Kumar Saini, Atul Sangal and Manisha, Application of Single Valued Trapezoidal Neutrosophic Numbers in Transportation Problem 563

COVID-X: Novel Health-Fog Framework Based on Neutrosophic Classifier for Confrontation Covid-19

Ibrahim Yasser ${ }^{1, *}$, Abeer Twakol ${ }^{2}$, A. A. Abd El-Khalek ${ }^{3}$, Ahmed Samrah ${ }^{4}$ and A. A. Salama ${ }^{5}$
${ }^{1}$ Communications and Electronics Engineering Department, Nile Higher Institute for Engineering and Technology Mansoura, Egypt; ibrahimyasser14@gmail.com.
2 Department of Computer Engineering, Faculty of Engineering, Benha University, Egypt;_atwakol2013@gmail.com.
${ }^{3}$ Communications and Electronics Engineering Department, Nile Higher Institute for Engineering and Technology Mansoura, Egypt; ayayakot94@gmail.com.
4 Electronics and Communications Engineering Department, Faculty of Engineering, Mansoura University, Egypt; shmed@mans.edu.eg.
5 Department of Mathematics and Computer Science, Faculty of Sciences, Port Said University, Egypt; drsalama44@gmail.com.
* Correspondence: ibrahimyasser14@gmail.com

Abstract

The newly identified Coronavirus pneumonia, subsequently termed COVID-19, is highly transmittable and pathogenic with no clinically approved antiviral drug or vaccine available for treatment. Technological developments like edge computing, fog computing, Internet of Things (IoT), and Big Data have gained importance due to their robustness and ability to provide diverse response characteristics based on target application. In this paper, we present a novel Health-Fog framework universal system to automatically assist the early diagnosis, treatment, and preventive of people with COVID-19 in an efficient manner. Achieving an empirical of the proposed framework which mix between deep learning and Neutrosophic classifiers in the task of classifying COVID-19. There are some proposed applications based on the proposed COVID-X framework such as smart mask, smart medical suit, safe spacer, and Medical Mobile Learning (MML) will be presented. Computer-aided diagnosis systems could assist in the early detection of COVID-19 abnormalities and help to monitor the progression of the disease, potentially reduce mortality rates.

Keywords: Coronavirus Pneumonia; COVID-19; Intelligent Medical System; Fog Computing; Health-Fog; Neutrosophic; Deep Learning; Computer-Aided Diagnosis.

1. Introduction

The Coronavirus disease 2019-2020 pandemic (COVID-19) poses unprecedented challenges for governments and societies around the world. In addition to medical measures, non-pharmaceutical measures have proven to be critical for delaying and containing the spread of the virus. This includes (aggressive) testing and tracing, bans on large gatherings, school and university closures, international and domestic mobility restrictions and physical isolation, up to total lockdowns of regions and countries. However, effective and rapid decision-making during all stages of the pandemic requires reliable and timely data not only about infections, but also about human behavior, especially on mobility and physical co-presence of people [1]. There are growing privacy concerns

[^0]about the ways governments use data to respond to the COVID-19 crisis. As new technologies emerge that aim to collect, disseminate and use data in order to support the fight against COVID-19, we need to ensure they respect ethical best practices. Even in times of crisis, we need to comply with data privacy regulations and ensure that the data is used ethically. One way to do that is to establish independent ethical committees or data trusts. Their role will be to create data governance mechanisms to find the balance between competing public interests, while protecting individual privacy. Examples of such rules include setting up clear guidelines on the purpose and timeline for the use of the data, defining clear processes for the access, processing and termination of use of personal data at the end of the crisis. Tracking a patient from symptoms, lab results and treatments can help a hospital understand how a disease is progressing through a community, how effective treatments are and what isn't working [2].

Technological developments like edge computing, fog computing, Internet of Things (IoT), and Big Data have gained importance due to their robustness and ability to provide diverse response characteristics based on target application. These emerging technologies provide storage, computation, and communication to edge devices, which facilitate and enhance mobility, privacy, security, low latency, and network bandwidth so that fog computing can perfectly match latencysensitive or real-time applications [3]. Healthcare is one of the prominent application areas that requires accurate and real-time results, and people have introduced Fog Computing in this field which leads to a positive progress. With Fog computing, we bring the resources closer to the users thus decreasing the latency and thereby increasing the safety measure. Getting quicker results implies fast actions for critical COVID- 19 patients. But faster delivery of results is not enough as with such delicate data we cannot compromise with the accuracy of the result [4]. One way to obtain high accuracies is by using state-of-the-art analysis software typically those that employ deep learning and their variants trained on a large dataset. Deep learning techniques showed in the last years promising results to accomplish radiological tasks by automatic analyzing multimodal medical images [5]. Deep convolutional neural networks (DCNNs) are one of the powerful deep learning architectures and have been widely applied in many practical applications such as pattern recognition and image classification in an intuitive way [6]. DCNNs are able to handle four manners as follow [7]: 1) training the neural network weights on very large available datasets; 2) fine-tuning the network weights of a pre-trained DCNN based on small datasets; 3) Applying unsupervised pre-training to initialize the network weights before putting DCNN models in an application; and 4) using pre-trained DCNN is also called an off-the-shelf CNN being used as a feature extractor. Convolutional neural networks are sensitive to unknown noisy condition in the test phase and so their performance degrades for the noisy data classification task including noisy recognition. In this research, a convolutional neural network (CNN) model with data uncertainty handling; referred as NCNN (Neutrosophic Convolutional Neural Network); is proposed for classification task. The Neutrosophic is a new view of Modeling, designed to effectively deal underlying doubts in the real world, as it came to replace binary logic that recognized right and wrong by introducing a third neutral case which could be interpreted as non-specific or uncertain. Founded by Florentin Smarandache [8], he presented it in 1999 as a generalization of fuzzy logic. As an extension of this, A. A. Salama introduced the Neutrosophic crisp sets Theory as a generalization of crisp sets theory [9] and developed, inserted and formulated new concepts in the fields of mathematics, statistics, and computer science and information systems through Neutrosophic [10-12]. Neutrosophic has grown significantly in recent years through its application in measurement, sets and graphs and in many scientific and practical fields [13-17].

In this work, a proposed novel COVID- X framework was developed as universal Health-Fog system for automatic diagnosis, treatment, and preventive of people with COVID-19 in an efficient manner using deep learning, Neutrosophic and IoT. Health-Fog provides healthcare as a fog service and efficiently manages the data of COVID-19 patients which is coming from different IoT devices. Health-Fog provides this service by using the proposed framework and demonstrates application enablement and engineering simplicity for leveraging fog resources to achieve the same.

In the following, the contributions of this paper are summarized:

- Building altogether a novel framework universal system to automatically assist the early diagnosis, treatment, and preventive of people with COVID-19 in an efficient manner.
- Proposed a generic system architecture for development of ensemble NCNN on fog computing
- Achieving an empirical of the proposed framework which mix between deep learning and Neutrosophic classifiers in the task of classifying COVID-19.
- The proposed COVID-X framework supports interdisciplinary researchers to continue developing advanced artificial intelligence techniques to fight the COVID-19 outbreak.
- This study demonstrated the useful applications of deep learning models to classify COVID19 based on the proposed COVID-X framework such as smart mask, smart medical suit, safe spacer, and Medical Mobile Learning (MML). These applications are the next milestone of this research work.
The rest of this paper is structured as follows. Section 2 presents the related works. Section 3 gives a review on the state-of-the-art deep convolutional neural network models as image classifiers. Also, a detailed description of the COVIDX-Net framework is presented. Experimental results and comparative performance of the proposed deep learning classifiers are investigated and discussed in section 4 . Finally, limitations and this study is concluded with the main prospects in sections 4,5 .

2. Related Work

Some studies have shown the use of imaging techniques such as X-rays or Computed Tomography (CT-scans) for finding characteristic symptoms of the novel corona virus in these imaging techniques. Hemdan et al. [18] developed a deep learning framework, COVIDX-Net, to diagnose COVID-19 in X-Ray Images. A comparative study of different deep learning architectures including VGG19, DenseNet201, ResNetV2, InceptionV3, InceptionResNetV2, Xception and MobileNetV2 is provided by authors. Barstugan et al. [19] proposed a machine learning approach for COVID-19 classification from CT images. Kassani et al. [20] presented a feature extractor-based deep learning and machine learning classifier approach for computer-aided diagnosis (CAD) of COVID19 pneumonia. Loey et al. [21] presented a detection model based on GAN network with deep transfer learning for COVID-19 detection in limited chest X-ray images. Table 1 compares the proposed model (HealthFog) with existing models. Recent studies suggest the use of chest radiography in the epidemic areas for the initial screening of COVID-19 [22]. Therefore, the screening of radiography images can be used as an alternate to the PCR method, which exhibit higher sensitivity in some cases [23]. Nevertheless, the main bottleneck that the radiologists experience in analyzing radiography images is the visual scanning of the subtle insights. This entails the use of intelligent approaches that can automatically extract useful insights from the chest X-rays those are characteristics of COVID-19.

[^1]Table 1: Comparison of existing models

Work	Fog Computing	IoT	Neutrosophic	Deep Learning	Dataset	DiagnosisHealthcare applications
Hemdan et al. [18]			\checkmark	\checkmark	\checkmark	
Barstugan et al. [19]			\checkmark	\checkmark	\checkmark	
Kassani et al. [20] Loey et al. [21] Proposed work	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

3. Proposed COVID_X Description framework

Fog and Cloud computing paradigms have emerged as a backbone of modern economy and utilize Internet to provide on-demand services to users [24]. Both of these domains have captured significant attention of industries and academia. In this section will proposed a new deep learning framework for automatically identifying the status of COVID-19 extend support to emerging application paradigms such as IoT, Fog computing, Edge, and Big Data through service and infrastructure. The data generated from Things layer can vary in size, for instance, the data sent from sensors. The diversity in data packages size influence the behavior of Fog node during the processing event, thus, data packages will require more time to process than light data packages. Therefore, in the proposed model, there is a distinction processing tasks. In addition, the fog nodes were adopted collaboration framework to achieve the minimal request processing time for heavy data packages. In Figure 1 the collaboration concept was elaborated and the distinction different processing tasks received from Things layer. In addition, in this framework the advance approach was adopted to identify the suitable treatment process, such as, Fog reputation to process specific type of data (e.g., health data).

[^2]

Figure 1. Proposed framework universal system for confrontation covid-19

3.1 Edge Layer:

The edge layer (perception layer), is the starting point of the IoT structure where data is been generated. This layer contains the networked Things (i.e., wireless sensors) such as heart-rate, bloodoxygen and etc., which operate to feed the system with patient symptoms data. Each Thing device/object in this layer is facilitated with communication protocol (such as IEEE 802.15.4, WiFi, Bluetooth, MQTT, and etc.) in which permit the Thing node to transmit the generated data to Fog

[^3] Neutrosophic Classifier for Confrontation Covid-19
nodes over the IoT network. In our proposed architecture, A TN denoted by T, is defined as a sixtuple: $T=\left\langle T_{i d}, T_{s t}, \tau_{i}, \mathcal{L}, \mathcal{H}, \mathcal{J}[q]\right\rangle$ where, $T_{i d}$ is an integer representing the unique ID of the TN , $T_{s t}=\{0,1\}$, defines whether the node is in active state or not, $\left(\tau_{i}\right)$ indicates the type of event that a node senses. (\mathcal{L}) is refer to the geo-spatial location of a TN. (\mathcal{H}) is represented the specifications of an edge device. $\mathcal{J}[q]$ is a linear data structure, such as a 1-D array (with q elements) that stores the instance IDs of the application instances running on the device. These tuples are essential to represent the Thing node over the IoT network.

3.1.1 Thermal Screen

The smart helmet can also detect high body's temperature in the crowds and send the measured data to be displayed on a phone application. Smart Helmet system work is presented in Figure 2. As the high body temperature of people is one of the very common symptoms, a real time monitoring system of the screening process that automatically appearing the thermal image of temperature of people is needed. So, the diagnosis of the screening process will be less time consuming and less human interactions that might cause the spreading of the coronavirus faster. It can be concluded that the remote sensing procedures, which provide an assortment of ways to identify, sense, and monitoring of coronavirus, give an awesome promise and potential in order to fulfil the demands from the healthcare system [25].

Figure 2. Smart Helmet system work

3.1.2 Sensing Node

Smart City and Intelligent Transportation System (ITS) as shown in Figure 3 offer a futuristic vision of smart, secure and safe experience to the end user, and at the same time efficiently manage the sparse resources and optimize the efficiency of city operations. However, outbreaks and pandemics like COVID-19 have revealed limitations of the existing deployments, therefore, architecture, applications and technology systems need to be developed for swift and timely enforcement of guidelines, rules and government orders to contain such future outbreaks. The proposed architecture and AI assisted applications discussed in the article can be used to effectively and timely enforce social distancing community measures, and optimize the use of resources in critical situations. It offers a conceptual overview and serves as a steppingstone to extensive research and deployment of automated data driven technologies in smart city and intelligent transportation systems [26].

[^4]

Figure 3. Smart City and ITS Architecture.

3.1.3 Smart Mask

Smart mask can be developed that can record air quality among other features. The Smart Mask is more than your average face mask, as its name suggests. Figure 4 shows the proposed Smart Mask, can record air quality information thanks to various sensors and electronics. Additionally, it can inform wearers of possible changes in lung capacity. While this may prove useful in areas of poor air quality,

Figure 4. The proposed Smart Mask
Specifications; Type: Head-mounted, rated voltage: DC 5V, rated power: 0.4 W , Charging time: 2 hours Standby time: 5~8 hours, Filtering effect: 95\%, Protection level: KN95, Function: Dustproof, anti-haze, anti-pollen, anti-tail gas, etc. Feature; Unique ventilation design, a plurality of holes, excellent permeability, Exhale, the valve is opened without resistance, air breathing valve, air resistance is smaller, smooth breathing, uses efficient and low-resistance filter material, combined with the smart electric air supply module to provide fresh air into the mask. The edge is protected by 3D sponge for effective sealing. best protection: The allergy mask separation of 98% of the dust, chemicals, smoke and particles, it can be used for dust, anti-vehicle exhaust, anti-pollen allergy, PM2.5, for cycling, hiking, skiing and other outdoor activities. High-performance breathing valve

[^5]that reduces heat and moisture build-up for smoother breathing. Built-in adjustable nose clip for a good fit and comfort with the face. Charge once for 5~8-hour endurance to ensure commuting. KN95 industrial safety protection level. Low noise.one mask can be used for 5-8 days. Can be reused and Comfortable ear band made of soft cotton, easy to wear and remove ear loop design.

3.1.4 Smart Medical Suit

The nature of Health care workers job puts them health care at an increased risk of catching any communicable disease, including COVID-19. Where they spend a lot of time up close with the patient doing high risk activities, those high-risk activities include things like placing patients on ventilators or collecting samples of sputum from their lungs. That's why it's so important that they achieve the highest level of protective equipment. The proposed smart medical suits is showed in Figure 5.

Figure 5. The proposed Smart Medical Suit.

3.1.5 Mobile App.

The new MobileDetect COVID-19 test kit in Figure 6 was planned to launch in April 2020. The currently available free MobileDetect App for Apple and Android smartphone and tablet platforms will be updated with the additional COVID-19 testing capability upon launch. Due to the novel design incorporating simplistic operation along with credible field-testing capability, the COVID-19 test kits can be used by federal, state, local response, medical agencies and are also planned to be available to the general public [27].

Figure 6. MobileDetect Application.

[^6]
3.1.6 X-ray and CT Images

Medical imaging is also playing a critical in monitoring the progression of the disease and patient care. Extracting features from radiology modalities is an essential step in training machine learning models since the model performance directly depends on the quality of extracted features. Figure 7. Illustrates the visual features extracted by VGGNet architecture from an X-ray image of a COVID-19 positive patient. Motivated by the success of deep learning models in computer vision, the focus of this research is to provide an extensive comprehensive study on the classification of COVID-19 pneumonia in chest X-ray and CT imaging using features extracted by the state-of-the-art deep CNN architectures and trained on machine learning algorithms [20].

Figure 7. Framework of the method with VGGNet as feature extractor.

3.1.7 Community Acquired Pneumonia on Chest CT

In this study, a 3D deep learning framework was proposed for the detection of COVID-19 as shown in Figure 8. This framework is able to extract both 2D local and 3D global representative features. Deep learning has achieved superior performance in the field of radiology. RT-PCR is considered as the reference standard; however, it has been reported that chest CT could be used as a reliable and rapid approach for screening of COVID-19 [28]

Figure 8. COVID-19 detection neural network (COVNet) architecture.

[^7]
3.2 Fog Layer:

The Fog layer contains number of decentralized nodes in each given location. This layer handles the primary refining, compute, and processing of data generated in the Things layer. Fog nodes aim to improve efficiency of IoT applications, thus, Fog has the potential to reduce the amount of data transmitted to the Cloud layer and minimizing the requests-response time for IoT applications. This is often required to enhance the Quality of Service (QoS), such as reducing latency and improve network bandwidth. For example, in reference to our scenario the Fog will receive patient's data from their wearable, analyze the data according to predetermined artificial intelligent training, and make outcome available to caregiver over the dashboard and notify cloud with outcome for complex analysis.

3.2.1 Data pre-processing

Covid-19 tested data e.g. the images within the dataset were collected from multiple imaging clinics with different equipment and image acquisition parameters; therefore, considerable variations exist in images' intensity. The proposed method in this study avoids extensive pre-processing steps to improve the generalization ability of the convolution neural network (CNN) architecture. This helps to make the model more robust to noise, artifacts and variations in input images during feature extraction phase. Hence, we only employed two standard pre-processing steps in training deep learning models to optimize the training process [29].

3.2.2 Neutrosophic Classifier

Neutrosophic classifier: a classifier that would use Neutrosophic logic principles and Neutrosophic sets for the classification. Neutrosophic classifier incorporates a simple, Neutrosophic rule based approach like: IF X and Y THEN Z, for solving problem rather than attempting to model a system mathematically similar to fuzzy classifier [30]. Designing of Neutrosophic classification inference system using fuzzy methodology is based on the principles of Mamdani fuzzy inference method [25]. Figure 9 gives the block diagram representation of a Neutrosophic classification system using fuzzy logic toolbox of Matlab. Values of T, I and F Neutrosophic components are independent of each other. So using fuzzy logic toolbox of Matlab, three FIS have been designed: one for Neutrosophic truth component, second for Neutrosophic indeterminacy component and third for Neutrosophic falsity component. Though the working of these components are independent of each other but a correlation is drawn between membership functions of Neutrosophic T, I and F components so as to capture the truthness, indeterminacy and falsity of the input as well as the output.

[^8]

Figure 9. Block diagram for a Neutrosophic components
Neutrosophic Rule-based Classification System (NRCS) which is a rule based system where Neutrosophic logic is used as a tool for representing different forms of knowledge about the problem at hand, as well as for modeling the interactions and relationships that exist between its variables [23]. The generic structure of a NRCSs shown in Figure 10.

Figure 10. Basic structure of a Neutrosophic Rule-Based Classification System
Let U be a universe of discourse and W is a set in U which composed of bright pixels. A Neutrosophic images $P_{N S}$ is characterized by three sub sets T, I, and F. that can be defined as T is the degree of membership, I is the degree of indeterminacy, and F is the degree of non-membership. In the image, a pixel P in the image is described as $\mathrm{P}(\mathrm{T}, \mathrm{I}, \mathrm{F})$ that belongs to W by its $\mathrm{t} \%$ is true in the bright pixel, $\mathrm{i} \%$ is the indeterminate and $\mathrm{f} \%$ is false where t varies in T , i varies in I , and f varies in F .

[^9]The pixelp(i, j) in the image domain, is transformed to

$$
\begin{equation*}
N D P_{N S}(i, j)=\{T(i, j), I(i, j), F(i, j)\} \tag{1}
\end{equation*}
$$

Where belongs to white set, belongs to indeterminate set and belongs to non-white set. Which can be defined as [31]:

$$
\begin{gather*}
P_{N S}(i, j)=\{T(i, j), I(i, j), F(i, j)\} \tag{2}\\
T(i, j)=\frac{\overline{g(l, j)}-\bar{g}_{\min }}{\bar{g}_{\max }-\bar{g}_{\min }} \tag{3}\\
I(i, j)=1-\frac{H_{o}(i, j)-H_{o}}{H_{o_{\max }}-H_{o_{\min }}} \tag{4}\\
F(i, j)=1-T(i, j) \tag{5}\\
H_{o}(i, j)=a b s(g(i, j)-\overline{g(l, j)} \tag{6}
\end{gather*}
$$

Where $\overline{g(l, J)}$ represents the local mean value of the pixels of window size, and $H_{o}(i, j)$ which can be defined as the homogeneity value of T at (i, j), that described by the absolute value of difference between intensity $g(i, j)$ and its local mean value $\overline{g(l, j)}$.

The Content Based Image Retrieval (CBIR) goal is to retrieve images relevant to a query images which selected by a user. The image in CBIR is described by extracted low-level visual features, such as color, texture and shape. Retrieval System for images embedded in the Neutrosophic domain. In this first phase, extract a set of features to represent the content of each image in the training database. In the second phase, a similarity measurement is used to determine the distance between the image under consideration (query image), and each image in the training database, using their feature vectors constructed in the first phase. Hence, the N most similar images are retrieved. Several distance metrics were suggested for both content and texture image retrieval, respectively. In this paper, we are using a Neutrosophic version of the Euclidean distance, which was presented in [31]. For any two Neutrosophic Sets, the Content Based Image Retrieval (CBIR) goal is to retrieve images relevant to a query images which selected by a user. The image in CBIR is described by extracted low-level visual features, such as color, texture and shape. Retrieval System for images embedded in the Neutrosophic domain. In this first phase, extract a set of features to represent the content of each image in the training database. In the second phase, a similarity measurement is used to determine the distance between the image under consideration (query image), and each image in the training database, using their feature vectors constructed in the first phase. Hence, the N most similar images are retrieved. Several distance metrics were suggested for both content and texture image retrieval, respectively. In this paper, we are using a Neutrosophic version of the Euclidean distance, which was presented in [31]. For any two Neutrosophic Sets,

$$
\begin{gather*}
\left.A=\left\{T_{A}(x), I_{A}(x), F_{A}(x)\right), x \in U\right\} \text { and } \tag{7}\\
\left.B=\left\{T_{B}(x), I_{B}(x), F_{B}(x)\right), x \in U\right\} \text { in } \tag{8}\\
U=\left\{u_{1}, u_{2}, u_{3}, \ldots, u_{n}\right\} \text { then } \tag{9}
\end{gather*}
$$

The Neutrosophic Euclidean distance is equal to

$$
\begin{equation*}
d(A, B)=\sqrt{\sum_{i=1}^{n}\left(\left(T_{A}\left(x_{i}\right)-T_{B}\left(x_{i}\right)\right)^{2}+\left(\left(I_{A}\left(x_{i}\right)-I_{B}\left(x_{i}\right)\right)^{2}+\left(\left(F_{A}\left(x_{i}\right)-F_{B}\left(x_{i}\right)\right)^{2}\right.\right.\right.} \tag{10}
\end{equation*}
$$

Figure 11. Neutrosophic COVID-19 image classifier Architecture
The algorithm for the proposed system is given below which presented in Figure 11:

1. Convert each image in the database from spatial domain to Neutrosophic domain.
2. Create a database containing various COVID-19.
3. Extract Texture feature of COVID-19 in the database.
4. Construct a combined feature vector for T, I, F and Stored in another database called Featured Database.
5. Find the distance between feature vectors of query COVID-19 and that of featured databases.
6. Sort the distance and Retrieve the N-top most similar.

The RNN structure replaces the traditional neuron by two neurons (lower neuron, upper neuron) to represent lower and upper approximations of each attribute in the CTG data set, its structure formed from 4 layers input, 2 hidden and output layers. The hidden layers have rough neurons, which overlap and exchange information between each other, While the input and output layers consists of traditional neurons as in Figure 12 [32].

Input Layer Hidden Layer1 Hidden Layer2 Output Layer

Figure 12. Rough Neural Network (RNN) structure.
Input layer is composed of neuron for each data attribute. The output layer represents the three FHR classes, the hidden layers rough neurons are determined by the Baum-Haussler rule [33].

$$
\begin{equation*}
N_{h n}=\frac{N_{t s} \times T e}{N_{i}+N_{o}} \tag{11}
\end{equation*}
$$

Where $N_{h n}$ is the number of hidden neurons, $N_{t s}$ is the number of training samples, $T e$ is the tolerance error, N_{i} is the number of inputs (attributes or features), and N_{o} is the number of the output.During training process, the normalized input data is multiplied by its weight and computed in sigmoid activation function.

$$
\begin{equation*}
f(x)=\frac{1}{1+e^{-\lambda x}} \tag{12}
\end{equation*}
$$

Step II: Training phase

1. Initialize random (upper, lower) weights of network
2. Feed forward of attribute values and multiply in both direction (Uw, Lw)
3. Compute (IU, IL) of hidden layers by relations:

$$
\begin{align*}
& I_{L n}=\sum_{J=1}^{n} W_{L n j} O_{n j} \tag{13}\\
& I_{U n}=\sum_{J=1}^{n} W_{U n j} O_{n j} \tag{14}
\end{align*}
$$

4. Compute (OU, OL) of hidden layers by relations:

$$
\begin{equation*}
O_{L n}=\operatorname{Min}\left(f\left(I_{L n}\right), f\left(I_{U n}\right)\right) \tag{15}
\end{equation*}
$$

5. Check fetus according to comparing between actual output (T) and output value (O), where output represent by

$$
\begin{equation*}
O=O_{L n}+O_{U n} \tag{16}
\end{equation*}
$$

[^10]6. If output is error, then use back propagation algorithm, and compute error.
\[

$$
\begin{equation*}
\Delta=T-O \tag{17}
\end{equation*}
$$

\]

7. Update (upper, lower) weights of network by derivation of activation function:

$$
\begin{equation*}
\text { New weight = old weight }+\left(\Delta^{*} \eta^{*}\right. \text { derivative* activation of (input)) } \tag{18}
\end{equation*}
$$

where η is learning rate of model
8. Repeat $5,6,7,8$ and 8.1 until reduction error as possible as.

Step III: Testing phase Classify new sample of objects and determine the accuracy rate of the model by using relation Accuracy $=1$-absolute error, also calculate time consumption in model processing. The proposed model for neutrosophic algorithms and source codes based on the works presented in [34-37] and others.

3.2.3 Classification Performance Analysis

In order to evaluate the performance for each deep learning model in the COVID-X, different metrics have been applied in this study to measure the true and/or misclassification of diagnosed COVID-19 in the tested X-ray images as follow. First, the cross validation estimator was used and resulted in a confusion matrix as illustrated in Table 2. The confusion matrix has four expected outcomes as follows. True Positive (TP) is a number of anomalies and has been identified with the right diagnosis. True Negative (TN) is an incorrectly measured number of regular instances. False Positive (FP) is a collection of regular instances that are classified as an anomaly diagnosis FP. False Negative (FN) is a list of anomalies observed as an ordinary diagnosis [18].

Table 2. Confusion Matrix.

	Predicted Positive	Predicted Negative
Actual Positive	True Positive (TP)	False Negative (FN)
Actual Negative	False Positive (FP)	True Negative (TN)

After calculating the values of possible outcomes in the confusion matrix, the following performance metrics can be calculated.
A) Accuracy: Accuracy is the most important metric for the results of our deep learning classifiers, as given in (1). It is simply the summation of true positives and true negatives divided by the total values of confusion matrix components. The most reliable model is the best but it is important to ensure that there are symmetrical datasets with almost equal false positive values and false adverse values. Therefore, the above components of the confusion matrix must be calculated to assess the classification quality of our proposed COVIDX-Net framework.

$$
\begin{equation*}
\operatorname{Accuracy}(\%)=\frac{T P+T N}{T P+F P+T N+F N} 100 \% \tag{19}
\end{equation*}
$$

B) Precision: Precision is represented in (2) to give relationship between the true positive predicted values and full positive predicted values.

$$
\begin{equation*}
\text { Precision }=\frac{T P}{T P+F P} \tag{20}
\end{equation*}
$$

[^11]C) Recall: In (3), recall or sensitivity is the ratio between the true positive values of prediction and the summation of predicted true positive values and predicted false negative values.
\[

$$
\begin{equation*}
\text { Recall }=\frac{T P}{T P+F N} \tag{21}
\end{equation*}
$$

\]

D) F1-score: F1-score is an overall measure of the model's accuracy that combines precision and recall, as represented in (4). F1-score is the twice of the ratio between the multiplication to the summation of precision and recall metrics.

$$
\begin{equation*}
\text { F1 }- \text { score }=2\left(\frac{\text { Precision } \times \text { Recall }}{\text { Precision }+ \text { Recall }}\right) \tag{22}
\end{equation*}
$$

3.3 Cloud Layer:

Cloud or data-centres layer is the top layer of the IoT architecture in which enabling omnipresent, convenient, and proper network access to shared resources (e.g., storage, and services) over the IoT network. Thus, Cloud perform the heavy services of healthcare data analysis and processing that Fog cannot perform.

3.3.1 Covid-19 Tracer

Interactive tracker offers users map and graphical displays for COVID-19 disease global spread, including total confirmed, active, recovered cases, and deaths. The live dashboard pulls data from the proposed framework as well as the centers for disease control to show all confirmed and suspected cases of COVID-19, along with recovered patients and deaths. The data is visualized through a real-time graphic information system (GIS) as shows in Figure 13 [38].

Figure 13. COVID-19 Tracer

3.3.2 Safe Spacer

Limiting face-to-face contact with others is the best way to reduce the spread of coronavirus disease 2020 (COVID-19). Safe spacer, also called "social distancing," means keeping space between yourself and other people outside of your home. The proposed safe spacer was showed in Figure 14. To practice social or physical distancing using Ultra-wideband technology, Safe Spacer runs wirelessly on a rechargeable battery and precisely senses when other devices come within $2 \mathrm{~m} / 6 \mathrm{ft}$,

[^12] Neutrosophic Classifier for Confrontation Covid-19
alerting wearers with a choice of visual, vibrating or audio alarm. Each device features a unique ID tag and built-in memory to optionally associate with workers' names for tracing any unintentional contact. To maintain high privacy standards, no data except the device's ID and proximity is stored. For advanced workplace use, an optional iOS/Android app allows human resources or safety departments to associate IDs to specific workers, log and export daily tracing without collecting sensitive data, configure the alarms, set custom distance/alert thresholds and more.

Figure 14. The proposed safe spacer

3.3.3 Health System Response Monitor

The COVID-19 Health System Response Monitor (HSRM) assists healthcare organizations and governments assess patient risk profiles and connects them with virtual care capabilities. It has been designed in response to the COVID-19 outbreak to collect and organize up-to-date information responding to the crisis. It focuses primarily on the responses of health systems but also captures wider public health initiatives. It can be presented the main subsystem in medical system as following:

- Medical analysis subsystem It records the results of the tests for the patients either manually or automatically by connecting the analytical devices to the system It provides a set of statistics such as: the number of analyzes required by a particular laboratory in a specific period and the number of analyzes that have already been done - analyzes of a particular patient divided according to his medical visits This system is linked to a database that includes all medical analyzes divided by type (chemistry - hematology - microbiology - immunology - pathology) and it is related to a set of applications that record the analyzes of each laboratory and the standard data for these analyzes (Normal Value) according to the kit used in the lab.
- Radiology subsystem. It records the data of the examination staff, showing the type of radiation required for each of them, along with some clinical data about some of the rays, such as CTrays and records the radiology report. It contains a system Picture Archiving and Communication System (PACS) that links the radiology devices to the system so that the x rays are sent to the x-ray. It provides a set of statistics, such as: the number of radiation transferred to a particular x-ray department in a specific period, the number of radiation already done, and the number of x-rays sent. This system is linked to a database that includes all the rays divided by type (therapeutic - diagnostic) or (ultrasound - CT scan - resonance) and it is linked to a set of applications that record the radiation of each section and the standard report for each radiator, as well as determining the work schedule for each section rays.
- Medical archive subsystem. It provides a set of statistics, such as: the numbers of patients attending a specific clinic in a specific period classified by type or age group or geographically distributed in the governorate, center or city. The system scans patient documents, whether paper documents or x-ray films, with scanners with special specifications. These documents

[^13]are stored as part of patient data on dedicated servers. The system contains the ability to record the type of document (x-rays-tests-good checks-surgeries -...) and the document history and some other data that can be used to create statistics for these documents can be added. The system contains a special viewer to display these documents with special capabilities for dealing with these images such as enlarging, reducing or rotating the images. The Digitizer can be used so that x-ray films are stored in the form of dicom files which is the same format that x-ray devices output so that they can be viewed through the PACS Viewer.

3.3.4 Medical Mobile Learning subsystem

Medical Mobile Learning (MML) is an unavoidable alternative during COVID-19. It developed to meet the needs of the education for medical sector, managing all aspects of providing educational, training and development programs with software that looks after administration, documentation, tracking, reporting and delivery. MML denote learning involving the use of a mobile device. It has several advantages and benefits. First, this teaching method can occur at anyplace, anytime, and anywhere and the learning process is not limited to one particular place. Besides, it allows doctors to personalize instruction and allow to self-regulate learning. Generally, mobile learning can helps doctors to develop technological skills, conversational skills, find answers to their questions for any update for COVID-19, develop a sense of collaboration, allow knowledge sharing, and hence leverage their learning.

3.3.5 Robotics and Telehealth system

Health systems broadly, to encompass the full continuum between public health (populationbased services) and medical care (delivered to individual patients). When we think about digital transformation in healthcare, we usually think about some new software doctors are using or a new medical imaging machine. However, since doctors are now scrambling to contain the COVID-19 pandemic, they have to do so without endangering themselves as well. The proposed robotics and telehealth system shown in Figure 15. This is where robotics comes in instead of going into the room to see the patient, a robot goes in, and the doctors operate it via an iPad from the other side of the door - this digital innovation in healthcare currently being used in hospitals in Washington and other states. In fact, the robot even has a stethoscope to take the patients' vitals [39].

Figure 15. The proposed robotics and telehealth system

[^14]
4. Limitations

This research is interested in aspects related to Fog computing applied to the healthcare area. In this sense, this paper focuses on the characteristics of fog computing architectures directly related to healthcare, disregarding models. This research is limited in availability of data makes it difficult to process due to the limited hardware availability. Interoperability, data processing, CPU management, memory and disk resources, and big data issues are still weaknesses in architectures that require a large number of heterogeneous devices such as healthcare applications.

5. Conclusion and Future Works

Infectious COVID-19 disease shocked the world and is still threating the lives of billions of people. In this study, a new CVOID-X framework has been proposed to automatically identify or COVID-19 based on deep learning classifiers. Technological developments like edge computing, fog computing, IoT, and Big Data have gained importance due to their robustness. In this retrospective and multi-center study, a deep learning model, COVID-19 detection neural network using Neautrosophic classifier, was developed to extract visual features from volumetric exams for the detection of COVID-19. The proposed system facilitates communication between people and medical centers so that the appropriate COVID-19 patient can be reached just on time. It also integrates the information scattered among different medical centers and health organizations across the country to confrontation COVID-19 Stakeholders are able to use the confrontation as an applications installed on their smartphones or as wearable devices. So the diagnosis of the screening process will be less time consuming and less human interactions that might cause the spreading of the coronavirus faster. It can be concluded that the remote sensing procedures, which provide an assortment of ways to identify, sense, and monitoring of COVID-19, give an awesome promise and potential in order to fulfil the demands from the healthcare system. As part of the future work, the proposed framework can be stimulated and analysis the results for every Thing device/object in Edge layer presented in this work. Moreover, to obtain the most accurate feature which is an essential component of learning, MobileNet, DenseNet, Xception, ResNet, InceptionV3, InceptionRes- NetV2, VGGNet, NASNet will be applied amongst a pool of deep convolutional neural networks. Furthermore, the proposed framework can also be extended towards other important domains of healthcare such as diabetes, cancer and hepatitis, which can provide efficient services to corresponding patients.

Acknowledgments: We would like to thank Prof. Florentin Smarandache [Department of Mathematics, University of New Mexico, USA] for helping us to understand Neutrosophic approach. In addition, we like to show gratitude to Prof. Mohamed A. Mohamed [Dean of the Faculty of Engineering, Mansoura University, Egypt] for his helping and advising during the research.

References

1. Oliver, N., Letouzé, E., Sterly, H., Delataille, S., De Nadai, M., Lepri, B. \& de Cordes, N. Mobile phone data and COVID-19: Missing an opportunity?. arXiv preprint arXiv:2003.12347, 2020.
2. Role data fight coronavirus epidemic. URL: https://www.weforum.org/agenda/2020/03/role-data-fight-coronavirus-epidemic/ (Accessed on: 05/28/2020).
3. He, S., Cheng, B., Wang, H., Huang, Y., \& Chen, J. Proactive personalized services through fog-cloud computing in large-scale IoT-based healthcare application. China Communications, 2017, vol. 14, no. 11, 116.
4. Tuli, S., Basumatary, N., Gill, S. S., Kahani, M., Arya, R. C., Wander, G. S., \& Buyya, R.. HealthFog: An ensemble deep learning based Smart Healthcare System for Automatic Diagnosis of Heart Diseases in integrated IoT and fog computing environments. Future Generation Computer Systems, 2020, vol. 104, 187200.
5. Voulodimos, A., Doulamis, N., Doulamis, A., \& Protopapadakis, E. Deep learning for computer vision: A brief review. Computational intelligence and neuroscience, 2018, 20187068349, 2018.
6. Zhou, Ding-Xuan. "Theory of deep convolutional neural networks: Downsampling." Neural Networks, 2020, vol. 124, 319-327.
7. T. K. K. Ho, J. Gwak, O. Prakash, J.-I. Song, and C. M. Park, "Utilizing Pretrained Deep Learning Models for Automated Pulmonary Tuberculosis Detection Using Chest Radiography," in Intelligent Information and Database Systems, Springer International Publishing, Cham, 2019, vol. 11432, pp. 395-403
8. Smarandache, F., A Unifying Field in Logics: Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Neutrosophic Probability, American Research Press, Rehoboth, NM, 1999.
9. Salama, A. A., Smarandache, F. Neutrosophic Crisp Set Theory, Educational. Education Publishing 1313 Chesapeake, Avenue, Columbus, Ohio 43212, 2015, pp. 184
10. Salama, A. A., Haitham, A., Ayman, M., Smarandache, F. Introduction to Develop Some Software Programs for Dealing with Neutrosophic Sets, Neutrosophic Sets and Systems, 2014, vol. 3, pp.51-52.
11. Salama, A. A., Eisa, M., ElGhawalby, H., \& Fawzy, A. E. A New Approach in Content-Based Image Retrieval Neutrosophic Domain. In Fuzzy Multi-criteria Decision-Making Using Neutrosophic Sets. Springer, Cham, 2019, pp. 361-369
12. Alhabib, R., Salama, A. A., The Neutrosophic Time Series-Study Its Models (Linear-Logarithmic) and test the Coefficients Significance of Its linear model. Neutrosophic Sets and Systems, 2020, Vol.33, pp.105-115.
13. A. A. Salama, Florentin Smarandache, Hewayda ElGhawalby: Neutrosophic Approach to Grayscale Images Domain, Neutrosophic Sets and Systems, vol. 21, 2018, pp. 13-19.
14. Haitham Elwahsh, Mona Gamal, A. A. Salama, I.M. El-Henawy: Intrusion Detection System and Neutrosophic theory for MANETs: A Comparative study, Neutrosophic Sets and Systems, vol. 23, 2018, pp. 16-22.
15. Rafif Alhabib, Moustafa Mzher Ranna, Haitham Farah, A.A. Salama: Some Neutrosophic Probability Distributions, Neutrosophic Sets and Systems, vol. 22, 2018, pp. 30-38.
16. C. Mayorga Villamar, J. Suarez, L. De Lucas Coloma, C. Vera and M Leyva: Analysis of Technological Innovation Contribution to Gross Domestic Product Based on Neutrosophic Cognitive Maps and Neutrosophic Numbers, Neutrosophic Sets and Systems, vol. 30, 2019, pp. 34-43.
17. M. Mullai, S. Broumi, R. Surya and G. Madhan Kumar: Neutrosophic Intelligent Energy Efficient Routing for Wireless ad-hoc Network Based on Multi-criteria Decision Making, Neutrosophic Sets and Systems, vol. 30, 2019, pp. 113-121.
18. Hemdan, Ezz El-Din, Marwa A. Shouman, and Mohamed Esmail Karar. "Covidx-net: A framework of deep learning classifiers to diagnose covid-19 in x-ray images." arXiv preprint arXiv: 2003.11055, 2020.
19. Barstugan, Mucahid, Umut Ozkaya, and Saban Ozturk. "Coronavirus (covid-19) classification using ct images by machine learning methods." arXiv preprint arXiv: 2003.09424, 2020.
20. Kassani, S. H., Kassasni, P. H., Wesolowski, M. J., Schneider, K. A., \& Deters, R. Automatic Detection of Coronavirus Disease (COVID-19) in X-ray and CT Images: A Machine Learning-Based Approach. arXiv preprint arXiv:2004.10641, 2020.
21. Loey, M., Smarandache, F., \& M Khalifa, N. E. Within the Lack of Chest COVID-19 X-ray Dataset: A Novel Detection Model Based on GAN and Deep Transfer Learning. Symmetry, 2020, vol.12, no.4, 651.
22. Ai, T., Yang, Z., Hou, H., Zhan, C., Chen, C., Lv, W. \& Xia, L. Correlation of chest CT and RT-PCR testing in coronavirus disease 2019 (COVID-19) in China: a report of 1014 cases. Radiology, 200642, 2020.
23. Fang, Y., Zhang, H., Xie, J., Lin, M., Ying, L., Pang, P., \& Ji, W. Sensitivity of chest CT for COVID-19: comparison to RT-PCR. Radiology, 200432, 2020.
24. Gill, S. S., Arya, R. C., Wander, G. S., \& Buyya, R.. Fog-based smart healthcare as a big data and cloud service for heart patients using IoT. In International Conference on Intelligent Data Communication Technologies and Internet of Things, Springer, Cham., 2018, vol. 26, pp. 1376-1383.
25. Mohammed, M. N., Syamsudin, H., Al-Zubaidi, S., AKS, R. R., Yusuf, E. Novel COVID-19 detection and diagnosis system using IOT based smart helmet. International Journal of Psychosocial Rehabilitation, 2020, vol. 24, no. 7, pp. 2296-2303.
26. Gupta, Maanak, Mahmoud Abdelsalam, and Sudip Mittal. "Enabling and enforcing social distancing measures using smart city and its infrastructures: a COVID-19 Use case." arXiv preprint arXiv: 2004.09246, 2020.
27. Detectachem-creates-mass-market-smartphone-covid-19-test-kit.

URL:https://www.smartindustrynews.com/sin-article/detectachem-creates-mass-market-smartphone-covid-19-test-kit/ (Accessed on: 05/28/2020).
28. Li, L., Qin, L., Xu, Z., Yin, Y., Wang, X., Kong, B., \& Cao, K. Artificial intelligence distinguishes COVID-19 from community acquired pneumonia on chest CT. Radiology, 200905, 2020.
29. Maghdid, H. S., Asaad, A. T., Ghafoor, K. Z., Sadiq, A. S., \& Khan, M. K.. Diagnosing COVID-19 pneumonia from X-ray and CT images using deep learning and transfer learning algorithms. arXiv preprint arXiv:2004.00038, 2020, vol.1.
30. Ansari, Abdul Quaiyum, Ranjit Biswas, and Swati Aggarwal. "Neutrosophic classifier: An extension of fuzzy classifer." Applied soft computing, 2013, vol. 13, no. 1, pp. 563-573.
31. Salama, A. A., Smarandache, F., Eisa, M. Introduction to image processing via neutrosophic techniques. Neutrosophic Sets and Systems, 2014, vol. 5, pp.59-64.
32. Amin, B., Gamal, M., Salama, A. A., Mahfouz, K., \& El-Henawy, I. M. Classifying Cardiotocography Data based on Rough Neural Network. (IJACSA) International Journal of Advanced Computer Science and Applications, 2019, vol. 10, no. 8, pp352-356.
33. Baum, E. B., \& Haussler, D.," what size net gives valid generalization", the Neural Information Processing Systems Conference., 1988, pp. 81-90.
34. Salama, A. A., Abdelfattah, M., El-Ghareeb, H. A., \& Manie, A. M. (2014). Design and implementation of neutrosophic data operations using object oriented programming. International Journal of Computer Application, 5(4), 163-175.
35. Salama, A. A., Abdelfattah, M., \& Eisa, M. Distances, Hesitancy Degree and Flexible Querying via Neutrosophic Sets. International Journal of Computer Applications, Vol. 101(10)pp.7-12,2014
36. Elwahsh, H., Gamal, M., Salama, A. A., \& El-Henawy, I. M. (2018). A novel approach for classifying Manets attacks with a neutrosophic intelligent system based on genetic algorithm. Security and Communication Networks, 2018.
37. Elwahsh, H., Gamal, M., Salama, A. A., \& El-Henawy, I. M. (2017). Modeling neutrosophic data by selforganizing feature map: MANETs data case study. Procedia computer science, 121, 152-159.
38. Accuweather. URL: https://www.accuweather.com/en/us/national/covid-19 (Accessed on: 05/28/2020).
39. Woolf, Steven H., Laudan Aron, and National Research Council. "Public Health and Medical Care Systems." US Health in International Perspective: Shorter Lives, Poorer Health. National Academies Press (US), 2013.

Received: Apr 10, 2020. Accepted: July 1, 2020

Introduction to Decision Making for Neutrosophic Environment "Study on the Suez Canal Port, Egypt"
A.A. Salama ${ }^{1}$, Ahmed Sharaf Al-Din ${ }^{2}$, Issam Abu Al-Qasim ${ }^{3}$, Rafif Alhabib ${ }^{4}$, Magdy Badran ${ }^{5}$
${ }^{1}$ Dept. of Math and Computer Sci., Faculty of Science, Port Said Univ., Egypt
drsalama44@gmail.com
${ }^{2}$ Faculty of Computers and Information, Helwan University, Egypt
${ }^{3}$ Statistics Department, Faculty of Commerce, Helwan University, Egypt
${ }^{4}$ Department of Mathematical Statistics, Faculty of Science, Albaath University, Homs, Syria; rafif.alhabib85@gmail.com
${ }^{5}$ Business Information Systems, Faculty of Commerce, Helwan University, Egypt.

Abstract

Paper aims to use the programming codes in calculating the values of neutrosophic grades and their representation in proving the certainty and uncertainty associated with the data of navigational projects development in the Suez Canal, Egypt. Added to, we reach a more descriptive of the data in terms of certainty and uncertainty, and that is through the neutrosophic representation of both the total revenue and the revenues of the Suez Canal from the transit carriers and ships. Finally, we will present a study of the decision-making process regarding the better investment in the Suez Canal. Is it investing in the oil tankers or investing in cargo ships, as this is done based on neutrosophic data. This will be done by studying optimistic, pessimistic, and remorse entrances to the neutrosophic data, to see which oil tankers or cargo ships offer better returns to the Canal.

Keywords: Neutrosophic categories; neutrosophic analysis; Neutrosophic data; Suez Canal; Neutrosophic information models; Decision Making.

1. Introduction

In real-life problems, the data associated are often imprecise, or non-deterministic. Not all real data can be precise because of their fuzzy nature. Imprecision can be of many types: nonmatching data values, imprecise queries, inconsistent data misaligned schemas, etc. The fundamental concepts of neutrosophic set, introduced by Smarandache in [2,3] and Salama et al. in [2-19]. Decision-making method developed on the accuracy of the information resulting from the neutrosophic data processing. The data has converted from the classic situation using the neutrosophic technique, which helps in the process of decision-making. Thus, we can rank all alternatives and make a better choice according to the degrees of certainty, uncertainty, and impartiality. Paper is limited to the data for the ships crossing the Suez Canal Port, Egypt, such as the oil tankers, cargo ships, passenger ships and rescue ships from 1976 to 2019, because they are considered the most important main types that cross the Suez Canal, due to the nature and characteristics of each of them, and this requires special attention to that types of ships

1.1 Preliminaries \& Related Works

We recollect some relevant basic preliminaries, and in particular, the work of Smarandache in $[2,3]$ and Salama et al. [16]. The data was relied on the bulletins of the Suez Canal Authority Egypt, in [1].

2- Proposed frameworks

In 2014, Salama et al. [16] designed and implemented an object oriented programming [OOP] to deal with neutrosophic data operations.
The following are neutrosophic package class, some software algorithms and codes designed to generate neutrosophic data related to projects for the development of the navigation of the Suez Canal, Egypt:

1) The following diagram represent the neutrosophic structure.

Figure 1. Neutrosophic Data Structure
2) The following diagram represent the neutrosophic Package

Figure 2: Neutrosophic Package Class Diagram.
3) The first input parameter to the neutrosophic variable has three-neutrosophic components membership function, indeterminacy and non-membership of data is illustrated in Figure 3.

Figure 3: Neutrosophic Chart .

```
4) Some Neutrosophic codes
    using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
namespace RibbonCustomize
{
    class NeutrosophicValueException:Exception
    {
        public NeutrosophicValueException()
            : base("Neutrosophic value must be between 0 and 1")
        {
        }
    }
    class NeutrosophicSet:List<Neutrosophic>
    {
        public NeutrosophicSet Complement1()
        {
            NeutrosophicSet complementSet = new NeutrosophicSet();
            foreach (Neutrosophic n in this)
            {
                complementSet.Add(n.Complement1());
            }
            return complementSet;
        }
        public NeutrosophicSet Complement2()
        {
            NeutrosophicSet complementSet = new NeutrosophicSet();
            foreach (Neutrosophic n in this)
            {
                complementSet.Add(n.Complement2());
            }
            return complementSet;
        }
        public NeutrosophicSet Complement3()
    {
```

A.A. Salama, Ahmed Sharaf Al-Din, Issam Abu Al-Qasim, Rafif Alhabib, Magdy Badran, Introduction to Decision, Making for Neutrosophic Environment "Study on the Suez Canal Port, Egypt"

```
        NeutrosophicSet complementSet = new NeutrosophicSet();
        foreach (Neutrosophic n in this)
        {
            complementSet.Add(n.Complement3());
        }
        return complementSet;
    }
    public Boolean
BelongTo1(NeutrosophicSet nSet)
    {
        for (int i = 0; i < this.Count; i++)
        {
            if (!this[i].BelongTo1(nSet[i]))
                return false;
            }
            return true;
        }
    public Boolean BelongTo2(NeutrosophicSet nSet)
    {
        for (int i = 0; i < this.Count; i++)
        {
            if (!this[i].BelongTo2(nSet[i]))
                return false;
            }
            return true;
        }
    }
```


class Neutrosophic

```
{
    double t, i, f;
    public Neutrosophic(double t,double i,double f)
    {
        T=t;
        I= i;
        F = f;
    }
    public double T
    {
        get
        {
            return Convert.ToDouble( Math.Round( t,4));
        }
        set
        {
            if (t<0|| t> 1)
                throw new NeutrosophicValueException();
            t= value;
        }
```


3- Neutrosophic Data Related to Projects for the Development of the Navigation Channel of the Suez Canal

In this section, software algorithms present the values of the neutrosophic grades (Membership, Indeterminacy, Non-membership) associated with the most important variables for the waterway development projects are introduced. Which in the future helps in the process of support and decision-making through the neutrosophic environment. The following tables represent for neutrosophic fuzzy data related to the development of Suez Canal projects.

3-1 Neutrosophic construction for the revenue of the oil tankers

The following table shows the neutrosophic functions membership, indeterminacy and non-membership for the revenue from oil tankers

membership	indeterminacy	non-membership
0.988740191	0.00461327	0.011259809
0.997541134	0.000366208	0.002458866
0.99372791	0.003386564	0.00627209
0.994747051	0.00352199	0.005252949
0.996362317	0.002416395	0.003637683
0.9992945	0.000439248	0.0007055
0.996371092	0.001113029	0.003628908
0.998656708	$9.414 \mathrm{E}-05$	0.001343292
0.996205932	0.002065225	0.003794068
0.996018585	0.003331682	0.003981415
0.998642595	0.001125642	0.001357405
0.997179889	0.001817804	0.002820111
0.997190918	0.00099931	0.002809082
0.99900649	0.000160861	0.00099351
0.998159997	0.001783886	0.001840003

0.998825512	0.000389082	0.001174488
0.999178991	$9.72807 \mathrm{E}-05$	0.000821009
0.997687655	0.000459245	0.002312345
0.997405507	0.001358576	0.002594493
0.996925695	0.000896872	0.003074305
0.998220312	4.8633E-05	0.001779688
0.99850752	0.00109835	0.00149248
0.999384376	0.000163505	0.000615624
0.999094749	0.000322558	0.000905251
0.999216422	0.00043813	0.000783578
0.999683732	0.00026184	0.000316268
0.999261561	0.000391302	0.000738439
0.998155283	0.000963051	0.001844717
0.998749522	0.000918046	0.001250478
0.997990694	0.000537374	0.002009306
0.997900945	0.000606896	0.002099055
0.99841285	0.000707733	0.00158715
0.998114783	0.001177655	0.001885217
0.998274559	0.001384855	0.001725441
0.998516734	0.000662619	0.001483266
0.998157819	0.001816153	0.001842181
0.998596055	0.000746927	0.001403945

A.A. Salama, Ahmed Sharaf Al-Din, Issam Abu Al-Qasim, Rafif Alhabib, Magdy Badran, Introduction to Decision,, Making for Neutrosophic Environment"Study on the Suez Canal Port, Egypt"

0.999123659	$3.86185 \mathrm{E}-05$	0.000876341
0.999701164	0.000102857	0.000298836

3-2 Neutrosophic construction for the revenue of the casting cargo ships

The following table shows the neutrosophic functions membership, indeterminacy and non-membership for the revenue for casting cargo ships.

membership	indeterminacy	non-membership
0.979597358	0.011222455	0.020402642
0.99977598	0.000190899	0.00022402
0.987841221	0.011233986	0.012158779
0.988722391	0.004594681	0.011277609
0.999042398	$2.94809 \mathrm{E}-05$	0.000957602
0.996013645	0.003510839	0.003986355
0.993315242	0.001470175	0.006684758
0.999288912	0.000617127	0.000711088
0.997280058	0.001194023	0.002719942
0.997839878	0.001434591	0.002160122
0.999313108	0.000285615	0.000686892
0.998390123	0.000424146	0.001609877
0.998744516	$1.66601 \mathrm{E}-05$	0.001255484
0.996685415	0.002629738	0.003314585
0.999159935	0.000624388	0.000840065
0.999362719	0.000625203	0.000637281
0.998118538	0.00074875	0.001881462

0.999081238	0.000843198	0.000918762
0.998767326	0.000237711	0.001232674
0.996110421	0.00035633	0.003889579
0.996214035	0.001895643	0.003785965
0.997622584	0.001778035	0.002377416
0.997971546	0.001753866	0.002028454
0.996205565	0.001369003	0.003794435
0.99738413	0.002252678	0.00261587
0.99737923	0.00066253	0.00262077
0.99901595	0.000512284	0.00098405
0.998766167	0.001011506	0.001233833
0.999572232	0.000179547	0.000427768
0.99961459	0.000176656	0.00038541
0.9986817	0.000122479	0.0013183
0.998326458	0.000859449	0.001673542
0.998183893	0.000195493	0.001816107
0.99938128	0.000356578	0.00061872
0.999648021	0.000346284	0.000351979
0.998516736	0.000578491	0.001483264
0.99840945	0.000915206	0.00159055
0.998917136	$6.82709 \mathrm{E}-05$	0.001082864

0.999421069	$2.40589 \mathrm{E}-05$	0.000578931

3-3 Neutrosophic construction for the total revenue

The following table shows the neutrosophic functions membership, indeterminacy and non-membership for the total Revenue.

membership	indeterminacy	non-membership
0.99453	0.68563	0.00547
0.994298	0.258039	0.005702
0.999356	0.694458	0.000644
0.998015	0.759271	0.001985
0.998491	0.182653	0.001509
0.99755	0.842113	0.00245
0.999763	0.4457	0.75
0.99826	0.747169	0.092516

0.999994	0.553359	6.25E-06
0.998467	0.60711	0.001533
0.998461	0.670432	0.001539
0.998631	0.026247	0.001369
0.999688	0.585905	0.000312
0.99864	0.069339	0.00136
0.999698	0.843087	0.000302
0.99874	0.135408	0.00126
0.999383	0.682067	0.000617
0.999497	0.336895	0.000503
0.998713	0.076038	0.001287
0.99899	0.042053	0.00101
0.9991	0.299292	0.0009
0.9996	0.725316	0.0004
0.9998	0.08398	0.0002
0.9999	0.040729	1E-04
0.99994	0.497875	6E-05
0.99997	0.528715	3E-05
0.97811	0.4454	0.02189
0.9888	0.390296	0.0112
0.9999	0.715649	1E-04

A.A. Salama, Ahmed Sharaf Al-Din, Issam Abu Al-Qasim, Rafif Alhabib, Magdy Badran, Introduction to Decision,, Making for Neutrosophic Environment"Study on the Suez Canal Port, Egypt"

0.99999	0.947433	$1 \mathrm{E}-05$
0.99999	0.243405	$1 \mathrm{E}-05$
0.999996	0.724688	$4 \mathrm{E}-06$
0.999998	0.512305	$2 \mathrm{E}-06$
0.999999	0.092309	$1.5 \mathrm{E}-06$

3-4 Neutrosophic construction for the oil tankers load sizes

The following table shows the neutrosophic functions membership, indeterminacy and non-membership for the oil tanker load sizes.

membership	indeterminacy	non-membership
0.999999683	$1.67646 \mathrm{E}-07$	$3.1713 \mathrm{E}-07$
0.999988666	$4.86643 \mathrm{E}-06$	$1.13338 \mathrm{E}-05$
0.999986858	$1.139 \mathrm{E}-05$	$1.31419 \mathrm{E}-05$
0.99999763	$1.71931 \mathrm{E}-06$	$2.37026 \mathrm{E}-06$
0.999998331	$7.01436 \mathrm{E}-08$	$1.66936 \mathrm{E}-06$
0.999994502	$9.67939 \mathrm{E}-07$	$5.49785 \mathrm{E}-06$
0.999999965	$8.26009 \mathrm{E}-09$	$3.45204 \mathrm{E}-08$
0.999995597	$3.43245 \mathrm{E}-06$	$4.40344 \mathrm{E}-06$
0.999992593	$2.66158 \mathrm{E}-06$	$7.40721 \mathrm{E}-06$
0.99999205	$3.97483 \mathrm{E}-06$	$7.95034 \mathrm{E}-06$
0.999995382	$2.24479 \mathrm{E}-06$	$4.61806 \mathrm{E}-06$
0.999996817	$2.23691 \mathrm{E}-06$	$3.18252 \mathrm{E}-06$
0.999996942	$1.23941 \mathrm{E}-06$	$3.05795 \mathrm{E}-06$
0.999994138	$5.19437 \mathrm{E}-06$	$5.86174 \mathrm{E}-06$

0.999994783	$3.67107 \mathrm{E}-06$	$5.21695 \mathrm{E}-06$
0.999998407	$1.42519 \mathrm{E}-06$	$1.59336 \mathrm{E}-06$
0.999999916	$1.99228 \mathrm{E}-08$	8.41154E-08
0.999998438	1.13182E-06	$1.5621 \mathrm{E}-06$
0.999994327	$4.0787 \mathrm{E}-07$	5.67272E-06
0.999994318	$6.75615 \mathrm{E}-07$	5.68204E-06
0.999988657	$1.12072 \mathrm{E}-05$	$1.13432 \mathrm{E}-05$
0.999999955	$3.06172 \mathrm{E}-08$	$4.47353 \mathrm{E}-08$
0.999997963	$3.01945 \mathrm{E}-07$	$2.03699 \mathrm{E}-06$
0.999987344	1.14491E-05	$1.26559 \mathrm{E}-05$
0.999995549	$2.2139 \mathrm{E}-06$	$4.45134 \mathrm{E}-06$
0.999992198	5.62777E-08	7.80226E-06
0.999994384	$4.76185 \mathrm{E}-07$	5.61551E-06
0.999994926	$4.56611 \mathrm{E}-06$	5.07413E-06
0.999994185	$2.79521 \mathrm{E}-06$	5.81518E-06
0.999993616	7.78117E-07	6.3837E-06
0.999995882	$1.66929 \mathrm{E}-06$	$4.11835 \mathrm{E}-06$
0.999996945	$2.47541 \mathrm{E}-06$	$3.05471 \mathrm{E}-06$
0.999993363	$2.91819 \mathrm{E}-06$	$6.63674 \mathrm{E}-06$
0.999997621	1.61063E-06	$2.3791 \mathrm{E}-06$
0.999994426	$5.07718 \mathrm{E}-06$	5.57402E-06

0.999994968	$3.88646 \mathrm{E}-06$	$5.03216 \mathrm{E}-06$
0.99999355	$3.73223 \mathrm{E}-06$	$6.44966 \mathrm{E}-06$
0.999998549	$6.62626 \mathrm{E}-07$	$1.45134 \mathrm{E}-06$
0.999998329	$3.01809 \mathrm{E}-07$	$1.67063 \mathrm{E}-06$
0.999996023	$2.93175 \mathrm{E}-06$	$3.97664 \mathrm{E}-06$
0.999995523	$2.20011 \mathrm{E}-07$	$4.47681 \mathrm{E}-06$
0.999995884	$3.7598 \mathrm{E}-07$	$4.11594 \mathrm{E}-06$
0.999996923	$2.20412 \mathrm{E}-06$	$3.07715 \mathrm{E}-06$

3-5 Neutrosophic construction for the sizes of tonnage of the cargo ships casting

The following table shows the neutrosophic functions membership, indeterminacy and non-membership of the sizes of tonnage for cargo ships casting.

membership	indeterminacy	non-membership
0.999980808	$2.68364 \mathrm{E}-06$	$1.91925 \mathrm{E}-05$
0.999975151	$8.10953 \mathrm{E}-06$	$2.48487 \mathrm{E}-05$
0.999998995	$4.16959 \mathrm{E}-07$	$1.00491 \mathrm{E}-06$
0.999995727	$2.63953 \mathrm{E}-06$	$4.27268 \mathrm{E}-06$
0.999979618	$1.46253 \mathrm{E}-05$	$2.03821 \mathrm{E}-05$
0.999988567	$7.58596 \mathrm{E}-07$	$1.14333 \mathrm{E}-05$
0.999984127	$1.55296 \mathrm{E}-05$	$1.58727 \mathrm{E}-05$
0.999988002	$3.75304 \mathrm{E}-06$	$1.19978 \mathrm{E}-05$
0.99999423	$2.93423 \mathrm{E}-07$	$5.76964 \mathrm{E}-06$
0.999982442	$1.56162 \mathrm{E}-05$	$1.75578 \mathrm{E}-05$

0.999999894	7.69112E-08	$1.05778 \mathrm{E}-07$
0.99999368	4.93127E-06	$6.31956 \mathrm{E}-06$
0.999989252	7.55723E-06	$1.07479 \mathrm{E}-05$
0.999993027	$1.09647 \mathrm{E}-06$	$6.97259 \mathrm{E}-06$
0.999996135	$2.52924 \mathrm{E}-06$	$3.86463 \mathrm{E}-06$
0.999994335	$2.3808 \mathrm{E}-06$	5.66547E-06
0.99999625	$2.07892 \mathrm{E}-06$	$3.74972 \mathrm{E}-06$
0.999996134	$3.71619 \mathrm{E}-06$	$3.86632 \mathrm{E}-06$
0.999997895	$6.74216 \mathrm{E}-07$	$2.10478 \mathrm{E}-06$
0.999988647	$2.45364 \mathrm{E}-06$	1.13533E-05
0.999993827	$2.64785 \mathrm{E}-06$	$6.17332 \mathrm{E}-06$
0.999993905	$2.80495 \mathrm{E}-06$	$6.09518 \mathrm{E}-06$
0.999997398	$2.14679 \mathrm{E}-06$	$2.6023 \mathrm{E}-06$
0.999991676	$2.11799 \mathrm{E}-06$	8.32415E-06
0.999996363	$1.73944 \mathrm{E}-06$	$3.63679 \mathrm{E}-06$
0.99999949	$2.87001 \mathrm{E}-07$	$5.10254 \mathrm{E}-07$
0.999999624	$1.45097 \mathrm{E}-07$	$3.76357 \mathrm{E}-07$
0.999997374	$3.98441 \mathrm{E}-07$	$2.62619 \mathrm{E}-06$
0.999992259	6.33327E-07	$7.74082 \mathrm{E}-06$
0.99999455	$5.82952 \mathrm{E}-07$	$5.44981 \mathrm{E}-06$
0.999999272	$5.9419 \mathrm{E}-07$	$7.28466 \mathrm{E}-07$

0.999992703	$5.71205 \mathrm{E}-06$	$7.29738 \mathrm{E}-06$
0.999999875	$9.66849 \mathrm{E}-08$	$1.24589 \mathrm{E}-07$
0.999990182	$4.31384 \mathrm{E}-06$	$9.81787 \mathrm{E}-06$
0.999999648	$8.96058 \mathrm{E}-08$	$3.5191 \mathrm{E}-07$
0.999993379	$2.80686 \mathrm{E}-06$	$6.6212 \mathrm{E}-06$
0.999993584	$5.30479 \mathrm{E}-06$	$6.4156 \mathrm{E}-06$
0.999998612	$1.25861 \mathrm{E}-06$	$1.38826 \mathrm{E}-06$

3-6 Neutrosophic construction for the total transit ship sizes

The following table shows the neutrosophic functions membership, indeterminacy and nonmembership for the total transit ship sizes

membership	indeterminacy	non-membership
0.999990592	0.081595643	$9.40827 \mathrm{E}-06$
0.999993233	0.872542965	$6.76657 \mathrm{E}-06$
0.999997969	0.957965187	$2.03095 \mathrm{E}-06$
0.999996298	0.240681564	$3.70197 \mathrm{E}-06$
0.999996123	0.58812965	$3.87712 \mathrm{E}-06$
0.999994838	0.603066597	$5.16243 \mathrm{E}-06$
0.999995702	0.817902648	$4.29796 \mathrm{E}-06$
0.99999889	0.907832847	$1.10985 \mathrm{E}-06$
0.999996164	0.459277585	$3.83603 \mathrm{E}-06$
0.999995355	0.206840716	$4.6451 \mathrm{E}-06$
0.999995881	0.606598419	$4.11885 \mathrm{E}-06$

0.999997577	0.566837025	$2.42347 \mathrm{E}-06$
0.999999767	0.458398662	$2.33325 \mathrm{E}-07$
0.999998119	0.737134899	$1.88071 \mathrm{E}-06$
0.999996708	0.021642474	3.29234E-06
0.999996875	0.364123252	$3.12526 \mathrm{E}-06$
0.999999958	0.845535234	4.21479E-08
0.999995951	0.109050085	$4.04896 \mathrm{E}-06$
0.999994263	0.09590703	$5.73726 \mathrm{E}-06$
0.999998665	0.146926882	$1.33461 \mathrm{E}-06$
0.999996595	0.174293442	$3.40508 \mathrm{E}-06$
0.999998719	0.991957998	$1.28056 \mathrm{E}-06$
0.999995953	0.261600592	4.04712E-06
0.999998779	0.883490079	$1.2211 \mathrm{E}-06$
0.999999576	0.259355637	4.23945E-07
0.999997016	0.104312996	$2.9843 \mathrm{E}-06$
0.999995259	0.226220789	$4.74055 \mathrm{E}-06$
0.999999689	0.297662813	$3.10824 \mathrm{E}-07$
0.999999362	0.133707397	$6.38072 \mathrm{E}-07$
0.999999712	0.070726333	$2.88346 \mathrm{E}-07$
0.999998716	0.681388333	$1.28386 \mathrm{E}-06$
0.999999381	0.635096147	$6.19429 \mathrm{E}-07$

0.99999932	0.476381568	$6.80231 \mathrm{E}-07$
0.999996216	0.270553455	$3.78429 \mathrm{E}-06$
0.999997277	0.230908485	$2.72295 \mathrm{E}-06$
0.999998198	0.837658751	$1.80196 \mathrm{E}-06$
0.999996651	0.734244669	$3.34864 \mathrm{E}-06$
0.999999684	0.674576687	$3.15575 \mathrm{E}-07$

4-Graphic Representation for Data in the Neutrosophic Environment

4-1 Neutrosophic functions of the Suez Canal revenues

The following graph shows the neutrosophic functions membership, indeterminacy and non-membership of the Suez Canal revenues from oil tankers

Fig.1, The neutrosophic functions of the Suez Canal revenue collected from oil tankers. (1976: 2019)

4-2 Neutrosophic functions of the Suez Canal revenue collected from bulk cargo ships

The following graph shows the neutrosophic functions membership, indeterminacy and non-membership of the Suez Canal revenues received from bulk cargo ships.

Fig.2. Neutrosophic functions of the Suez Canal revenue collected from bulk cargo ships. (1976: 2019)

4-3 Neutrosophic functions of the Suez Canal revenue (total revenue)

The following graph shows the neutrosophic functions membership, indeterminacy and non-membership of the Suez Canal total revenue.

Fig.4. Neutrosophic functions of the Suez Canal revenues in million dollars (total revenue).

4-4 Neutrosophic functions for volumes of shiploads

The following figure shows the neutrosophic functions membership, indeterminacy and non-membership of tonnage of tankers crossing the channel

Fig.5. Neutrosophic functions for the volumes of tonnage of tankers crossing the channel.

4-5 Neutrosophic functions of tonnage of cargo vessels casting trans-channel

The following figure shows the neutrosophic functions membership, indeterminacy and nonmembership of the tonnage of cargo ships for casting trans-shipment vessels.

Fig.6. Neutrosophic functions of tonnage of cargo vessels casting trans-channel.

4-6 Neutrosophic functions of the tonnage of vessels transiting the channel

The following figure shows the neutrosophic functions membership, indeterminacy and non-membership of the sizes of tonnage of ships crossing the channel.

Fig.7. Neutrosophic functions of the sizes of tonnage of transit ships.

5 Decision Making for Neutrosophic Environment

Here we will present a study of the decision-making process regarding the better investment in the Suez Canal. Is it investing in oil tankers or investing in cargo ships, as this is done based on the previous neutrosophic data. This will be done by studying optimistic, pessimistic, and remorse entrances to the neutrosophic data, to see which oil tankers or cargo ships offer better returns to the Canal.

Study of entrances:

i. The Optimistic entrance:

We know that this entrance depends on evaluating the alternatives, in preparation for choosing the alternative that guarantees the best possible returns under optimistic natural states. Without any consideration for the pessimistic cases of this alternative. Which we express by the term (Max, Max). So that the first "Max" indicates the highest value, and the second "Max" denotes the optimistic natural state:

	Max Max
oil tankers	Max $(0.999701164,0.000102857,0.000298836)$ $=0.999701164$
cargo ships	$\operatorname{Max}(0.99977598,0.000190899,0.00022402)$ $=0.99977598$

Thus, according to the optimistic entrance, investing in the cargo ships is the best alternative considering that it includes the highest possible return, which is (0.99977598).

ii. The conservative (pessimistic) entrance:

We know that this entrance depends on evaluating alternatives. As a prelude to choosing the alternative, that guarantees the best possible returns in the light of pessimistic natural states.

[^15] Making for Neutrosophic Environment "Study on the Suez Canal Port, Egypt"

Without regard for optimistic cases of that alternative. It is called the term (Max, Min), where "Max" means the highest value here, but it is related to the second part of the term "Min", which means the pessimistic natural state:

	Max Min
oil tankers	Max (0.988740191, 0.00461327, 0.011259809) $=0.988740191$
cargo ships	$\operatorname{Max}(0.979597358,0.011222455,0.020402642)$ $=0.979597358$

According to this entrance, investing in oil tankers is the best alternative, as it guarantees the highest possible return is (0.988740191).

iii. The entrance to remorse:

This entrance is not optimistic or pessimistic, but rather an intermediate entrance. It depends on the evaluation of the alternatives as a prelude to choosing the alternative that contains the least missed opportunities.

Choosing the most appropriate alternative in the light of this entrance requires creating a new matrix, as follows, we replace the alternative that achieves the highest value with a value of zero, given that there are no missed opportunities for this alternative.

	Highest neutrosophic return	Lowest neutrosophic return
oil tankers	$(0.999701164,0.000102857,0.000298836)$	$(0.988740191,0.00461327,0.011259809)$
cargo ships	$(0.99977598,0.000190899,0.00022402)$	$(0.979597358,0.011222455,0.020402642)$

	Highest neutrosophic return	Lowest neutrosophic return
oil tankers	$(0.000074816,0.000088042,-0.000074816)$	$(0,0,0)$
cargo ships	$(0,0,0)$	$(0.009142833,-0.006609185,-0.009142833)$

We subtract the highest value in the event of high return from the rest of the values present in this normal state. The same applies to the case of low return, and we subtract the highest value in the case of low return from the rest of the values found in this case.

Then now we create a short matrix that includes the highest missed opportunity values for each alternative, as follows:

	Missed opportunities
oil tankers	$(0.000074816,0.000088042,-0.000074816)$
cargo ships	$(0.009142833,-0.006609185,-0.009142833)$

Consequently, according to this entrance, the appropriate alternative is oil tankers as it contains the least missed opportunities.

From the study of the previous three entrances in the light of the neutrosophic logic, we have different options for decision according to the entrances. This matter we can view positively as it enriches the decision-making process and is only a reflection of the circumstances of the decision-maker and the views that affect him.

6. Conclusion and Future Work:

Neutrosophic techniques as a generalization of crisp and fuzzy techniques that may better model imperfect information, which is omnipresent in any conscious decision making. In neutrosophic system, each attack is determined by membership, indeterminacy and nonmembership degrees. In this paper, we have designed a program to generate neutrosophic grades for the most important variables of the waterway of the Suez Canal. In future studies we will design a statistical model to support and make decisions using the neutrosophic statistics. The future importance of the research paper is the use of neutrosophic in proposing a model for optimal decision-making in the neutrosophic environment.
The study aims at the possibility of proposing a general framework to support decision-making to maximize the profitability of the Suez Canal Authority by crossing ships using the neutrosophic analysis of navigation traffic data.
This is achieved through a set of objectives, as follows:

1. Neutrosophic analysis through the generation of organic functions with three degrees, for the navigation traffic in the Suez Canal.
2. Neutrosophic analysis of the numbers and volumes of tonnage of oil tankers transiting the Suez Canal through neutrosophic data.
3. Studying neutrosophic triple vehicles to predict future tanker and ship volumes.
4. Using the neutrosophic method to predict the value of revenues.

References

1. Data of the annual bulletins of the Suez Canal Authority, Egypt, for different years (1976-2019).
2. Smarandache Florentin, Neutrosophy and Neutrosophic Logic, First International Conference on Neutrosophy, Neutrosophic Logic, Set, Probability, and Statistics University of New Mexico, Gallup, NM 87301, USA(2002).
3. F. Smarandache. A Unifying Field in Logics: Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Neutrosophic Probability. American Research Press, Rehoboth, NM, 1999.
4. ELwahsh, H., Gamala, M., Salama, A.A. \& El-Henawy, I.M. Modeling Neutrosophic Data by SelfOrganizing Feature Map: MANETs Data Case Study. Procdica Computer, 2017, 121, 152-157.
5. Salama A.A., Eisa M., ElGhawalby H., Fawzy A.E. (2019) A New Approach in Content-Based Image Retrieval Neutrosophic Domain. In: Kahraman C., Otay İ. (eds) Fuzzy Multi-criteria DecisionMaking Using Neutrosophic Sets. Studies in Fuzziness and Soft Computing, vol 369 (pp. 361-369) Springer, Cham
6. Salama, A. A., and Florentin Smarandache. "Neutrosophic crisp probability theory \& decision making process, Critical Review. Volume XII, 2016, pp 34-48, 2016.
7. ElWahsh, H., Gamal, M., Salama, A., \& El-Henawy, I. (2018). Intrusion detection system and neutrosophic theory for MANETs:A comparative study, Neutrosophic Sets and Systems, 23, pp16-22
8. Hanafy IM, Salama AA, Mahfouz K. Correlation of neutrosophic Data. International Refereed Journal of Engineering and Science (IRJES). 2012 Oct;1(2):39-43.I.M.
9. Hanafy IM, Salama AA, Mahfouz K.," Neutrosophic Classical Events and Its Probability" International Journal,Computer Applications Research(IJMCAR) Vol.(3),Issue 1,Mar (2013) pp171-178.
10. Salama, A. A., "Neutrosophic Crisp Points \& Neutrosophic Crisp Ideals", Neutrosophic Sets and Systems, Vol.1, No. 1, (2013) pp 50-54.
11. Alhabib, Rafif; Salama A. A. "The Neutrosophic Time Series-Study Its Models (Linear-

Logarithmic) and test the Coefficients Significance of Its linear model." Neutrosophic Sets and
Systems 33.1 (2020) pp105-115.
12. A. A. Salama, F.Smarandache, Neutrosophic Crisp Set Theory, Educational. Education Publishing 1313 Chesapeake, Avenue, Columbus, Ohio 43212, (2015).
13. Salama, A. A., Abdelfattah, M., El-Ghareeb, H. A., \& Manie, A. M. (2014). Design and implementation of neutrosophic data operations using object oriented programming. International Journal of Computer Application, 4(10).
14. Salama, A. A.; Abdelfattah, M.; Eisa, M. Distances, Hesitancy Degree and Flexible Querying via Neutrosophic Sets. International Journal of Computer Applications, 0975-8887.2014
15. Salama, A.A: Basic Structure of Some Classes of Neutrosophic Crisp Nearly Open Sets \& Possible Application to GIS Topology, Neutrosophic Sets and Systems, vol. 7, 2015, pp. 18-22.
16. Salama, A.A., El-Ghareeb, H. A., Manie, A. M., \& Smarandache, F. Introduction to Develop Some Software Programs for Dealing with Neutrosophic Sets. Neutrosophic Sets and Systems, (2014).3(1), 8.
17. Alhabib.R, Ranna.M, Farah.H; Salama, A. A, Neutrosophic decision-making \& neutrosophic decision tree. Albaath- University Journal, Vol (02), 2018. (Arabic version).
18. Alhabib.R; Ranna.M; Farah.H; Salama, A. A "Foundation of Neutrosophic Crisp Probability Theory", Neutrosophic Operational Research, Volume III , Edited by Florentin Smarandache, Mohamed Abdel-Basset and Dr. Victor Chang (Editors), pp.49-60, 2017.
19. Alhabib, R.; Ranna, M. M., Farah, H.; Salama, A. A. Some Neutrosophic probability distributions. Neutrosophic Sets and Systems, 22, 30-38., (2018).

Neutrosophic Vague Binary BCK/BCI-algebra

Remya. P. B ${ }^{1, *}$ and Francina Shalini. A ${ }^{2}$
1 Ph.D Research Scholar, P.G \& Research Department of Mathematics, Nirmala College for Women, Affiliated to Bharathiar University, Red Fields, Coimbatore-18, Tamil Nadu, India ; krish3thulasi@gmail.com
2 Assistant Professor, P.G \& Research Department of Mathematics, Nirmala College for Women, Affiliated to Bharathiar University, Red Fields, Coimbatore-18, Tamil Nadu, India ; francshalu@g-mail.com
* Correspondence: krish3thulasi@gmail.com ; Tel.: (91-9751335441)

Abstract

Ineradicable hindrances of the existing mathematical models widespread from probabilities to soft sets. These difficulties made up way for the opening of "neutrosophic set model'. Set theory of 'vague' values is an already established branch of mathematics. Complex situations which arose in problem solving, demanded more accurate models. As a result, 'neutrosophic vague' came into screen. At present, research works in this area are very few. But it is on the way of its moves. Algebra and topology are well connected, as algebra and geometry. So, anything related to geometric topology is equally important in algebraic topology too. Separate growth of algebra and topology will slow down the development of each branch. And in one sense it is imperfect! In this paper a new algebraic structure, $\mathrm{BCK} / \mathrm{BCI}$ is developed for 'neutrosophic' and to 'neutrosophic vague' concept with 'single' and 'double' universe. It's sub-algebra, different kinds of ideals and cuts are developed in this paper with suitable examples where necessary. Several theorems connected to this are also got verified.

Keywords: Vague H - ideal, neutrosophic vague binary $\mathrm{BCK} / \mathrm{BCI}$ - algebra, neutrosophic vague binary ВСК/ВСІ - subalgebra, neutrosophic vague binary ВСК/ВСІ - ideal, neutrosophic vague binary ВСК/ВСІ p-ideal, neutrosophic vague binary ВСК/ВСІ q-ideal, neutrosophic vague binary ВСК/ВСІ a-ideal, neutrosophic vague binary ВСК/ВСІ H-ideal, neutrosophic vague binary ВСК/ВСІ - cut

Notations: NVBS : neutrosophic vague binary set, NVBSS : neutrosophic vague binary subset, NVBI : neutrosophic vague binary ideal, N ВСК/ВСІ - algebra : neutrosophic ВСК/ВСІ-algebra, NV ВСК/ВСІ algebra : neutrosophic vague $\mathrm{BCK} / \mathrm{BCI}-$-algebra, NVB BCK/BCI - algebra : neutrosophic vague binary BCK/BCI - algebra, $\mathrm{NBCK/BCI-subalgebra} \mathrm{:} \mathrm{neutrosophic} \mathrm{BCK/BCI-} \mathrm{subalgebra} ,\mathrm{NV} \mathrm{BCK/BCI} \mathrm{-} \mathrm{subalgebra}$: neutrosophic vague $\operatorname{BCK/BCI~-~subalgebra,~} \mathrm{NVB}$ ВСК/BCI - subalgebra : neutrosophic vague binary ВСК/BCI - subalgebra, N BCК/BCI - ideal : neutrosophic BCK/BCI -ideal, NV BCK/BCI - ideal : neutrosophic vague ВСК/ВСI - ideal, NVB ВСК/ВСI- ideal : neutrosophic vague binary ВСК/ВСI - ideal, NVB ВСК/ВСІ p-ideal : neutrosophic vague binary ВСК/ВСІ p-ideal, NVB ВСК/ВСІ q - ideal : neutrosophic vague binary BCК/BCI q-ideal, NVB BCK/BCI a-ideal : neutrosophic vague binary BCК/ВСI a - ideal, NVB ВСК/ВСІ H-ideal : neutrosophic vague binary ВСК/ВСІ H-ideal

1. Introduction

Before 1990's, mathematicians and researchers made use of different mathematical models for problem solving viz. , Probability theory, Hard set theory, Fuzzy set theory, Rough set theory,

Intuitionistic Fuzzy set theory etc., for problem solving. In 1993, W. L. Gau and D. J. Buehrer [16] introduced vague sets, with "truth and false" membership values as measurement tools. In 1995, Florentin Smarandache [13] introduced, "Neutrosophic set theory", in which an additional data 'uncertainty', is also got added besides 'truth and false'. In 2015, Shawkat Alkhazaleh [45] introduced 'Neutrosophic Vague' set theory, by inserting vague values, to each neutrosophic value -'truth, uncertainty \& false'. With its several operations, he gave a rich explanation about the concept, in his pioneer paper itself. Neutrosophic set's main difference with Neutrosophic Vague is, with its outlook as an "interval" (imposed with certain conditions). An algebraic structure is a universal set with a set of operations applicable to that set, together with a set of axioms to be satisfied. BCK/BCI-logical algebra- is a new type of algebraic structure developed in 1966, by Yasuyuki Imai and Kiyoshi Iséki [48]. It is now found to be an active research area. MV-algebras, Boolean algebras etc. are some t-related logical algebras which extend to BCK-algebra. BCK-algebra further extends to BCI-algebra. In 2015, Samy M. Mostafa and Reham Ghanem [42] gave cubic structures of medial ideal on BCI- algebras. Paper introduced cubic medial - ideal, and it illustrates a relation between cubic medial - ideal and cubic medial BCI - ideal. Homomorphism and Cartesian product of this concept have been duly verified. In 2017, M. Kaviyarasu and K. Indira [22] gave a review on BCI/BCKalgebras and its developmental scenario. In 1999, Khalid and Ahmad [25] introduced fuzzy H- ideals in BCI-algebras. In 2007, Kordi and Moussavi [26] gave a detailed study on fuzzy ideals of BCIalgebras. In 2012, Borumand Saeid. A, Prince Williams. D. R and Kuchaki Rafsanjani [10] gave a preliminary note on anti-fuzzy BCK/BCI-subalgebra. Paper mainly contributed on generalized notion of fuzzy BCK/BCI-algebra. In 2018, based on hyper fuzzy structure, Young Bae Jun, Seok-Zun Song and Seon Jeong Kim [50] introduced length - fuzzy subalgebras (length -k-fuzzy; $k=1 \leq k \leq 4$) in BCK/BCI- algebras. In 2018, Anas Al-Masarwah and Abd Ghafur Ahmad [4] discussed some properties of bipolar fuzzy H-ideals in BCK/BCI--algebra. In 2019, Anas Al-Masarwah, Abd Ghafur Ahmad [5] introduced m-Polar fuzzy subalgebras, m-polar fuzzy closed ideal and m-polar fuzzy commutative ideal of m-polar fuzzy sets. They also investigated their several characterizations and theorems. In 2019, Alcheikh. M \& Anas Sabouh [3] proved several theorems connected to the already existing notions of fuzzy ideal, anti-fuzzy ideal and anti-fuzzy p-ideal of BCK-algebra. In 1983, Hu. Q. P and Li. X [19] defined BCH-algebra as a generalization of BCK/BCI-algebra. In 2001, Muhammad Anwar Chaudhary and Hafiz Fakhar-ud-din [34] studied some classes of BCH- algebras. In 1998, Jun. Y. B, Roh. E. H and Kim. H. S [21] introduced BH -algebra as a generalization of $\mathrm{BCH} / \mathrm{BCI} / \mathrm{BCK}$-algebra and they discussed it's ideals and homomorphisms. In 2001, Qun Zhang, Young Bae Jun and Eun Hwan Roh [41] studied the connection of BH- algebras with ' BCH ' and 'BCK/BCI'-algebras. They defined BH_{1}-algebra and normal BH - algebra. In 1996, Neggers. J and Kim. H. S [38] introduce d-algebras as a generalization of BCK-algebras and proved that oriented digraphs correspond to class of edge d-algebras. They also gave several notions of d-algebra with examples and also defined direct product and direct sum of d-algebras. In 1996, Stanley Gudder [46] introduced D-algebras as a generalization of D-poset (without assuming a partial order in D poset). He explained (interval) effect algebras, based on group structure and proved several lemmas and theorems regarding to this in a deep manner. In 2012, Muhammad Anwar Chaudhry and Faisal Ali [32] introduced multipliers in d-algebras. He remarked with example that every BCK-algebra is a d-algebra but the converse does not hold, in general. He defined positive implicative d - algebra and proved related theorems. In 2005, Akram. M and Dar. K. H [2] defined Fuzzy d-algebras, Fuzzy d-ideals, Fuzzy d-subalgebras, Fuzzy d-homomorphisms. In 2014, S. R. Barbhulya. K. Dutta. Choudhury [43] defined ($\varepsilon, \varepsilon v q$)- fuzzy ideals of d - algebra, it's cartesian product, homomorphism and also investigated a few theorems. In 2002, Neggers. J and Kim. H. S [39] introduced B - algebra which is closely related to $\mathrm{BCH} / \mathrm{BCI} / \mathrm{BCK}$ - algebras. Using a digraph on algebras, they gave a connection between B - algebras and groups. They also defined commutative B - algebras. In 2006, BM - algebras are introduced by Kim. C. B and Kim. H. S [24] as a specialization of B-algebras. They proved $B M$ - algebra as a proper subclass of B - algebras. They showed that $B M$ - algebra is equivalent to a 0 - commutative B - algebra. In 2011, A. Borumand Saeid and A. Zarandi [11] applied Vague Set
theory to BM - algebras and discussed its cuts, Artinian and Noetherian concepts. In 2017, Arsham Borumand Saeid, Hee Sik Kim and Akbar Rezaei [7] introduced BI - algebras as a generalization of (dual) implication algebra. They defined ideals and congruence relations in BI - algebras. In 2006, Hee Sik Kim and Young Hee Kim [18] studied a generalization of BCK - algebras known as BE - algebras. They discussed its filter and self - distributive property along with some theorems. Various structures formed within short periods of time, along with smaller or bigger changes are $\mathrm{B}, \mathrm{BE}, \mathrm{BF}, \mathrm{BF}_{1}, \mathrm{BF}_{2}$, BG, BI , BL, BM, BN, BO, BP, BQ, BZ, CI, Coxeter - algebra, FL, FL ew (bounded integral commutative residuated lattice), GK, HW, KU, PS, Q, QS, QP, RG, TM, TP, TU, BCC (or BIK), BCL, BBG, SBL ${ }_{\urcorner}$, Smarandache BCH - algebra, SU, UP, Z etc. In 2006, group theory of vague sets is introduced by Hakimuddin Khan, Musheer Ahmad and Ranjit Biswas [17]. In 2008, Lee. K. J, So. K. S and Bang. K. S [27] introduced vague BCK/BCI- algebras with several theorems and propositions. It was one of the pioneer work in the area of BCK/BCI - algebraic structure with vague sets. Notion of vague ideals are introduced with properties. A condition for a vague set to become a vague ideal is also provided. Several characteristics for vague ideal are investigated and established. Arsham Borumand Saeid [6] also introduced vague BCK/BCI- algebras in 2008, but his work has been published in 2009. He discussed on cuts, subalgebras and their related theorems of vague BCK/BCI - algebra. In 2017, Jafari. A, Mariapresenti. L and Arockiarani. I [20] discussed on vague direct product in BCK- algebra. In 2002, Neggers. J and Kim Hee Sik [40] introduced, β-algebra as generalization of BCK-algebras. In 2016, B. Nageswararao, N. Ramakrishna, T. Eswarlal [37] introduced vague β-algebras, vague β-ideals, translation operators on vague β-algebras, translation operators on vague β ideals, vague β-ideal extension of vague β-algebra etc. In 2013, Yun Sun Hwang and Sun Shin Ahn [52] developed vague p-ideals and vague a-ideals in BCI-algebras. In 2006, neutrosophic algebraic structures are introduced by Vasantha Kandasamy. W. B and Florentin Smarandache [47]. Neutrosophic group structure, neutrosophic ring structure etc., with lots of theorems and propositions are investigated. Based on this, in 2015, A. A. A. Agboola and B. Davvaz [1] introduced neutrosophic BCI/BCK- algebras and their elementary properties. In 2018, Young Bae Jun, Seok - Zun Song, Florentin Smarandache and Hashem Bordbar [51] discussed neutrosophic quadruple BCK/BCIalgebras. Paper consists of the newly defined definition of neutrosophic quadruple $\mathrm{BCK} / \mathrm{BCI}-n u m b e r$, neutrosophic quadruple $\mathrm{BCK} / \mathrm{BCI}$-ideals etc., with proper verification of inter-connected notions. In 2019, Muhiuddin. G, Smarandache. F, Young Bae Jun, [35] gave a new idea - neutrosophic Quadruple ideals in neutrosophic Quadruple BCI- algebras. In 2018, Seon Jeong Kim, Seok-Zun Song and Young Bae Jun [44] discussed generalizations of neutrosophic subalgebras in BCK/BCI--algebras based on neutrosophic points. In 2018, Muhammad Akram, Hina Gulzar, Florentin Smarandache and Saeid Broumi [34] defined single-valued neutrosophic topological K-algebras and investigated some of the properties like C_{5}-connected, super-connected, compact and hausdorff. They also investigated the image and pre-image of these algebras under homomorphism. In 2018, Young Bae Jun, Florentin Smarandache, Mehmat AliÖztürk [49] introduced commutative falling neutrosophic ideals in BCKalgebras. In 2017, Bijan Daavavaz, Samy M. Mostafa and Fatema F. Kareem [8] developed Neutrosophic ideals of neutrosophic KU - algebras. In 2018, Muhiuddin. G, Bordbar. H, Smarandache. F, Jun. Y. B, [36] gave certain results on $(\varepsilon, \varepsilon)-$ neutrosophic subalgebras and ideals in BCK/BCI- algebras. They defined commutative $(\varepsilon, \varepsilon)$ neutrosophic ideal and commutative falling neutrosophic ideal for a BCK-algebra. In 2019, Chul Hwan Park [12] developed neutrosophic ideals of subtraction algebras. Khadaeman. S, Zahedi. M. M, Borzooei. R. A, Jun. Y. B [23] developed neutrosophic hyper BCK-ideals in 2019. Neutrosophic sets handle uncertainty in a remarkable way. But its generalization named as plithogenic set handles uncertainty in a more powerful level than neutrosophic! Application works using plithogenic are very few as it is a recently introduced work in set theory. But, in 2019, Mohamed Abdel-Basset and Rehab Mohamed [31], used a plithogenic TOPSIS-CRISIS method to sustainability supply chain risk management in telecommunication industry. Problem is well and systematically explained with adequate assistance of diagrams like bar diagram, pie diagram etc. In 2019, Mohamed Abdel-Basset, Mai Mohamed, Mohamed Elhoseny, Le Hoang Son, Francisco Chiclana, Abd El-Nasser H Zaied [28] pointed out some draw backs of

Dice and Jaccard similarity measures in bipolar neutrosophic set with examples. They provided a cosine similarity measure and weighted cosine similarity measure methods for 'bipolar and intervalvalued bipolar'- neutrosophic set. They used the above method for diagnosing bipolar disorder diseases. A computational algorithm for MADM (Multi Attribute Decision Making) has also given in the paper. In 2019, using 'neutrosophic sets', Mohamed Abdel-Basset, Mumtaz Ali, Asma Atef [30] framed a resource levelling problem to construction projects. To improve work efficiency and to minimize cost were underlying principle. For calculating activity durations, trapezoidal neutrosophic numbers were used in this model. In 2019, Mohamed Abdel-Basset, Mumtaz Ali, Asma Atef [29] designed uncertainty assessments of linear Time-Cost Tradeoffs using neutrosophic sets. In 2020, Florentin Smarandache [14] introduced neutro - algebra as a generalization of partial algebra with examples and showed their differences. Points of odds between universal algebra, neutro - algebra and anti-algebra are well explained in the paper. Neutro - functions are more useful when range or domain is not clear. Several applications to neutro functions are given with a well explanation. In 2020, Bordbar. H, Mohseni Takallo. M, Borzooei. R. A, Young Bae Jun [9], defined BMBJ neutrosophic subalgebra in $\mathrm{BCI} / \mathrm{BCK}$ - algebras. Authors introduced BMBJ neutrosophic set as a generalization of neutrosophic set. Its subalgebra, images, translations, S - extension and its application to $\mathrm{BCI} / \mathrm{BCK}$ - algebra are defined and explained. Neutrosophic vague binary sets are developed by Francina Shalini. A and Remya. P. B [15] in 2019. Authors developed a neutrosophic vague set with 2 universes and discussed its properties.

In this paper, $\mathrm{BCK} / \mathrm{BCI}$-algebraic structure is introduced to neutrosophic vague binary sets and it is simply called as neutrosophic vague binary $B C K / B C I$ - algebra. It's ideal, neutrosophic vague binary $\mathrm{BCK} / \mathrm{BCI}$ - ideal is also developed. Moreover, different neutrosophic vague binary $\mathrm{BCK} / \mathrm{BCI}-$ ideals like neutrosophic vague binary $\mathrm{BCK} / \mathrm{BCI}$ p-ideal, neutrosophic vague binary $\mathrm{BCK} / \mathrm{BCI}$ q-ideal, neutrosophic vague binary $\mathrm{BCK} / \mathrm{BCI}$ a-ideal and neutrosophic vague binary $\mathrm{BCK} / \mathrm{BCI}$ H-ideal are also developed and compared. Neutrosophic vague binary BCK/BCI - subalgebra, neutrosophic vague binary BCK/BCI-cut and their relationships, properties and several theorems are also investigated and illustrated with examples.

Without algebra we can't even imagine mathematics. In one sense, geometry and algebra are equally important in mathematics. Even a layman can understand geometry because it deals with lines and shapes. It's applicational use in day to day life can't neglect. But algebra is like a silent player. In geometry, for finding out the solutions to lot of situations like, to get co-ordinates of centroid or to find out solution space to equations which represents lines, ellipse, hyperbolas, etc. - common way is to adopt the method of algebra. Study of surfaces is the main concept behind topology. Topological objects can bend, twist or stretch but are not allowed to tear, since there it loses its continuity. As a result, topological objects will become non - topological! Automatically they admit lack of homeomorphism in these situations. Geometrical nature of topology needs the assistance of algebra in several circumstances. This inevitable need of a mixed strategy, produced a new branch of mathematics called 'algebraic topology'. So developmental moments in any branch connected to topology from basic sets to neutrosophic sets via "fuzzy, rough, intuitionistic fuzzy, vague, interval mathematics, soft"- will equally demand the developments of it's counterpartalgebra. Thus both of them developed equally and produced vivid outputs like fuzzy BCK/BCI algebra, intuitionistic fuzzy $\mathrm{BCK} / \mathrm{BCI}$-algebra, rough $\mathrm{BCK} / \mathrm{BCI}$-algebra, vague BCK/BCI- algebra, soft $\mathrm{BCK} / \mathrm{BCI}$ algebra and so on. So to stabilize neutrosophic branch, developments in various algebraic structures like $\mathrm{BCK} / \mathrm{BCI}, \mathrm{BCH}, \mathrm{BH}$ etc are very critical and essential. This work will be important to neutrosophic due to its 'easy way approach' than [1] to reach to the same destination.

Method given in [1] is equally good but the concept of generating element is a little bit perplexing. Since [1] is closely connected to [47], it will be helpful, to verify lot of deep ideas given in [47]. Neutrosophic 'group and loop' concepts are well defined with examples and explanations in
[47]. It is to be noted that, as per [47], neutrosophic group does not possess a direct group structure, but it always contains one! Neutrosophic vague is a mixed form of neutrosophic and vague. It draws every positives and negatives of both the aforementioned sets. Numerical calculations for 'neutrosophic' are more than 'vague' due to its additional component - uncertainty. In real life problems, complex situations demand a more clear and easily accessible method to use with 'neutrosophic, neutrosophic vague or neutrosophic vague binary'- set values. In group theory or ring theory algebraic structure is formed in such a manner that it includes set itself as a first member of the structure, then provide various algebraic operations as example shows: $\left(Z,+_{4}\right),(\mathrm{mZ},+),(R,+,$. etc. Vague BCK/BCI algebraic-structure is defined as ($\mathrm{U}, *, 0$) by enclosing only universal set and by omitting the corresponding vague set A . But in this context, universal set and vague set are simultaneously essential and available: since problem is being to be checked for a 'vague BCK/BCIalgebra and not for mere BCK/BCI-algebra' ! Our conclusion is that, being a core object in taking a decision to the question 'vague BCK/BCI-algebra or not?' : inclusion of vague set, 'inside the structure' is important. It will avoid more confusions while doing theoretical work! Same thing is referable to fuzzy $\mathrm{BCK} / \mathrm{BCI}$-algebra, intuitionistic $\mathrm{BCK} / \mathrm{BCI}$-algebra, neutrosophic $\mathrm{BCK} / \mathrm{BCI}$-algebra and so on. This will be useful and applicable to all other existing structures like $\mathrm{BCH}, \mathrm{BH}, \mathrm{B}$ etc., with uncertain sets.

It is hoped that, when comparing to [1], concept developed in this paper, will be more useful to common people, since it uses values directly and hence easily accessible. This method depends on vague BCK/BCI paper [6]. In this paper our primary interest is to develop BCK/BCIalgebraic concept to neutrosophic vague binary sets. For this neutrosophic BCK/BCI algebraic concept and neutrosophic vague BCK/BCI-algebraic concept are needed as a base. Since it is not developed yet, in this paper, those are also developed with neutrosophic vague binary! An alternative structure approach, to vague $\mathrm{BCK} / \mathrm{BCI}$-algebra mentioned in [6] can be given as follows: A vague $B C K / B C I$-algebra is a structure $\mathfrak{B}_{A}=\left(A, U^{\mathfrak{B}_{A}}=(U, *, 0), *, 0\right)=\left(A, U^{\mathfrak{B}_{A}}, *, 0\right)$, where A is the vague set under consideration and $U^{\mathfrak{B}_{A}}=(U, *, 0)$ is the underlying $B C K / B C I-$ algebraic structure for A with universal set U, binary operation " $*$ " and with constant " 0 ". Similarly, when A becomes fuzzy set, the structure got is fuzzy BCK/BCI-algebraic. For theoretical applications, new approach is found to be more helpful and clear. Throughout this paper, new structure is used for neutrosophic/neutrosophic vague/ neutrosophic vague binary BCK/BCI-algebra.

Primary objective of this work is to develop a BCK/BCI-algebraic structure to neutrosophic vague binary set. Along with, care is taken, to use this novel concept, in 'theoretical applications'. Secondary objective is kept as the formation of various ideals to this new concept and their verification in theory part.

Paper consists of 8 sections. $1^{\text {st }}$ section, provides an introduction, in which literature review has given. $2^{\text {nd }}$ paragraph gives a general format of the work. $3^{\text {rd }}$ paragraph explains why this work is essential to neutrosophic branch. $4^{\text {th }}$ paragraph, points out 2 limitations of existing approaches. $5^{\text {th }}$ paragraph mentions the alternative approaches to the limitations. $6^{\text {th }}$ paragraph gives 2 objectives for the work. $7^{\text {th }}$ paragraph, clearly explains how the paper is organized. $8^{\text {th }}$ paragraph, summarizes all contributions of this paper in bullets. $2^{\text {nd }}$ section of the paper describes materials for the work. In $3^{\text {rd }}$, neutrosophic vague binary/ neutrosophic vague/ neutrosophic $\mathrm{BCK} / \mathrm{BCI}$-algebras are developed. In $4^{\text {th }}$, neutrosophic vague binary $\mathrm{BCK} / \mathrm{BCI}$-subalgebra and neutrosophic vague binary BCK/BCIideal are developed. In $5^{\text {th }}$ section, various neutrosophic vague binary $\mathrm{BCK} / \mathrm{BCI}$-ideals are formed
and compared using a table. In $6^{\text {th }}$ section, neutrosophic vague binary/ neutrosophic vague/ neutrosophic BCK/BCI - cuts are defined. In $7^{\text {th }}$ section, propositions and lemmas related to this novel concept are discussed as a theoretical application. In 8th section, a conclusion to the paper is given.

Contributions in this paper are given in bullets below:

- Vague H-ideal
- Neutrosophic Vague Binary BCK/BCI-algebra
- Neutrosophic Vague Binary BCK/BCI-subalgebra
- Neutrosophic Vague Binary BCK/BCI-ideal
- Neutrosophic Vague Binary BCK/BCI- p ideal

Neutrosophic Vague Binary BCK/BCI- q ideal
Neutrosophic Vague Binary BCK/BCI- a ideal
Neutrosophic Vague Binary BCK/BCI- H ideal

- Neutrosophic vague binary BCK/BCI- cut

2. Preliminaries

Some preliminaries are given in this section

Definition 2.1 [45] (Neutrosophic Vague Set)

A neutrosophic vague set $A_{N V}$ (NVS in short) on the universe of discourse X can be written as $\mathrm{A}_{\mathrm{NV}}=\left\{\left\langle x ; \widehat{\mathrm{T}}_{\mathrm{A}_{\mathrm{NV}}}(\mathrm{X}) ; \hat{\mathrm{I}}_{\mathrm{A}_{\mathrm{NV}}}(\mathrm{X}), \widehat{\mathrm{F}}_{\mathrm{A}_{\mathrm{NV}}}(\mathrm{X})\right\rangle ; x \in X\right\}$ whose truth-membership, indeterminacy-membership and falsity-membership functions are defined as
$\widehat{\mathrm{T}}_{\mathrm{A}_{\mathrm{NV}}}(\mathrm{x})=\left[\mathrm{T}^{-}, \mathrm{T}^{+}\right], \hat{\mathrm{I}}_{\mathrm{A}_{\mathrm{NV}}}(\mathrm{x})=\left[\mathrm{I}^{-}, \mathrm{I}^{+}\right]$and $\hat{\mathrm{F}}_{\mathrm{A}_{\mathrm{NV}}}(\mathrm{x})=\left[\mathrm{F}^{-}, \mathrm{F}^{+}\right]$
where (1) $\mathrm{T}^{+}=\left(1-\mathrm{F}^{-}\right) ; \mathrm{F}^{+}=\left(1-\mathrm{T}^{-}\right)$and
(2) $-0 \leq \mathrm{T}^{-}+\mathrm{I}^{-}+\mathrm{F}^{-} \leq 2^{+}$

$$
-0 \leq \mathrm{T}^{+}+\mathrm{I}^{+}+\mathrm{F}^{+} \leq 2^{+}
$$

Definition 2.2 [15] (Neutrosophic Vague Binary Set)

A neutrosophic vague binary set (NVBS in short) $\mathrm{M}_{\text {NVB }}$ over a common universe $\left\{U_{1}=\left\{x_{j} / 1 \leq j \leq n\right\} ; U_{2}=\left\{y_{k} / 1 \leq k \leq p\right\}\right\}$ is an object of the form
$\mathrm{M}_{\mathrm{NVB}}=\left\{\left\langle\frac{\widehat{\mathrm{T}}_{\mathrm{M}_{\mathrm{NVB}}}\left(\mathrm{x}_{\mathrm{j}}\right), \hat{\mathrm{I}}_{\mathrm{M}_{\mathrm{NVB}}}\left(\mathrm{x}_{\mathrm{j}}\right), \widehat{\mathrm{F}}_{\mathrm{M}_{\mathrm{NVB}}}\left(\mathrm{x}_{\mathrm{j}}\right)}{\mathrm{x}_{\mathrm{j}}} ; \forall \mathrm{x}_{\mathrm{j}} \in \mathrm{U}_{1}\right\rangle\left\langle\frac{\widehat{T}_{\mathrm{M}_{\mathrm{NVB}}}\left(\mathrm{y}_{\mathrm{k}}\right), \hat{\mathrm{I}}_{\mathrm{M}_{\mathrm{NVB}}}\left(\mathrm{y}_{\mathrm{k}}\right), \widehat{\mathrm{F}}_{\mathrm{M}_{\mathrm{NVB}}}\left(\mathrm{y}_{\mathrm{k}}\right)}{\mathrm{y}_{\mathrm{k}}} ; \forall \mathrm{y}_{\mathrm{k}} \in \mathrm{U}_{2}\right\rangle\right\}$ is defined as, $\left(\forall x_{j} \in U_{1} \& \forall y_{k} \in U_{2}\right)$ $\widehat{\mathrm{T}}_{\mathrm{M}_{\text {NVB }}}\left(\mathrm{x}_{\mathrm{j}}\right)=\left[\mathrm{T}^{-}\left(\mathrm{x}_{\mathrm{j}}\right), \mathrm{T}^{+}\left(\mathrm{x}_{\mathrm{j}}\right)\right], \quad \hat{\mathrm{I}}_{\mathrm{M}_{\mathrm{NVB}}}\left(\mathrm{x}_{\mathrm{j}}\right)=\left[\mathrm{I}^{-}\left(\mathrm{x}_{\mathrm{j}}\right), \mathrm{I}^{+}\left(\mathrm{x}_{\mathrm{j}}\right)\right]$ and $\hat{\mathrm{F}}_{\mathrm{M}_{\mathrm{NVB}}}\left(\mathrm{x}_{\mathrm{j}}\right)=\left[\mathrm{F}^{-}\left(\mathrm{x}_{\mathrm{j}}\right), \mathrm{F}^{+}\left(\mathrm{x}_{\mathrm{j}}\right)\right]$ and $\widehat{\mathrm{T}}_{\mathrm{M}_{\text {NVB }}}\left(\mathrm{y}_{\mathrm{k}}\right)=\left[\mathrm{T}^{-}\left(\mathrm{y}_{\mathrm{k}}\right), \mathrm{T}^{+}\left(\mathrm{y}_{\mathrm{k}}\right)\right], \quad \hat{\mathrm{I}}_{\mathrm{M}_{\text {NVB }}}\left(\mathrm{y}_{\mathrm{k}}\right)=\left[\mathrm{I}^{-}\left(\mathrm{y}_{\mathrm{k}}\right), \mathrm{I}^{+}\left(\mathrm{y}_{\mathrm{k}}\right)\right]$ and $\widehat{\mathrm{F}}_{\mathrm{M}_{\text {NVB }}}\left(\mathrm{y}_{\mathrm{k}}\right)=\left[\mathrm{F}^{-}\left(\mathrm{y}_{\mathrm{k}}\right), \mathrm{F}^{+}\left(\mathrm{y}_{\mathrm{k}}\right)\right]$ where (1) $\mathrm{T}^{+}\left(\mathrm{x}_{\mathrm{j}}\right)=1-\mathrm{F}^{-}\left(\mathrm{x}_{\mathrm{j}}\right) ; \mathrm{F}^{+}\left(\mathrm{x}_{\mathrm{j}}\right)=1-\mathrm{T}^{-}\left(\mathrm{x}_{\mathrm{j}}\right) \& \mathrm{~T}^{+}\left(\mathrm{y}_{\mathrm{k}}\right)=1-\mathrm{F}^{-}\left(\mathrm{y}_{\mathrm{k}}\right) ; \mathrm{F}^{+}\left(\mathrm{y}_{\mathrm{k}}\right)=1-\mathrm{T}^{-}\left(\mathrm{y}_{\mathrm{k}}\right)$
(2) $-0 \leq \mathrm{T}^{-}\left(\mathrm{x}_{\mathrm{j}}\right)+\mathrm{I}^{-}\left(\mathrm{x}_{\mathrm{j}}\right)+\mathrm{F}^{-}\left(\mathrm{x}_{\mathrm{j}}\right) \leq 2^{+} ;-0 \leq \mathrm{T}^{-}\left(\mathrm{y}_{\mathrm{k}}\right)+\mathrm{I}^{-}\left(\mathrm{y}_{\mathrm{k}}\right)+\mathrm{F}^{-}\left(\mathrm{y}_{\mathrm{k}}\right) \leq 2^{+}$or $-0 \leq \mathrm{T}^{-}\left(\mathrm{x}_{\mathrm{j}}\right)+\mathrm{I}^{-}\left(\mathrm{x}_{\mathrm{j}}\right)+\mathrm{F}^{-}\left(\mathrm{x}_{\mathrm{j}}\right)+\mathrm{T}^{-}\left(\mathrm{y}_{\mathrm{k}}\right)+\mathrm{I}^{-}\left(\mathrm{y}_{\mathrm{k}}\right)+\mathrm{F}^{-}\left(\mathrm{y}_{\mathrm{k}}\right) \leq 4^{+}$ $-0 \leq \mathrm{T}^{+}\left(\mathrm{x}_{\mathrm{j}}\right)+\mathrm{I}^{+}\left(\mathrm{x}_{\mathrm{j}}\right)+\mathrm{F}^{+}\left(\mathrm{x}_{\mathrm{j}}\right) \leq 2^{+} ;-0 \leq \mathrm{T}^{+}\left(\mathrm{y}_{\mathrm{k}}\right)+\mathrm{I}^{+}\left(\mathrm{y}_{\mathrm{k}}\right)+\mathrm{F}^{+}\left(\mathrm{y}_{\mathrm{k}}\right) \leq 2^{+}$or $-0 \leq \mathrm{T}^{+}\left(\mathrm{x}_{\mathrm{j}}\right)+\mathrm{I}^{+}\left(\mathrm{x}_{\mathrm{j}}\right)+\mathrm{F}^{+}\left(\mathrm{x}_{\mathrm{j}}\right)+\mathrm{T}^{+}\left(\mathrm{y}_{\mathrm{k}}\right)+\mathrm{I}^{+}\left(\mathrm{y}_{\mathrm{k}}\right)+\mathrm{F}^{+}\left(\mathrm{y}_{\mathrm{k}}\right) \leq 4^{+}$
(3) $\mathrm{T}^{-}\left(\mathrm{x}_{\mathrm{j}}\right), \mathrm{I}^{-}\left(\mathrm{x}_{\mathrm{j}}\right), \mathrm{F}^{-}\left(\mathrm{x}_{\mathrm{j}}\right): \mathrm{V}\left(\mathrm{U}_{1}\right) \rightarrow[0,1]$ and $\mathrm{T}^{-}\left(\mathrm{y}_{\mathrm{k}}\right), \mathrm{I}^{-}\left(\mathrm{y}_{\mathrm{k}}\right), \mathrm{F}^{-}\left(\mathrm{y}_{\mathrm{k}}\right): \mathrm{V}\left(\mathrm{U}_{2}\right) \rightarrow[0,1]$ $\mathrm{T}^{+}\left(\mathrm{x}_{\mathrm{j}}\right), \mathrm{I}^{+}\left(\mathrm{x}_{\mathrm{j}}\right), \mathrm{F}^{+}\left(\mathrm{x}_{\mathrm{j}}\right): \mathrm{V}\left(\mathrm{U}_{1}\right) \rightarrow[0,1]$ and $\mathrm{T}^{+}\left(\mathrm{y}_{\mathrm{k}}\right), \mathrm{I}^{+}\left(\mathrm{y}_{\mathrm{k}}\right), \mathrm{F}^{+}\left(\mathrm{y}_{\mathrm{k}}\right): \mathrm{V}\left(\mathrm{U}_{2}\right) \rightarrow[0,1]$ Here $V\left(U_{1}\right), V\left(U_{2}\right)$ denotes power set of vague sets on U_{1}, U_{2} respectively

Definition 2.3 [48] (BCI-algebra)

Let X be a non-empty set with a binary operation $*$ and a constant 0 . Then $(X, *, 0)$ is called a BCI-algebra if it satisfies the following conditions:
(i) $((\mathrm{x} * \mathrm{y}) *(\mathrm{x} * \mathrm{z})) *(\mathrm{z} * \mathrm{y})=0$
(ii) $((x *(x * y)) * y=0$
(iii) $(x * x)=0$
(iv) $(x * y)=0$ and $(y * x)=0$ imply $x=y$, for all $x, y, z \in X$

Remark 2.4 [48]

We can define a partial ordering \leq by $x \leq y$ if and only if $(x * y)=0$
Remark 2.5 [48] (BCK - algebra)
If a BCI-algebra X satisfies $(0 * x)=0$ for all $x \in X$, then we say that X is a BCK- algebra
Remark 2.6 [48]
A BCI-algebra X has the following properties:
(i) $(x * 0)=x ; \forall x \in X$
(ii) $(\mathrm{x} * \mathrm{y}) * \mathrm{z}=(\mathrm{x} * \mathrm{z}) * \mathrm{y} ; \quad \forall \mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$
(iii) $0 *(\mathrm{x} * \mathrm{y})=(0 * \mathrm{x}) *(0 * \mathrm{y}) ; \quad \forall \mathrm{x}, \mathrm{y} \in X$
(iv) $\mathrm{x} *(\mathrm{x} *(\mathrm{x} * \mathrm{y}))=(\mathrm{x} * \mathrm{y}) \quad ; \forall \mathrm{x}, \mathrm{y} \in \mathrm{X}$
(v) $\quad \mathrm{x} \leq \mathrm{y} \Rightarrow(\mathrm{x} * \mathrm{z}) \leq(\mathrm{y} * \mathrm{z}) ;(\mathrm{z} * \mathrm{y}) \leq(\mathrm{z} * \mathrm{x}) \quad ; \quad \forall \mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$
(vi) $(\mathrm{x} * \mathrm{z}) *(\mathrm{y} * \mathrm{z}) \leq(\mathrm{x} * \mathrm{y}) ; \forall \mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$
(vii) $0 *(0 *((x * z) *(y * z)))=((0 * y) *(0 * x)) ; \quad \forall x, y, z \in X$
(viii) $0 *(0 *(x * y))=((0 * y) *(0 * x)) ; \forall x, y \in X$

Definition 2.7 [2, 4, 6, 25, 52] (Sub-algebra, Ideal, p-ideal, q-ideal, a-ideal, H-ideal)
Any non-empty subset I of a BCK/BCI- algebra X is called,

- subalgebra /ideal /p-ideal /q-ideal /a-ideal /H-ideal - of X, if it satisfies the axioms given table:

	Condition 1	Condition 2
Subalgebra of X	Nil	$(\mathrm{x} * \mathrm{y}) \in \mathrm{I} ; \quad \forall \mathrm{x}, \mathrm{y} \in \mathrm{I}$
BCK/BCI-subalgebra of X	Nil	$(\mathrm{x} * \mathrm{y}) \in \mathrm{I} ; \quad \forall \mathrm{x}, \mathrm{y} \in \mathrm{I}$
μ be a fuzzy BCK/BCI-algebra of X	Nil	$\begin{aligned} \mu(\mathbf{x} * \mathbf{y}) \geq \min \{\mu(\mathbf{x}) & * \mu(\mathbf{y})\} ; \forall \mathbf{x}, \mathbf{y} \\ & \in \mathbf{X} ; \mu \text { be a fuzzy set in a BCK/BCI - algebra } \mathbf{X} \end{aligned}$
A be a vague $\mathrm{BCK} / \mathrm{BCI}$-algebra of X	Nil	
Ideal of X	$0 \in \mathrm{I}$	$(\mathrm{x} * \mathrm{y}) \in \mathrm{I}$ \& $\mathrm{y} \in \mathrm{I} \Rightarrow \mathrm{x} \in \mathbf{I} \quad ; \forall \mathbf{x} \in \mathbf{I}, \forall \mathbf{y} \in \mathrm{X}$
μ be a fuzzy BCI- ideal of X	$\mu(0) \geq \mu(\mathrm{x})$	$\mu(\mathbf{x}) \geq \boldsymbol{\operatorname { m i n }}\{\mu(\mathbf{x} * \mathbf{y}), \mu(\mathbf{y})\} ; \forall \mathbf{x}, \mathbf{y} \in \mathbf{x} ; \mu$ bea fuzzy set in a BCI - algebra \mathbf{X}
BCK/BCI - Ideal of X	$0 \in \mathrm{I}$	$(\mathrm{x} * \mathrm{y}) \in \mathrm{I}$ \& $\mathrm{y} \in \mathrm{I} \Rightarrow \mathrm{x} \in \mathbf{I} \quad ; \forall \mathbf{x} \in \mathbf{I}, \forall \mathbf{y} \in \mathrm{X}$
p - ideal of X	$0 \in \mathrm{I}$	$[(\mathrm{x} * \mathrm{z}) *(\mathrm{y} * \mathrm{z})] \in \mathbf{I}$ \& $\mathrm{y} \in \mathbf{I} \Rightarrow \mathrm{x} \in \mathbf{I} \quad ; \forall \mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathrm{X}$
q - ideal of X	$0 \in \mathrm{I}$	$[\mathrm{x} *(\mathrm{y} * \mathrm{z})] \in \mathbf{I} \& \mathrm{y} \in \mathbf{I} \Rightarrow(\mathrm{x} * \mathrm{z}) \in \mathbf{I} ; \forall \mathbf{x}, \mathbf{y}, \mathrm{z} \in X$
a - ideal of X	$0 \in \mathrm{I}$	$[(\mathrm{x} * \mathrm{z}) *(0 * y)] \in \mathbf{I} \& \mathrm{z} \in \mathbf{I} \Rightarrow(\mathrm{y} * \mathrm{x}) \in \mathbf{I} ; \forall \mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathrm{X}$
H-ideal of X	$0 \in \mathrm{I}$	$[\mathrm{x} *(\mathrm{y} * \mathrm{z})] \in \mathbf{I}$ \& $\mathrm{y} \in \mathbf{I} \Rightarrow(\mathrm{x} * \mathrm{z}) \in \mathbf{I} ; \forall \mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathrm{X}$
μ be a fuzzy BCK/BCI-ideal of X	$\mu(0) \geq \mu(x)$	$\mu(\mathrm{x}) \geq \mathrm{min}\{\mu(\mathrm{x} * \mathrm{y}), \mu(\mathrm{y})\} ; \quad \forall \mathrm{x}, \mathrm{y} \in \mathrm{X} ; \mu$ be a fuzzy set in a BCK/BCI - algebra X
vague BCI -ideal of X	$\mathrm{V}_{A}(0) \geq \mathrm{V}_{\mathrm{A}}(\mathrm{x})$	$\mathrm{V}_{A}(\mathrm{x}) \geq \mathrm{rmin}\left\{\mathrm{V}_{A}(\mathrm{x} * \mathrm{y}), \mathrm{V}_{\mathrm{A}}(\mathrm{y})\right\} ; \forall \mathrm{x}, \mathrm{y} \in \mathrm{X}$; A - vague set in X

Remark 2.8 [6] (r min \& r max)

Let $\mathrm{D}[0,1]$ denote the family of all closed sub-intervals of $[0,1]$. Now we define the refined minimum (briefly, r min) and an order " \leq " on elements $\mathrm{D}_{1}=\left[\mathrm{a}_{1}, \mathrm{~b}_{1}\right]$ and $\mathrm{D}_{2}=\left[\mathrm{a}_{2}, \mathrm{~b}_{2}\right]$ of $\mathrm{D}[0,1]$ as: $r \min \left(\mathrm{D}_{1}, \mathrm{D}_{2}\right)$ $=\left[\min \left\{\mathrm{a}_{1}, \mathrm{a}_{2}\right\}, \min \left\{\mathrm{b}_{1}, \mathrm{~b}_{2}\right\}\right]$. Similarly, we can define $\geq_{\text {, }}=$ and $r \max$. Then the concept of r min and r max could be extended to define r inf and r sup of infinite number of elements of $D[0,1]$. It is a known fact that $\mathrm{L}=\{\mathrm{D}[0,1], r$ inf, r sup, $\leq\}$ is a lattice with universal bounds $[0,0]$ and $[1,1]$.

Definition 2.9 [6] (Vague-cuts)

Let A be a vague set of a universe X with the true-membership function t_{A} and false-membership function f_{A}. The (α, β)-cut of the vague set A is a crisp subset $\mathrm{A}_{(\alpha, \beta)}$ of the set X given by
$\mathrm{A}_{(\alpha, \beta)}=\left\{\mathrm{x} \in \mathrm{X} / \mathrm{V}_{\mathrm{A}}(\mathrm{x}) \geq[\alpha, \beta]\right\}$ where $\alpha \leq \beta$. Clearly, $\mathrm{A}_{(0,0)}=\mathrm{X}$. The (α, β)-cuts are also called vaguecuts of the vague set A.

The α-cut of the vague set A is a crisp subset $\mathrm{A} \alpha$ of the set X given by $\mathrm{A}_{\alpha}=\mathrm{A}(\alpha, \alpha)$.
Note that $\mathbf{A}_{\mathbf{0}}=\mathrm{X}$ and if $\alpha \geq \beta$ then $\mathrm{A}_{\beta} \subseteq \mathrm{A}_{\alpha}$ and $\mathrm{A}_{(\beta, \alpha)}=\mathrm{A} \alpha$.
Equivalently, we can define the α-cut as $\mathrm{A}_{\alpha}=\left\{\mathbf{x} \in \mathrm{X} / \mathbf{t}_{\mathbf{A}}(\mathbf{x}) \geq \alpha\right\}$

Definition 2.10 [50]

Given a non-empty set X, let $B_{\kappa}(X)$ and $B_{I}(X)$ denote the collection of all BCK-algebras and all BCIalgebras, respectively. Also, $B(X):=B_{\kappa}(X) \cup B_{I}(X)$.

For any $(X, *, 0) \in B(X)$, a fuzzy structure (X, μ) over $(X, *, 0)$ is called a

- Fuzzy subalgebra of $(X, *, 0)$ with type 1 (briefly, 1-fuzzy subalgebra of $(X, *, 0)$ if $\mu(x * y) \geq \min \{\mu(x), \mu(y)\} ; \forall \mathbf{x}, \mathbf{y} \in X$
- Fuzzy subalgebra of $(X, *, 0)$ with type 2 (briefly, 2 - fuzzy subalgebra of $(X, *, 0)$ if $\mu(\mathrm{x} * \mathrm{y}) \leq \min \{\mu(\mathrm{x}), \mu(\mathrm{y})\} ; \forall \mathbf{x}, \mathbf{y} \in \mathrm{X}$
- Fuzzy subalgebra of $(X, *, 0)$ with type 3 (briefly, 3-fuzzy subalgebra of $(X, *, 0)$ if $\mu(x * y) \geq \max \{\mu(x), \mu(y)\} ; \forall \mathbf{x}, \mathbf{y} \in X$
- Fuzzy subalgebra of $(X, *, 0)$ with type 4 (briefly, 4-fuzzy subalgebra of $(X, *, 0)$ $\mu(x * y) \leq \max \{\mu(x), \mu(y)\} ; \forall \mathbf{x}, \mathbf{y} \in X$

3. Neutrosophic vague binary BCK/BCI-algebra

In this section neutrosophic BCK/BCI-algebra is developed first, based on paper [6]. Neutrosophic
 in paper [1]. Concept is extended to neutrosophic vague sets and to neutrosophic vague binary sets.

Definition 3.1 (Neutrosophic BCK/BCI-algebra)

A neutrosophic BCK/BCI-algebra is a structure $\mathfrak{B}_{M_{N}}=\left(M_{N}, U^{\mathcal{B}_{M_{N}}}=(U, *, 0), *, 0\right)=\left(M_{N}, U^{\mathcal{B}_{M_{N}}}, *, 0\right)$ where,
(1) M_{N} is a non-empty neutrosophic set
(2) $U^{\mathfrak{B}_{M_{N}}}=(\mathrm{U}, *, 0)$ is the underlying BCK/BCI- algebraic structure, to the neutrosophic set M_{N} with a universal set U, a binary operation "*" \& a constant " 0 ". It satisfies the following axioms :
(i) $\left(\left(\mathrm{u}_{\mathrm{x}} * \mathrm{u}_{\mathrm{y}}\right) *\left(\mathrm{u}_{\mathrm{x}} * \mathrm{u}_{\mathrm{z}}\right)\right) *\left(\mathrm{u}_{\mathrm{z}} * \mathrm{u}_{\mathrm{y}}\right)=0$
(ii) $\left(\left(\mathrm{u}_{\mathrm{x}} *\left(\mathrm{u}_{\mathrm{x}} * \mathrm{u}_{\mathrm{y}}\right)\right) * \mathrm{u}_{\mathrm{y}}=0\right.$ (iii) $\left(\mathrm{u}_{\mathrm{x}} * \mathrm{u}_{\mathrm{x}}\right)=0$
(iv) $\left(\mathrm{u}_{\mathrm{x}} * \mathrm{u}_{\mathrm{y}}\right)=0$ and $\left(\mathrm{u}_{\mathrm{y}} * \mathrm{u}_{\mathrm{x}}\right)=0$ imply $\mathrm{u}_{\mathrm{x}}=\mathrm{u}_{\mathrm{y}}, \forall \mathrm{u}_{\mathrm{x}}, \mathrm{u}_{\mathrm{y}}, \mathrm{u}_{\mathrm{z}} \in \mathrm{U}(\mathrm{v})\left(0 * \mathrm{u}_{\mathrm{x}}\right)=0 \forall \mathrm{u}_{\mathrm{x}} \in \mathrm{U}$
(3) "*" and " 0 " are taken as defined in (2)
which satisfies the following condition,
$\mathrm{N}_{\mathrm{M}_{\mathrm{N}}}\left(\mathrm{u}_{\mathrm{x}} * \mathrm{u}_{\mathrm{y}}\right) \succcurlyeq \operatorname{rmin}\left\{\mathrm{N}_{\mathrm{M}_{\mathrm{N}}}\left(\mathrm{u}_{\mathrm{x}}\right), \mathrm{N}_{\mathrm{M}_{\mathrm{N}}}\left(\mathrm{u}_{\mathrm{y}}\right)\right\} \quad ; \quad \forall \mathrm{u}_{\mathrm{x}}, \mathrm{u}_{\mathrm{y}} \in \mathrm{U}$. That is,
$\mathrm{T}_{\mathrm{M}_{\mathrm{N}}}\left(\mathrm{u}_{\mathrm{x}} * \mathrm{u}_{\mathrm{y}}\right) \geq \min \left\{\mathrm{T}_{\mathrm{M}_{\mathrm{N}}}\left(\mathrm{u}_{\mathrm{x}}\right), \mathrm{T}_{\mathrm{M}_{\mathrm{N}}}\left(\mathrm{u}_{\mathrm{y}}\right)\right\} ; \mathrm{I}_{\mathrm{M}_{\mathrm{N}}}\left(\mathrm{u}_{\mathrm{x}} * \mathrm{u}_{\mathrm{y}}\right) \leq \max \left\{\mathrm{I}_{\mathrm{M}_{\mathrm{N}}}\left(\mathrm{u}_{\mathrm{x}}\right), \mathrm{I}_{\mathrm{M}_{\mathrm{N}}}\left(\mathrm{u}_{\mathrm{y}}\right)\right\} ; \mathrm{F}_{\mathrm{M}_{\mathrm{N}}}\left(\mathrm{u}_{\mathrm{x}} * \mathrm{u}_{\mathrm{y}}\right) \leq \max \left\{\mathrm{F}_{\mathrm{M}_{\mathrm{N}}}\left(\mathrm{u}_{\mathrm{x}}\right), \mathrm{F}_{\mathrm{M}_{\mathrm{N}}}\left(\mathrm{u}_{\mathrm{y}}\right)\right\}$

Definition 3.2. (Neutrosophic vague BCK/BCI-algebra)

A neutrosophic vague $\mathrm{BCK} / \mathrm{BCI}$ - algebra is a structure,
$\mathfrak{B}_{\mathrm{M}_{\mathrm{NV}}}=\left(\mathrm{M}_{\mathrm{NV}}, \mathrm{U}^{\mathcal{B}_{\mathrm{M}_{\mathrm{NV}}}}=(\mathrm{U}, *, 0), *, 0\right)=\left(\mathrm{M}_{\mathrm{NV}}, \mathrm{U}^{\mathfrak{B}_{\mathrm{M}_{\mathrm{NV}}}}, *, 0\right)$, where
(1) $M_{N V}$ is a non-empty neutrosophic vague set
(2) $\mathrm{U}^{\mathfrak{B}_{\mathrm{MVV}}}=(\mathrm{U}, *, 0)$ is the underlying BCK/BCI- algebraic structure to the neutrosophic vague set M_{NV} with a universal set U , a binary operation " $*$ " \& a constant "0" satisfies the following axioms:
(i) $\left(\left(\mathrm{u}_{\mathrm{x}} * \mathrm{u}_{\mathrm{y}}\right) *\left(\mathrm{u}_{\mathrm{x}} * \mathrm{u}_{\mathrm{z}}\right)\right) *\left(\mathrm{u}_{\mathrm{z}} * \mathrm{u}_{\mathrm{y}}\right)=0$ (ii) $\left(\left(\mathrm{u}_{\mathrm{x}} *\left(\mathrm{u}_{\mathrm{x}} * \mathrm{u}_{\mathrm{y}}\right)\right) * \mathrm{u}_{\mathrm{y}}=0\right.$ (iii) $\left(\mathrm{u}_{\mathrm{x}} * \mathrm{u}_{\mathrm{x}}\right)=0$
(iv) $\left(\mathrm{u}_{\mathrm{x}} * \mathrm{u}_{\mathrm{y}}\right)=0$ and $\left(\mathrm{u}_{\mathrm{y}} * \mathrm{u}_{\mathrm{x}}\right)=0$ imply $\mathrm{u}_{\mathrm{x}}=\mathrm{u}_{\mathrm{y}}, \forall \mathrm{u}_{\mathrm{x}}, \mathrm{u}_{\mathrm{y}}, \mathrm{u}_{\mathrm{z}} \in \mathrm{U}$
(v) $\left(0 * u_{\mathrm{x}}\right)=0 \forall \mathrm{u}_{\mathrm{x}} \in \mathrm{U}$
(3) "*" and " 0 " are taken as defined in $U^{\mathcal{B}_{M_{N V}}}$
which satisfies the following condition,

$$
N V_{M_{\mathrm{NV}}}\left(\mathrm{u}_{\mathrm{x}} * \mathrm{u}_{\mathrm{y}}\right) \succcurlyeq \mathrm{r} \min \left\{\mathrm{NV}_{\mathrm{M}_{\mathrm{NV}}}\left(\mathrm{u}_{\mathrm{x}}\right), \mathrm{NV}_{\mathrm{M}_{\mathrm{NV}}}\left(\mathrm{u}_{\mathrm{y}}\right)\right\} \quad ; \quad \forall \mathrm{u}_{\mathrm{x}}, \mathrm{u}_{\mathrm{y}} \in \mathrm{U} . \text { That is, }
$$

$\widehat{T}_{M_{N v}}\left(u_{x} * u_{y}\right) \geq \min \left\{\hat{T}_{M_{N V}}\left(u_{x}\right), \hat{T}_{M_{N v}}\left(u_{y}\right)\right\} ; \hat{I}_{M_{N v}}\left(u_{x} * u_{y}\right) \leq \max \left\{\hat{I}_{M_{N V}}\left(u_{x}\right), \hat{I}_{M_{N V}}\left(u_{y}\right)\right\} ; \hat{F}_{M_{N v}}\left(u_{x} * u_{y}\right) \leq \max \left\{\hat{\mathrm{F}}_{M_{N v}}\left(u_{x}\right), \hat{F}_{M_{N v}}\left(u_{y}\right)\right\}$

General Outline

Let $U=\left\{0, u_{p}^{1}, u_{p}^{2}, u_{p}^{3},-------, u_{p}^{k},---,---u_{p}^{i}\right\}$ be a universal set with algebraic structure $\mathrm{U}^{\mathfrak{B}_{\mathrm{M}_{\mathrm{NV}}}}=(\mathrm{U}, *, 0)$ where $*$ is the given binary operation and 0 is the constant . Let $\mathrm{U}^{\mathcal{B}_{\mathrm{M}_{\mathrm{NV}}}}$ forms a BCK/BCIalgebra. Corresponding Cayley table is given below:

*	0	$\mathbf{u}_{\mathrm{p}}^{1}$	$\mathbf{u}_{\mathrm{p}}^{2}$	----	----	$\mathbf{u}_{\mathrm{p}}^{\mathrm{k}}$	----	----	$\mathbf{u}_{\mathrm{p}}^{\mathrm{i}}$
0	0	0	0	0	0	0	----	0	0
$\mathbf{u}_{\mathrm{p}}^{1}$	$\mathbf{u}_{\mathrm{p}}^{1}$	0	----	----	----	----	----	----	----
$\mathbf{u p}^{2}$	$\mathbf{u}_{\mathrm{p}}^{2}$	----	0	----	----	----	----	----	----
----	----	----	----	0	----	----	----	----	----
----	----	----	----	----	0	----	----	----	----
$\mathbf{u p}_{\mathrm{p}}^{\mathrm{k}}$	$\mathrm{u}_{\mathrm{p}}^{\mathrm{k}}$	----	----	----	-----	0	----	----	----
----	----	----	----	----	----	----	0	----	----
----	----	----	----	----	----	----	----	----	----
$\mathbf{u}_{\mathrm{p}}^{\mathrm{i}}$	$\mathbf{u p}_{\mathrm{p}}^{\mathrm{i}}$	----	----	----	----	----	----	----	0

By taking U as underlying set, form a neutrosophic vague set $\mathbf{M}_{\mathbf{N V}}$ with neutrosophic vague membership grades, for any $\mathbf{u}_{\mathbf{p}}^{\mathbf{k}} \in \mathrm{U}$,
$\widehat{\mathbf{T}}_{\mathrm{M}_{\mathrm{NV}}}\left(\mathbf{u}_{\mathrm{p}}^{\mathrm{k}}\right)=\left\{\begin{array}{l}{\left[\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}\right] ; \mathbf{u}_{\mathrm{p}}^{\mathrm{k}}=\mathbf{0}} \\ {\left[\boldsymbol{\alpha}_{3}, \boldsymbol{\alpha}_{4}\right] ; \mathbf{u}_{\mathrm{p}}^{\mathrm{k}} \neq \mathbf{0}}\end{array} \quad ; \quad \hat{\mathbf{I}}_{\mathrm{M}_{\mathrm{NV}}}\left(\mathbf{u}_{\mathrm{p}}^{\mathrm{k}}\right)=\left\{\begin{array}{l}{\left[\boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}\right] ; \mathbf{u}_{\mathrm{p}}^{\mathrm{k}}=\mathbf{0}} \\ {\left[\boldsymbol{\beta}_{3}, \boldsymbol{\beta}_{4}\right] ; \mathbf{u}_{\mathrm{p}}^{\mathrm{k}} \neq \mathbf{0}}\end{array} ; \hat{\mathbf{F}}_{\mathrm{M}_{\mathrm{NV}}}\left(\mathbf{u}_{\mathrm{p}}^{\mathrm{k}}\right)=\left\{\begin{array}{l}{\left[\boldsymbol{\gamma}_{1}, \boldsymbol{\gamma}_{2}\right] ; \mathbf{u}_{\mathrm{p}}^{\mathrm{k}}=\mathbf{0}} \\ {\left[\boldsymbol{\gamma}_{3}, \boldsymbol{\gamma}_{4}\right] ; \mathbf{u}_{\mathrm{p}}^{\mathrm{k}} \neq \mathbf{0}}\end{array}\right.\right.\right.$
\therefore Corresponding neutrosophic vague set is,
$\mathbf{M}_{\mathbf{N V}}=\left\{\left\langle\frac{\left[\alpha_{1}, \alpha_{2}\right],\left[\beta_{1}, \beta_{2}\right],\left[\gamma_{1}, \gamma_{2}\right]}{\mathbf{0}}, \frac{\left[\alpha_{3}, \alpha_{4}\right],\left[\beta_{3}, \beta_{4}\right],\left[\gamma_{3}, \gamma_{4}\right]}{u_{p}^{1}}, \frac{\left[\alpha_{3}, \alpha_{4}\right],\left[\beta_{3}, \beta_{4}\right],\left[\gamma_{3}, \gamma_{4}\right]}{u_{p}^{2}},--, \frac{\left[\alpha_{3}, \alpha_{4}\right],\left[\beta_{3}, \beta_{4}\right],\left[\gamma_{3}, \gamma_{4}\right]}{u_{p}^{k}},--, \frac{\left[\alpha_{3}, \alpha_{4}\right],\left[\beta_{3}, \beta_{4}\right],\left[\gamma_{3}, \gamma_{4}\right]}{u_{p}^{i}}\right\rangle\right\}$
Algebraic structure $\boldsymbol{B}_{\mathbf{M}_{\mathrm{NV}}}=\left(\mathbf{M}_{\mathrm{NV}}, \mathbf{U}^{\mathfrak{B}_{\mathrm{M}_{\mathrm{NV}}}, *, 0}\right.$) is called a neutrosophic vague BCK/BCI-algebra if it satisfies, $\mathbf{N V}_{\mathbf{M}_{\mathbf{N V}}}\left(\mathbf{u}_{\mathbf{p}}^{\mathbf{k}} * \mathbf{u}_{\mathbf{q}}^{\mathbf{k}}\right) \succcurlyeq \mathbf{r} \min \left\{\mathbf{N V}_{\mathbf{M}_{\mathbf{N V}}}\left(\mathbf{u}_{\mathbf{p}}^{\mathbf{k}}\right), \mathbf{N V}_{\mathbf{M}_{\mathbf{N V}}}\left(\mathbf{u}_{\mathbf{q}}^{\mathbf{k}}\right)\right\} ; \forall \quad \mathbf{u}_{\mathbf{p}}^{\mathbf{k}}, \mathbf{u}_{\mathbf{q}}^{\mathbf{k}} \in \mathbf{U}$

Remark 3.3
Different neutrosophic vague membership grades are also applicable. It is explained in the general outline of definition 3.4

Definition 3.4 (Neutrosophic vague binary BCK/BCI- algebra)

A neutrosophic vague binary $\mathrm{BCK} / \mathrm{BCI}-$ algebra is a structure,
$\mathfrak{B}_{\mathrm{M}_{\mathrm{NVB}}}=\left(\mathrm{M}_{\mathrm{NVB}}, \mathrm{U}^{\mathcal{B}_{\mathrm{M}_{\mathrm{NVB}}}}=(\mathrm{U}, *, 0), *, 0\right)=\left(\mathrm{M}_{\mathrm{NVB}}, \mathrm{U}^{\left.\mathfrak{B}_{\mathrm{M}_{\mathrm{NVB}}}, *, 0\right) \text {, where }}\right.$
(1) $\mathrm{M}_{\mathrm{NVB}}$ is a non-empty neutrosophic vague binary set
(2) $U^{\mathfrak{B}_{\mathrm{M}}}{ }_{\mathrm{NVB}}=\left(\mathrm{U}=\left\{\mathrm{U}_{1} \cup \mathrm{U}_{2}\right\}, *, 0\right)$ is the underlying $\mathrm{BCK} / \mathrm{BCI}$ - algebraic structure to the neutrosophic vague binary set $\mathrm{M}_{\mathrm{NVB}}$ with a universal set $\mathrm{U}=\left\{\mathrm{U}_{1} \cup \mathrm{U}_{2}\right\}$ [where U_{1} and U_{2} are universes of $\mathrm{M}_{\mathrm{NVB}} \&$ " U " is the usual set-theoretic union], a binary operation "*" \& a constant " 0 " satisfies the following axioms:
(i) $\left(\left(\mathrm{u}_{\mathrm{x}} * \mathrm{u}_{\mathrm{y}}\right) *\left(\mathrm{u}_{\mathrm{x}} * \mathrm{u}_{\mathrm{z}}\right)\right) *\left(\mathrm{u}_{\mathrm{z}} * \mathrm{u}_{\mathrm{y}}\right)=0$
(ii) $\left(\left(\mathrm{u}_{\mathrm{x}} *\left(\mathrm{u}_{\mathrm{x}} * \mathrm{u}_{\mathrm{y}}\right)\right) * \mathrm{u}_{\mathrm{y}}=0\right.$ (iii) $\left(\mathrm{u}_{\mathrm{x}} * \mathrm{u}_{\mathrm{x}}\right)=0$
(iv) $\left(\mathrm{u}_{\mathrm{x}} * \mathrm{u}_{\mathrm{y}}\right)=0$ and $\left(\mathrm{u}_{\mathrm{y}} * \mathrm{u}_{\mathrm{x}}\right)=0 \operatorname{imply} \mathrm{u}_{\mathrm{x}}=\mathrm{u}_{\mathrm{y}} \forall \mathrm{u}_{\mathrm{x}}, \mathrm{u}_{\mathrm{y}}, \mathrm{u}_{\mathrm{z}} \in \mathrm{U}(\mathrm{v})\left(0 * \mathrm{u}_{\mathrm{x}}\right)=0 \forall \mathrm{u}_{\mathrm{x}} \in \mathrm{U}$
(3) "*" and " 0 " are same as defined in $U^{\mathcal{B}_{M_{N V B}}}$
which satisfies the following condition,

$$
\operatorname{NVB}_{M_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{x}} * \mathrm{u}_{\mathrm{y}}\right) \succcurlyeq \mathrm{r} \min \left\{\operatorname{NVB}_{\mathrm{M}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{x}}\right), \operatorname{NVB}_{\mathrm{M}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{y}}\right)\right\}, \forall \mathrm{u}_{\mathrm{x}}, \mathrm{u}_{\mathrm{y}} \in \mathrm{U}=\left\{\mathrm{U}_{1} \cup \mathrm{U}_{2}\right\} . \text { That is, }
$$

Remark 3.5

(i) Every NVB BCK-algebra is NVB BCI-algebra too. Generally, converse not true! (proved: Theorem 7.3). So distinguishing between structures of these two are important! To denote NVB BCK-algebra,

 as $\mathfrak{B}_{\mathrm{M}_{\text {NVB }}}^{1}=\left(\mathrm{M}_{\text {NVB }}, \mathrm{U}^{3 \mathrm{~B}_{\mathrm{NVB}}}, *, 0\right)$.
(ii) For NVB BCK algebra, notation for NVB BCK/BCI - algebra, i.e., $\mathfrak{B}_{\mathrm{M}_{\text {NVB }}}=\left(\mathrm{M}_{\text {NVB }}, \mathrm{U}^{\mathfrak{B}_{\mathrm{MNVB}}}, *, 0\right)$ is used in this paper instead of using, those given in remark 3.5 (i)
(iii) Similarly structures for:

Neutrosophic:

N BCK - algebra: $\mathfrak{B}_{M_{N}}^{B C K}=\left(M_{N}, U^{8 B C K}, *, 0\right)$ or $\mathfrak{B}_{M_{N}}^{K}=\left(M_{N}, U^{8 B_{M_{N}}^{K}}, *, 0\right)$ or $\mathfrak{B}_{M_{N}}=\left(M_{N}, U^{\mathfrak{B}_{M_{N}}}, *, 0\right)$
N BCI- algebra : $\mathfrak{B}_{M_{N}}^{B C I}=\left(M_{N}, U^{8 B M_{N}}, *, 0\right)$ or simply as $\mathfrak{B}_{M_{N}}^{1}=\left(M_{N}, U^{8 B_{M_{N}}}, *, 0\right)$

Neutrosophic vague:

NV BCK - algebra: $\mathfrak{B}_{M_{N V}}^{B C K}=\left(M_{N V}, U^{8 B M_{N V}}, *, 0\right)$ or $\mathfrak{B}_{M_{N V}}^{K}=\left(M_{N V}, U^{8 M_{N V}^{K}}, *, 0\right)$ or $\mathfrak{B}_{M_{N V}}=\left(M_{N V}, U^{3_{M V}}, *, 0\right)$

General Outline

Let $\mathbf{U}_{\mathbf{1}}=\left\{0, \mathbf{u}_{\mathbf{p}}^{\mathbf{1}}, \mathbf{u}_{\mathbf{p}}^{\mathbf{2}}, \mathbf{u}_{\mathbf{p}}^{\mathbf{3}}, \cdots-\cdots,--\mathbf{u}_{\mathbf{p}}^{\mathbf{i}}\right\}$ and $\mathbf{U}_{\mathbf{2}}=\left\{0, \mathbf{u}_{\mathbf{q}}^{\mathbf{1}}, \mathbf{u}_{\mathbf{q}}^{\mathbf{2}}, \mathbf{u}_{\mathbf{q}}^{\mathbf{3}}, \cdots-\cdots--\mathbf{u}_{\mathbf{q}}^{\mathbf{j}}\right\}$ be two universes under consideration. Let the combined universe $U=\left\{\mathbf{U}_{\mathbf{1}} \cup \mathbf{U}_{2}\right\}=\left\{0, \mathbf{u}_{\mathbf{p}}^{\mathbf{1}}, \mathbf{u}_{\mathbf{p}}^{\mathbf{2}}, \mathbf{u}_{\mathbf{p}}^{\mathbf{3}}, \cdots-\mathbf{u}_{\mathbf{p}}^{\mathbf{i}}, \mathbf{u}_{\mathbf{q}}^{\mathbf{1}}, \mathbf{u}_{\mathbf{q}}^{\mathbf{2}}, \mathbf{u}_{\mathbf{q}}^{\mathbf{3}}, \cdots\right.$, $\left.\mathbf{u}_{\mathbf{q}}^{\mathbf{j}}\right\}=\left\{\mathbf{0}, \mathbf{u}_{\mathbf{r}}^{\mathbf{1}}, \mathbf{u}_{\mathbf{r}}^{\mathbf{2}}, \mathbf{u}_{\mathbf{r}}^{\mathbf{3}}, \cdots-----, \mathbf{u}_{\mathbf{r}}^{\mathbf{k}}\right\}$ (obtained by recording once, the common elements) be a set with a binary operation $*$ and constant 0 . Let $\mathbf{U}^{\mathfrak{B}_{M_{N V B}}}=\left(U=\left\{\mathbf{U}_{\mathbf{1}} \cup \mathbf{U}_{\mathbf{2}}\right\}, *, 0\right)$ forms a BCK/BCI-algebra. By
taking $U=\left\{\mathbf{U}_{\mathbf{1}} \cup \mathbf{U}_{\mathbf{2}}\right\}$ as underlying set, form a neutrosophic vague binary set $\mathbf{M}_{\mathbf{N V B}}$. Let neutrosophic vague binary membership grades are as follows:

From this neutrosophic vague binary set $\mathbf{M}_{\text {NVB }}$, form neutrosophic vague binary membership grade for $U=\left\{\mathbf{U}_{\mathbf{1}} \cup \mathbf{U}_{\mathbf{2}}\right\}=\left\{\mathbf{0}, \mathbf{u}_{\mathbf{r}}^{\mathbf{1}}, \mathbf{u}_{\mathbf{r}}^{2},---, \mathbf{u}_{\mathbf{r}}^{\mathbf{k}}\right\}$ as :

i.e. , for any $\mathbf{u}_{\mathrm{r}}^{\mathbf{k}} \in \mathbf{U}$:

Corresponding Cayley table is given by:

$*$	0	$\mathbf{u}_{\mathbf{r}}^{1}$	$\mathbf{u}_{\mathbf{r}}^{2}$	---	$\mathbf{u}_{\mathbf{r}}^{\mathbf{k}}$
0	0	0	0	0	0
$\mathbf{u}_{\mathrm{r}}^{1}$	$\mathbf{u}_{\mathrm{r}}^{1}$	0	---	---	---
$\mathbf{u}_{\mathbf{r}}^{\mathbf{2}}$	$\mathbf{u}_{\mathbf{r}}^{2}$	---	0	---	---
---	---	---	---	0	---
$\mathbf{u}_{\mathbf{r}}^{\mathbf{k}}$	$\mathbf{u}_{\mathbf{r}}^{\mathbf{k}}$	---	---	---	0

Algebraic structure $\boldsymbol{B}_{\mathrm{M}_{\text {NVB }}}=\left(\mathbf{M}_{\text {NVB }}, \mathbf{U}^{\mathfrak{B}_{\mathrm{M}_{\text {NVB }}}}, *, \mathbf{0}\right)$ is called a NVB BCK/BCI-algebra, if it satisfies: $\operatorname{NVB}_{\mathbf{M}_{\text {NVB }}}\left(\mathbf{u}_{\mathbf{r}}^{\mathbf{k}} * \mathbf{u}_{\mathrm{s}}^{\mathbf{k}}\right) \succcurlyeq \mathbf{r} \min \left\{\mathrm{NVB}_{\mathbf{M}_{\text {NVB }}}\left(\mathbf{u}_{\mathrm{r}}^{\mathbf{k}}\right), \operatorname{NVB}_{\mathbf{M}_{\text {NVB }}}\left(\mathbf{u}_{\mathrm{s}}^{\mathrm{k}}\right)\right\} ; \quad \forall \quad \mathbf{u}_{\mathrm{r}}^{\mathrm{k}}, \mathbf{u}_{\mathrm{s}}^{\mathbf{k}} \in \mathbf{U}$

Remark 3.6

(i) Neutrosophic vague binary membership grade of common elements of $\mathbf{U}_{\mathbf{1}}$ and $\mathbf{U}_{\mathbf{2}}$ is got by taking their neutrosophic vague binary union.
For eg., let $\mathbf{U}_{\mathbf{1}}=\{\mathbf{0}, \mathbf{1}\}$ and $\mathbf{U}_{\mathbf{2}}=\{\mathbf{0}, \mathbf{1}, \mathbf{2}\}$ be two universes; $\therefore\left\{\mathbf{U}_{\mathbf{1}} \cup \mathbf{U}_{\mathbf{2}}\right\}=\{\mathbf{0}, \mathbf{1}, \mathbf{2}\} ; \mathbf{U}_{\mathbf{1}} \cap \mathbf{U}_{\mathbf{2}}=\{\mathbf{0}, \mathbf{1}\}$ $\therefore \mathrm{NVB}_{\mathbf{M}_{\mathrm{NVB}}}(\mathbf{0})=\mathrm{NVB}_{\mathrm{M}_{\mathrm{NVB}}}^{\mathrm{U}_{1}}(\mathbf{0}) \cup \mathrm{NVB}_{\mathrm{M}_{\mathrm{NVB}}}^{\mathrm{U}_{2}}(\mathbf{0}) ; \mathrm{NVB}_{\mathbf{M}_{\mathrm{NVB}}}^{\mathrm{U}_{1}}(\mathbf{0})$ is the neutrosophic vague binary membership grade of 0 in universe 1 . Similarly, to other common elements.
(ii) It is to be noted that, neutrosophic vague binary membership grade of 0 is not same in $\mathbf{U}_{\mathbf{1}}, \mathbf{U}_{\mathbf{2}}$ generally. Similarly, to other common elements!

Example 3.7

Let $\mathbf{U}_{\mathbf{1}}=\{\mathbf{0}, \mathbf{a}\}$ and let $\mathbf{U}_{\mathbf{2}}=\{\mathbf{0}, \mathbf{1}, \mathbf{2}\}$ be the universes under consideration. Combined universe $\mathbf{U}=\left\{\mathbf{U}_{\mathbf{1}} \cup \mathbf{U}_{2}\right\}=\{\mathbf{0}, \mathbf{a}, \mathbf{1}, \mathbf{2}\}$ with $\left(\mathbf{U}_{\mathbf{1}} \cap \mathbf{U}_{\mathbf{2}}\right)=\{0\}$. Cayley table to the binary operation $*$ for U is given as:

$*$	0	a	1	2
0	0	0	0	0
a	a	0	0	1
1	1	a	0	1
2	2	2	2	0

Clearly, $\mathbf{U}^{\mathfrak{B} \mathbf{M}_{\text {NVB }}}=\left(\mathbf{U}=\left\{\mathbf{U}_{\mathbf{1}} \cup \mathbf{U}_{\mathbf{2}}\right\}, *, \mathbf{0}\right)$ is a BCK/BCI-algebra. Let a non-empty neutrosophic vague binary set $\mathbf{M}_{\text {NVB }}$ with underlying set \mathbf{U}, is given as:
$\mathbf{M}_{\text {NVB }}=\left\{\left\langle\frac{[0.3,0.8],[0.1,0.3],[0.2,0.7]}{0}, \frac{[0.2,0.3],[0.2,0.5],[0.7,0.8]}{\mathrm{a}}\right\rangle,\left\langle\frac{[0.1,0.7],[0.7,0.8],[0.3,0.9]}{0}, \frac{[0.2,0.6],[0.5,0.7],[0.4,0.8]}{1}, \frac{[0.2,0.6],[0.5,0.7],[0.4,0.8]}{2}\right\rangle\right\}$
$\Rightarrow \quad \forall \quad \mathbf{u}_{\mathbf{p}}^{\mathbf{k}} \in \mathbf{U}_{\mathbf{1}}$ and $\forall \mathbf{u}_{\mathbf{q}}^{\mathbf{k}} \in \mathbf{U}_{\mathbf{2}}$,

$\widehat{T}_{M_{N V B}}\left(\mathbf{u}_{q}^{k}\right)=\left\{\begin{array}{c}{[0.1,0.7] ; \text { if } \mathbf{u}_{q}^{k}=0} \\ {[0.2,0.6] ; \text { if } \mathbf{u}_{q}^{k}=\{1,2\} \text { or } \mathbf{u}_{q}^{k} \neq 0}\end{array} ; \hat{\mathbf{I}}_{M_{N V B}}\left(\mathbf{u}_{q}^{k}\right)=\left\{\begin{array}{c}{[0.7,0.8] ; \text { if } \mathbf{u}_{q}^{k}=0} \\ {[0.5,0.7] ; \text { if } \mathbf{u}_{q}^{k}=\{1,2\} \text { or } \mathbf{u}_{q}^{k} \neq 0}\end{array} ; \hat{\mathbf{F}}_{M_{\text {NVB }}}\left(\mathbf{u}_{q}^{k}\right)=\left\{\begin{array}{c}{[0.3,0.9] ; \text { if } \mathbf{u}_{q}^{k}=0} \\ {[0.4,0.8] ; \text { if } \mathbf{u}_{\mathbf{q}}^{k}=\{1,2\} \text { or } \mathbf{u}_{\mathbf{q}}^{k} \neq 0}\end{array}\right.\right.\right.$
$\therefore \operatorname{NVB}_{M_{\text {NVB }}}(0)=([0.3,0.8],[0.1,0.3],[0.2,0.7]) \cup([0.1,0.7],[0.7,0.8],[0.3,0.9])=$
([0.3,0.8], [0.1, 0.3], [0.2, 0.7])
$\mathbf{N V B}_{\mathbf{M}_{\mathrm{NVB}}}(\mathbf{a})=([0.2,0.3],[0.2,0.5],[0.7,0.8]) \quad$ [since a is not a common element]
$\operatorname{NVB}_{\mathrm{M}_{\mathrm{NVB}}}(\mathbf{1})=\mathrm{NVB}_{\mathrm{M}_{\mathrm{NVB}}}(\mathbf{2})=([0.2,0.6],[0.5,0.7],[0.4,0.8]) ;$ [since 1 and 2 are not a common element]
$\Rightarrow \mathrm{NVB}_{\mathrm{M}_{\mathrm{NVB}}}\left(\mathbf{u}_{\mathrm{r}}^{\mathbf{k}}\right)=\left\{\begin{array}{c}{[0.3,0.8],[0.1,0.3],[0.2,0.7] ; \mathbf{u}_{\mathrm{r}}^{\mathrm{k}}=\mathbf{0}} \\ {[0.2,0.3],[0.2,0.5],[0.7,0.8] ; \mathbf{u}_{\mathrm{r}}^{\mathrm{k}}=\{\mathbf{a}\} \text { and } \mathbf{u}_{\mathrm{r}}^{\mathrm{k}} \neq \mathbf{0}} \\ {[0.2,0.6],[0.5,0.7],[0.4,0.8] ; \mathbf{u}_{\mathrm{r}}^{\mathrm{k}}=\{\mathbf{1}, 2\} \text { and } \mathbf{u}_{\mathrm{r}}^{\mathrm{k}} \neq \mathbf{0}}\end{array} \quad ;\left(\right.\right.$ for any $\left.\mathbf{u}_{\mathrm{r}}^{\mathrm{k}} \in \mathrm{U}\right)$
It is clear after verification that, $\mathfrak{B}_{\mathrm{M}_{\mathrm{NVB}}}=\left(\mathbf{M}_{\mathrm{NVB}}, \mathbf{U}^{\left.\mathfrak{B}_{\mathrm{M}_{\mathrm{NVB}}}, *, \mathbf{0}\right)}\right.$ is a NVB BCK/BCI- algebra.
Remark. 3.8
(1) If $\mathbf{U}_{\mathbf{1}} \subseteq \mathbf{U}_{\mathbf{2}}$ then $\mathbf{U}=\mathbf{U}_{\mathbf{2}}$ (2) If $\mathbf{U}_{\mathbf{2}} \subseteq \mathbf{U}_{\mathbf{1}}$ then $\mathbf{U}=\mathbf{U}_{\mathbf{1}}$
(2) The symbols \succcurlyeq and \neq does not imply our usual \geq or $\not \geq$
(3) In a Cayley table,
(i) principal diagonal elements of a $B C K / B C I-$ algebra U is always zero, since $(\mathbf{x} * \mathbf{x})=\mathbf{0}, \forall \mathbf{x} \in \mathbf{U}$
(ii) Using the property $(\mathbf{x} * \mathbf{0})=\mathbf{x} ; \forall \mathbf{x} \in \mathbf{U}$ of BCI- algebra, it is clear that $(\mathbf{0} * \mathbf{0})=\mathbf{0}$

Every BCK-algebra is a BCI-algebra. Hence the above is true for BCK-algebra also
(iii) Body of first column of Cayley table for a BCI- algebra will be an exact copy of column of operands, by using the property $(\mathbf{x} * \mathbf{0})=\mathbf{x} \forall \mathbf{x} \in \mathbf{U}$. But $\mathbf{1}^{\text {st }}$ row need not be!
(iv) Above is true for a BCK- algebra also, since every BCK- algebra is a BCI-algebra. In addition, for a BCK- algebra, body of first row takes only 0 , using the property $(\mathbf{0} * \mathbf{x})=\mathbf{0} ; \forall \mathbf{x} \in \mathbf{U}$

4. Neutrosophic vague binary BCK/BCI-subalgebra \& Neutrosophic vague binary BCK/BCI-ideal

In this section N/NV/NVB BCK/BCI- subalgebra (neutrosophic/neutrosophic vague/neutrosophic vague binary $\mathrm{BCK} / \mathrm{BCI}$ - subalgebra) \& N/NV/NVB BCK/BCI- ideal (neutrosophic/neutrosophic vague/neutrosophic vague binary $B C K / B C I$ - ideal) are developed. Priority is given for developing sub-algebraic and ideal concepts to neutrosophic vague binary BCK/BCI- algebra [NVB BCK/BCIalgebra]. For neutrosophic and neutrosophic vague, things are similar.

Definition 4.1 (Neutrosophic vague binary BCK/BCI-subalgebra)

A NVBSS $\mathbf{P}_{\text {NVB }}$ of a NVB BCK/BCI-algebra $\boldsymbol{B}_{\mathrm{M}_{\mathrm{NVB}}}=\left(\mathbf{M}_{\text {NVB }}, \mathbf{U}^{\mathfrak{B}_{\mathrm{M}_{\mathrm{NVB}}}}=(\mathbf{U}, *, \mathbf{0}), *, \mathbf{0}\right)$ is called NVB- BCK/BCI - subalgebra of $\boldsymbol{B}_{\mathrm{M}_{\mathrm{NVB}}}$ if,

$$
\begin{aligned}
& \operatorname{NVB}_{\mathbf{P}_{\mathrm{NVB}}}\left(\mathbf{u}_{\mathbf{x}} * \mathbf{u}_{\mathbf{y}}\right) \succcurlyeq \mathbf{r} \min \left\{\operatorname{NVB}_{\mathbf{P}_{\mathrm{NVB}}}\left(\mathbf{u}_{\mathrm{x}}\right), \operatorname{NVB}_{\mathbf{P}_{\mathrm{NVB}}}\left(\mathbf{u}_{\mathbf{y}}\right)\right\} \quad ; \quad \forall \quad \mathbf{u}_{\mathrm{x}}, \mathbf{u}_{\mathbf{y}} \in \mathbf{U}
\end{aligned}
$$

Definition 4.2 (Neutrosophic vague binary BCK/BCI- Ideal)

A non-empty NVBSS $\mathbf{P}_{\text {NVB }}$ of a NVB BCK/BCI-algebra, $\boldsymbol{B}_{\mathbf{M}_{\text {NVB }}}=\left(\mathbf{M}_{\text {NVB }}, \mathbf{U}^{\mathfrak{B}_{M_{N V B}}}, *, \boldsymbol{0}\right)$ is called a NVB BCK/BCI- ideal of $\mathfrak{B}_{\mathrm{M}_{\mathrm{NVB}}}$ if
(i) $\mathbf{N V B}_{\mathbf{P}_{\text {NVB }}}(\mathbf{0}) \succcurlyeq \mathbf{N V B}_{\mathbf{P}_{\text {NVB }}}\left(\mathbf{u}_{\mathbf{k}}\right)$; for any $\mathbf{u}_{\mathbf{k}} \in \mathbf{U}$

(ii) $\mathbf{N V B}_{\mathbf{P}_{\mathbf{N V B}}}\left(\mathbf{u}_{\mathbf{a}}\right) \succcurlyeq \mathbf{r} \min \left\{\mathbf{N V B}_{\mathbf{P}_{\mathbf{N V B}}}\left(\mathbf{u}_{\mathbf{a}} * \mathbf{u}_{\mathbf{b}}\right), \mathbf{N V B}_{\mathbf{P}_{\mathbf{N V B}}}\left(\mathbf{u}_{\mathbf{b}}\right)\right\}$; for any $\mathbf{u}_{\mathbf{a}}, \mathbf{u}_{\mathbf{b}} \in \mathbf{U}$

Remark 4.3

For NVB BCK - ideal underlying structure will confine to BCK -algebra and for NVB BCI - ideal it will confine to BCK -algebra. For different ideals mentioned in definition 5.2 , the same principle follows.

Remark 4.4

Similarly, for neutrosophic and neutrosophic vague. Only difference is with sets $\mathbf{P}_{\mathbf{N}}, \mathbf{P}_{\mathbf{N V}}$ instead of $\mathbf{P}_{\text {NVB }}$ in above definitions taken in order. It is trivial. Moreover, instead of $\mathbf{U}=\left\{\mathbf{U}_{\mathbf{1}} \cup \mathbf{U}_{\mathbf{2}}\right\}$, for both of them U is applied.

5. Various neutrosophic vague binary BCK/BCI-ideals

In this section vague H -ideal is developed first. Then p -ideal, q -ideal, a-ideal and H -ideal are developed for NVB BCK/BCI-algebra $\boldsymbol{B}_{\mathbf{M}_{\mathrm{NVB}}}=\left(\mathbf{M}_{\mathrm{NVB}}, \mathbf{U}^{\mathfrak{B}_{\mathrm{M}_{\mathrm{NVB}}}}=\left(\mathbf{U}=\left\{\mathbf{U}_{\mathbf{1}} \cup \mathbf{U}_{2}\right\}, *, \mathbf{0}\right), *, \mathbf{0}\right)$ Definition 5.1 (Vague H-ideal)

A vague set A of X is called a vague H - ideal of a $B C I$ - algebra X if it satisfies
(i) $\quad \mathbf{V}_{\mathbf{A}}(\mathbf{0}) \succcurlyeq \mathbf{V}_{\mathbf{A}}(\mathbf{x}) \quad(\forall \mathbf{x} \in \mathbf{X})$;

$$
\text { i.e., }\left\{\begin{array} { r l }
{ \mathbf { t } _ { \mathbf { A } } (\mathbf { 0 }) } & { \geq \mathbf { t } _ { \mathbf { A } } (\mathbf { x }) } \\
{ \mathbf { 1 } - \mathbf { f } _ { \mathbf { A } } (\mathbf { 0 }) } & { \geq \mathbf { 1 } - \mathbf { f } _ { \mathbf { A } } (\mathbf { x }) }
\end{array} \quad \text { i.e., } \quad \left\{\begin{array}{c}
\mathbf{t}_{\mathbf{A}}(\mathbf{0}) \geq \mathbf{t}_{\mathbf{A}}(\mathbf{x}) \\
\mathbf{f}_{\mathbf{A}}(\mathbf{0}) \leq \mathbf{f}_{\mathbf{A}}(\mathbf{x})
\end{array} \quad\right.\right. \text { and }
$$

(ii) $\mathbf{v}_{\mathbf{A}}(\mathbf{x} * \mathbf{z}) \geqslant \mathbf{r} \min \left\{\mathbf{v}_{\mathbf{A}}(\mathbf{x} *(\mathbf{y} * \mathbf{z})), \mathbf{V}_{\mathbf{A}}(\mathbf{y})\right\} ;(\forall \mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbf{X}) ;$ i.e., $\left\{\begin{array}{c}\mathbf{t}_{\mathbf{A}}(\mathbf{x} * \mathbf{z}) \geq \min \left\{\mathbf{t}_{\mathbf{A}}(\mathbf{x} *(\mathbf{y} * \mathbf{z})), \mathbf{t}_{\mathbf{A}}(\mathbf{y})\right\} \\ \mathbf{1}-\mathbf{f}_{\mathbf{A}}(\mathbf{x} * \mathbf{z}) \geq \min \left\{\mathbf{1}-\mathbf{f}_{\mathbf{A}}(\mathbf{x} *(\mathbf{y} * \mathbf{z})), \mathbf{1}-\mathbf{f}_{\mathrm{A}}(\mathbf{y})\right\}\end{array}\right.$

Definition 5.2 (Comparison of different NVB BCK/BCI- ideals)

Let $\boldsymbol{B}_{\mathrm{M}_{\mathrm{NVB}}}=\left(\mathbf{M}_{\mathrm{NVB}}, \mathbf{U}^{\mathfrak{B}_{\mathrm{M}_{\mathrm{NVB}}}}=\left(\mathbf{U}=\left\{\mathbf{U}_{\mathbf{1}} \cup \mathbf{U}_{\mathbf{2}}\right\}, *, \mathbf{0}\right), *, \mathbf{0}\right)$ be a NVB BCK/BCI-algebra. Conditions for a non-empty NVBSS $\mathbf{P}_{\mathrm{NVB}}$ of $\mathfrak{B}_{\mathrm{M}_{\text {NVB }}}$ to become a neutrosophic vague binary BCK/BCI - p ideal, neutrosophic vague binary $B C K / B C I-q$ ideal, neutrosophic vague binary $B C K / B C I-a$ ideal and neutrosophic vague binary $\mathrm{BCK} / \mathrm{BCI}$ - H ideal are given in the table below:

	Condition (1) ; $\left(\forall \quad \mathbf{u}_{\mathbf{k}} \in \mathbf{U}\right)$	Condition (2) ; (for any $\left.\mathbf{u}_{\mathbf{a}}, \mathbf{u}_{\mathbf{b}}, \mathbf{u}_{\mathbf{c}} \in \mathbf{U}\right)$
NVB BCK/BCI p-ideal	$\mathrm{NVB}_{\mathrm{P}_{\text {NVB }}}(0) \succcurlyeq \mathrm{NVB}_{\mathrm{P}_{\text {NVB }}}\left(\mathbf{u}_{\mathrm{k}}\right)$	$\left.\operatorname{NVB}_{\mathbf{P}_{\text {NVB }}}\left(\mathbf{u}_{\mathbf{a}}\right) \succcurlyeq \mathbf{r ~ m i n}^{\text {m }} \mathbf{N V B}_{\mathbf{P}_{\text {NVB }}}\left(\left(\mathbf{u}_{\mathbf{a}} * \mathbf{u}_{\mathbf{c}}\right) *\left(\mathbf{u}_{\mathbf{b}} * \mathbf{u}_{\mathbf{c}}\right)\right), \mathrm{NVB}_{\mathbf{P}_{\text {NVB }}}\left(\mathbf{u}_{\mathbf{b}}\right)\right\}$
NVB BCK/BCI q-ideal	$\mathrm{NVB}_{\mathrm{P}_{\mathrm{NVB}}}(0) \succcurlyeq \mathrm{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{k}}\right)$	$\operatorname{NVB}_{\mathbf{P}_{\mathrm{NVB}}}\left(\mathbf{u}_{\mathbf{a}} * \mathbf{u}_{\mathbf{c}}\right) \succcurlyeq r \min \left\{\mathrm{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\left(\mathbf{u}_{\mathrm{a}} *\left(\mathbf{u}_{\mathbf{b}} * \mathbf{u}_{\mathbf{c}}\right)\right)\right.\right.$), $\left.\mathrm{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\mathbf{u}_{\mathbf{b}}\right)\right\}$
NVB BCK/BCI a-ideal	$\mathrm{NVB}_{\mathrm{P}_{\mathrm{NVB}}}(0) \succcurlyeq \mathrm{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\mathbf{u}_{\mathrm{k}}\right)$	$\operatorname{NVB}_{\mathbf{P}_{\mathrm{NVB}}}\left(\mathbf{u}_{\mathbf{b}} * \mathbf{u}_{\mathbf{a}}\right) \succcurlyeq r \min \left\{\mathrm{NVB}_{\mathbf{P}_{\mathrm{NVB}}}\left(\left(\left(\mathbf{u}_{\mathbf{a}} * \mathbf{u}_{\mathbf{c}}\right) *\left(0 * \mathbf{u}_{\mathbf{b}}\right)\right)\right.\right.$), $\left.\mathrm{NVB}_{\mathbf{P}_{\mathrm{NVB}}}\left(\mathbf{u}_{\mathbf{c}}\right)\right\}$
NVB BCK/BCI \mathbf{H}-ideal	$\mathrm{NVB}_{\mathrm{P}_{\mathrm{NVB}}}(0) \succcurlyeq \mathrm{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\mathbf{u}_{\mathrm{k}}\right)$	$\mathrm{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\mathbf{u}_{\mathrm{a}} * \mathbf{u}_{\mathbf{c}}\right) \succcurlyeq r \min \left\{\mathrm{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\left(\mathbf{u}_{\mathrm{a}} *\left(\mathbf{u}_{\mathrm{b}} * \mathbf{u}_{\mathbf{c}}\right)\right)\right.\right.$), $\left.\mathrm{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\mathbf{u}_{\mathbf{b}}\right)\right\}$

6. Neutrosophic vague binary BCK/BCI - cuts

In this section N BCK/BCI-cut, NV BCK/BCI-cut and NVB BCK/BCI-cut are developed

Definition 6.1 (Neutrosophic BCK/BCI-($\alpha, \boldsymbol{\beta}, \boldsymbol{\gamma})$ - cut or Neutrosophic BCK/BCI-cut)

Let the neutrosophic set M_{N} is a N BCK/BCI-algebra with algebraic structure $\mathfrak{B}_{M_{N}}=\left(M_{N}, U^{\mathcal{B}_{M_{N}}, *, 0}\right)$. Truth membership function, indeterminacy membership function and false membership function of M_{N} are $T_{M_{N}}, I_{M_{N}}, F_{M_{N}}$ respectively. A neutrosophic BCK/BCI (α, β, γ) - cut of $\mathfrak{B}_{M_{N}}$ is a crisp subset $\mathrm{M}_{\mathrm{N}_{(\alpha, \beta, \gamma)}}$ of the neutrosophic set M_{N} given by:
$\mathrm{M}_{\mathrm{N}(\alpha, \beta, \gamma)}=\left\{\mathrm{u}_{\mathrm{k}} \in \mathrm{U} / \mathrm{N}_{\mathrm{M}_{\mathrm{N}}}\left(\mathrm{u}_{\mathrm{k}}\right) \succcurlyeq(\alpha, \beta, \gamma) ;\right.$ with $\left.\alpha, \beta, \gamma \in[0,1]\right\}$
$=\left\{\mathrm{u}_{\mathrm{k}} \in \mathrm{U} / \mathrm{T}_{\mathrm{M}_{\mathrm{N}}}\left(\mathrm{u}_{\mathrm{k}}\right) \geq \alpha ; \mathrm{I}_{\mathrm{M}_{\mathrm{N}}}\left(\mathrm{u}_{\mathrm{k}}\right) \leq \beta ; \quad \mathrm{F}_{\mathrm{M}_{\mathrm{N}}}\left(\mathrm{u}_{\mathrm{k}}\right) \leq \gamma ;\right.$ with $\left.\alpha, \beta, \gamma \in[0,1]\right\}$
Definition 6.2 (Neutrosophic Vague BCK/BCI ($\left[\alpha_{1}, \alpha_{2}\right],\left[\beta_{1}, \beta_{2}\right],\left[\gamma_{1}, \gamma_{2}\right]$) - cut or Neutrosophic Vague BCK/BCI- cut) Let the neutrosophic vague set M_{NV} is a NV BCK/BCI-algebra with algebraic structure
 function and false membership function of M_{NV} are $\widehat{\mathrm{T}}_{\mathrm{M}_{\mathrm{NV}}}, \hat{\mathrm{I}}_{\mathrm{M}_{\mathrm{NV}}}, \widehat{\mathrm{F}}_{\mathrm{M}_{\mathrm{NV}}}$ respectively. A neutrosophic vague $\operatorname{BCK} / \mathrm{BCI}\left(\left[\alpha_{1}, \alpha_{2}\right],\left[\beta_{1}, \beta_{2}\right],\left[\gamma_{1}, \gamma_{2}\right]\right)$ - cut of $\mathfrak{B}_{\mathrm{M}_{\mathrm{NV}}}$ is a crisp subset $\mathrm{M}_{\mathrm{NV}}^{\left(\left[\alpha_{1}, \alpha_{2}\right],\left[\beta_{1}, \beta_{2}\right],\left[\gamma_{1}, \gamma_{2}\right]\right)}$ of the neutrosophic vague set M_{NV} given by :
$\mathrm{M}_{\mathrm{NV}}^{\left(\left[\alpha_{1}, \alpha_{2}\right],\left[\beta_{1}, \beta_{2}\right],\left[\gamma_{1}, \gamma_{2}\right]\right)}{ }$
$=\left\{\mathrm{u}_{\mathrm{k}} \in \mathrm{U} / \mathrm{NV}_{\mathrm{M}_{\mathrm{Nv}}}\left(\mathrm{u}_{\mathrm{k}}\right) \succcurlyeq\left(\left[\alpha_{1}, \alpha_{2}\right],\left[\beta_{1}, \beta_{2}\right],\left[\gamma_{1}, \gamma_{2}\right]\right) ;\right.$ where $\alpha_{1} \leq \alpha_{2}, \beta_{1} \leq \beta_{2}, \gamma_{1} \leq \gamma_{2} ;$ with $\left.\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}, \gamma_{1}, \gamma_{2} \in[0,1]\right\}$
$=\left\{\mathrm{u}_{\mathrm{k}} \in \mathrm{U} / \widehat{\mathrm{T}}_{\mathrm{M}_{\mathrm{NV}}}\left(\mathrm{u}_{\mathrm{k}}\right) \geq\left[\alpha_{1}, \alpha_{2}\right] ; \hat{\mathrm{I}}_{\mathrm{M}_{\mathrm{NV}}}\left(\mathrm{u}_{\mathrm{k}}\right) \leq\left[\beta_{1}, \beta_{2}\right] ; \widehat{\mathrm{F}}_{\mathrm{M}_{\mathrm{NV}}}\left(\mathrm{u}_{\mathrm{k}}\right) \leq\left[\gamma_{1}, \gamma_{2}\right]\right\}$;
i.e., $\mathrm{T}^{-}\left(\mathrm{u}_{\mathrm{k}}\right) \geq \alpha_{1}$ and $\mathrm{T}^{+}\left(\mathrm{u}_{\mathrm{k}}\right) \geq \alpha_{2} ; \mathrm{I}^{-}\left(\mathrm{u}_{\mathrm{k}}\right) \leq \beta_{1}$ and $\mathrm{I}^{+}\left(\mathrm{u}_{\mathrm{k}}\right) \leq \beta_{2} ; \mathrm{F}^{-}\left(\mathrm{u}_{\mathrm{k}}\right) \leq \gamma_{1}$ and $\mathrm{F}^{+}\left(\mathrm{u}_{\mathrm{k}}\right) \leq \gamma_{2}$

Definition 6.3 (Neutrosophic Vague Binary BCK/BCI $\left\langle\left(\left[\alpha_{1}, \alpha_{2}\right],\left[\beta_{1}, \beta_{2}\right],\left[\gamma_{1}, \gamma_{2}\right]\right),\left(\left[\delta_{1}, \delta_{2}\right],\left[\rho_{1}, \rho_{2}\right],\left[\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right]\right)\right\rangle$ - cut or Neutrosophic Vague Binary BCK/BCI- cut)
Let the NVBS $M_{\text {NVB }}$ is a NVB BCK/BCI-algebra with algebraic structure,
$\mathfrak{B}_{\mathrm{M}_{\mathrm{NVB}}}=\left(\mathrm{M}_{\mathrm{NVB}}, \mathrm{U}^{\mathcal{B}_{\mathrm{M}_{\mathrm{NVB}}}}=\left(\mathrm{U}=\left\{\mathrm{U}_{1} \cup \mathrm{U}_{2}\right\}, *, 0\right), *, 0\right)$. Truth membership function, indeterminacy membership function and false membership function of $\mathrm{M}_{\mathrm{NVB}}$ are $\widehat{\mathrm{T}}_{\mathrm{M}_{\mathrm{NVB}}}, \hat{\mathrm{I}}_{\mathrm{M}_{\mathrm{NVB}}}, \hat{\mathrm{F}}_{\mathrm{M}_{\mathrm{NVB}}}$ respectively. A neutrosophic vague binary BCK/BCI $\left\langle\left(\left[\alpha_{1}, \alpha_{2}\right],\left[\beta_{1}, \beta_{2}\right],\left[\gamma_{1}, \gamma_{2}\right]\right),\left(\left[\delta_{1}, \delta_{2}\right],\left[\rho_{1}, \rho_{2}\right],\left[\vartheta_{1}, \vartheta_{2}\right]\right)\right\rangle$ - cut of $\mathfrak{B}_{\mathrm{M}_{\mathrm{NVB}}}$ is a crisp subset $\mathrm{M}_{\mathrm{NVB}}^{\left\langle\left(\left[\alpha_{1}, \alpha_{2}\right],\left[\beta_{1}, \beta_{2}\right],\left[\gamma_{1}, \gamma_{2}\right]\right),\left(\left[\delta_{1}, \delta_{2}\right],\left[\rho_{1}, \rho_{2}\right],\left[\vartheta_{1}, \vartheta_{2}\right]\right)\right\rangle}{ }$ of the NVBS $\mathrm{M}_{\mathrm{NVB}}$ given by :
 $\max \left\{\left[\alpha_{1}, \alpha_{2}\right],\left[\delta_{1}, \delta_{2}\right]\right\}=\left[\chi_{1}, \chi_{2}\right]$ (say); $\left.\min \left[\beta_{1}, \beta_{2}\right],\left[\rho_{1}, \rho_{2}\right]\right\}=\left[\phi_{1}, \phi_{2}\right]$ (say); $\min \left\{\left[\gamma_{1}, \gamma_{2}\right],\left[\vartheta_{1}, \vartheta_{2}\right]=\left[\pi_{1}, \pi_{2}\right]\right.$ (say);
with $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}, \gamma_{1}, \gamma_{2}, \delta_{1}, \delta_{2}, \rho_{1}, \rho_{2}, \vartheta_{1}, \vartheta_{2}, \chi_{1}, \chi_{2}, \phi_{1}, \phi_{2}, \pi_{1}, \pi_{2} \in[0,1]$
and $\alpha_{1} \leq \alpha_{2}, \quad \beta_{1} \leq \beta_{2}, \quad \gamma_{1} \leq \gamma_{2} ; \delta_{1} \leq \delta_{2}, \quad \rho_{1} \leq \rho_{2}, \quad \vartheta_{1} \leq \vartheta_{2}, \chi_{1} \leq \chi_{2}, \phi_{1} \leq \phi_{2} ; \quad \pi_{1} \leq \pi_{2}$
i.e., $\quad \widehat{\mathrm{T}}_{\mathrm{M}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{k}}\right) \geq\left[\alpha_{1}, \alpha_{2}\right] ; \quad \hat{\mathrm{I}}_{\mathrm{M}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{k}}\right) \leq\left[\beta_{1}, \beta_{2}\right] ; \quad \widehat{\mathrm{F}}_{\mathrm{M}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{k}}\right) \leq\left[\gamma_{1}, \gamma_{2}\right]$
$\widehat{\mathrm{T}}_{\mathrm{M}_{\text {NVB }}}\left(\mathrm{u}_{\mathrm{k}}\right) \geq\left[\delta_{1}, \delta_{2}\right] \quad ; \quad \hat{\mathrm{I}}_{\mathrm{M}_{\text {NVB }}}\left(\mathrm{u}_{\mathrm{k}}\right) \leq\left[\rho_{1}, \rho_{2}\right] ; \quad \widehat{\mathrm{F}}_{\mathrm{M}_{\text {NVB }}}\left(\mathrm{u}_{\mathrm{k}}\right) \leq\left[\vartheta_{1}, \vartheta_{2}\right]$
$\widehat{\mathrm{T}}_{\mathrm{M}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{k}}\right) \geq\left[\chi_{1}, \chi_{2}\right] ; \quad \hat{\mathrm{I}}_{\mathrm{M}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{k}}\right) \leq\left[\phi_{1}, \phi_{2}\right] ; \quad \widehat{\mathrm{F}}_{\mathrm{M}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{k}}\right) \leq\left[\pi_{1}, \pi_{2}\right]$
i.e., $\mathrm{T}^{-}\left(\mathrm{u}_{\mathrm{k}}\right) \geq \alpha_{1}$ and $\mathrm{T}^{+}\left(\mathrm{u}_{\mathrm{k}}\right) \geq \alpha_{2} ; \quad \mathrm{I}^{-}\left(\mathrm{u}_{\mathrm{k}}\right) \leq \beta_{1}$ and $\mathrm{I}^{+}\left(\mathrm{u}_{\mathrm{k}}\right) \leq \beta_{2} ; \mathrm{F}^{-}\left(\mathrm{u}_{\mathrm{k}}\right) \leq \gamma_{1}$ and $\mathrm{F}^{+}\left(\mathrm{u}_{\mathrm{k}}\right) \leq \gamma_{2}$ $\mathrm{T}^{-}\left(\mathrm{u}_{\mathrm{k}}\right) \geq \delta_{1}$ and $\mathrm{T}^{+}\left(\mathrm{u}_{\mathrm{k}}\right) \geq \delta_{2} ; \mathrm{I}^{-}\left(\mathrm{u}_{\mathrm{k}}\right) \leq \rho_{1}$ and $\mathrm{I}^{+}\left(\mathrm{u}_{\mathrm{k}}\right) \leq \rho_{2} ; \mathrm{F}^{-}\left(\mathrm{u}_{\mathrm{k}}\right) \leq \vartheta_{1}$ and $\mathrm{F}^{+}\left(\mathrm{u}_{\mathrm{k}}\right) \leq \vartheta_{2}$ $\mathrm{T}^{-}\left(\mathrm{u}_{\mathrm{k}}\right) \geq \chi_{1}$ and $\mathrm{T}^{+}\left(\mathrm{u}_{\mathrm{k}}\right) \geq \chi_{2} ; \mathrm{I}^{-}\left(\mathrm{u}_{\mathrm{k}}\right) \leq \phi_{1}$ and $\mathrm{I}^{+}\left(\mathrm{u}_{\mathrm{k}}\right) \leq \phi_{2} ; \mathrm{F}^{-}\left(\mathrm{u}_{\mathrm{k}}\right) \leq \pi_{1}$ and $\mathrm{F}^{+}\left(\mathrm{u}_{\mathrm{k}}\right) \leq \pi_{2}$

Remark 6.4

(i) (a) $\mathrm{M}_{\mathrm{NVB}}([0,0],[1,1],[1,1])=\mathrm{U}$
(b) $\mathrm{M}_{\mathrm{NVB}}\langle([0,0],[1,1],[1,1]),([0,0],[1,1],[1,1])\rangle=\mathrm{U}=\left\{\mathrm{U}_{1} \cup \mathrm{U}_{2}\right\}$
(ii) If $\left[\alpha_{1}, \alpha_{2}\right]$ and $\left[\delta_{1}, \delta_{2}\right]$ coincides; $\left[\beta_{1}, \beta_{2}\right]$ and $\left[\rho_{1}, \rho_{2}\right]$ coincides; $\left[\gamma_{1}, \gamma_{2}\right]$ and $\left[\vartheta_{1}, \vartheta_{2}\right]$ coincides, then $\left(\left\langle\left[\alpha_{1}, \alpha_{2}\right],\left[\beta_{1}, \beta_{2}\right],\left[\gamma_{1}, \gamma_{2}\right]\right\rangle,\left\langle\left[\delta_{1}, \delta_{2}\right],\left[\rho_{1}, \rho_{2}\right],\left[\vartheta_{1}, \vartheta_{2}\right]\right\rangle\right)$ - cuts are called $\left(\left\langle\left[\alpha_{1}, \alpha_{2}\right],\left[\beta_{1}, \beta_{2}\right],\left[\gamma_{1}, \gamma_{2}\right]\right\rangle,\left\langle\left[\alpha_{1}, \alpha_{2}\right],\left[\beta_{1}, \beta_{2}\right],\left[\gamma_{1}, \gamma_{2}\right]\right\rangle\right)$ - cuts and is denoted by $\mathrm{M}_{\mathrm{NVB}}^{\left(\left[\alpha_{1}, \alpha_{2}\right],\left[\beta_{1}, \beta_{2}\right],\left\{\gamma_{1}, \gamma_{2}\right],\left[\delta_{1}, \delta_{2}\right]\right)}$ instead of $\mathrm{M}_{\mathrm{NVB}}^{\left(\left\langle\left[\alpha_{1}, \alpha_{2}\right],\left[\beta_{1}, \beta_{2}\right],\left[\gamma_{1}, \gamma_{2}\right]\right\rangle,\left\langle\left[\alpha_{1}, \alpha_{2}\right],\left[\beta_{1}, \beta_{2}\right],\left[\gamma_{1}, \gamma_{2}\right]\right\rangle\right)}$
(iii) If $\left(\left\langle\left[\alpha_{1}^{*}, \alpha_{2}^{*}\right],\left[\beta_{1}^{*}, \beta_{2}^{*}\right],\left[\gamma_{1}^{*}, \gamma_{2}^{*}\right]\right\rangle,\left\langle\left[\delta_{1}^{*}, \delta_{2}^{*}\right],\left[\rho_{1}^{*}, \rho_{2}^{*}\right],\left[\vartheta_{1}^{*}, \vartheta_{2}^{*}\right]\right\rangle\right) \geq\left(\left\langle\left[\alpha_{1}, \alpha_{2}\right],\left[\beta_{1}, \beta_{2}\right],\left[\gamma_{1}, \gamma_{2}\right]\right\rangle,\left\langle\left[\delta_{1}, \delta_{2}\right],\left[\rho_{1}, \rho_{2}\right],\left[\vartheta_{1}, \vartheta_{2}\right]\right\rangle\right)$

7. Application

In this section theoretical application of NVB BCK/BCI algebra is developed. Various theorems and propositions are found good to this concept.

Lemma 7.1

Every NVB BCI - algebra $\mathfrak{B}_{\mathrm{M}_{\text {NVB }}}^{\mathrm{BCI}}$ of a BCI -algebra $\mathrm{U}^{\mathfrak{B B}_{\mathrm{M}_{\mathrm{NVB}}}^{\mathrm{BCI}}}$ satisfies:
$\operatorname{NVB}_{M_{\text {NVB }}}(0) \succcurlyeq \operatorname{NVB}_{\mathrm{M}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{k}}\right) ; \forall \mathrm{u}_{\mathrm{k}} \in \mathrm{U}=\left\{\mathrm{U}_{1} \cup \mathrm{U}_{2}\right\}$

Proof

For a $\mathfrak{B}_{\mathrm{M}_{\mathrm{NVB}}}^{\mathrm{BCI}}$, underlying BCI - algebraic structure satisfies, $\left(\mathrm{u}_{\mathrm{k}} * \mathrm{u}_{\mathrm{k}}\right)=0, \forall \mathrm{u}_{\mathrm{k}} \in \mathrm{U}$
[By property (iii) of definition 2.3]
$\Rightarrow \forall \mathrm{u}_{\mathrm{k}} \in \mathrm{U}, \mathrm{NVB}_{\mathrm{M}_{\mathrm{NVB}}}(0)=\operatorname{NVB}_{\mathrm{M}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{k}} * \mathrm{u}_{\mathrm{k}}\right) \succcurlyeq \mathrm{r} \min \left\{\mathrm{NVB}_{\mathrm{M}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{k}}\right), \operatorname{NVB}_{\mathrm{M}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{k}}\right)\right\}=\operatorname{NVB}_{\mathrm{M}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{k}}\right)$
[By definition 3.4]

Lemma 7.2

Every $\mathfrak{B}_{M_{\text {NVB }}}^{B C K}$ satisfies $\operatorname{NVB}_{M_{\text {NVB }}}(0) \succcurlyeq \operatorname{NVB}_{M_{\text {NVB }}}\left(u_{k}\right) ; \forall u_{k} \in U$

Proof

For a $\mathfrak{B}_{M_{\text {NVB }}}^{B C K}$, underlying $B C K-$ algebraic structure satisfies, an additional condition, $\left(0 * \mathrm{u}_{\mathrm{k}}\right)=0, \forall \mathrm{u}_{\mathrm{k}} \in \mathrm{U}$ besides $\left(\mathrm{u}_{\mathrm{k}} * \mathrm{u}_{\mathrm{k}}\right)=0, \forall \mathrm{u}_{\mathrm{k}} \in \mathrm{U} \quad ; \quad$ [By remark 2.5]
\Rightarrow Additional to, $\mathrm{NVB}_{\mathrm{M}_{\mathrm{NVB}}}(0) \succcurlyeq \mathrm{NVB}_{\mathrm{M}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{k}}\right) ; \forall \mathrm{u}_{\mathrm{k}} \in \mathrm{U}$ [by lemma 7.1], we get,
$\operatorname{NVB}_{\mathrm{M}_{\mathrm{NVB}}}(0)=\operatorname{NVB}_{\mathrm{M}_{\mathrm{NVB}}}\left(0 * \mathrm{u}_{\mathrm{k}}\right) \succcurlyeq \mathrm{rmin}\left\{\mathrm{NVB}_{\mathrm{M}_{\mathrm{NVB}}}(0), \mathrm{NVB}_{\mathrm{M}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{k}}\right)\right\} ; \forall \mathrm{u}_{\mathrm{k}} \in \mathrm{U}$
$\Rightarrow \operatorname{NVB}_{M_{\text {NVB }}}(0) \succcurlyeq r \min \left\{\operatorname{NVB}_{M_{N V B}}(0), \operatorname{NVB}_{M_{N V B}}\left(u_{k}\right)\right\} ; \forall u_{k} \in U$, for $\mathfrak{B}_{M_{N V B}}^{B C K}$
$\& r \min \left\{\mathrm{NVB}_{\mathrm{M}_{\mathrm{NVB}}}(0), \mathrm{NVB}_{\mathrm{M}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{k}}\right)\right\}$ will depend upon the given NVBS $\mathrm{M}_{\mathrm{NVB}}$
$\Rightarrow \operatorname{NVB}_{\mathrm{M}_{\mathrm{NVB}}}(0) \succcurlyeq \mathrm{NVB}_{\mathrm{M}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{k}}\right)$ and $\mathrm{NVB}_{\mathrm{M}_{\mathrm{NVB}}}(0) \succcurlyeq \mathrm{r} \min \left\{\mathrm{NVB}_{\mathrm{M}_{\mathrm{NVB}}}(0), \mathrm{NVB}_{\mathrm{M}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{k}}\right)\right\}$
Even if $\mathrm{r} \min \left\{\mathrm{NVB}_{\mathrm{M}_{\mathrm{NVB}}}(0), \mathrm{NVB}_{\mathrm{M}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{k}}\right)\right\}$ will depend upon the given NVBS, using lemma 7.1, $\operatorname{NVB}_{\mathrm{M}_{\mathrm{NVB}}}(0) \succcurlyeq \mathrm{r} \min \left\{\mathrm{NVB}_{\mathrm{M}_{\mathrm{NVB}}}(0), \mathrm{NVB}_{\mathrm{M}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{k}}\right)\right\}$ will become $\mathrm{NVB}_{\mathrm{M}_{\mathrm{NVB}}}(0) \succcurlyeq \mathrm{NVB}_{\mathrm{M}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{k}}\right)$
$\Rightarrow \operatorname{NVB}_{M_{N V B}}(0) \succcurlyeq \operatorname{NVB}_{M_{\text {NVB }}}\left(\mathrm{u}_{\mathrm{k}}\right)$ and $\mathrm{NVB}_{\mathrm{M}_{\mathrm{NVB}}}(0) \succcurlyeq \operatorname{NVB}_{\mathrm{M}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{k}}\right) \forall \mathrm{u}_{\mathrm{k}} \in \mathrm{U}$
So, combining both, for a $\mathfrak{B}_{M_{N V B}}^{B C K}$ too, $\operatorname{NVB}_{M_{N V B}}(0) \succcurlyeq \operatorname{NVB}_{M_{N V B}}\left(u_{k}\right) ; \forall u_{k} \in U$

Remark 7.3

Every $\mathfrak{B}_{\mathrm{M}_{\mathrm{NVB}}}^{B C K} / \mathfrak{B}_{\mathrm{M}_{\mathrm{NVB}}}^{\mathrm{BCI}}$ satisfies: $\mathrm{NVB}_{\mathrm{M}_{\mathrm{NVB}}}(0) \succcurlyeq \operatorname{NVB}_{\mathrm{M}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{k}}\right) ; \forall \mathrm{u}_{\mathrm{k}} \in \mathrm{U}$
i.e., Every NVB BCK/BCI - algebra satisfies: $\mathrm{NVB}_{\mathrm{M}_{\mathrm{NVB}}}(0) \succcurlyeq \mathrm{NVB}_{\mathrm{M}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{k}}\right) ; \forall \mathrm{u}_{\mathrm{k}} \in \mathrm{U}$

Theorem 7.4

Every $\mathfrak{B}_{M_{N V B}}^{B C K}$ is a $\mathfrak{B}_{M_{N V B}}^{B C I}$. But converse not true, generally. i.e., every $\mathfrak{B}_{M_{N V B}}^{B C I}$ is not a $\mathfrak{B}_{M_{N V B}}^{B C K}$ generally.

Proof

For a fixed universal set U, underlying $B C K$ - algebraic structure of $\mathfrak{B}_{M_{N V B}}^{B C K}$ consists the underlying $\mathrm{BCI}-$ structure of $\mathfrak{B}_{\mathrm{M}_{\text {NVB }}}^{\mathrm{BCI}} \Rightarrow$ Every $\mathfrak{B}_{\mathrm{M}_{\mathrm{NVB}}}^{\mathrm{BCK}}$ is $\mathfrak{B}_{\mathrm{M}_{\mathrm{NVB}}}^{\mathrm{BCI}}$. But converse does not hold. It is illustrated with the case (i) of remark 7.5.

Remark 7.5

Following example illustrates both the cases:
Let $U_{1}=\{0\}$ and let $U_{2}=\{0,1\}$ be the universes under consideration. Combined universe $U=\left\{U_{1} \cup U_{2}\right\}=\{0,1\}$ with $\left(U_{1} \cap U_{2}\right)=\{0\}$.
\therefore Cayley table to the binary operation $*$ for U is given as:

$*$	0	1
0	0	1
1	1	0

BCI-algebra [fig (i)]

$*$	0	1
0	0	0
1	1	0

BCK/BCI-algebra[fig(ii)]

Clearly, $\mathbf{U}^{\mathfrak{B}_{M_{\text {NVB }}}^{\mathrm{BCI}}}=\left(\mathbf{U}=\left\{\mathbf{U}_{\mathbf{1}} \cup \mathbf{U}_{\mathbf{2}}\right\}, *, \mathbf{0}\right)$ is a BCI-algebra [fig (i)].
$\mathbf{U}^{\mathfrak{B}_{\mathrm{M}_{\text {NVB }}}^{\text {BCK }}}=\left(\mathbf{U}=\left\{\mathbf{U}_{\mathbf{1}} \cup \mathbf{U}_{2}\right\}, *, \mathbf{0}\right)$ is a BCI-algebra [fig (ii)].
Case (i): Example for a $\mathfrak{B}_{\text {MNVB }}^{\text {BCI }}$ which is a $\mathfrak{B}_{\text {MNVB }}^{\mathrm{BCK}}$
Let $\mathrm{M}_{\text {NVB }}$ be a non-empty NVBS with $U^{\mathfrak{B}_{\mathrm{M}_{\text {NVB }}}^{\mathrm{BCI}}}$ as underlying algebraic structure:
$\mathrm{M}_{\text {NVB }}=\left\{\left\langle\frac{[0.1,0.8],[0.1,0.5],[0.2,0.9]}{0}\right\rangle,\left\langle\frac{[0.3,0.7],[0.2,0.4],[0.3,0.7]}{0}, \frac{[0.1,0.4],[0.3,0.5],[0.6,0.9]}{1}\right\rangle\right\} ;$ Here, $\left(U_{1} \cap U_{2}\right)=\{0\}$
$\operatorname{NVB}_{\mathrm{M}_{\mathrm{NVB}}}(0)=([0.1,0.8],[0.1,0.5],[0.2,0.9]) \cup([0.3,0.7],[0.2,0.4],[0.3,0.7])=[0.3,0.8],[0.1,0.4],[0.2,0.7]$
After verification, clearly $\mathrm{M}_{\text {NVB }}$ is a $\mathfrak{B}_{\mathrm{M}_{\text {NVB }}}^{\mathrm{BCI}}$. Next question is that, - "whether $\mathfrak{B}_{\mathrm{M}_{\mathrm{NVB}}}^{\mathrm{BCI}}$ is a $\mathfrak{B}_{\mathrm{M}_{\mathrm{NVB}}}^{\mathrm{BCK}}$ or not " ? \therefore Additional condition to be satisfied is that, for a BCK-algebra is, $(0 * 1)=0$ from Cayley table fig (ii). Correspondingly,
$\mathrm{NVB}_{\mathrm{M}_{\mathrm{NVB}}}(0-1) \geqslant \mathrm{r} \min \left\{\mathrm{NVB}_{\mathrm{M}_{\mathrm{NVB}}}(0), \mathrm{NVB}_{\mathrm{M}_{\mathrm{NVB}}}(1)\right\} \Rightarrow \mathrm{NVB}_{\mathrm{M}_{\mathrm{NVB}}}(0) \succcurlyeq \mathrm{r} \min \left\{\mathrm{NVB}_{\mathrm{M}_{\mathrm{NVB}}}(0), \mathrm{NVB}_{\mathrm{M}_{\mathrm{NVB}}}(1)\right\}$
$\Rightarrow[0.3,0.8],[0.1,0.4],[0.2,0.7] \geqslant \mathrm{r} \min \{[0.3,0.8],[0.1,0.4],[0.2,0.7],[0.1,0.4],[0.3,0.5],[0.6,0.9]\}$
$\Rightarrow[0.3,0.8],[0.1,0.4],[0.2,0.7] \succcurlyeq[0.1,0.4],[0.3,0.5],[0.6,0.9]$
Since additional condition got satisfied, $\mathfrak{B}_{\mathrm{M}_{\mathrm{NVB}}}^{B C I}$ is clearly a $\mathfrak{B}_{\mathrm{M}_{\mathrm{NVB}}}^{\mathrm{BCK}}$.

Case (ii) : Example for a $\mathfrak{B}_{\mathbf{P}_{\text {NVB }}}^{B C I}$ which is not a $\mathfrak{B}_{\mathbf{P}_{\text {NVB }}}^{B C K}$

Take binary operation and Cayley table as taken in Case (i).
Consider another NVBS $\mathbf{P}_{\text {NVB }}$ with same conditions as in case (i)
$\mathbf{P}_{\text {NVB }}=\left\{\left\langle\frac{[0.1,0.5],[0.2,0.5],[0.5,0.9]}{\mathbf{0}}\right\rangle,\left\langle\frac{[0.1,0.6],[0.3,0.3],[0.4,0.9]}{\mathbf{0}}, \frac{[0.1,0.7],[0.3,0.4],[0.3,0.9]}{\mathbf{1}}\right\rangle\right\}$
$\operatorname{NVB}_{\mathrm{P}_{\mathrm{NVB}}}(0)=([0.1,0.5],[0.2,0.5],[0.5,0.9]) \cup([0.1,0.6],[0.3,0.3],[0.4,0.9])=[0.1,0.6],[0.2,0.3],[0.4,0.9]$
By verification $P_{N V B}$ is a $\mathfrak{B}_{\mathrm{P}_{\text {NVB }}}^{B C I}$. But in this case, additional condition not got satisfied:
$\mathrm{NVB}_{\mathrm{P}_{\mathrm{NVB}}}(0 * 1) \neq \mathrm{r} \min \left\{\mathrm{NVB}_{\mathrm{P}_{\mathrm{NVB}}}(0), \mathrm{NVB}_{\mathrm{P}_{\mathrm{NVB}}}(1)\right\}\left[\right.$ Since, $\mathrm{NVB}_{\mathrm{P}_{\mathrm{NVB}}}(0) \neq \mathrm{rmin}\left\{\mathrm{NVB}_{\mathrm{P}_{\mathrm{NVB}}}(0), \mathrm{NVB}_{\mathrm{P}_{\mathrm{NVB}}}(1)\right\}$.
Since, $[0.1,0.6],[0.2,0.3],[0.4,0.9] \neq \mathrm{r} \min \{[0.1,0.8],[0.2,0.3],[0.2,0.9],[0.1,0.7],[0.3,0.4],[0.3,0.9]\}$
Since, [0.1, 0.6], $[0.2,0.3],[0.4,0.9] \neq[0.1,0.7],[0.3,0.4],[0.3,0.9]]$
In this case, clearly, $\mathfrak{B}_{\mathrm{P}_{\mathrm{NVB}}}^{\mathrm{BCI}}$ is not a $\mathfrak{B}_{\mathrm{P}_{\mathrm{NVB}}}^{\mathrm{BCK}}$
Theorem 7.6
Intersection of two NVB BCK/BCI -algebra remains as a NVB BCK/BCI-algebra itself.

Proof

Let $\mathrm{M}_{\mathrm{NVB}}$ and $\mathrm{P}_{\mathrm{NVB}}$ be two NVB BCK/BCI -algebras with structures $\mathfrak{B}_{\mathrm{M}_{\mathrm{NVB}}}=\left(\mathrm{M}_{\mathrm{NVB}}, \mathrm{U}^{\left.\mathfrak{B}_{\mathrm{M}_{\mathrm{NVB}}}, *, 0\right)}\right.$
and $\mathfrak{B}_{\mathrm{P}_{\mathrm{NVB}}}=\left(\mathrm{P}_{\mathrm{NVB}}, \mathrm{U}^{\left.\mathfrak{B}_{\mathrm{P}_{\mathrm{NVB}}}, *, 0\right)}\right.$ respectively, with same universal sets U_{1} and U_{2}. So, $\forall \mathrm{u}_{1}, \mathrm{u}_{2} \in \mathrm{U}, \mathrm{NVB}_{\left(\mathrm{M}_{\mathrm{NVB}} \cap \mathrm{P}_{\mathrm{NVB}}\right)}\left(\mathrm{u}_{1} * \mathrm{u}_{2}\right)=\mathrm{r} \min \left\{\operatorname{NVB}_{\mathrm{M}_{\mathrm{NVB}}}\left(\mathrm{u}_{1} * \mathrm{u}_{2}\right), \operatorname{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\mathrm{u}_{1} * \mathrm{u}_{2}\right)\right\}$
$\succcurlyeq r \min \left\{r \min \left\{\mathrm{NVB}_{\mathrm{M}_{\mathrm{NVB}}}\left(\mathrm{u}_{1}\right), \mathrm{NVB}_{\mathrm{M}_{\mathrm{NVB}}}\left(\mathrm{u}_{2}\right)\right\}, \mathrm{r} \min \left\{\mathrm{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\mathrm{u}_{1}\right), \mathrm{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\mathrm{u}_{2}\right)\right\}\right\}$
$=r \min \left\{\mathrm{NVB}_{\left(\mathrm{M}_{\mathrm{NVB}} \cap \mathrm{P}_{\mathrm{NVB}}\right)}\left(\mathrm{u}_{1}\right), \mathrm{NVB}_{\left(\mathrm{M}_{\mathrm{NVB}} \cap \mathrm{P}_{\mathrm{NVB}}\right)}\left(\mathrm{u}_{2}\right)\right\}$
Therefore, $\mathrm{NVB}_{\left(\mathrm{M}_{\mathrm{NVB}} \cap \mathrm{P}_{\mathrm{NVB}}\right)}\left(\mathrm{u}_{1} * \mathrm{u}_{2}\right) \succcurlyeq \mathrm{r} \min \left\{\mathrm{NVB}_{\left(\mathrm{M}_{\mathrm{NVB}} \cap \mathrm{P}_{\mathrm{NVB}}\right)}\left(\mathrm{u}_{1}\right), \mathrm{NVB}_{\left(\mathrm{M}_{\mathrm{NVB}} \cap \mathrm{P}_{\mathrm{NVB}}\right)}\left(\mathrm{u}_{2}\right)\right\}$
$\Rightarrow\left(\mathrm{M}_{\mathrm{NVB}} \cap \mathrm{P}_{\mathrm{NVB}}\right)$ is also a NVB BCK/BCI - algebra

Proposition 7.7

Every NVB BCI - ideal $\mathrm{P}_{\mathrm{NVB}}$ of a $\mathfrak{B}_{\mathrm{M}_{\text {NVB }}}^{\mathrm{BCI}}$ satisfies:
(i) $u_{\mathrm{a}} \leq \mathrm{u}_{\mathrm{b}} \Rightarrow \operatorname{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{a}}\right) \succcurlyeq \operatorname{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{b}}\right) ;\left(\forall \mathrm{u}_{\mathrm{a}}, \mathrm{u}_{\mathrm{b}} \in U\right)$
(ii) $\operatorname{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{a}} * \mathrm{u}_{\mathrm{c}}\right) \succcurlyeq \mathrm{r} \min \left\{\operatorname{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\left(\mathrm{u}_{\mathrm{a}} * \mathrm{u}_{\mathrm{b}}\right) * \mathrm{u}_{\mathrm{c}}\right), \operatorname{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{b}}\right)\right\} ; \forall \mathrm{u}_{\mathrm{a}}, \mathrm{u}_{\mathrm{b}}, \mathrm{u}_{\mathrm{c}} \in \mathrm{U}$

Proof

(i) Let $u_{a}, u_{b} \in U$ be such that $u_{a} \leq u_{b}$.

Since $P_{N V B}$ is a NVB BCI - ideal of $\mathfrak{B}_{M_{\text {NVB }}}^{B C I}$
$\Rightarrow \operatorname{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{a}}\right) \succcurlyeq \mathrm{rmin}\left\{\mathrm{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{a}} * \mathrm{u}_{\mathrm{b}}\right), \mathrm{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{b}}\right)\right\}$, [By condition (2) of definition 4.2]
$=\mathrm{r} \min \left\{\mathrm{NVB}_{\mathrm{P}_{\mathrm{NVB}}}(0), \mathrm{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{b}}\right)\right\}$, take $\left(\mathrm{u}_{\mathrm{a}} * \mathrm{u}_{\mathrm{b}}\right)=0$
$=\mathrm{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\left(\mathrm{u}_{\mathrm{b}}\right)\right)$ [By lemma 7.1]
$\Rightarrow \operatorname{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{a}}\right) \succcurlyeq \mathrm{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{b}}\right)$
(ii) Let $\mathrm{P}_{\mathrm{NVB}}$ be a NVB BCI - ideal of $\mathfrak{B}_{\mathrm{M}_{\text {NVB }}}^{\mathrm{BCI}}$
$\Rightarrow \operatorname{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{a}}\right) \succcurlyeq \mathrm{rmin}\left\{\operatorname{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{a}} * \mathrm{u}_{\mathrm{b}}\right), \mathrm{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{b}}\right)\right\} ; \forall \mathrm{u}_{\mathrm{a}}, \mathrm{u}_{\mathrm{b}} \in U$
$\Rightarrow \quad \operatorname{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{a}} * \mathrm{u}_{\mathrm{c}}\right) \succcurlyeq \operatorname{rmin}\left\{\mathrm{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\left(\mathrm{u}_{\mathrm{a}} * \mathrm{u}_{\mathrm{c}}\right) * \mathrm{u}_{\mathrm{b}}\right), \mathrm{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{b}}\right)\right\} ;$
[by putting $\mathrm{u}_{\mathrm{a}}=\left(\mathrm{u}_{\mathrm{a}} * \mathrm{u}_{\mathrm{c}}\right) ; \forall \mathrm{u}_{\mathrm{a}}, \mathrm{u}_{\mathrm{b}}, \mathrm{u}_{\mathrm{c}} \in \mathrm{U}$]
$\Rightarrow \quad \operatorname{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{a}} * \mathrm{u}_{\mathrm{c}}\right) \succcurlyeq \mathrm{rmin}\left\{\mathrm{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\left(\mathrm{u}_{\mathrm{a}} * \mathrm{u}_{\mathrm{b}}\right) * \mathrm{u}_{\mathrm{c}}\right), \mathrm{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{b}}\right)\right\} ;[$ By property (ii) of remark 2.6]
Lemma 7.8
Let $\mathrm{P}_{\mathrm{NVB}}$ be a NVB BCI-ideal of $\mathfrak{B}_{\mathrm{M}_{\mathrm{NVB}}}^{\mathrm{BCI}}$. Then, $\operatorname{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(0 *\left(0 * \mathrm{u}_{\mathrm{k}}\right)\right) \succcurlyeq \operatorname{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{k}}\right) ; \forall \mathrm{u}_{\mathrm{k}} \in \mathrm{U}$
Proof
$\operatorname{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{a}}\right) \succcurlyeq \mathrm{r} \min \left\{\mathrm{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{a}} * \mathrm{u}_{\mathrm{b}}\right), \mathrm{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{b}}\right)\right\}$; for any $\mathrm{u}_{\mathrm{a}}, \mathrm{u}_{\mathrm{b}} \in \mathrm{U}$ [By definition 4.2]
Let $u_{a}=\left(0 *\left(0 * u_{k}\right)\right)$ and $u_{b}=u_{k}$.
\therefore For any $u_{k} \in U, \operatorname{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(0 *\left(0 * \mathrm{u}_{\mathrm{k}}\right)\right) \succcurlyeq \mathrm{r} \min \left\{\operatorname{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\left(0 *\left(0 * \mathrm{u}_{\mathrm{k}}\right)\right) * \mathrm{u}_{\mathrm{k}}\right), \mathrm{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{k}}\right)\right\}$
$=r \min \left\{\mathrm{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\left(0 * \mathrm{u}_{\mathrm{k}}\right) *\left(0 * \mathrm{u}_{\mathrm{k}}\right)\right), \mathrm{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{k}}\right)\right\} ; \quad$ [By property (ii) of remark 2.6]
$=r \min \left\{\operatorname{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(0 *\left(\mathrm{u}_{\mathrm{k}} * \mathrm{u}_{\mathrm{k}}\right)\right), \mathrm{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{k}}\right)\right\} ; \quad$ [By property (iii) of remark 2.6]
$=r \min \left\{\mathrm{NVB}_{\mathrm{P}_{\mathrm{NVB}}}(0 * 0), \mathrm{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{k}}\right)\right\} ; \quad$ [By condition (iii) of definition 2.3]
$=\mathrm{r} \min \left\{\mathrm{NVB}_{\mathrm{P}_{\mathrm{NVB}}}(0), \mathrm{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{k}}\right)\right\} ; \quad$ [By property (i)of remark 2.6]
$=\mathrm{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{k}}\right)$
[By lemma 7.1]
\therefore It is concluded that, $\operatorname{NVB}_{\mathrm{M}_{\text {NVB }}}\left(0 *\left(0 * \mathrm{u}_{\mathrm{k}}\right)\right) \succcurlyeq \operatorname{NVB}_{\mathrm{M}_{\text {NVB }}}\left(\mathrm{u}_{\mathrm{k}}\right) ; \forall \mathrm{u}_{\mathrm{k}} \in \mathrm{U}$

Proposition 7.9

If the NVBS $R_{N V B}$ of $\mathfrak{B}_{M_{N V B}}^{B C I}$ is a NVB BCI - ideal of $\mathfrak{B}_{M_{N V B}}^{B C I}$, then it satisfies: for any $u_{a}, u_{b}, u_{c} \in U$; $\left(u_{a} * u_{b}\right) \leq u_{c} \Rightarrow \operatorname{NVB}_{\mathrm{R}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{a}}\right) \succcurlyeq \mathrm{rmin}\left\{\operatorname{NVB}_{\mathrm{R}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{b}}\right), \operatorname{NVB}_{\mathrm{R}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{c}}\right)\right\}$
Proof
Let $R_{\text {NVB }}$ be a NVB BCI - ideal of $\mathfrak{B}_{M_{\text {NVB }}}^{B C I}$ with $\left(u_{a} * u_{b}\right) \leq u_{c}$ where $u_{a}, u_{b}, u_{c} \in U$

$$
\Rightarrow \operatorname{NVB}_{\mathrm{R}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{a}} * u_{\mathrm{b}}\right) \succcurlyeq \mathrm{NVB}_{\mathrm{R}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{c}}\right) \text { [By proposition 7.7] }
$$

Since $R_{\text {NVB }}$ be a NVB BCI - ideal of $\mathfrak{B}_{M_{\text {NVB }}}^{\mathrm{BCI}}$
$\Rightarrow \operatorname{NVB}_{R_{N V B}}\left(u_{a}\right) \succcurlyeq r \min \left\{\operatorname{NVB}_{R_{N V B}}\left(u_{a} * u_{b}\right), \operatorname{NVB}_{R_{N V B}}\left(u_{b}\right)\right\}$ for any $u_{a}, u_{b} \in U$

$$
\succcurlyeq r \min \left\{\operatorname{NVB}_{\mathrm{R}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{c}}\right), \operatorname{NVB}_{\mathrm{R}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{b}}\right)\right\}=\mathrm{r} \min \left\{\operatorname{NVB}_{\mathrm{R}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{b}}\right), \operatorname{NVB}_{\mathrm{R}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{c}}\right)\right\}
$$

$\Rightarrow \operatorname{NVB}_{\mathrm{R}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{a}}\right) \succcurlyeq \mathrm{r} \min \left\{\mathrm{NVB}_{\mathrm{R}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{b}}\right), \mathrm{NVB}_{\mathrm{R}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{c}}\right)\right\}$ for any $\mathrm{u}_{\mathrm{a}}, \mathrm{u}_{\mathrm{b}}, \mathrm{u}_{\mathrm{c}} \in \mathrm{U}$

Proposition 7.10

If the NVBS $R_{\text {NVB }}$ of $\mathfrak{B}_{M_{N V B}}^{B C I}$ is a NVB BCI - algebra $\mathfrak{B}_{R_{N V B}}^{B C I}$ of then it satisfies for any $u_{x}, u_{y}, u_{z} \in U$ $\left(\mathrm{u}_{\mathrm{a}} * \mathrm{u}_{\mathrm{b}}\right) \leq \mathrm{u}_{\mathrm{c}} \Rightarrow \operatorname{NVB}_{\mathrm{R}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{a}}\right) \succcurlyeq \mathrm{r} \min \left\{\mathrm{NVB}_{\mathrm{R}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{b}}\right), \mathrm{NVB}_{\mathrm{R}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{c}}\right)\right\}$
Proof
Let $R_{N V B}$ be a NVBS of $\mathfrak{B}_{M_{N V B}}^{B C I}$ with $\left(u_{a} * u_{b}\right) \leq u_{c} \Rightarrow \operatorname{NVB}_{R_{N V B}}\left(u_{c}\right) \succcurlyeq \operatorname{NVB}_{R_{N V B}}\left(u_{a} * u_{b}\right)$
$\mathrm{R}_{\mathrm{NVB}}$ is a $\mathfrak{B}_{\mathrm{R}_{\mathrm{NVB}}}^{B C I} \Rightarrow \operatorname{NVB}_{\mathrm{R}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{a}} * \mathrm{u}_{\mathrm{b}}\right) \succcurlyeq \mathrm{r} \min \left\{\operatorname{NVB}_{\mathrm{R}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{a}}\right), \operatorname{NVB}_{\mathrm{R}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{b}}\right)\right\}$
$\Rightarrow \operatorname{NVB}_{\mathrm{R}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{c}}\right) \succcurlyeq \operatorname{NVB}_{\mathrm{R}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{a}} * \mathrm{u}_{\mathrm{b}}\right) \succcurlyeq \mathrm{rmin}\left\{\mathrm{NVB}_{\mathrm{R}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{a}}\right), \mathrm{NVB}_{\mathrm{R}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{b}}\right)\right\}$
$\Rightarrow \operatorname{NVB}_{\mathrm{R}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{c}}\right) \succcurlyeq \mathrm{rmin}\left\{\mathrm{NVB}_{\mathrm{R}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{a}}\right), \mathrm{NVB}_{\mathrm{M}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{b}}\right)\right\}$
$\Rightarrow \operatorname{NVB}_{\mathrm{R}_{\text {NVB }}}\left(\mathrm{u}_{\mathrm{a}}\right) \succcurlyeq \mathrm{rmin}\left\{\mathrm{NVB}_{\mathrm{R}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{c}}\right), \mathrm{NVB}_{\mathrm{R}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{b}}\right)\right\}$; [By putting $\mathrm{u}_{\mathrm{c}}=\mathrm{u}_{\mathrm{a}} \& \mathrm{u}_{\mathrm{a}}=\mathrm{u}_{\mathrm{c}}$]
$\Rightarrow \operatorname{NVB}_{\mathrm{R}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{a}}\right) \succcurlyeq \mathrm{rmin}\left\{\mathrm{NVB}_{\mathrm{R}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{b}}\right), \mathrm{NVB}_{\mathrm{R}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{c}}\right)\right\} ;$

Theorem 7.11

Let $\mathrm{S}_{\mathrm{NVB}}$ be both a NVB BCI-algebra $\mathfrak{B}_{\mathrm{S}_{\mathrm{NVB}}}^{\mathrm{BCI}}$ and a NVB BCI-ideal of a NVB BCI - algebra $\mathfrak{B}_{\mathrm{S}_{\mathrm{NVB}}}^{\mathrm{BCI}}$. Then $\operatorname{NVB}_{S_{\text {NVB }}}\left(0 * u_{k}\right) \succcurlyeq \operatorname{NVB}_{S_{\text {NVB }}}\left(u_{k}\right)$ for all $u_{k} \in U$

Proof

Let $S_{\text {NVB }}$ be a NVB BCI- algebra $\mathfrak{B}_{S_{N V B}}^{B C I}$
$\Rightarrow \operatorname{NVB}_{\mathrm{S}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{a}} * \mathrm{u}_{\mathrm{b}}\right) \succcurlyeq \mathrm{r} \min \left\{\operatorname{NVB}_{\mathrm{S}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{a}}\right), \mathrm{NVB}_{\mathrm{S}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{b}}\right)\right\}$; for all $\mathrm{u}_{\mathrm{a}}, \mathrm{u}_{\mathrm{b}} \in \mathrm{U}$
$\Rightarrow \operatorname{NVB}_{\mathrm{S}_{\mathrm{NVB}}}\left(0 * \mathrm{u}_{\mathrm{b}}\right) \succcurlyeq \mathrm{r} \min \left\{\mathrm{NVB}_{\mathrm{S}_{\mathrm{NVB}}}(0), \mathrm{NVB}_{\mathrm{S}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{b}}\right)\right\} ;$ [By putting $\mathrm{u}_{\mathrm{a}}=0$]
$\Rightarrow \operatorname{NVB}_{\mathrm{S}_{\mathrm{NVB}}}\left(0 * \mathrm{u}_{\mathrm{b}}\right) \succcurlyeq \mathrm{NVB}_{\mathrm{S}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{b}}\right) \quad$ [By definition 4.2 (i)]
$\Rightarrow \operatorname{NVB}_{\mathrm{S}_{\mathrm{NVB}}}\left(0 * \mathrm{u}_{\mathrm{k}}\right) \succcurlyeq \mathrm{NVB}_{\mathrm{S}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{k}}\right)$ [By putting $\mathrm{u}_{\mathrm{b}}=\mathrm{u}_{\mathrm{k}}$]
\therefore For any $u_{k} \in U, N V B_{S_{N V B}}\left(0 * u_{k}\right) \succcurlyeq \operatorname{NVB}_{S_{N V B}}\left(u_{k}\right)$

Proposition 7.12

Let $\mathrm{T}_{\text {NVB }}$ be a NVB BCI - ideal of a NVB BCI -algebra $\mathfrak{B}_{\mathrm{M}_{\text {NVB }}}^{\mathrm{BCI}}$.
If $\mathrm{T}_{\mathrm{NVB}}$ satisfies $\operatorname{NVB}_{\mathrm{T}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{a}} * \mathrm{u}_{\mathrm{b}}\right) \succcurlyeq \operatorname{NVB}_{\mathrm{T}_{\mathrm{NVB}}}\left(\left(\mathrm{u}_{\mathrm{a}} * \mathrm{u}_{\mathrm{c}}\right) *\left(\mathrm{u}_{\mathrm{b}} * \mathrm{u}_{\mathrm{c}}\right)\right)$ for all $\mathrm{u}_{\mathrm{a}}, \mathrm{u}_{\mathrm{b}}, \mathrm{u}_{\mathrm{c}} \in \mathrm{U}$,
then $T_{N V B}$ is a NVB BCI p-ideal of $\mathfrak{B}_{M_{\text {NVB }}}^{B C I}$

Proof

$\mathrm{T}_{\text {NVB }}$ be a NVB BCI - ideal of a NVB BCI - algebra $\mathfrak{B}_{\mathrm{M}_{\text {NVB }}}^{\mathrm{BCI}}$.
$\Rightarrow \operatorname{NVB}_{\mathrm{T}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{a}}\right) \succcurlyeq \mathrm{r} \min \left\{\mathrm{NVB}_{\mathrm{T}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{a}} * \mathrm{u}_{\mathrm{b}}\right), \mathrm{NVB}_{\mathrm{T}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{b}}\right)\right\}$ for all $\mathrm{u}_{\mathrm{a}}, \mathrm{u}_{\mathrm{b}}, \mathrm{u}_{\mathrm{c}} \in \mathrm{U}$
$\Rightarrow \operatorname{NVB}_{\mathrm{T}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{a}}\right) \succcurlyeq \mathrm{r} \min \left\{\mathrm{NVB}_{\mathrm{T}_{\mathrm{NVB}}}\left(\left(\mathrm{u}_{\mathrm{a}} * \mathrm{u}_{\mathrm{c}}\right) *\left(\mathrm{u}_{\mathrm{b}} * \mathrm{u}_{\mathrm{c}}\right)\right), \mathrm{NVB}_{\mathrm{M}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{b}}\right)\right\}$ for all $\mathrm{u}_{\mathrm{a}}, \mathrm{u}_{\mathrm{b}}, \mathrm{u}_{\mathrm{c}} \in U$ [From given condition]
$\Rightarrow \mathrm{T}_{\mathrm{NVB}}$ is a NVB BCI - p ideal of $\mathfrak{B}_{\mathrm{M}_{\text {NVB }}}^{\mathrm{BCI}}$
[By definition 5.2]

Proposition 7.13

Any NVB BCI - ideal $D_{\text {NVB }}$ of a NVB BCI -algebra $\mathfrak{B}_{M_{\text {NVB }}}^{B C I}$ is a NVB BCI -p ideal $\Leftrightarrow \operatorname{NVB}_{\mathrm{D}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{a}}\right) \succcurlyeq \operatorname{NVB}_{\mathrm{D}_{\mathrm{NVB}}}\left(0 *\left(0 * \mathrm{u}_{\mathrm{a}}\right)\right)$; for all $\mathrm{u}_{\mathrm{a}} \in U$

Proof

Let $D_{\text {NVB }}$ be a NVB BCI - ideal of a NVB BCI -algebra $\mathfrak{B}_{\mathrm{M}_{\text {NVB }}}^{\mathrm{BCI}}$. Also let $\mathrm{D}_{\text {NVB }}$ is a NVB BCI -p ideal.
$\therefore \operatorname{NVB}_{\mathrm{D}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{a}}\right) \succcurlyeq \mathrm{r} \min \left\{\operatorname{NVB}_{\mathrm{D}_{\mathrm{NVB}}}\left(\left(\mathrm{u}_{\mathrm{a}} * \mathrm{u}_{\mathrm{c}}\right) *\left(\mathrm{u}_{\mathrm{b}} * \mathrm{u}_{\mathrm{c}}\right)\right), \mathrm{NVB}_{\mathrm{D}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{b}}\right)\right\}$ for all $\mathrm{u}_{\mathrm{a}}, \mathrm{u}_{\mathrm{b}}, \mathrm{u}_{\mathrm{c}} \in \mathrm{U}$
[By definition 5.2 of NVB BCI - p ideal]
Put $u_{c}=u_{a}$ and $u_{b}=0$ in the above,
$\therefore \operatorname{NVB}_{\mathrm{D}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{a}}\right) \succcurlyeq \mathrm{r} \min \left\{\operatorname{NVB}_{\mathrm{D}_{\mathrm{NVB}}}\left(\left(\mathrm{u}_{\mathrm{a}} * \mathrm{u}_{\mathrm{a}}\right) *\left(0 * \mathrm{u}_{\mathrm{a}}\right)\right), \operatorname{NVB}_{\mathrm{D}_{\mathrm{NVB}}}(0)\right\}$ for all $\mathrm{u}_{\mathrm{a}}, \mathrm{u}_{\mathrm{b}}, \mathrm{u}_{\mathrm{c}} \in \mathrm{U}$
$\Rightarrow \operatorname{NVB}_{\mathrm{D}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{a}}\right) \succcurlyeq \mathrm{r} \min \left\{\operatorname{NVB}_{\mathrm{D}_{\mathrm{NVB}}}\left(0 *\left(0 * \mathrm{u}_{\mathrm{a}}\right)\right), \operatorname{NVB}_{\mathrm{D}_{\mathrm{NVB}}}(0)\right\}$ for all $\mathrm{u}_{\mathrm{a}}, \mathrm{u}_{\mathrm{b}} \in \mathrm{U}$
[By condition (iii)of definition 2.3]

$$
=\operatorname{NVB}_{D_{\mathrm{NVB}}}\left(0 *\left(0 * u_{a}\right)\right) \text { for all } u_{a} \in U \quad[\text { By lemma 7.1] }
$$

$\Rightarrow \operatorname{NVB}_{\mathrm{D}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{a}}\right) \succcurlyeq \operatorname{NVB}_{\mathrm{D}_{\mathrm{NVB}}}\left(0 *\left(0 * \mathrm{u}_{\mathrm{a}}\right)\right)$; for all $\mathrm{u}_{\mathrm{a}} \in \mathrm{U}$
Conversely, let a NVB BCI - ideal $D_{\text {NVB }}$ of a NVB BCI - algebra $\mathfrak{B}_{\mathrm{M}_{\text {NVB }}}^{\mathrm{BCI}}$ satisfies the given condition, $\operatorname{NVB}_{\mathrm{D}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{a}}\right) \succcurlyeq \operatorname{NVB}_{\mathrm{M}_{\mathrm{NVB}}}\left(0 *\left(0 * \mathrm{u}_{\mathrm{a}}\right)\right)$; for all $\mathrm{u}_{\mathrm{a}} \in \mathrm{U}$. By lemma 7.8,
"Let $\mathrm{P}_{\mathrm{NVB}}$ be a NVB BCI-ideal of $\mathfrak{B}_{\mathrm{M}_{\mathrm{NVB}}}^{\mathrm{BCI}}$. Then, $\operatorname{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(0 *\left(0 * \mathrm{u}_{\mathrm{k}}\right)\right) \succcurlyeq \operatorname{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{k}}\right) ; \forall \mathrm{u}_{\mathrm{k}} \in \mathrm{U}^{\prime \prime}$
$\Rightarrow \operatorname{NVB}_{\mathrm{D}_{\mathrm{NVB}}}\left(\left(\mathrm{u}_{\mathrm{a}} * \mathrm{u}_{\mathrm{c}}\right) *\left(\mathrm{u}_{\mathrm{b}} * \mathrm{u}_{\mathrm{c}}\right)\right) \preccurlyeq \operatorname{NVB}_{\mathrm{M}_{\mathrm{NVB}}}\left(0 *\left(0 *\left(\left(\mathrm{u}_{\mathrm{a}} * \mathrm{u}_{\mathrm{c}}\right) *\left(\mathrm{u}_{\mathrm{b}} * \mathrm{u}_{\mathrm{c}}\right)\right)\right)\right)$
[By putting $\mathrm{u}_{\mathrm{k}}=\left(\mathrm{u}_{\mathrm{a}} * \mathrm{u}_{\mathrm{c}}\right) *\left(\mathrm{u}_{\mathrm{b}} * \mathrm{u}_{\mathrm{c}}\right)$ in lemma 7.8]
$=\operatorname{NVB}_{\mathrm{D}_{\mathrm{NVB}}}\left(\left(0 * \mathrm{u}_{\mathrm{b}}\right) *\left(0 * \mathrm{u}_{\mathrm{a}}\right)\right) \quad$ [By property (vii) of remark 2.6]
$=\operatorname{NVB}_{\mathrm{D}_{\mathrm{NVB}}}\left(0 *\left(0 *\left(\mathrm{u}_{\mathrm{a}} * \mathrm{u}_{\mathrm{b}}\right)\right)\right)$; [By property (viii) of remark 2.6]
$=\operatorname{NVB}_{\mathrm{D}_{\mathrm{NVB}}}\left(0 *\left(\mathrm{u}_{\mathrm{a}} * \mathrm{u}_{\mathrm{b}}\right)\right)$; [By property (i) of remark 2.6]
$=\operatorname{NVB}_{\mathrm{D}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{a}} * \mathrm{u}_{\mathrm{b}}\right) ;[$ By property (i) of remark 2.6]
$\Rightarrow \operatorname{NVB}_{\mathrm{D}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{a}} * \mathrm{u}_{\mathrm{b}}\right) \succcurlyeq \operatorname{NVB}_{\mathrm{D}_{\mathrm{NVB}}}\left(\left(\mathrm{u}_{\mathrm{a}} * \mathrm{u}_{\mathrm{c}}\right) *\left(\mathrm{u}_{\mathrm{b}} * \mathrm{u}_{\mathrm{c}}\right)\right)$

$$
\Rightarrow \mathrm{NVB}_{\mathrm{D}_{\mathrm{NVB}}} \text { is a NVB BCI - p ideal [By proposition 7.12] }
$$

Theorem 7.14

Every NVB BCI - p ideal of a NVB BCI - algebra $\mathfrak{B}_{\mathrm{M}_{\mathrm{NVB}}}^{\mathrm{BCI}}$ is a NVB BCI - ideal of $\mathfrak{B}_{\mathrm{M}_{\mathrm{NVB}}}^{\mathrm{BCI}}$.

Proof

Let $\mathrm{M}_{\mathrm{NVB}}$ be a NVB BCI - p ideal of a NVB BCI - algebra $\mathfrak{B}_{\mathrm{M}_{\text {NVB }}}^{\mathrm{BCI}}$. By definition,
$\operatorname{NVB}_{M_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{x}}\right) \succcurlyeq \mathrm{r} \min \left\{\operatorname{NVB}_{\mathrm{M}_{\mathrm{NVB}}}\left(\left(\mathrm{u}_{\mathrm{x}} * \mathrm{u}_{\mathrm{z}}\right) *\left(\mathrm{u}_{\mathrm{y}} * \mathrm{u}_{\mathrm{z}}\right)\right), \operatorname{NVB}_{\mathrm{M}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{y}}\right)\right\}$ for all $\mathrm{u}_{\mathrm{x}}, \mathrm{u}_{\mathrm{y}}, \mathrm{u}_{\mathrm{z}} \in \mathrm{U}$
Put $\mathrm{u}_{\mathrm{z}}=0$ then the above becomes,
$\operatorname{NVB}_{M_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{x}}\right) \succcurlyeq \mathrm{r} \min \left\{\operatorname{NVB}_{\mathrm{M}_{\mathrm{NVB}}}\left(\left(\mathrm{u}_{\mathrm{x}} * 0\right) *\left(\mathrm{u}_{\mathrm{y}} * 0\right)\right), \operatorname{NVB}_{\mathrm{M}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{y}}\right)\right\}$ for all $\mathrm{u}_{\mathrm{x}}, \mathrm{u}_{\mathrm{y}} \in \mathrm{U}$ $=r \min \left\{\operatorname{NVB}_{M_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{x}} * \mathrm{u}_{\mathrm{y}}\right), \operatorname{NVB}_{\mathrm{M}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{y}}\right)\right\}$ for all $\mathrm{u}_{\mathrm{x}}, \mathrm{u}_{\mathrm{y}} \in \mathrm{U}$
[By property (iii) of 2.3 \&By property (i)of remark 2.6]
$\Rightarrow \operatorname{NVB}_{\mathrm{M}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{x}}\right) \succcurlyeq \mathrm{r} \min \left\{\mathrm{NVB}_{\mathrm{M}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{x}} * \mathrm{u}_{\mathrm{y}}\right), \operatorname{NVB}_{\mathrm{M}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{y}}\right)\right\}$ for all $\mathrm{u}_{\mathrm{x}}, \mathrm{u}_{\mathrm{y}} \in \mathrm{U}$
Obviously, $\mathrm{M}_{\text {NVB }}$ is a NVB BCI - ideal
Converse of this statement need not be true and it can be verified with an example and is trivial.

Theorem 7.15

Every NVB BCK/BCI H - ideal of a NVB BCK/BCI - algebra $\mathfrak{B}_{\mathrm{M}_{\mathrm{NVB}}}$ acts both as
(i) NVB BCK/BCI - ideal of $\mathfrak{B}_{\mathrm{M}_{\mathrm{NVB}}}$
(ii) NVB BCK/BCI - subalgebra $\mathfrak{B}_{\mathrm{M}_{\mathrm{NVB}}}$

Proof

Let $\mathrm{I}_{\text {NVB }}$ be a NVB BCK/BCI- H ideal of a NVB BCK/BCI - algebra $\mathfrak{B}_{\mathrm{M}_{\mathrm{NVB}}}$
(i) From definition of NVB BCK/BCI- H ideal,
$\operatorname{NVB}_{\mathrm{I}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{a}} * \mathrm{u}_{\mathrm{c}}\right) \succcurlyeq \min \left\{\operatorname{NVB}_{\mathrm{I}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{a}} *\left(\mathrm{u}_{\mathrm{b}} * \mathrm{u}_{\mathrm{c}}\right)\right), \operatorname{NVB}_{\mathrm{I}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{b}}\right)\right\}$ for all $\mathrm{u}_{\mathrm{a}}, \mathrm{u}_{\mathrm{b}}, \mathrm{u}_{\mathrm{c}} \in \mathrm{U}$
Put $u_{c}=0$
$\operatorname{NVB}_{\mathrm{I}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{a}} * 0\right) \succcurlyeq \min \left\{\operatorname{NVB}_{\mathrm{I}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{a}} *\left(\mathrm{u}_{\mathrm{b}} * 0\right)\right), \operatorname{NVB}_{\mathrm{M}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{b}}\right)\right\}$ for all $\mathrm{u}_{\mathrm{a}}, \mathrm{u}_{\mathrm{b}}, \mathrm{u}_{\mathrm{c}} \in \mathrm{U}$
$\Rightarrow \operatorname{NVB}_{\mathrm{I}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{a}}\right) \succcurlyeq \min \left\{\mathrm{NVB}_{\mathrm{I}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{a}} * \mathrm{u}_{\mathrm{b}}\right), \mathrm{NVB}_{\mathrm{M}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{b}}\right)\right\}$ for all $\mathrm{u}_{\mathrm{a}}, \mathrm{u}_{\mathrm{b}}, \mathrm{u}_{\mathrm{c}} \in \mathrm{U}$
[Using property (i) of remark 2.6]
Since $I_{\text {NVB }}$ is a NVB BCK/BCI- Hideal $\Rightarrow \operatorname{NVB}_{I_{\text {NVB }}}(0) \succcurlyeq \operatorname{NVB}_{I_{\text {NVB }}}\left(u_{k}\right)$; for any $u_{k} \in U$
$\therefore \mathrm{I}_{\text {NVB }}$ is a NVB BCK/BCI - ideal of $\mathfrak{B}_{\mathrm{M}_{\mathrm{NVB}}}$
[By definition 4.2]
(ii) Let $\mathrm{I}_{\text {NVB }}$ be a NVB BCK/BCI- H ideal of $\mathfrak{B}_{\mathrm{M}_{\text {NVB }}}$
$\therefore \operatorname{NVB}_{\mathrm{I}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{a}} * \mathrm{u}_{\mathrm{c}}\right) \succcurlyeq \mathrm{r} \min \left\{\operatorname{NVB}_{\mathrm{I}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{a}} *\left(\mathrm{u}_{\mathrm{b}} * \mathrm{u}_{\mathrm{c}}\right)\right), \mathrm{NVB}_{\mathrm{I}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{b}}\right)\right\} ;$ for all $\mathrm{u}_{\mathrm{a}}, \mathrm{u}_{\mathrm{b}}, \mathrm{u}_{\mathrm{c}} \in U$
$\Rightarrow \operatorname{NVB}_{\mathrm{I}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{a}} * \mathrm{u}_{\mathrm{b}}\right) \succcurlyeq \mathrm{rmin}\left\{\mathrm{NVB}_{\mathrm{I}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{a}} *\left(\mathrm{u}_{\mathrm{b}} * \mathrm{u}_{\mathrm{b}}\right)\right), \mathrm{NVB}_{\mathrm{I}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{b}}\right)\right\} ; \quad$ By putting $\mathrm{u}_{\mathrm{c}}=\mathrm{u}_{\mathrm{b}}$]
$\Rightarrow \operatorname{NVB}_{\mathrm{I}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{a}} * \mathrm{u}_{\mathrm{b}}\right) \succcurlyeq \mathrm{rmin}\left\{\mathrm{NVB}_{\mathrm{I}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{a}} * 0\right), \mathrm{NVB}_{\mathrm{I}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{b}}\right)\right\}$; [By condition (iii) of definition 2.3]
$\Rightarrow \operatorname{NVB}_{\mathrm{I}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{a}} * \mathrm{u}_{\mathrm{b}}\right) \succcurlyeq \mathrm{rmin}\left\{\mathrm{NVB}_{\mathrm{I}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{a}}\right), \mathrm{NVB}_{\mathrm{I}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{b}}\right)\right\} ; \quad$ [By condition (i) of remark 2.6]
$\Rightarrow \mathrm{I}_{\mathrm{NVB}}$ be a NVB BCK/BCI - subalgebra of $\mathfrak{B}_{\mathrm{M}_{\mathrm{NVB}}}$

Theorem 7.16

$\mathrm{P}_{\mathrm{NVB}}$ be a NVBS of a NVB BCK/BCI - algebra $\mathfrak{B}_{\mathrm{M}_{\mathrm{NVB}}}$. Then $\mathrm{P}_{\mathrm{NVB}}$ is a NVB BCK/BCI -ideal of $\mathfrak{B}_{\mathrm{M}_{\mathrm{NVB}}}$ \Leftrightarrow it satisfies the following conditions:
(i) $\operatorname{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{a}} * \mathrm{u}_{\mathrm{b}}\right) \succcurlyeq \operatorname{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{b}}\right) ;\left(\forall \mathrm{u}_{\mathrm{a}}, \mathrm{u}_{\mathrm{b}} \in \mathrm{U}\right)$
(ii) $\operatorname{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{a}} *\left(\left(\mathrm{u}_{\mathrm{a}} * \mathrm{u}_{\mathrm{m}}\right) * \mathrm{u}_{\mathrm{n}}\right)\right) \succcurlyeq \mathrm{r} \min \left\{\operatorname{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{m}}\right), \operatorname{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{n}}\right)\right\} ; \quad\left(\forall \mathrm{u}_{\mathrm{a}}, \mathrm{u}_{\mathrm{m}}, \mathrm{u}_{\mathrm{n}} \in U\right)$

Proof
Let $\mathrm{P}_{\mathrm{NVB}}$ be NVB BCK/BCI - ideal of $\mathfrak{B}_{\mathrm{M}_{\mathrm{NVB}}}$. By definition,
$\operatorname{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{a}}\right) \succcurlyeq \mathrm{rmin}\left\{\mathrm{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{a}} * \mathrm{u}_{\mathrm{b}}\right), \operatorname{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{b}}\right)\right\} ; \forall \mathrm{u}_{\mathrm{a}}, \mathrm{u}_{\mathrm{b}} \in U$
(i) Put $u_{a}=\left(u_{a} * u_{b}\right)$ and $u_{b}=u_{a}$ in the above,
$\operatorname{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{a}} * \mathrm{u}_{\mathrm{b}}\right) \succcurlyeq \mathrm{r} \min \left\{\operatorname{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\left(\mathrm{u}_{\mathrm{a}} * \mathrm{u}_{\mathrm{b}}\right) * \mathrm{u}_{\mathrm{a}}\right), \operatorname{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{a}}\right)\right\}$
$\Rightarrow \operatorname{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{a}} * \mathrm{u}_{\mathrm{b}}\right) \succcurlyeq \mathrm{rmin}\left\{\operatorname{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\left(u_{\mathrm{a}} * u_{\mathrm{a}}\right) * \mathrm{u}_{\mathrm{b}}\right), \mathrm{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{a}}\right)\right\}$; [By property (ii)of remark 2.6]
$\Rightarrow \operatorname{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{a}} * \mathrm{u}_{\mathrm{b}}\right) \succcurlyeq \mathrm{rmin}\left\{\mathrm{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(0 * \mathrm{u}_{\mathrm{b}}\right), \mathrm{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{a}}\right)\right\} ; \quad$ [By condition (iii) of definition 2.3]
$\Rightarrow \operatorname{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{a}} * \mathrm{u}_{\mathrm{b}}\right) \succcurlyeq \mathrm{rmin}\left\{\mathrm{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(0 * \mathrm{u}_{\mathrm{b}}\right), \mathrm{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{b}}\right)\right\} ; \quad$ [By assumption $\mathrm{u}_{\mathrm{a}}=\mathrm{u}_{\mathrm{b}}$]
$\Rightarrow \operatorname{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{a}} * \mathrm{u}_{\mathrm{b}}\right) \succcurlyeq \mathrm{r} \min \left\{\mathrm{NVB}_{\mathrm{P}_{\mathrm{NVB}}}(0), \mathrm{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{b}}\right)\right\}$;
$\Rightarrow \operatorname{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{a}} * \mathrm{u}_{\mathrm{b}}\right) \succcurlyeq \mathrm{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{b}}\right)$
[By remark 2.5]
[Using lemma 7.1]
(ii) Consider, $\left(\mathrm{u}_{\mathrm{a}} *\left(\left(\mathrm{u}_{\mathrm{a}} * \mathrm{u}_{\mathrm{m}}\right) * \mathrm{u}_{\mathrm{n}}\right)\right) * \mathrm{u}_{\mathrm{m}}$

$$
=\left(\mathrm{u}_{\mathrm{a}} * \mathrm{u}_{\mathrm{m}}\right) *\left(\left(\mathrm{u}_{\mathrm{a}} * \mathrm{u}_{\mathrm{m}}\right) * \mathrm{u}_{\mathrm{n}}\right) \leq \mathrm{u}_{\mathrm{n}}
$$

[By condition (ii)of remark 2.3, $(\mathrm{x} *(\mathrm{x} * \mathrm{y})) * \mathrm{y}=0 \Rightarrow \mathrm{x} *(\mathrm{x} * \mathrm{y}) \leq \mathrm{y}$, by remark 2.4
Here, $\left(u_{a} *\left(\left(u_{a} * u_{m}\right) * u_{n}\right)\right) * u_{m}=\begin{gathered}\left(u_{a} * u_{m}\right) *\left(\left(u_{a} * u_{m}\right) * u_{n}\right) \\ \text { Since }\left(u_{a} * u_{n}\right) *\left(\left(u_{a} * u_{n}\right) * u_{n}\right)=0 \\ \left(\left(u_{a} * u_{m}\right) *\left(u_{a} * u_{m}\right)\right) * u_{n}=0 * u_{n}=0 . \text { So remark } 2.4 \text { is applicable in this case }\end{gathered}$
Above can be written as, $\left(\mathrm{u}_{\mathrm{a}} *\left(\left(\mathrm{u}_{\mathrm{a}} * \mathrm{u}_{\mathrm{m}}\right) * \mathrm{u}_{\mathrm{n}}\right)\right) * \mathrm{u}_{\mathrm{m}} \leq \mathrm{u}_{\mathrm{n}}$
$\Rightarrow \operatorname{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\left(\mathrm{u}_{\mathrm{a}} *\left(\left(\mathrm{u}_{\mathrm{a}} * \mathrm{u}_{\mathrm{m}}\right) * \mathrm{u}_{\mathrm{n}}\right)\right) * \mathrm{u}_{\mathrm{m}}\right) \succcurlyeq \operatorname{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{n}}\right)$
[By proposition 7.7]
$\mathrm{P}_{\mathrm{NVB}}$ is a NVB BCK/BCI -ideal of $\mathfrak{B}_{\mathrm{M}_{\mathrm{NVB}}} \Rightarrow \operatorname{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{a}}\right) \succcurlyeq \mathrm{rmin}\left\{\mathrm{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{a}} * \mathrm{u}_{\mathrm{b}}\right), \mathrm{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{b}}\right)\right\}$
Put $\mathrm{u}_{\mathrm{a}}=\left(\mathrm{u}_{\mathrm{a}} *\left(\left(\mathrm{u}_{\mathrm{a}} * \mathrm{u}_{\mathrm{m}}\right) * \mathrm{u}_{\mathrm{n}}\right)\right) \& \mathrm{u}_{\mathrm{b}}=\mathrm{u}_{\mathrm{m}}$ in above,
$\operatorname{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{a}} *\left(\left(\mathrm{u}_{\mathrm{a}} * \mathrm{u}_{\mathrm{m}}\right) * \mathrm{u}_{\mathrm{n}}\right)\right) \succcurlyeq \mathrm{rmin}\left\{\operatorname{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\left(\mathrm{u}_{\mathrm{a}} *\left(\left(\mathrm{u}_{\mathrm{a}} * \mathrm{u}_{\mathrm{m}}\right) * \mathrm{u}_{\mathrm{n}}\right)\right) * \mathrm{u}_{\mathrm{m}}\right), \operatorname{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{m}}\right)\right\}$ $=r \min \left\{\mathrm{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{n}}\right), \mathrm{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{m}}\right)\right\}$ [proved above]

$$
\succcurlyeq \mathrm{r} \min \left\{\mathrm{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{m}}\right), \mathrm{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{n}}\right)\right\}
$$

$\Rightarrow \operatorname{NVB}_{\mathrm{M}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{a}} *\left(\left(\mathrm{u}_{\mathrm{a}} * \mathrm{u}_{\mathrm{m}}\right) * \mathrm{u}_{\mathrm{n}}\right)\right) \succcurlyeq \mathrm{r} \min \left\{\operatorname{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{m}}\right), \mathrm{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{n}}\right)\right\} ;\left[\forall \mathrm{u}_{\mathrm{a}}, \mathrm{u}_{\mathrm{m}}, \mathrm{u}_{\mathrm{n}} \in \mathrm{U}\right]$
Conversely,
Let $\mathrm{P}_{\mathrm{NVB}}$ be a NVBS of a NVB BCK/BCI - algebra $\mathfrak{B}_{\mathrm{M}_{\mathrm{NVB}}}$ satisfying, the given conditions,
(i) $\quad \operatorname{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{a}} * \mathrm{u}_{\mathrm{b}}\right) \succcurlyeq \operatorname{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{a}}\right) ;\left[\forall \mathrm{u}_{\mathrm{a}}, \mathrm{u}_{\mathrm{b}} \in \mathrm{U}\right]$
(ii) $\quad \operatorname{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{a}} *\left(\left(\mathrm{u}_{\mathrm{a}} * \mathrm{u}_{\mathrm{m}}\right) * \mathrm{u}_{\mathrm{n}}\right)\right) \succcurlyeq \mathrm{r} \min \left\{\mathrm{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{m}}\right), \mathrm{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{n}}\right)\right\}$;

$$
\left[\forall \mathrm{u}_{\mathrm{a}}, \mathrm{u}_{\mathrm{m}}, \mathrm{u}_{\mathrm{n}} \in \mathrm{U}\right]
$$

To prove condition (1) of a NVB BCK/BCI - ideal, take $u_{b}=u_{a}$ in (i) and (ii) respectively, (i) $\Rightarrow \operatorname{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{a}} * \mathrm{u}_{\mathrm{a}}\right) \succcurlyeq \mathrm{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{a}}\right) \Rightarrow \operatorname{NVB}_{\mathrm{P}_{\mathrm{NVB}}}(0) \succcurlyeq \mathrm{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{a}}\right)$;
[By property (iii)of definition 2.3]
To prove condition (2) of a NVB BCK/BCI - ideal,
take, $\mathrm{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{a}}\right)=\mathrm{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{a}} * 0\right)$ [By property(i)of remark 2.6]

$$
\begin{gathered}
=\operatorname{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{a}} *\left(\left(\mathrm{u}_{\mathrm{a}} * \mathrm{u}_{\mathrm{b}}\right) *\left(\mathrm{u}_{\mathrm{a}} * \mathrm{u}_{\mathrm{b}}\right)\right)\right) \quad ; \text { [By property (iii) of definition 2.3] } \\
=\operatorname{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{a}} *\left(\left(\mathrm{u}_{\mathrm{a}} *\left(\mathrm{u}_{\mathrm{a}} * \mathrm{u}_{\mathrm{b}}\right)\right) * \mathrm{u}_{\mathrm{b}}\right)\right) \quad ; \text { [By property (ii) of remark 2.6] } \\
\left.=\mathrm{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{a}} *\left(\left(\mathrm{u}_{\mathrm{a}} * \mathrm{u}_{\mathrm{m}}\right) * \mathrm{u}_{\mathrm{n}}\right)\right) ; \quad \text { [By putting }\left(\mathrm{u}_{\mathrm{a}} * \mathrm{u}_{\mathrm{b}}\right)=\mathrm{u}_{\mathrm{m}} \text { and } \mathrm{u}_{\mathrm{b}}=\mathrm{u}_{\mathrm{n}}\right] \\
\succcurlyeq \mathrm{r} \min \left\{\operatorname{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{m}}\right), \mathrm{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{n}}\right)\right\} ;[\text { By condition (ii) in the assumption] } \\
=\mathrm{r} \min \left\{\operatorname{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{a}} * \mathrm{u}_{\mathrm{b}}\right), \mathrm{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{b}}\right)\right\} ;\left[\text { By putting }\left(\mathrm{u}_{\mathrm{a}} * \mathrm{u}_{\mathrm{b}}\right)=\mathrm{u}_{\mathrm{m}} \text { and } u_{\mathrm{b}}=\mathrm{u}_{\mathrm{n}}\right] \\
\Rightarrow \mathrm{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{a}}\right) \geqslant \mathrm{r} \min \left\{\mathrm{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{a}} * \mathrm{u}_{\mathrm{b}}\right), \mathrm{NVB}_{\mathrm{P}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{b}}\right)\right\}
\end{gathered}
$$

$\therefore \mathrm{P}_{\mathrm{NVB}}$ is a NVB BCK/BCI - ideal of $\mathfrak{B}_{\mathrm{M}_{\mathrm{NVB}}}$

Theorem 7.17

Let $\mathrm{M}_{\text {NVB }}$ be a NVB BCK/BCI - algebra $\mathfrak{B}_{\mathrm{M}_{\mathrm{NVB}}}$. Then any NVB BCK/BCI - cut of $\mathrm{M}_{\text {NVB }}$ is a crisp NVB BCK/BCI - subalgebra of $\mathfrak{B}_{\mathrm{M}_{\mathrm{NVB}}}$

Proof

Let for any $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}, \gamma_{1}, \gamma_{2}, \delta_{1}, \delta_{2}, \rho_{1}, \rho_{2}, \vartheta_{1}, \vartheta_{2} \in[0,1]$,
$\mathrm{M}_{\mathrm{NVB}}^{\left(\left[\alpha_{1}, \alpha_{2}\right],\left[\beta_{1}, \beta_{2}\right],\left[\gamma_{1}, \gamma_{2}\right]\right),\left(\left[\delta_{1}, \delta_{2}\right],\left[\rho_{1}, \rho_{2}\right],\left[\hat{\vartheta}_{1}, \vartheta_{2}\right]\right)}$ be a NVB BCK/BCI -cut of $\mathrm{M}_{\mathrm{NVB}}$.
Assume $u_{x}, u_{y} \in \mathrm{M}_{\text {NVB }}^{\left(\left[\alpha_{1}, \alpha_{2}\right],\left[\beta_{1}, \beta_{2}\right],\left[\gamma_{1}, \gamma_{2}\right]\right),\left(\left[\delta_{1}, \delta_{2}\right],\left[\rho_{1}, \rho_{2}\right],\left[\vartheta_{1}, \vartheta_{2}\right]\right)}$
$\Rightarrow \operatorname{NVB}_{\mathrm{M}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{x}}\right) \geq\left[\alpha_{1}, \alpha_{2}\right],\left[\beta_{1}, \beta_{2}\right],\left[\gamma_{1}, \gamma_{2}\right] \& \operatorname{NVB}_{\mathrm{M}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{x}}\right) \geq\left(\left[\delta_{1}, \delta_{2}\right],\left[\rho_{1}, \rho_{2}\right],\left[\vartheta_{1}, \vartheta_{2}\right]\right)$ $\operatorname{NVB}_{M_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{y}}\right) \geq\left[\alpha_{1}, \alpha_{2}\right],\left[\beta_{1}, \beta_{2}\right],\left[\gamma_{1}, \gamma_{2}\right] \& \operatorname{NVB}_{\mathrm{M}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{y}}\right) \geq\left(\left[\delta_{1}, \delta_{2}\right],\left[\rho_{1}, \rho_{2}\right],\left[\vartheta_{1}, \vartheta_{2}\right]\right)$
$\Rightarrow \widehat{\mathrm{T}}_{\mathrm{M}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{x}}\right) \geq\left[\alpha_{1}, \alpha_{2}\right] ; \quad \hat{\mathrm{I}}_{\mathrm{M}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{x}}\right) \leq\left[\beta_{1}, \beta_{2}\right] ; \quad \widehat{\mathrm{F}}_{\mathrm{M}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{x}}\right) \leq\left[\gamma_{1}, \gamma_{2}\right] \&$
$\widehat{\mathrm{T}}_{\mathrm{M}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{x}}\right) \geq\left[\delta_{1}, \delta_{2}\right] ; \quad \hat{\mathrm{I}}_{\mathrm{M}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{x}}\right) \leq\left[\rho_{1}, \rho_{2}\right] ; \quad \hat{\mathrm{F}}_{\mathrm{M}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{x}}\right) \leq\left[\vartheta_{1}, \vartheta_{2}\right]$
$\widehat{\mathrm{T}}_{\mathrm{M}_{\text {NVB }}}\left(\mathrm{u}_{\mathrm{y}}\right) \geq\left[\alpha_{1}, \alpha_{2}\right] ; \quad \hat{\mathrm{I}}_{\mathrm{M}_{\text {NVB }}}\left(\mathrm{u}_{\mathrm{y}}\right) \leq\left[\beta_{1}, \beta_{2}\right] ; \quad \hat{\mathrm{F}}_{\mathrm{M}_{\text {NVB }}}\left(\mathrm{u}_{\mathrm{y}}\right) \leq\left[\gamma_{1}, \gamma_{2}\right]$
$\widehat{\mathrm{T}}_{\mathrm{M}_{\text {NVB }}}\left(\mathrm{u}_{\mathrm{y}}\right) \geq\left[\delta_{1}, \delta_{2}\right] ; \quad \hat{\mathrm{I}}_{\mathrm{M}_{\text {NVB }}}\left(\mathrm{u}_{\mathrm{y}}\right) \leq\left[\rho_{1}, \rho_{2}\right] ; \quad \hat{\mathrm{F}}_{\mathrm{M}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{y}}\right) \leq\left[\vartheta_{1}, \vartheta_{2}\right]$
$\mathrm{M}_{\text {NVB }}$ is a NVB BCK/BCI -algebra $\mathfrak{B}_{\mathrm{M}_{\mathrm{NVB}}} \Rightarrow \operatorname{NVB}_{\mathrm{M}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{x}} * \mathrm{u}_{\mathrm{y}}\right) \succcurlyeq \mathrm{r} \min \left\{\mathrm{NVB}_{\mathrm{M}_{\text {NVB }}}\left(\mathrm{u}_{\mathrm{x}}\right), \mathrm{NVB}_{\mathrm{M}_{\mathrm{NVB}}}\left(\mathrm{u}_{\mathrm{y}}\right)\right\}$

$\Rightarrow\left(u_{x} * u_{y}\right) \in \mathrm{M}_{\mathrm{NVB}}^{\left(\left[\alpha_{1}, \alpha_{2}\right],\left[\beta_{1}, \beta_{2}\right],\left[\gamma_{1}, \gamma_{2}\right]\right),\left(\left[\delta_{1}, \delta_{2}\right],\left[\rho_{1}, \rho_{2}\right],\left[\vartheta_{1}, \theta_{2}\right]\right)}$
\Rightarrow NVB BCK/BCI - cut $\mathrm{M}_{\mathrm{NVB}\left(\left[\alpha_{1}, \alpha_{2}\right],\left[\beta_{1}, \beta_{2}\right],\left[\gamma_{1}, \gamma_{2}\right]\right),\left(\left[\delta_{1}, \delta_{2}\right],\left[\rho_{1}, \rho_{2}\right],\left[\vartheta_{1}, \vartheta_{2}\right]\right)}$ of $\mathrm{M}_{\text {NVB }}$ is a crisp NVB BCK/BCI -
subalgebra of $\mathfrak{B}_{\mathrm{M}_{\mathrm{NVB}}}$

8. Conclusions

In this paper, two logical algebras viz., BCK and BCI are developed for neutrosophic vague binary sets. It's subalgebra, ideal and cuts are also got discussed. Different kinds of ideals like p ideal, q ideal, a ideal, H ideal for neutrosophic vague binary BCK/BCI -algebra have been investigated. Theorems and propositions related to this concept are verified. In this paper BCK/BCI-algebra for neutrosophic sets are firstly developed. Then it is extended to neutrosophic vague and to neutrosophic vague binary. Work can be further extended to higher concepts like its group, rings, filter, near-rings etc. Behavior differences of these two algebras in different algebraic notions have to be addressed more deeply and properly to get a correct vision. This area demands some more notice and filtering to find out its correct drawbacks. Further investigations will make it, to balance its moves to the correct direction. Medial BCI -algebra, commutative BCK-algebra, Associative BCI - algebra, BCK/BCI- homomorphisms, bounded commutative BCI-algebra are a few points have to be addressed and have to be analyzed more.

Funding: "This research received no external funding"
Acknowledgments: Authors are very grateful to the anonymous reviewers and would like to thank for their valuable and critical suggestions to structure the paper systematically and to remove the errors.

Conflicts of Interest: "The authors declare that they have no conflict of interest."

References

1. Agboola. A. A. A and Davvaz. B, Introduction to Neutrosophic BCI/BCK - Agebras, International Journal of Mathematics and Mathematical Sciences, 2015 , Volume 2015, 6 pages, Article ID 370267, http://dx.doi.org/10.1155/2015/370267
2. Akram. M and Dar. K. H, On Fuzzy d-algebras, Punjab University Journal of Mathematics, 2005, Vol.37, pp 61-76
3. Alcheikh. M \& Anas Sabouh, A study of Fuzzy Ideals in BCK Algebra, Journal of Mathematics Research, October 2019, Vol 11, pp 11-15, http://jmr.ccsenet.org
4. Anas Al-Masarwah, Abd Ghafur Ahmad, On some properties of doubt bipolar fuzzy H -ideals in $\mathrm{BCK} / \mathrm{BCI}$ -algebras European journal of pure and applied mathematics, 2018, Vol.11, No.3, pp 652-670, https://doi.org/10.29020/nybg.ejpam.v11i3.3288.
5. Anas Al-Masarwah, Abd Ghafur Ahmad, m-Polar fuzzy ideals of BCK/BCI-algebras, Journal of King Saud University-Science, 2019, Vol.31, pp 1220-1226, DOI: 10.1016/j.jksus.2018.10.002
6. Arsham Borumand Saeid, Vague BCK/BCI -algebras, Opuscula Mathematica, 2009, Vol 29, No.2, pp 177-186.
7. Arsham Borumand Saeid, Hee Sik Kim and Akbar Rezaei, On BI-algebras, Versita, 2017, Vol. 25 (1), pp 177194, doi:10.1515/auom-2017-0014.
8. Bijan Davvaz, Samy M. Mostafa and Fatema F. Kareem, Neutrosophic ideals of neutrosophic KU-algebras, Journal of Science, 2017, GU J Sci 30 (4), pp 463-472.
9. Bordbar. H, Mohseni Takallo. M, Borzooei. R. A, Young Bae Jun, BMBJ -neutrosophic subalgebra in BCI/BCK - algebras, Neutrosophic Sets and Systems, 2020, Vol.31, pp 31-43.
10. Borumand Saeid. A, Prince Williams. D. R and Kuchaki Rafsanjani, A new generalizationof fuzzy BCK/BCIalgebras, Neutral Comput \& Applic, 2012, Vol.21, pp 813-819, DOI : 10.1007/s00521-011-0613-7
11. Borumand Saeid. A and Zarandi. A, Vague Set Theory Applied to BM - Algebras, International Journal of Algebra, 2011, Vol.5, No.5, pp 207-222.
12. Chul Hwan Park, Neutrosophic ideal of subtraction algebras, Neutrosophic sets and systems, 2019, Vol.24, pp 36-45
13. Florentin Smarandache, A Unifying Field in Logics: Neutrosophic Logic, Neutrosophy, Neutrosophic Set, Neutrosophic Probability (fifth edition) Book: January 2005, DOI:10.5281/zenodo.49174, ISBN 978-1-59973-0806, American Research Press, Rchoboth, 1998, 2000, 2003, 2005
14. Florentin Smarandache, NeutroAlgebra is a Generalization of Partial Algebra, International Journal of Neutrosophic Science (IJNS) , 2020, Vol. 2, No. 1, PP. 08-17,
15. Francina Shalini. A and Remya. P. B, Neutrosophic Vague binary sets, Neutrosophic Sets and Systems, 2019, Vol. 29, pp 228-241
16. Gau. W. L and Buehrer. D. J, Vague Sets, IEEE transactions on systems, man and cybernetics, 1993, Vol. 23, No. 2, pp 610-614
17. Hakimuddin Khan, Musheer Ahmad and Ranjit Biswas, On Vague Groups, International Journal Of Computational Cognition, 2007, Vol. 5, no. 1, pp 26-30, http://www.ijcc.us.
18. Hee Sik Kim and Young Hee Kim, On BE-algebras, Scientiae Mathematicae (Online), e-2006, 1299-1302
19. Hu. Q. P and Li. X, On BCH-algebras, Mathematics Seminar Notes, 1983, Vol.11, pp 313-320
20. Jafari. A, Mariapresenti. L and Arockiarani. I, Vague direct product in BCK-algebra, IJISET-International Journal of Innovative Science, Engineering \& Technology, 2017, Vol.4, Issue 8, August 2017, pp 1-8
21. Jun. Y. B, Roh. E. H and Kim. H. S, On BH-algebras, Scientiae Mathematicae, 1998, Vol.1, No.3, pp 347-354
22. Kaviyarasu. M and Indhira. K, Review on BCI/BCK- Algebras and Development, International Journal of Pure and Applied Mathematics, 2017, Vol. 117, No. 11, pp 377-383
23. Khadaeman. S, Zahedi. M. M, Borzooei. R. A, Jun. Y. B, Neutrosophic Hyper BCK-ideals, Neutrosophic sets and systems, 2019, Vol.27, pp 201-217
24. Kim. C. B and Kim. H. S, On BM - algebras, Sci. Math. Japo, 2006, Vol.63, No.3, pp 421-427
25. Khalid. H. M, Ahmad. B, Fuzzy H-ideals in BCI-algebras, Fuzzy Sets Syst. 101 (1): 1999, pp 153-158
26. Kordi. A \& Moussavi. A, On fuzzy ideals of a BCI - algebras, Pure Mathematics and Applications, 2007, Vol. 18, pp 301-310
27. Lee. K. J, So. K. S and Bang. K. S, Vague BCK/BCI -algebras, J. Korean Soc.Math. Educ.Ser.B:pure Appl.Math., 2008, Vol.15, No.3, pp 297-308
28. Mohamed Abdel-Basset, Mai Mohamed, Mohamed Elhoseny, Le Hoang Son, Francisco Chiclana, Abd ElNasser H Zaied, Cosine Similarity Measures of Bipolar Neutrosophic Set for Diagnosis of Bipolar Disorder Diseases, Artificial Intelligence In Medicine, 2019, Vol.101, doi: https://doi.org/10.1016/j.artmed.2019.101735
29. Mohamed Abdel-Basset, Mumtaz Ali, Asma Atef, Uncertainty Assessments of Linear Time-Cost Tradeoffs using Neutrosophic Set, Computers \& Industrial Engineering, 2020, Vol.141, https://doi.org/ 10. 1016 /j.cie. 2020.106286
30. Mohamed Abdel-Basset, Mumtaz Ali, Asma Atef, Resource levelling problem in construction projects under neutrosophic environment, The Journal of Supercomputing, 2019, pp 1-25, https:// doi.org/ 10.1007/ s11227-019-03055-6
31. Mohamed Abdel-Basset and Rehab Mohamed, A novel plithogenic TOPSIS- CRITIC model for sustainable supply chain risk management, Journal of Cleaner Production, 2020, Vol.247, https://doi.org/10.1016/j.jclepro. 2019.119586
32. Muhammad Anwar Chaudhry and Faisal Ali, Multipliers in d-algebras, World Applied Sciences Journal, 2012, Vol.18, No.11, pp 1649 - 1653, DOI: 10.5829/idosi.wasj.2012.18.11.1587
33. Muhammad Anwar Chaudhry and Hafiz Fakhar-ud-din, On Some Classes of BCH-algebras, IJMMMS, 2001, Vol.25, No.3, pp 205-211, http://ijmms.hindawi.com@Hindawi
34. Muhammad Akram, Hina Gulzar, Florentin Smarandache and Said Broumi, Certain Notions of Neutrosophic Topological K-algebras, Mathematics, 2018, Vol.6, No.234, pp 1-15, doi: 10.3390/math6110234
35. Muhiuddin.G, Smarandache.F, Young Bae Jun, Neutrosophic Quadruple ideals in Neutrosophic Quadruple BCI - algebras, Neutrosophic sets and systems, 2019, Vol. 25, pp 161-173
36. Muhiuddin. G, Bordbar. H, Smarandache. F, Jun. Y. B, Further results on $(\varepsilon, \varepsilon)$ - neutrosophic subalgebras and ideals in BCK/BCI- algebras, Neutrosophic sets and systems, 2018, Vol.20, pp 36-43
37. Nageswararao. B, Ramakrishna. N, Eswarlal. T, Translates of vague β-algebra, International Journal of Pure and Applied Mathematics, 2016, Vol. 106, No.4, pp 989-1002, url:http://www.ijpam.eu
38. Neggers. J and Kim. H. S, On d-algebras, Math Slovaca, 1996, Vol.49, pp 19-26
39. Neggers. J and Kim. H. S, On B-algebras, Mate.Vesnik, 2002, Vol.54, pp 21-29
40. Neggers. J and Kim Hee Sik, On β-algebra, Math-Solvaca, 2002, Vol.52, No.5, pp 517-530
41. Qun Zhang, Young Bae Jun and Eun Hwan Roh, On the branch of BH-algebras, Scientiae Mathematicae Japonicae (Online), 2001, Vol.4, pp 917-921
42. Samy M. Mostafa and Reham Ghanem, Cubic Structures of Medial Ideal on BCI -algebras, International Journal of Fuzzy Logic Systems (IJFLS), 2015, Vol.5, No.2/3, pp 15-22, doi : 10.5121/ijfls.2015.5302
43. Saidur Rahman Barbhulya, K. Dutta, Choudhury, ($\epsilon, \in \mathrm{eq})$-Fuzzy ideals of d-algebra, International Journal of Mathematics Trends and Technology, 2014, Vol. 9 No.1, pp 16-26, http://www.ijmttjournal.org
44. Seon Jeong Kim, Seok-Zun Song and Young Bae Jun, Generalizations of Neutrosophic Subalgebras in BCK/BCI -algebras based on neutrosophic points, Neutrosophic Sets and Systems, 2018, Vol.20, pp 26-35
45. Shawkat Alkhazaleh, Neutrosophic Vague Set Theory, Critical Review, 2015, Vol. X, pp no 29-39
46. Stanley Gudder, d-algebras, Foundations of Physics, 1996, Vol.26, No.6, pp 813-822
47. Vasantha Kandasamy. W. B and Florentin Smarandache, Some Neutrosophic Algebra Structures and Neutrosophic N-Algebraic Structures, Hexis, Phoenix, 2006, ISBN: 1-931233-15-2
48. Yasuyuki Imai and Kiyoshi Iséki, On Axiom Systems of Propositional Calculi, 1966, Vol. XIV, pp 19-22
49. Young Bae, Florentin Smarandache, Mehmat Ali Ö̈türk, Commutative falling neutrosophic ideals in BCKalgebras, Neutrosophic Sets and Systems, 2018, Vol.20, pp 44-53
50. Young Bae Jun, Seok-Zun Song and Seon Jeong Kim, Length-Fuzzy Subalgebras in BCK/BCI-algebras, Mathematics, 2018, Vol.6, No.11, pp 1-12, doi:10.3390/math6010011
51. Young Bae Jun, Seok-Zun Song, Florentin Smarandache and Hashem Bordbar, Neutrosophic Quadruple BCK/BCI -Algebras, Axioms 2018, Vol.7, No.41, pp 1-16, www.mdpi.com/journal/axioms
52. Yun Sun Hwang and Sun Shin Ahn, Vague p-ideals and Vague a-ideals in BCI-algebras, Journal of the Chungcheong Mathematical Society, 2013, Vol. 26, No. 3

Received: Apr 13, 2020. Accepted: July 3, 2020

Introduction to Topological Indices in Neutrosophic Graphs

Masoud Ghods ${ }^{1, *}$, Zahra Rostami ${ }^{2}$
${ }^{1}$ Department of Mathematics, Semnan University, Semnan 35131-19111, Iran, mghods@semnan.ac.ir ${ }^{2}$ Department of Mathematics, Semnan University, Semnan 35131-19111, Iran, zahrarostami.98@semnan.ac.ir
* Correspondence: mghods@semnan.ac.ir; Tel.: (09122310288)

Abstract

Neutrosophic Graphs are graphs that follow three-valued logic. They may be considered a fuzzy graph, although in some cases, it is difficult to optimize and model them using fuzzy graphs. In this paper, the first and second Zagreb indices, the Harmonic index, the Randic' index and the Connectivity index for these graphs are investigated and some of the theorems related to these indices are discussed and proven. These indices are also calculated for some specific types of Neutrosophic Graphs, such as regular Neutrosophic Graphs and regular complete Neutrosophic Graphs.

Keywords: Neutrosophic Graphs; Zagreb indices; Harmonic index; Randic' index; Connectivity index

1. Introduction

Graph theory has many applications for modeling problems in various fields of computer science such as systems analysis, computer networks, transportation, operations research and economics. The vertices and edges of the graphs are used to represent objects and the relationships between them, respectively. Many of the optimization issues are caused by inaccurate information due to factors like lack of evidence, incomplete statistical data, and lack of sufficient information; this creates uncertainty in various issues. Classical Graphic Theory uses the basic concept of classical set theory, as proposed by Contour. In a classic graph, for each vertex or edge, there are two possibilities: either in the graph or not in the graph. Therefore, classical graphs cannot model uncertain optimization problems. Real-life issues are often unclear, making modeling by classical graphs difficult. Zadeh introduced the degree of membership/truth (T) in 1965 and defined the fuzzy set. Atanassov [14] introduced the degree of nonmembership/falsehood (F) in 1983 and defined the intuitionistic fuzzy set. Smarandache [15] introduced the degree of indeterminacy/neutrality (I) as an independent component in 1995 and defined the neutrosophic set on three components (T, I, F) [4].

Fuzzy set [1] is a generalized version of the classical set in which objects have different membership degrees. A fuzzy set gives the degree of different members between zero and one. Much work has already been done on fuzzy graphs, including the calculation of various topology indices, indicators such as Zagreb index, Randic', harmonic, and so on. However, there is another class of graphs that is a broad case of fuzzy graphs. In this type of graph, known as neutrosophic graphs, in addition to the degree of accuracy of each membership function, the degree of its membership is uncertain, as well as its inaccuracy. So in many cases, it may be more logical to use this model than graphs in real-world problems.

Since that neutrosophic graphs are more efficient than fuzzy graphs for modeling real problems. Therefore, in this paper, we try for the first time to calculate some topological indices for this type of graph.

2. Preliminaries

This section, provides some definitions and theorems needed.
Definition 1. [13] Let $G=(N, M)$ be a single-valued Neutrosophic graph, where N is a Neutrosophic set on V and, M is a Neutrosophic set on E, which satisfy the following

$$
\begin{aligned}
T_{M}(u, v) & \leq \min \left(T_{N}(u), T_{N}(v)\right) \\
I_{M}(u, v) & \geq \max \left(I_{N}(u), I_{N}(v)\right) \\
F_{M}(u, v) & \geq \max \left(F_{N}(u), F_{N}(v)\right)
\end{aligned}
$$

Where u and v are two vertices of G, and $(u, v) \in E$ is an edge of G.
Definition 2. [2] Let $G=(N, M)$ be a Single-Valued Neutrosophic Graph and P is a path in $G . P$ is a collection of different vertices, $v_{0}, v_{1}, v_{2}, \ldots, v_{n}$ such that $\left(T_{M}\left(v_{i-1}, v_{i}\right), I_{M}\left(v_{i-1}, v_{i}\right), F_{M}\left(v_{i-1}, v_{i}\right)\right)>0$ for $0 \leq i \leq n$. P is a Neutrosophic cycle if $v_{0}=v_{n}$ and $n \geq 3$.

Definition 3. [2] Suppose $G=(N, M)$ a single-valued Neutrosophic graph. G is a connected SingleValued Neutrosophic Graph if there exists no isolated vertex in $G .\left(v \in V_{G}\right.$ is isolated vertex, if there exists no incident edge to the vertex v.)

Definition 4. [2] Let $G=(N, M)$ be a Single-Valued Neutrosophic Graph, and $v \in V$ is vertex of G. The degree of vertex v is the sum of the truth membership values, the sum of the indeterminacy membership values, and the sum of the falsity membership values of all the edges that are adjacent to vertex v. And is denoted by $d(v)$, that

$$
d(v)=\left(d_{T}(v), d_{I}(v), d_{F}(v)\right)=\left(\sum_{\substack{v \in V \\ v \neq u}} T_{M}(v, u), \sum_{\substack{v \in V \\ v \neq u}} I_{M}(v, u), \sum_{\substack{v \in V \\ v \neq u}} F_{M}(v, u)\right)
$$

Definition 5. [2] Let $G=(N, M)$ be a Single-Valued Neutrosophic Graph, and the d_{m}-degree of any vertex v in G is denoted as $d_{m}(v)$ where

$$
d_{m}(v)=\left(\sum_{u \neq v \in V} T_{M}^{m}(u, v), \sum_{u \neq v \in V} I_{M}^{m}(u, v), \sum_{u \neq v \in V} F_{M}^{m}(u, v)\right)
$$

Here, the path $v=v_{0} v_{1} v_{2} \ldots v_{n}=u$ is the shortest path between the vertices v and u, when the length of this path is m.

Definition 6. [2] Let $G=(N, M)$ be a Single-Valued Neutrosophic Graph, G is a regular neutrosophic graph if it satisfies the following,

$$
\sum_{v \neq u} T_{M}(v, u)=c, \quad \sum_{v \neq u} I_{M}(v, u)=c, \quad \sum_{v \neq u} F_{M}(v, u)=c,
$$

Where c is a constant value.

3. Topological Indices in Neutrosophic Graphs

In the section, we introduce Topological Indices in Neutrosophic Graphs and provide a number of examples. We define Zagreb indices, Harmonic index, and Randic' index, and in finally Connectivity index on the neutrosophic graphs.

3.1. Zagreb index of First and Second Kind in Neutrosophic Graphs

Definition 8. Let $G=(N, M)$ be the Neutrosophic Graph whit non-empty vertex set. The first Zagreb index is denoted by $M(G)$ and defined as

$$
M(G)=\sum_{i=1}^{n}\left(T_{N}\left(u_{i}\right), I_{N}\left(u_{i}\right), F_{N}\left(u_{i}\right)\right) d_{2}\left(u_{i}\right), \quad \forall u_{i} \in V
$$

Example 1. Consider the Neutrosophic Graph $G=(N, M)$ as shown in figure 1, with the vertex set $V=\{a, b, c\} \quad$ such that $\left(T_{N}, I_{N}, F_{N}\right)(a)=(0.3,0.6,0.7),\left(T_{N}, I_{N}, F_{N}\right)(b)=(0.3,0.5,0.6)$, and $\left(T_{N}, I_{N}, F_{N}\right)(c)=(0.4,0.5,0.6)$, The edge set contains $\left(T_{M}, I_{M}, F_{M}\right)(a, b)=(0.2,0.6,0.8)$, $\left(T_{M}, I_{M}, F_{M}\right)(b, c)=(0.2,0.6,0.7)$, and $\left(T_{M}, I_{M}, F_{M}\right)(a, c)=(02,0.8,0.9)$. We have,

Figure 1. A neutrosophic graph with $V=\{a, b, c\}$

The first Zagreb index is

$$
\begin{aligned}
& d(a)=(0.2+0.2,0.6+0.8,0.8+0.9)=(0.4,1.4,1.7) \\
& d(b)=(0.2+0.2,0.6+0.6,0.8+0.7)=(0.4,1.2,1.5) \\
& d(c)=(0.2+0.2,0.8+0.6,0.9+0.7)=(0.4,1.4,1.6)
\end{aligned}
$$

Now, we have

$$
\begin{gathered}
d_{2}(a)=(0.04+0.04,0.36+0.64,0.64+0.81)=(0.08,1,1.45) \\
d_{2}(b)=(0.04+0.04,0.36+0.36,0.64+0.49)=(0.08,0.72,1.13) \\
d_{2}(c)=(0.04+0.04,0.64+0.36,0.81+0.49)=(0.08,1,1.3) \\
M(G)=\sum_{i=1}^{4}\left(T_{N}\left(u_{i}\right), I_{N}\left(u_{i}\right), F_{N}\left(u_{i}\right)\right) d_{2}\left(u_{i}\right) \\
=(0.3,0.6,0.7)(0.08,1,1.45)+(0.3,0.5,0.6)(0.08,0.72,1.13) \\
+(0.4,0.5,0.6)(0.08,1.1 .3) \\
= \\
(0.024+0.6+1.015)+(0.024+0.36+0.678)+(0.032+0.5+0.78)=4.013
\end{gathered}
$$

Definition 9. The second Zagreb index is denoted by $M^{*}(G)$ and defined as

$$
M^{*}(G)=\frac{1}{2} \sum\left[\left(T_{N}\left(u_{i}\right), I_{N}\left(u_{i}\right), F_{N}\left(u_{i}\right)\right) d\left(u_{i}\right)\right]\left[\left(T_{N}\left(v_{j}\right), I_{N}\left(v_{j}\right), F_{N}\left(v_{j}\right)\right) d\left(v_{j}\right)\right], \quad \forall i \neq j \text { and }\left(u_{i}, v_{j}\right) \in E
$$

Example 2. If G is the same Neutrosophic Graph as example 1, we have

$$
\begin{aligned}
M^{*}(G)=\frac{1}{2}[(0.3, & 0.6,0.7) \cdot(0.4,1.4,1.7) \times(0.3,0.5,0.6) \cdot(0.4,1.2,1.5)+(0.3,0.6,0.7) \cdot(0.4,1.4,1.7) \\
& \times(0.4,0.5,0.6) \cdot(0.4,1.4,1.6)+(0.3,0.5,0.6) \cdot(0.4,1.2,1.5) \\
& \times(0.4,0.5,0.6) \cdot(0.4,1.4,1.6)] \\
& =\frac{1}{2}[(0.12+0.84+1.19) \times(0.12+0.6+0.9)+(0.12+0.84+1.19) \\
& \times(0.16+0.7+0.96)+(0.12+0.6+0.9) \times(0.16+0.7+0.96) \\
& =\frac{1}{2}[(2.15)(1.62)+(2.15)(1.82)+(1.62)(1.82)]=\frac{1}{2}(10.3444)=5.1722 .
\end{aligned}
$$

Note 1. As we have seen, the value of $M^{*}(G)$ is less than the value of $M(G)$, and this is always the case.

Theorem 1. Let G is the Neutrosophic Graph and H is the Neutrosophic sub graph of G such that $H=G-u$ then $M(H)<M(G)$ and $M^{*}(H)<M^{*}(G)$.

Proof. Given that by omitting a vertex of G, a positive value, the sum is lost, so the proof is obvious.

Theorem 2. Let G be the regular neutrosophic graph. Then, we have

$$
M(G)=c^{2} \times \sum_{i=1}^{n}\left(T_{N}\left(u_{i}\right)+I_{N}\left(u_{i}\right)+F_{N}\left(u_{i}\right)\right), \quad \forall u_{i} \in V
$$

Where $\sum_{v \neq u} T_{M}(v, u)=c, \quad \sum_{v \neq u} I_{M}(v, u)=c, \quad \sum_{v \neq u} F_{M}(v, u)=c$.
Proof. Given the degree of definition of each vertex,

$$
d(v)=\left(d_{T}(v), d_{I}(v), d_{F}(v)\right)=\left(\sum_{\substack{v \in V \\ v \neq u}} T_{M}(v, u), \sum_{\substack{v \in V \\ v \neq u}} I_{M}(v, u), \sum_{\substack{v \in V \\ v \neq u}} F_{M}(v, u)\right)
$$

On the other hand, for regular neutrosophic graphs, we know that

$$
\sum_{v \neq u} T_{M}(v, u)=c, \quad \sum_{v \neq u} I_{M}(v, u)=c, \quad \sum_{v \neq u} F_{M}(v, u)=c,
$$

Therefore

$$
d(v)=\left(d_{T}(v), d_{I}(v), d_{F}(v)\right)=(c, c, c) .
$$

Now, by embedding the formula in the first Zagreb index, we will get the desired result. The proof is complete.

Theorem 3. Let G be the regular neutrosophic graph. Then, we have

$$
\begin{gathered}
M^{*}(G)=\frac{1}{2}\left(c^{2}\right) \sum\left[T_{N}\left(u_{i}\right)+I_{N}\left(u_{i}\right)+F_{N}\left(u_{i}\right)\right]\left[T_{N}\left(v_{j}\right)+I_{N}\left(v_{j}\right)+F_{N}\left(v_{j}\right)\right] \\
\forall i \neq j \text { and }\left(u_{i}, v_{j}\right) \in E
\end{gathered}
$$

Where $\sum_{v \neq u} T_{M}(v, u)=c, \quad \sum_{v \neq u} I_{M}(v, u)=c, \quad \sum_{v \neq u} F_{M}(v, u)=c$.
Proof. Assume G is a regular neutrosophic graph, using the second Zagreb index formula for G, we have $\forall i \neq j$ and $\left(u_{i}, v_{j}\right) \in E$,

$$
\begin{aligned}
M^{*}(G)=\frac{1}{2} \sum[& \left.\left(T_{N}\left(u_{i}\right), I_{N}\left(u_{i}\right), F_{N}\left(u_{i}\right)\right) d\left(u_{i}\right)\right]\left[\left(T_{N}\left(v_{j}\right), I_{N}\left(v_{j}\right), F_{N}\left(v_{j}\right)\right) d\left(v_{j}\right)\right] \\
& =\frac{1}{2} \sum\left[\left(T_{N}\left(u_{i}\right), I_{N}\left(u_{i}\right), F_{N}\left(u_{i}\right)\right) d\left(d_{T}\left(u_{i}\right), d_{I}\left(u_{i}\right), d_{F}\left(u_{i}\right)\right)\right] \\
& \times\left[\left(T_{N}\left(v_{j}\right), I_{N}\left(v_{j}\right), F_{N}\left(v_{j}\right)\right) d\left(d_{T}\left(v_{j}\right), d_{I}\left(v_{j}\right), d_{F}\left(v_{j}\right)\right)\right] \\
& =\frac{1}{2} \sum\left[\left(T_{N}\left(u_{i}\right), I_{N}\left(u_{i}\right), F_{N}\left(u_{i}\right)\right) \cdot(c, c, c)\right]\left[\left(T_{N}\left(v_{j}\right), I_{N}\left(v_{j}\right), F_{N}\left(v_{j}\right)\right) \cdot(c, c, c)\right] \\
& =\frac{1}{2} \sum\left[c . T_{N}\left(u_{i}\right)+c \cdot I_{N}\left(u_{i}\right)+c \cdot F_{N}\left(u_{i}\right)\right]\left[c . T_{N}\left(v_{j}\right)+c . I_{N}\left(v_{j}\right)+c . F_{N}\left(v_{j}\right)\right] \\
& =\frac{1}{2} \sum c\left[T_{N}\left(u_{i}\right)+I_{N}\left(u_{i}\right)+F_{N}\left(u_{i}\right)\right] . \mathrm{c}\left[T_{N}\left(v_{j}\right)+I_{N}\left(v_{j}\right)+F_{N}\left(v_{j}\right)\right] \\
& =\frac{1}{2} c^{2} \sum\left[T_{N}\left(u_{i}\right)+I_{N}\left(u_{i}\right)+F_{N}\left(u_{i}\right)\right]\left[T_{N}\left(v_{j}\right)+I_{N}\left(v_{j}\right)+F_{N}\left(v_{j}\right)\right] .
\end{aligned}
$$

The desired result was obtained.

3.2. Harmonic index in Neutrosophic Graphs

Definition 10. The Harmonic index of Neutrosophic Graph G is defined as

$$
H(G)=\sum \frac{1}{\left(T_{N}\left(u_{i}\right), I_{N}\left(u_{i}\right), F_{N}\left(u_{i}\right)\right) d\left(u_{i}\right)+\left(T_{N}\left(v_{j}\right), I_{N}\left(v_{j}\right), F_{N}\left(v_{j}\right)\right) d\left(v_{j}\right)}, \quad \forall i \neq j \text { and }\left(u_{i}, v_{j}\right) \in E
$$

Example 3. We have the previous example,

$$
\begin{aligned}
& H(G)=\frac{1}{(0.3,0.6,0.7)(0.4,1.4,1.7)+(0.3,0.5,0.6)(0.4,1.2,1.5)} \\
&+\frac{1}{(0.3,0.6,0.7)(0.4,1.4,1.7)+(0.4,0.5,0.6)(0.4,1.4,1.6)} \\
&+\frac{1}{(0.3,0.5,0.6)(0.4,1.2,1.5)+(0.4,0.5,0.6)(0.4,1.4,1.6)} \\
&=\frac{1}{2.15+1.62}+\frac{1}{2.15+1.82}+\frac{1}{1.62+1.82}=\frac{1}{3.77}+\frac{1}{3.97}+\frac{1}{3.44}=0.8078 .
\end{aligned}
$$

3.3. Randic' index in Neutrosophic Graphs

Definition 11. The Randic' index of Neutrosophic Graph G is defined as

$$
R(G)=\sum\left(\left(T_{N}\left(u_{i}\right), I_{N}\left(u_{i}\right), F_{N}\left(u_{i}\right)\right) d\left(u_{i}\right)\left(T_{N}\left(v_{j}\right), I_{N}\left(v_{j}\right), F_{N}\left(v_{j}\right)\right) d\left(v_{j}\right)\right)^{\frac{-1}{2}}, \forall i \neq j \text { and }\left(u_{i}, v_{j}\right) \in E
$$

Example 3. For above example, by simple calculations, it is easy to see that

$$
\begin{aligned}
R(G)= & \frac{1}{\sqrt{(0.3,0.6,0.7) \cdot(0.4,1.4,1.7) \times(0.3,0.5,0.6) \cdot(0.4,1.2,1.5)}} \\
& +\frac{1}{\sqrt{(0.3,0.6,0.7) \cdot(0.4,1.4,1.7) \times(0.4,0.5,0.6) \cdot(0.4,1.4,1.6)}} \\
& +\frac{1}{\sqrt{(0.3,0.5,0.6) \cdot(0.4,1.2,1.5) \times(0.4,0.5,0.6) \cdot(0.4,1.4,1.6)}} \\
& =\frac{1}{\sqrt{2.15 \times 1.62}}+\frac{1}{\sqrt{2.15 \times 1.82}}+\frac{1}{\sqrt{1.62 \times 1.82}}=1.6237 .
\end{aligned}
$$

3.4. Connectivity index in Neutrosophic Graphs

Connectivity index is an important parameter in the graph. Using it, we can study and study some of the features of graph models.

Definition 12. Let $G=(N, M)$ be the Neutrosophic Graph. The connectivity index of G is defined by

$$
C I(G)=\sum_{u_{i}, v_{j} \in V}\left(T_{N}\left(u_{i}\right), I_{N}\left(u_{i}\right), F_{N}\left(u_{i}\right)\right)\left(T_{N}\left(v_{j}\right), I_{N}\left(v_{j}\right), F_{N}\left(v_{j}\right)\right) \times \operatorname{CONN}_{G}\left(u_{i}, v_{j}\right)
$$

Where $\operatorname{CONN}_{G}\left(u_{i}, v_{j}\right)$ is the strength of connectedness between u_{i} and v_{j}.

Definition 13. The strength of connectedness between u_{i} and v_{j} is defined as

$$
\operatorname{CONN}_{P}\left(u_{i}, v_{j}\right)=\left(\min _{e \in P_{u_{i} v_{j}}} T_{M}(e), \max _{e \in P_{u_{i} v_{j}}} I_{M}(e), \max _{e \in P_{u_{i} v_{j}}} F_{M}(e)\right),
$$

Where $P_{u_{i} v_{j}}$ is the path between u_{i} and v_{j}.

$$
\left|\operatorname{CONN}_{P}\left(u_{i}, v_{j}\right)\right|=2\left(\min _{e \in P_{u_{i} v_{j}}} T_{M}(e)\right)-\left(\max _{e \in P_{u_{i} v_{j}}} I_{M}(e)\right)-\left(\max _{e \in P_{u_{i} v_{j}}} F_{M}(e)\right)
$$

Then

$$
\operatorname{CONN}_{G}\left(u_{i}, v_{j}\right)=\max _{P}\left\{\left|\operatorname{CONN}_{P}\left(u_{i}, v_{j}\right)\right|\right\} .
$$

Example 4. For example, in the above figure, the strength of connectedness between: a and b from the direct path $P_{1}=a b$ is

$$
\operatorname{CONN}_{P_{1}}(a, b)=M_{a b}=(0.2,0.6,0.8),
$$

From path $P_{2}=a c b$ is

$$
\operatorname{CONN}_{P_{2}}(a, b)=(\min \{0.2,0.2\}, \quad \max \{0.8,0.6\}, \quad \max \{0.9,0.7\})=(0.2,0.8,0.9) ;
$$

a and c from the direct path $P_{1}=a c$ is

$$
\operatorname{CONN}_{P_{1}}(a, c)=M_{a c}=(0.2,0.8,0.9),
$$

From path $P_{2}=a b c$ is

$$
\operatorname{CONN}_{P_{2}}(a, c)=(\min \{0.2,0.2\}, \quad \max \{0.6,0.6\}, \quad \max \{0.8,0.7\})=(0.2,0.6,0.8) ;
$$

b and c from the direct path $P_{1}=b c$ is

$$
\operatorname{CONN}_{P_{1}}(b, c)=M_{b c}=(0.2,0.6,0.7),
$$

From path $P_{2}=b a c$ is

$$
\operatorname{CONN}_{P_{2}}(b, c)=(\min \{0.2,0.2\}, \quad \max \{0.6,0.8\}, \quad \max \{0.8,0.9\})=(0.2,0.8,0.9)
$$

Then, we have for a and b

$$
\begin{aligned}
& \left|\operatorname{CONN}_{P_{1}}(a, b)\right|=2 \times(0.2)-0.6-0.8=-1 \\
& \left|\operatorname{CoNN}_{P_{2}}(a, b)\right|=2 \times(0.2)-0.8-0.9=-1.3
\end{aligned}
$$

For a and c,

$$
\begin{aligned}
& \left|\operatorname{CoNN}_{P_{1}}(a, c)\right|=2 \times(0.2)-0.8-0.9=-1.3 \\
& \left|\operatorname{CoNN}_{P_{2}}(a, c)\right|=2 \times(0.2)-0.6-0.8=-1 .
\end{aligned}
$$

For b and c,

$$
\begin{aligned}
& \left|\operatorname{CONN}_{P_{1}}(b, c)\right|=2 \times(0.2)-0.6-0.7=-0.9, \\
& \left|\operatorname{CoNN}_{P_{2}}(b, c)\right|=2 \times(0.2)-0.8-0.9=-1.3 .
\end{aligned}
$$

Since we have

$$
\operatorname{CoNN}_{G}(a, b)=-1 ; \quad \operatorname{CoNN}_{G}(a, c)=-1 ; \quad \operatorname{CoNN}_{G}(b, c)=-0.9 .
$$

Then $C I(G)$ is calculated as follows

$$
\begin{aligned}
\operatorname{CI}(G)=\sum_{u_{i} v_{j} \in V} & \left(T_{N}\left(u_{i}\right), I_{N}\left(u_{i}\right), F_{N}\left(u_{i}\right)\right)\left(T_{N}\left(v_{j}\right), I_{N}\left(v_{j}\right), F_{N}\left(v_{j}\right)\right) \times \operatorname{CONN}_{G}\left(u_{i}, v_{j}\right) \\
& =(0.3,0.6,0.7) \cdot(0.3,0.5,0.6) \times(-1)+(0.3,0.6,0.7) \cdot(0.4,0.5,0.6) \times(-1) \\
& +(0.3,0.5,0.6) \cdot(0.4,0.50 .0) \times(-0.9) \\
& =(0.09+0.3+0.42)(-1)+(0.12+0.3+0.42)(-1)+(0.12+0.25+0.36)(-0.9) \\
& =(0.81)(-1)+(0.84)(-1)+(0.73)(-0.9)=-2.307 .
\end{aligned}
$$

The connectivity index of G is equal -2.307, which the negative sing indicates the high level of false and indeterminacy information in the problem.

Theorem 4. Let G and H be the two Neutrosophic Graphs are isomorphic, then the topological indices values of two Neutrosophic Graphs are equal.

Proof. To prove, let $G=\left(V_{G}, N_{G}, M_{G}\right)$ and $H=\left(V_{H}, N_{H}, M_{H}\right)$ be isomorphic Neutrosophic Graphs. Hence there is an identity function $\mu_{N}: N_{G}(u) \rightarrow N_{H}\left(u^{*}\right)$, for all $u \in V_{G}$ there exist $u^{*} \in V_{H}$ as well as $\mu_{M}: M_{G}(u, v) \rightarrow M_{H}\left(u^{*}, v^{*}\right)$, then each vertex of G corresponds to an vertex in H, with the same membership value and the same edges. Hence, the Neutrosophic graph structure may differ but collection of vertices and edges are same gives the equal topological indices value.

Theorem 5. Let $G=\left(V_{G}, N_{G}, M_{G}\right)$, is a neutrosophic Graph and H is the neutrosophic sub graph of G, Such that H is made by removing edge $u v \in M_{G}$ from G. Then, we have, $C I(H)<C I(G)$ iff $u v$ is a bridge.

Proof. To prove the first side of the theorem we consider two cases:
Case 1. Let $u v$ be an edge with all three components having the least value, Therefore the edge $u v$ will have no effect on the result. Then we have $\operatorname{CI}(H)=\operatorname{CI}(G)$.

Case 2. Now suppose that $u v$ is an edge that has maximum components, so they will have an effect on $\operatorname{CONN}_{G}(u, v)$. Therefore, by removing edge $u v$, the value of $\operatorname{CONN}_{G}(u, v)$ will decrease, then we have $\operatorname{CI}(H)<\operatorname{CI}(G)$. Since the bridge is called the edge that has its deletion reducing the $\operatorname{CONN}_{G}(u, v)$, However, $u v$ is a bridge.

Conversely, given that $u v$ is a bridge. According to the definition of bridge we have, for the edge $u v, \operatorname{CONN}_{G}(u, v)>\operatorname{CONN}_{G-u v}(u, v)$, So we conclude that, $\operatorname{CI}(H)<\operatorname{CI}(G)$.

4. Applications

Fuzzy set theory and intuitionistic fuzzy set theory are useful models for modelling problems in real life. But they may not be sufficient in modelling of indeterminate and inconsistent information encountered in real word. In cases where our information is incomplete or part of our information is incompatible with each other, depending on the features of the neutrosophic graphs, we can use them for modeling. However, neutrosophic graphs have many application in real life. For example, social network model, detection of a safe root for an Airline journey and military problems are application neutrosophic graph theory [4]. Note that to many applications that neutrosophic graphs have, obtaining topological indices can be a way to compare the different problems that are modeled by
neutrosophic graphs. For example, by obtaining different indicators for the two social networks Telegram and Whatsapp, we can analyze some of the features of the network and their impact.

To see more applications of the neutrosophic graphs, you can refer to [5-12].
Here we refer to one of the applications of the connectivity index for an example of [4].

4.1. Optimal flight path for weather emergency landing

In this application, we use the concept of rough neutrosophic digraph for decision-making in real-life problems [4]. There, provided a formula for obtaining the desired result, and after performing the calculations, reached the desired result.

Now, using the connectivity index for different paths, it is possible to predict the optimal path for flying in weather emergency landing.

Suppose $V=\{\operatorname{Chicago}(C H)$, Beijing $(B J)$, Lahore $(L H)$, Paris $(P A)$, Istanbul(IS) $\}$, be the set of cities under consideration and R an equivalence relation on V , where equivalence classes represent cities having same characteristics.

Assume that a flight Boeing 747 of Pakistan International Airways (PIA) travels to these cities. In case of bad weather, the flight will be directed to the city with good weather condition among the cities under consideration.

Let

$$
N=\{C H, 0.1,0.2,0.8),(B J, 0.9,0.7,0.5),(L H, 0.8,0.4,0.3),(P A, 0.6,0.5,0.4),(I S, 0.2,0.4,0.6)\}
$$

And

$$
\begin{aligned}
M= & \{((B J, C H), 0.1,0.1,0.3),((L H, C H), 0.1,0.2,0.3),((B J, L H), 0.1,0.3,0.2) \\
& ((I S, B J), 0.2,0.1,0.1),((P A, B J), 0.1,0.1,0.4),((P A, L H), 0.2,0.2,0.3)\} .
\end{aligned}
$$

Now, we obtain the connectivity index for all paths.
The direct path $B J_{-} C H$

$$
\operatorname{CONN}_{P}(B J, C H)=2(0.1)-0.1-0.3=-0.2,
$$

The direct path $B J_{_} L H$

$$
\operatorname{CONN}_{P}(B J, L H)=2(0.1)-0.3-0.2=-0.3,
$$

The direct path $\mathrm{LH}_{-} \mathrm{CH}$

$$
\operatorname{CONN}_{P}(L H, C H)=2(0.1)-0.2-0.3=-0.3
$$

The direct path $I S_{-} B J$

$$
\operatorname{CONN}_{P}(I S, B J)=2(0.2)-0.1-0.1=0.2,
$$

The direct path $P A_{-} B J$

$$
\operatorname{CONN}_{P}(B J, C H)=2(0.1)-0.1-0.4=-0.3,
$$

The direct path $P A_{-} L H$

$$
\operatorname{CONN}_{P}(P A, L H)=2(0.2)-0.2-0.3=-0.1
$$

Hence, as expected from [4], the weather condition between Beijing and Istanbul is good, and Boeing 747 can use this path in case of weather emergency. We were able to achieve the desired result with much shorter calculations. Also, if needed, we can calculate the connectivity index for indirect paths and finally for neutrosophic graph.

For connectivity index of G we have,

$$
\begin{aligned}
\operatorname{CI}(G)=\sum_{u_{i}, v_{j} \in V} & \left(T_{N}\left(u_{i}\right), I_{N}\left(u_{i}\right), F_{N}\left(u_{i}\right)\right)\left(T_{N}\left(v_{j}\right), I_{N}\left(v_{j}\right), F_{N}\left(v_{j}\right)\right) \times \operatorname{CONN}_{G}\left(u_{i}, v_{j}\right) \\
& =(0.63)(-0.2)+(0.76)(-0.3)+(0.4)(-0.3)+(1.09)(-0.3)+(0.8)(-0.1) \\
& +(0.76)(0.2)+(0.5)(-0.3)+(0.58)(-0.2)+(0.8)(-0.5)+(0.48)(-0.3) \\
& +(0.58)(-0.4)+(0.48)(-0.5) \\
& =-0.126-0.228-0.12-0.327-0.08+0.152-0.15-0.116-0.4-0.144 \\
& -0.232-0.24=-1.783
\end{aligned}
$$

As you can see, the negative numerical connectivity index was obtained, which means that our incorrect information was less than our correct information.

Conclusion

In this paper, for the first time, some topological indices for neutrosophic graphs are defined. This topic has a lot of work to do, and it can also be used for its results on various issues related to this category of graphs. In the rest of our research and in future articles, we will address more of these theorems and their applications.

Funding: "This research received no external funding"

Acknowledgments:

The authors thank the reviewers for their constructive feedback.
Conflicts of Interest: "The authors declare no conflict of interest."

References

1. Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338-353. [CrossRef].
2. Liangsong Huang, Yu Hu, Yuxia Li, P.K.Kishore Kumar, Dipak Koley \& Dey, A. A study of regular and irregular Neutrosophic Graphs with real life applications, journal mathematics, 2019, Doi: 10.3390/ math7060551.
3. Liu, J. On harmonic index and diameter of graphs. J. Appl. Math. Phys. 1, 5-6 (2013).
4. Akram Muhammad. Single-Valued Neutrosophic Graphs, Springer Nature Singapore Pte Ltd. 2018.
5. Abdel-Basset, M., Mohamed, R., Elhoseny, M., \& Chang, V. (2020). Evaluation framework for smart disaster response systems in uncertainty environment. Mechanical Systems and Signal Processing, 145, 106941.
6. Abdel-Basset, M., Ali, M., \& Atef, A. (2020). Uncertainty assessments of linear time-cost tradeoffs using neutrosophic set. Computers \& Industrial Engineering, 141, 106286.
7. Abdel-Basset, M., Ali, M., \& Atef, A. (2020). Resource levelling problem in construction projects under neutrosophic environment. The Journal of Supercomputing, 76(2), 964-988.
8. Abdel-Basset, M., Gamal, A., Son, L.H., \& Smarandache, F. (2020). A Bipolar Neutrosophic Multi Criteria Decision Making Framework for Professional Selection. Applied Sciences, 10(4), 1202.
9. Abdel-Basset, M., Mohamed, R., Zaied, A. E. N. H., Gamal, A., \& Smarandache, F. (2020). Solving the supply chain problem using the best-worst method based on a novel Plithogenic model. In Optimization Theory Based on Neutrosophic and Plithogenic Sets (pp. 1-19). Academic Press.
10. Broumi, S., Talea, M., Bakali, A., Smarandache, F. Single Valued Neutrosophic Graphs, Journal of New Theory, N 10, 2016, 86-101.
11. Broumi, S., Bakali, A., Talea, M., Smarandache, F. Isolated Single Valued Neutrosophic Graphs. Neutrosophic Sets and Systems, Vol. 11, 2016, 74-78.
12. Broumi, S., Dey, A., Bakali, A., Talea, M., Smarandache, F., Son, L.H., Koley, D. Uniform Single Valued Neutrosophic Graphs, Neutrosophic Sets and Systems, Vol. 17, 2017.
13. Broumi, S., Talea, M., Smarandache, F. and Bakali, A. Single Valued Neutrosophic Graphs: Degree, Order and Size, IEEE International Conference on Fuzzy Systems. 2016, 11, 84-102.
14. Atanassov, K. T. (1983). Intuitionistic fuzzy set. In Proceedings of the VII ITKP Session, Sofia, Bulgaria, 79 June 1983 (Deposed in Central Sci.-Techn. Library of Bulg. Acad. Of Sci., 1697/84) (in Bulgaria).
15. Smarandache, F. (1995). A unifying field in logics: Neutrosophic logic. Rehoboth: American Research Press.

Assessment of MCDM problems by TODIM using aggregated

weights

A. Sahaya Sudha ${ }^{1}$ Luiz Flavio Autran Monteiro Gomes ${ }^{2}$ and K.R. Vijayalakshmi ${ }^{3}$
${ }^{1}$ Assistant Professor, Dept. of Maths ,Nirmala College for Women, Coimbatore-18,India
sudha.dass@yahoo.com
${ }^{2}$ Professor, Ibmec University Center, Rio de Janeiro, Brazil. luiz.gomes@ibmec.edu.br
${ }^{3}$ Ph.D. Research Scholar, Nirmala College for Women Coimbatore- 18, India krviji71@gmail.com
Correspondence: krviji71@gmail.com

Abstract

Sustainability of sheep and goat production systems is a significant task for any organization that aims for long term goals. Housing and feeding selection for goat farming is the most important factor that should be considered before setting out the goat farm. The decision framework of housing selection should include environmental, social and human impact for the long term, rather than on short-term gains. In the selection process, various parameters are involved such as housing materials, area to prevent water stagnation, ventilation, enough space for the pen and run system, space for feeders and water troughs. Those parameters highlight the quality of housing in relation to aspects of traditional breeding provided by the organizations. However, the process of housing selection is often led by hands on experience which contains vague, ambiguous and uncertain decisions. To overcome this issue it is necessary to frame an efficient algorithm which could remove the entire barrier in the decision making process. In this paper we propose a neutrosophic multi-criteria decision making framework that combines the TODIM method with the SD- HNWA operator. The resulting multi-criteria decision analytical MCDM framework is then applied in selecting the best system in housing and feeding of goats at a mixed farming agrofarm in India. The proposed approach allows us to establish the neutrosophic based value function that measures the degree to which one alternative is superior to others by calculating accurate number of information in pair wise comparison in terms of gain and loss. The outcomes of the proposed method are compared with the use of the TOPSIS method to prove its efficiency and validate the results.

Keywords: MCDM, Hexagonal Neutrosophic numbers, Similarity Degree, Aggregated Weights, TODIM, TOPSIS.

1. Introduction

Live stock management is considered as one of the most important study topic as it plays a vital role in self employment for the younger generation with higher level of educational qualifications in a country like India, with a traditionally high rate of population growth. It is also considered as an

[^16]employment intervention strategy for the younger generation for the self employment of the youth. Goats are among the main meat producing animal in India where it has huge domestic demand. As a result, goat production system in India is shifting to intensive system of management.The goat rearing using improved management practices concentrates on maximization of the returns from the view of the entrepreneur.

However, without any systematic study it is difficult to assess the economic viability of the goat farming, as the whole system is built upon nature. The good management practice in livestock management is the key for the resilience, social, economical and ecological sustainability and preservation of bio-diversity in pastoral eco-systems, especially in the rural areas where goat production plays a relevant role in the livehood for farmers. For example, Shalander [25] has proposed a multi-disciplinary project on transfer of technology for sustainable goat production in which he indicates that lack of technical knowledge in housing and feeding management system per capita income in goat rearing is not being up to the expected margin of the goat farmers. Biswas et al. [9] shows that the growth rate of goat feeder with supplements by additional concentrate with grazing was more when compared with the normal grazing goats.

In the real world, just like other decision making problem such as supplier selection or candidate selection, the challenge of uncertainty in the process of housing and feeding selection in live-stock management is inevitable owing to the fact that the consequences of events are not precisely known. In addition human judgmental analysis also contributes to its intricacy in the decision making analysis. To overcome this vagueness and intricacy in decision making this study aims to propose an integrated framework under neutrosophic environment to evaluate alternative choices in terms of management system of housing and feeding.

In this research the TODIM and TOPSIS methods will be applied in the processing of selecting such alternatives. The TODIM method (an acronym for Interactive Multi-Criteria Decision Making in Portuguese) is a discrete multi-criteria method founded on prospect theory which underlies a psychological theory in it, while in practice all other discrete multi-criteria methods assume that the decision maker always looks for the solution corresponding to the maximum of some global measure. In this way, the method is based on a descriptive theory, proved by empirical evidence, of how people effectively make decisions when they are under risk. The mathematical structure of TODIM allows measuring the degree to which one alternative is superior to others and then ranking the alternatives by computing the global value of each alternative. That structure is embedded in the paradigm of prospect theory. Gomes and Lima [18] first applied TODIM in its classical formulation as a tool for ranking projects based on the environmental impacts of alternative road standards in Brazil. A number of other applications of TODIM has appeared in the literature since then as it is commented in the section 2.2. Similarly, the TOPSIS method [23] is used to weight and compare alternatives against a set of criteria and then select the best one. The application of both TODIM and TOPSIS are then compared one against the other. The novelty of this framework lies in studying the behavioral risk analysis under neutrosophic environment as pointed out in the above paragraph.

The main contribution of this article is as follows

- A framework is designed that emphasizes the importance of shelter and feeding system for sustainable and productive goat farming.
- Two well established Multi-Criteria Decision Making (MCDM) methods dealing with imprecise information are applied to a quite important problem in India and compared.
- Relevant criteria and sub-criteria are defined for the alternatives to maintain accuracy and consistency in selecting the alternatives.

2. Literature review

2.1. Commercial goat farming

Raising animals lie upon a set of activities that are dependent upon biotic and socio-economic factors. Choudhary et al. [35] highlights that India is the rich in its repository of goat genetic resource with 28 recognized breeds with higher proportion of non-descriptive or mixed breeds. A study was undertaken by Patil et al. [28] to compare the grazing system and stall feeding system in goats in Gulbarga District in Karnataka which highlighted that in stall feeding system of goat rearing, goats are found healthier and weight gain was much faster than grazing system. Kumar [26] investigated on commercial goat farming in India and presented that planned management and technology based system would help in increasing the goat productivity in goat farming and bridge the demand-supply gap. Argüello [8] has presented a review on trends in goat research which talks about the pathology, reproduction, milk and cheese production and quality, production systems, nutrition, hair production, drugs knowledge and meat production.

2.2. Multi Criteria Decision Making

Zadeh [42] put forward the concept of fuzzy sets in 1965. Later the theory of fuzzy sets gradually developed in the further years. The theory of 'intuitionistic fuzzy set' [IFS] was proposed by Atanassov [10] in 1986. Intuitionistic fuzzy set [IFS] was extended to 'Interval intuitionistic fuzzy sets' [IIFS] by Atanassov and Gargov [11]. A number of researchers have contributed their research to the study of MCDM and a commendable accomplishment has been obtained in fuzzy sets. Smarandache [36] proposed neutrosophic set based on Neutrosophy in 1998. The neutrosophic theory takes into account the dynamic features of all limitations to handle uncertain, indeterminate situations. Abdel-Basset et al. [2] proposed uncertainty assessments of linear time-cost tradeoffs using neutrosophic set considering the neutrosophic activity duration of time-cost tradeoffs in project management such as the tradeoffs between the project completion time and the cost and the uncertain conditions of environment of projects. Abdel-Basset [6] developed and applied a novel decision making model for sustainable supply chain under uncertainty environment.

Wang et al. [38] developed 'Single Valued Neutrosophic Set' (SVNS) and proposed various properties of set-theoretic operators to deal with uncertain, indeterminate and inconsistent data. Ye [40] proposed trapezoidal neutrosophic number an extension from SVNS and trapezoidal fuzzy number and defined its score and accuracy function with aggregating operators in [41]. Smarandache [37] introduced the plithogenic set as generalization of crisp, fuzzy, intuitionistic fuzzy and neutrosophic sets whose elements are characterized by many attribute values which have
corresponding contradiction degree values between each attribute value and the dominant attribute value. Abdel-Basset [1] developed an evaluation framework based on plithogenic set theory for smart disaster response systems in uncertainty environment that deals more effectively with disaster by the effective communication of the information provided by the sensors with the response teams.

Decision making situations in real life are much complicated when the decision makers (DMs) have to fit in the best alternatives with respect to the given multiple criteria. Biswas et al. [14] established TOPSIS strategy for (MCDM) in trapezoidal neutrosophic environment using the maximum deviation strategy and also developed an optimization model to obtain the weight of the attributes which are incompletely known or completely unknown. Abdel-Basset [5] proposed a decision making problem to solve a supply chain problem of inventory location using the best-worst method based on a novel plithogenic model.

Pramanik and Mallick [30] proposed a VIKOR method for group Decision Making Problem involving trapezoidal neutrosophic number and they adapted a problem of Investment Company from [16] and provided a comparative analysis. Mondal and Pramanik [29] proposed MCDM approach for teacher recruitment in higher education with unknown weights based on score and accuracy function, hybrid score and accuracy functions under simplified neutrosophic environment. Biswas et al. $[12,13]$ developed a new methodology for neutrosophic MCDM with unknown weight information and a Cosine similarity measure based MCDM with trapezoidal fuzzy neutrosophic numbers. Abdel-Basset [3] designed resource levelling problem to minimize the cost of daily resource fluctuation in construction projects under neutrosophic environment to overcome the ambiguity caused by real world problems.

Based on observations of human behaviour, studies have found that human decision making is not completely rational under practical decision situations. After undertaking a number of surveys and experiments, Kahneman and Tversky [24] proposed Prospect theory partially the subject of the Nobel Prize for Economics awarded in 2002, which belongs to the field of cognitive psychology and describes how people make decision under conditions of risk.

Gomes and Lima [20] used the TODIM method in order to show how human judgements in practical multi-criteria analysis fit in to the framework of Prospect Theory and additive difference model. Gomes et al. [19] used the classical TODIM formulation to recommend alternatives for destination of natural gas reserves recently discovered in Santos Basin in Brazil. Gomes et al. [22] proposed a behavioural multi-criteria decision analysis by using the TODIM method with criteria interactions. Gomes and Rangel [21] developed a novel approach using TODIM method on rental evaluation of residential properties carried out together with real estate agents in the city of Volta Redonda, Brazil which has made many successful applications in selection problems. Zindani et al. [44] proposed a material selection approach using the TODIM method and applied it to find the best suited materials for two products, engine flywheel and metallic gear.Duarte [7] proposed the use of multi criteria decision analysis to valuation of six Brazilian banks by applying the fuzzy TODIM method.

Sang and Liu [34] developed the IT2 FSs-based TODIM method to green supplier selection for automobile manufacturers by introducing a new distance computing method. Wang et al. [39] proposed a likehood-based TODIM approach on multi-hesitant fuzzy linguistic information (MHFLSs) which is an extension of (HFLSs) for selection and evaluation of contractors in logistics outsourcing. Chakraborty and Chakraborty [15] used TODIM in identifying the most attractive and affordable under-construction housing project in the city of Kolkata in India. Rangel et al. [32] used TODIM a multi-criteria decision aiding method in the evaluation of the various types of access to the broadband internet available in Volta Redonda, Brazil. Candidate selection is a significant task for any organization that aims to select the most appropriate candidates who lead the firm forward through his strong organizational skill. To overcome this tough task Abdel-Basset [4] proposed a bipolar neutrosophic multi criteria decision making framework for professional selection that employs a collection of neutrosophic analytical network process and TOPSIS under bipolar neutrosophic numbers.

Lourenzutti and Krohling [27] combined TOPSIS and TODIM methods to propose the Hellinger distance in MCDM which serves as an illustration to both methods. Fan et al. [17] proposed an extension of TODIM (H-TODIM) to solve the hybrid MCDM problem in which attribute values have three forms crisp number, interval number and fuzzy number. Ren et al. [33] proposed a Pythagorean fuzzy TODIM approach to analyse MCDM problem. Qin et al. [31] proposed generalizing of the TODIM method under triangular intuitionistic fuzzy environment. Zhang et al. [43] proposed an extended multiple attribute group decision making based on the TODIM method to solve the MCDM problem in which the attribute values are expressed with neutrosophic number.

3. Preliminaries

3.1. Hexagonal Neutrosophic Weighted Aggregated Operator (HNWA)

Let $\widetilde{A}_{1}=\left(a_{1}, b_{1}, c_{1}, d_{1}, e_{1}, f_{1}\right),\left(l_{1}, m_{1}, n_{1}, p_{1}, q_{1}, r_{1}\right),\left(u_{1}, v_{1}, w_{1}, x_{1}, y_{1}, z_{1}\right)$ be a collection of
hexagonal neutrosophic numbers, then the HNWA: $\Omega^{n} \rightarrow \Omega$ is defined as follows

$$
\operatorname{HNWA}\left(\widetilde{A}_{1}, \widetilde{A}_{2}, \ldots \ldots \ldots . \widetilde{A}_{n}\right)=\sum_{j=1}^{n} \omega_{j} \widetilde{A}_{j}
$$

3.2. Distance between two Hexagonal Neutrosophic numbers

$$
\text { Let } \widetilde{A}_{1}=\left(a_{1}, b_{1}, c_{1}, d_{1}, e_{1}, f_{1}\right),\left(l_{1}, m_{1}, n_{1}, p_{1}, q_{1}, r_{1}\right),\left(u_{1}, v_{1}, w_{1}, x_{1}, y_{1}, z_{1}\right)
$$

$\widetilde{A}_{2}=\left(a_{2}, b_{2}, c_{2}, d_{2}, e_{2}, f_{2}\right),\left(l_{2}, m_{2}, n_{2}, p_{2}, q_{2}, r_{2}\right),\left(u_{2}, v_{2}, w_{2}, x_{2}, y_{2}, z_{2}\right)$ be two hexagonal neutrosophic numbers then the weighted distance between \widetilde{A}_{1} and \widetilde{A}_{2} is defined as follows.

$$
d\left(\widetilde{A}_{1}, \widetilde{A}_{2}\right)=\frac{1}{18}\left(\begin{array}{l}
\left|a_{1}-a_{2}\right|+\left|b_{1}-b_{2}\right|+\left|c_{1}-c_{2}\right|+\left|d_{1}-d_{2}\right|+\left|e_{1}-e_{2}\right|+\left|f_{1}-f_{2}\right|+ \tag{2}\\
\left|l_{1}-l_{2}\right|+\left|m_{1}-m_{2}\right|+\left|n_{1}-n_{2}\right|+\left|p_{1}-p_{2}\right|+\left|q_{1}-q_{2}\right|+\left|r_{1}-r_{2}\right|+ \\
\left|u_{1}-u_{2}\right|+\left|v_{1}-v_{2}\right|+\left|w_{1}-w_{2}\right|+\left|x_{1}-x_{2}\right|+\left|y_{1}-y_{2}\right|+\left|z_{1}-z_{2}\right|
\end{array}\right)-
$$

3.3. Similarity Degree between two Hexagonal Neutrosophic numbers

$$
\text { Let } \begin{aligned}
& \widetilde{A}_{1}=\left[\left(a_{1}, b_{1}, c_{1}, d_{1}, e_{1}, f_{1}\right),\left(l_{1}, m_{1}, n_{1}, p_{1}, q_{1}, r_{1}\right),\left(u_{1}, v_{1}, w_{1}, x_{1}, y_{1}, z_{1}\right)\right] \text { and } \\
& \qquad \widetilde{A}_{2}=\left[\left(a_{2}, b_{2}, c_{2}, d_{2}, e_{2}, f_{2}\right),\left(l_{2}, m_{2}, n_{2}, p_{2}, q_{2}, r_{2}\right),\left(u_{2}, v_{2}, w_{2}, x_{2}, y_{2}, z_{2}\right)\right]
\end{aligned}
$$

be two hexagonal neutrosophic numbers and let
$\tilde{A}_{2}^{C}=\left[\left(u_{2}, v_{2}, w_{2}, x_{2}, y_{2}, z_{2}\right),\left(1-l_{2}, 1-m_{2}, 1-n_{2}, 1-p_{2}, 1-q_{2}, 1-r_{2}\right),\left(a_{2}, b_{2}, c_{2}, d_{2}, e_{2}, f_{2}\right)\right]$ be the complement of \widetilde{A}_{2} then the Degree of Similarity between \widetilde{A}_{1} and \widetilde{A}_{2} is defined as follows.

$$
\begin{equation*}
\theta\left(\widetilde{A}_{1}, \widetilde{A}_{2}\right)=\left\{\frac{d\left(\widetilde{A}_{1}, \widetilde{A}_{2}^{C}\right)}{d\left(\widetilde{A}_{1}, \widetilde{A}_{2}\right)+d\left(\widetilde{A}_{1}, \widetilde{A}_{2}^{C}\right)}\right\} \tag{3}
\end{equation*}
$$

3.4. Hexagonal Neutrosophic Decision Matrix

Let $\widetilde{R}=\left(\widetilde{r}_{i j}\right)_{m \times n}$.If all $\widetilde{r}_{i j}$ are hexagonal neutrosophic number then

$$
\widetilde{R}=\widetilde{r}_{i j}=\left[\left(\widetilde{a}_{i j}, \widetilde{b}_{i j}, \widetilde{c}_{i j}, \widetilde{d}_{i j}, \widetilde{e}_{i j}, \widetilde{f}_{i j}\right),\left(\widetilde{l}_{i j}, \widetilde{m}_{i j}, \tilde{n}_{i j}, \tilde{p}_{i j}, \widetilde{q}_{i j}, \widetilde{r}_{i j}\right),\left(\tilde{u}_{i j}, \tilde{v}_{i j}, \widetilde{w}_{i j}, \widetilde{x}_{i j}, \widetilde{y}_{i j}, \widetilde{z}_{i j}\right)\right]
$$

is a hexagonal neutrosophic decision matrix.

3.5. Aggregated Hexagonal Neutrosophic Decision Matrix

Let $\widetilde{R}^{(k)}=\left(\widetilde{r}_{i j}^{(k)}\right)_{m \times n}(k=1,2,3, \ldots . . t)$ be a‘t' neutrosophic decision matrix evaluated by the decision makers $D M_{d}(d=1,2,3 \ldots m)$ respectively, then the aggregated hexagonal neutrosophic decision matrix $\widetilde{R}=\left(\widetilde{r}_{i j}\right)_{m \times n}$ is defined as

$$
\begin{aligned}
& \widetilde{r}_{i j}=\left[\left(\widetilde{a}_{i j}, \tilde{b}_{i j}, \widetilde{c}_{i j}, \tilde{d}_{i j}, \widetilde{e}_{i j}, \tilde{f}_{i j}\right),\left(\tilde{i}_{i j}, \widetilde{m}_{i j}, \widetilde{n}_{i j}, \widetilde{p}_{i j}, \widetilde{q}_{i j}, \widetilde{r}_{i j}\right),\left(\widetilde{u}_{i j}, \widetilde{v}_{i j}, \widetilde{w}_{i j}, \widetilde{x}_{i j}, \tilde{y}_{i j}, \widetilde{z}_{i j}\right)\right] \\
& (i=1,2,3 \ldots m),(j=1,2 \ldots n) \quad \text { where } \tilde{r}=\frac{1}{t} \sum_{k=1}^{t} \widetilde{r}_{i j}^{(k)}
\end{aligned}
$$

3.6. Degree of Similarity

Let $\widetilde{R}^{(k)}=\left(\widetilde{r}_{i j}^{(k)}\right)_{m \times n}(k=1,2,3, \ldots . . . t)$ be a't' neutrosophic decision matrix and $\widetilde{R}^{\prime}=\left(\widetilde{r}_{i j}^{\prime}\right)_{m \times n}$ be their aggregated hexagonal neutrosophic decision matrix then

$$
\begin{equation*}
\theta\left(\widetilde{R}^{(k)}, \widetilde{R}^{\prime}\right)=\frac{1}{m \times n} \sum_{i=1}^{m} \sum_{j=1}^{n} \theta\left(\widetilde{r}_{i j}^{(k)}, \widetilde{r}_{i j}^{\prime}\right)- \tag{4}
\end{equation*}
$$

is called the degree of similarity between $\widetilde{R}^{(k)}$ and \widetilde{R}^{\prime}

3.7. Determine the weight of experts using Degree of Similarity:

If the hexagonal neutrosophic decision matrix $\widetilde{R}^{(k)}=\left(\widetilde{r}_{i j}{ }^{(k)}\right)_{m \times n}(k=, 1,2, \ldots \ldots . t)$ are non-identical,then the weight vectors of the experts are expressed as follows.

$$
w^{(k)}=\frac{\left(\theta\left(\widetilde{R}^{(k)}, \widetilde{R}\right)\right)^{\alpha}}{\sum_{k=1}^{t}\left(\theta\left(\widetilde{R}^{(k)}, \widetilde{R}\right)\right)^{\alpha}}-------------------(5)
$$

4. A Comparative Analysis of TODIM and TOPSIS Methods.

4.1. TODIM

To solve the MCDM problem with hexagonal neutrosophic information's we propose a hexagonal neutrosophic aggregation TODIM method based on prospect theory under the decision maker's behavioral risk and arithmetic mean operator.
Let $A_{i}=\left(A_{1}, A_{2}, \ldots . A_{m}\right)$ be the alternatives, and $C_{j}=\left\{C_{1}, C_{2}, \ldots \ldots ., C_{n}\right\}$ be the criteria.

Let $w=\left(w_{1}, w_{2}, \ldots . w_{n}\right)$ be the weights of $C_{j}, 0 \leq w_{j} \leq 1$, and $\sum_{j=1}^{n} w_{j}=1 . \quad$ Let, $\widetilde{R}_{k}=\left(\widetilde{r}_{i j}(k)\right)_{m \times n}=\left(T_{i j}, I_{i j}, F_{i j}\right)_{m \times n}=\left(\widetilde{a}_{\mathrm{ij}}, \widetilde{b}_{\mathrm{ij}}, \widetilde{c}_{\mathrm{ij}}, \widetilde{d}_{\mathrm{ij}}, \widetilde{e}_{\mathrm{ij}}, \widetilde{f}_{\mathrm{ij}}\right),\left(\widetilde{l}_{\mathrm{ij}}, \widetilde{m}_{\mathrm{ij}}, \widetilde{n}_{i j}, \widetilde{p}_{\mathrm{ij}}, \widetilde{q}_{\mathrm{ij}}, \widetilde{r}_{\mathrm{ij}}\right),\left(\widetilde{u}_{i j}, \widetilde{v}_{\mathrm{ij}}, \widetilde{w}_{\mathrm{ij}}, \widetilde{x}_{\mathrm{ij}}, \widetilde{y}_{\mathrm{ij}}, \widetilde{z}_{\mathrm{ij}}\right)$ be a hexagonal neutrosophic decision matrix, where $\widetilde{r}_{i j}=\left(T_{i j}, I_{i j}, F_{i j}\right)$ is an attribute value given by the experts for the alternatives A_{i} with the criteria $C_{j}, T_{i j} \in[0,1], I_{i j} \in[0,1], F_{i j} \in[0,1]$,

$$
0 \leq T_{i j}+I_{i j}+F_{i j} \leq 3 \quad(i=1,2, \ldots \ldots, m),(j=1,2, \ldots, n)
$$

The proposed method is presented as follows.

Stage 1.

Step 1. Construct a decision matrix of dimension $m \times n$ by using the information provided by the decision maker for the alternatives A_{i} under the criteria C_{j}. The $m^{t h}$ hexagonal neutrosophic decision matrix denoted by the decision maker is defined as follows.

$$
\widetilde{R}_{k}=\left[\begin{array}{ccccc}
\left(a_{11}, b_{11}, c_{11}, d_{11}, e_{11}, f_{11}\right) & & & \left(a_{1 \mathrm{n}}, b_{1 \mathrm{n}}, c_{1 \mathrm{n}}, d_{1 \mathrm{n}}, e_{1 \mathrm{n}}, f_{1 \mathrm{n}}\right) \\
\left.a_{11}, m_{11}, n_{11}, p_{11}, q_{11}, r_{11}\right) & \ldots & \ldots & \ldots & \left.a_{1 \mathrm{n}}, m_{1 \mathrm{n}}, n_{1 \mathrm{n}}, p_{1 \mathrm{n}}, q_{1 \mathrm{n}}, r_{1 \mathrm{n}}\right) \\
\left(u_{11}, v_{11}, w_{11}, x_{11}, y_{11}, z_{11}\right) & & & & \left(u_{1 \mathrm{n}}, v_{1 \mathrm{n}}, w_{1 \mathrm{ln}}, x_{1 \mathrm{n}}, y_{1 \mathrm{n}}, z_{\mathrm{ln}}\right) \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\left(a_{\mathrm{m} 1}, b_{\mathrm{m} 1}, c_{\mathrm{m} 1}, d_{\mathrm{m} 1}, e_{\mathrm{m} 1}, f_{\mathrm{m} 1}\right) & \ldots & \vdots \\
\left.a_{\mathrm{m} 1}, m_{\mathrm{m} 1}, n_{\mathrm{m} 1}, p_{\mathrm{m} 1}, q_{\mathrm{m} 1}, r_{\mathrm{m} 1}\right) & \ldots & \ldots & \ldots & \left(a_{\mathrm{mn}}, b_{\mathrm{mn}}, c_{\mathrm{mn}}, d_{\mathrm{m}}, e_{\mathrm{mn}}, f_{\mathrm{mn}}\right) \\
\left(u_{\mathrm{m} 1}, v_{\mathrm{m} 1}, w_{\mathrm{m} 1}, x_{\mathrm{m} 1}, y_{\mathrm{m} 1}, z_{\mathrm{m} 1}\right) & & & & \left(u_{\mathrm{mn}}, v_{\mathrm{mn}}, w_{\mathrm{mn}}, x_{\mathrm{mn}}, y_{\mathrm{mn}}, z_{\mathrm{mn}}\right)
\end{array}\right]
$$

Step 2: Find the aggregated hexagonal neutrosophic decision matrix of all the three decision makers..The aggregated hexagonal neutrosophic decision matrix $\widetilde{R}^{\prime}=\left(\widetilde{r}_{i j}^{\prime}\right)_{m \times n}$ is defined as given below.

$$
\begin{aligned}
& \widetilde{r}_{i j}^{\prime}=\left[\left(\bar{a}_{i j}^{\prime}, \bar{b}_{i j}^{\prime}, \bar{c}_{i j}^{\prime}, \bar{d}_{i j}^{\prime}, \bar{e}_{i j}^{\prime}, \bar{f}_{i j}^{\prime}\right),\left(\bar{l}_{i j}^{\prime}, \bar{m}_{i j}^{\prime}, \bar{n}_{i j}^{\prime}, \bar{p}_{i j}^{\prime}, \bar{q}_{i j}^{\prime}, \bar{r}_{i j}^{\prime}\right),\left(\bar{u}_{i j}^{\prime}, \bar{v}_{i j}^{\prime}, \bar{w}_{i j}^{\prime}, \bar{x}_{i j}^{\prime}, \bar{y}_{i j}^{\prime}, \bar{z}_{i j}^{\prime}\right)\right] \\
& (i=1,2,3 \ldots, m),(j=1,2 \ldots, n) \\
& \text { where } \bar{r}^{\prime}=\frac{1}{t} \sum_{k=1}^{t} \widetilde{r}_{i j}^{(k)}
\end{aligned}
$$

Step 3. Calculate the normalized hamming distance for each ($\left.\widetilde{R}, \widetilde{R}^{\prime}\right)$ using the equation (2)

Step 4. Calculate the Degree of Similarity between \bar{A}_{1} and \bar{A}_{2}^{\prime} using equation (3) and (4)

Step 5. Calculate the weight vector $w^{(k)}$ using equation (5)

Step 6. Using equation (1) calculate HNWA operator

Step 7. Calculate the score value using the equation
$S(A)=\frac{1}{3}\left[2+\frac{a+b+c+d+e+f}{6}-\frac{l+m+n+p+q+r}{6}-\frac{u+v+w+x+y+z}{6}\right]----(6)$
Step 8. Calculate the normalized hamming distance for the aggregated decision matrix using (2)
Step 9. When the aggregated matrix is brought into expression (7), matrix $\rho\left(A_{i}, A_{p}\right)$ will be derived.The function $\rho\left(A_{i}, A_{p}\right)$ is used to represent the degree to which alternative i is better than j . $\varepsilon_{j}\left(A_{i}, A_{p}\right)$ is the sum of the sub-function where $j=1 \ldots, n$. Sub-function $\varepsilon_{j}\left(A_{i}, A_{p}\right)$ indicates the degree to which i is better than j when a particular criteria c is given

$$
\varepsilon_{j}\left(A_{i}, A_{p}\right)= \begin{cases}\sqrt{\frac{w_{j r} d\left(\widetilde{r}_{i j}-\widetilde{r}_{p j}\right)}{\sum_{j=1}^{n} w_{j r}}} & \text { if } \quad \widetilde{r}_{i j}-\widetilde{r}_{p j} \succ 0 \tag{7}\\ \frac{\text { if }}{v} \sqrt{\frac{-1}{\frac{\sum_{j=1}^{n} w_{j r} d\left(\widetilde{r}_{i j}-\widetilde{r}_{p j}\right)}{w_{j r}}}} \quad & \text { if } \quad \widetilde{r}_{p j}=0\end{cases}
$$

The parameter v shows the dilution factor of the loss. If $\widetilde{r}_{i j}-\widetilde{r}_{p j} \succ 0$ then $\varepsilon_{j}\left(A_{i}, A_{p}\right)$ represents the gain and if $\widetilde{r}_{i j}-\widetilde{r}_{p j} \prec 0$ then $\varepsilon_{j}\left(A_{i}, A_{p}\right)$ represents the loss.

Step 10. On the basics of the above equation the overall dominance degree is obtained as

$$
\rho_{x}=\sum_{j=1}^{n} \varepsilon_{j}\left(A_{i}, A_{p}\right),(i, p=1,2, \ldots . m)
$$

Step 11. Calculate the aggregated dominance matrix

$$
\begin{equation*}
\rho\left(A_{i}, A_{p}\right)=\sum_{x=1}^{n} \lambda_{x} \rho_{x}\left(A_{i}, A_{p}\right),(i, p=1,2, \ldots m)- \tag{8}
\end{equation*}
$$

Step 12. Calculate the overall dominance degree matrix $\rho=\left[\rho\left(A_{i}, A_{p}\right)\right]_{m \times n}$
Step 13. Then the overall value of each A_{i} can be calculated using the equation

$$
\rho\left(A_{i}\right)=\frac{\sum_{p=1}^{m} \rho\left(A_{i}, A_{p}\right)-\min _{i}\left\{\sum_{p=1}^{m} \rho\left(A_{i}, A_{p}\right)\right\}}{\max _{i}\left\{\sum_{p=1}^{m} \rho\left(A_{i}, A_{p}\right)\right\}-\min _{i}\left\{\sum_{p=1}^{m} \rho\left(A_{i}, A_{p}\right)\right\}}
$$

Step 14. Rank all alternatives and select the most desirable one in accordance with $\rho\left(A_{i}\right)$. The alternative with maximum value is the best one.

4.2. TOPSIS

Stage 2: Applying the information's derived from step 1 to 6 in stage 1, move on to step 7 of stage 2
Step 7: Let B_{1} be the set of benefit attributes and B_{2} be the set of cost attributes, of the alternatives respectively. Let B^{+}be the hexagonal neutrosophic positive ideal solution and B^{-}be the hexagonal neutrosophic negative ideal solution. Then B^{+}and B^{-}are defined as follows.

$$
\begin{aligned}
& B^{+}=\left[\left\langle r_{j}^{+}=(1,1,1,1,1,1),(0,0,0,0,0,0),(0,0,0,0,0,0)\right\rangle j \in B_{1}\right]\left[\left\langle r_{j}^{+}=(0,0,0,0,0,0),(1,1,1,1,1,1),(1,1,1,1,1,1)\right\rangle j \in B_{2}\right] \\
& \left.\left.B^{-}=\left[\left\langle r_{j}^{-}=(0,0,0,0,0,0),(1,1,1,1,1,1),(1,1,1,1,1,1)\right\rangle j \in B_{1}\right]\right\}\left\langle r_{j}^{-}=,(1,1,1,1,1,1),(0,0,0,0,0,0),(0,0,0,0,0,0)\right\rangle j \in B_{2}\right]
\end{aligned}
$$

Step 8: Calculate the separation measures, S_{i}^{+}and S_{i}^{-}of each alternative from the hexagonal neutrosophic positive ideal solution and the hexagonal neutrosophic negative ideal solution as follows.

$$
\begin{align*}
& S_{i}^{+}=\frac{1}{n} \sum_{j=1}^{n} w_{j} d\left(r_{i j}, r_{j}^{+}\right)- \tag{10}\\
& S_{i}^{-}=\frac{1}{n} \sum_{j=1}^{n} w_{j} d\left(r_{i j}, r_{j}^{-}\right)- \tag{11}
\end{align*}
$$

Step 9: Calculate the relative closeness coefficient of the hexagonal neutrosophic ideal solution. The relative closeness coefficient of the alternative A_{i} is given as follows.

$$
\begin{equation*}
C_{i}=\frac{S_{i}^{-}}{S_{i}^{+}+S_{i}^{-}}, 0 \leq C_{i} \leq 1- \tag{12}
\end{equation*}
$$

Step 10: Make a decision for selecting the preference alternative by ranking the closeness coefficient in the descending order of C_{i} to select the best choice.

5. Case Analysis:

In this section, a case study is represented for the proposed multi-criteria group decision-making method. This is related to assessing the best system of housing and feeding of goats in the existing

[^17]Goat farm rearing in which goats grow healthier, gain better body weight, and are safer on health grounds. A group of three decision-makers ($\mathrm{D}_{1}, \mathrm{D}_{2}$ and D_{3}) are requested to assess the four alternatives $\left(\mathrm{A}_{1}\right.$ to $\left.\mathrm{A}_{4}\right)$ with respect to the four criteria's, $\left(\mathrm{C}_{1}\right.$ to $\left.\mathrm{C}_{4}\right)$ defined by this group of decision-makers to appraise the alternatives. These criteria and their definitions are represented as follows:

Alternatives:

A_{1} - Stall feeding system with normal flooring (intensive system)
A_{2} - Grazing system (extensive system)
A_{3} - Elevated floor shed with rotational grazing system
A_{4} - A part of both extensive and intensive grazing system
The consideration of the criteria and sub criteria's after a brief study on the previous literature review and discussion with the experts are stated below.

Criteria:

$C_{1}-\quad$ Floor space requirements
(Covered area, Open area, Ventilation, Bedding, Confinement, Site location)
C_{2} - Feeding (Feeder) and watering space requirement
(Feeder size, Fodder type, Quantity, Food Schedule, immunization feeder, feed storage room)
C_{3} - Maintenance of health and sanitization
(Nutritional ratio, Vaccination, Climate pattern, Temperature, Supplementary feeding, Cleanliness)

C_{4} - Productivity

(Capital, Typologies of farms, Technology integration, Agro climatic characteristics, Market value, Place of selling)
A questionnaire is prepared and handed over to the domain experts. These experts further graded the degree of the statement as given below.

Statement	Very high	High	Fair	Average	Medium	Satisfactory	Low	Very low	Not sure
Score	0.9	0.8	0.7	0.6	0.5	0.4	0.3	0.2	0.1

Table 5.1. Rating scale used by experts

Solution.

Step 1. The judgment of the three decision makers for the alternatives A_{i} under the four criteria were presented using hexagonal neutrosophic number as shown in Table 5.2 .

	Criteria				
DMs	Alternatives	C_{1}	C_{2}	C_{3}	C_{4}
	A_{1}	$\begin{aligned} & ([(., 1,2,3,4,5,5,6), \\ & ((1,1,1,1,1,1,1), \\ & (.5,6,7,8,9,9) \end{aligned}$	$\begin{aligned} & ([(., 1,2,3,4,5,5,6), \\ & ((1,1,1,1,1,1,1), \\ & (.5,6,7,8,9,9) \end{aligned}$	$\begin{aligned} & {[(., 8,8,8,8,8,9,9,9),} \\ & \left(\begin{array}{l} (, 7,4,5,6,7,7,7), \\ (.1,1,1,1,1,1,1,1)] \end{array}\right. \end{aligned}$	$\begin{aligned} & {[(2,3,4,5,6,6,7),} \\ & (., 1,2,2,3,3,3), \\ & (.5,5,6,6,7,7), \end{aligned}$

D_{1}	A_{2}	$\begin{aligned} & {[(.3, .4, .5, .6, .7, .8),} \\ & (.2, .3, .4, .5,5, .6), \\ & (.6,6, .7, .8, .8, .8)] \end{aligned}$	$\begin{aligned} & {[(.2, .2, .2, .2, .2, .2),} \\ & (.5, .6, .7, .8, .8, .8), \\ & (.6, .6, .7,7, .8, .8)] \end{aligned}$	$\begin{aligned} & \hline[(.8,8,8,8, .9, .9, .9), \\ & (.2,3,3,3,4, .5), \\ & (.1, .1,2, .2, .2, .2)] \end{aligned}$	$\begin{aligned} & {[(.2, .3, .4, .5,6, .7),} \\ & (.1,2,2, .3,3,3), \\ & (.5,5, .6, .6,7,7,7)] \end{aligned}$
	A_{3}	$\begin{aligned} & {[(.4, .5, .6, .7, .8, .9),} \\ & (.2,3,4, .6,7, .8), \\ & (.2, .2,2,2,2, .2, .2)] \end{aligned}$	$\begin{aligned} & {[(.1, .1 .1, .1, .1, .1)} \\ & ,(.3,4, .5, .6, .7, .8) \\ & (.4, .4, .5, .5, .6, .6)] \end{aligned}$	$\begin{aligned} & {[(.1, .2, .3, .5,6,6,7),} \\ & (.3,3,4, .5, .8, .9) \\ & (.5,5,5,5,6,6,6,6)] \end{aligned}$	$\begin{aligned} & {[(.9, .9, .9, .9, .9, .9)} \\ & (.1,2,3,4, .5, .6) \\ & (.3, .4,4, .5, .6, .7)] \end{aligned}$
	A_{4}	$\begin{aligned} & {[(.1, .2,2,2,3, .3, .3)} \\ & ,(.2, .2,3,3,5, .5) \\ & (.4, .5,6, .7, .8, .9,)] \end{aligned}$	$\begin{aligned} & {[(.3, .3, .4, .4, .4, .5),} \\ & (.1,2, .2, .3, .4, .4) \\ & (.5, .5, .5, .6, .6, .6)] \end{aligned}$	$\begin{gathered} {[(.1, .2, .3, .4, .5, .6)} \\ ,(.3, .3, .4,6, .6, .6) \\ (.3, .4, .5, .5, .6, .6)] \end{gathered}$	$\begin{aligned} & {[(.6, .6, .6, .7, .7, .8)} \\ & (.5, .5, .5,6,6,6,6) \\ & (.2,2, .3,3,3, .3, .3)] \end{aligned}$
D_{2}	A_{1}	$\begin{aligned} & {[(.6, .7, .8, .9, .9, .9),} \\ & (.1,2,3,3, .4, ., 5) \\ & (.3, .4,4,4, .5, .5)] \end{aligned}$	$\begin{aligned} & {[(.3,4, .5, .6, .7, .8)} \\ & ,(.2, .3, .4, .5, .6, .7) \\ & (.4, .5, .6, .7, .8, .9)] \end{aligned}$	$\begin{aligned} & {[(.3, .4, .4, .4, .4, .4)} \\ & ,(.2,2, .2,2,2,2) \\ & (.4, .4, .5, .5,5, .5)] \end{aligned}$	$\begin{aligned} & {[(.8, .8, .8, .8, .8, .8)} \\ & ,(.2, .2, .3, .3, .4, .4) \\ & (.2, .3, .3, .4, .4, .5)] \end{aligned}$
	A_{2}	$\begin{aligned} & {[(.5, .5, .5, .5, .5, .5),} \\ & (.2, .3,4, .5, .6, .7), \\ & (.5, .5, .5, .5, .5, .5)] \end{aligned}$	$\begin{aligned} & {[(.4, .5, .6, .7, .8, .8),} \\ & (.3,3,3, .4, .4,4) \\ & (.2, .3, .4, .5, .6, .7)] \end{aligned}$	$\begin{gathered} {[(.5, .6, .6, .7, .7, .8),} \\ (.3,4,5, .6,6,7), \\ (.5, .5, .6,7, ., 8, .8)] \end{gathered}$	$\begin{aligned} & {[(.8, .8, .9, .9, .9, .9)} \\ & (.2,2,3,3,3,4,4) \\ & (.2,3,3,3,4, .4, .5)] \end{aligned}$
	A_{3}	$\begin{aligned} & {[(.2,3, .4, .5,6, .7),} \\ & (.6,6, .6, .6,6, .6), \\ & (.2, .2,2,2,3, .4, .5)] \end{aligned}$	$\begin{aligned} & {[(.5, .6, .7, .8, .9, .9),} \\ & (.3,4,4,4,4,4,4), \\ & (.4, .4,4, .5, .5, .5)] \end{aligned}$	$\begin{aligned} & {[(.1,3, .3, .3,4, .4),} \\ & (.3, .3, .3, .3, .3, .3) \\ & (.4, .5, .5, .6,6, .6)] \end{aligned}$	$\begin{aligned} & {[(.6, .7, .7, .8,8, .8)} \\ & (.1,2, .3,4, .5, .6) \\ & (.4, .4, .5,5, .6, .6)] \end{aligned}$
	A_{4}	$\begin{aligned} & {[(.3,4, .4, .5,5, .6),} \\ & (.1, .1, .1,2,2,2), \\ & (.1, .2, .3,4,4,5, .6)] \end{aligned}$	$\begin{aligned} & {[(.4, .4, .5, .6, .7, .7)} \\ & (.2,2, .3,3, .4, .4) \\ & (.1, .2,3, .4,4, .5)] \end{aligned}$	$\begin{aligned} & {[(.8,9,9,9,9,9,9,9)} \\ & (.1,1,2,2,2,3,3) \\ & (.1, .1, .1, .1, .1,1)] \end{aligned}$	$\begin{aligned} & {[(.5, .5, .5, .6, .6, .7)} \\ & (.2, .2, .2, .3, .3, .3) \\ & (.3, .3, .4, .5, .6, .7)] \end{aligned}$
D_{3}	A_{1}	$\begin{aligned} & {[(.1, .2, .2, .2,3,3),} \\ & (.1, .1, .1,2, .3, .4) \\ & (.5, .6, .7, .7, .7, .7)] \end{aligned}$	$\begin{aligned} & {[(.4, .4, .5, .6, .7, .8),} \\ & (.4,5, .6, .6,7, .7), \\ & (.3, .4,4,4,5, .5, .5)] \end{aligned}$	$\begin{aligned} & \hline[(.6,7,7,8,8,8,9,9), \\ & (.3,3,3,4,4, .5), \\ & (.4,5, .6,6, .6, .6)] \end{aligned}$	$\begin{gathered} {[(.3, .3, .4, .4, .4, .5)} \\ (.4, .5, .6,7, .8, .9) \\ (.3, .4, .4,5, .5, .6)] \end{gathered}$
	A_{2}	$\begin{array}{r} {[(4, .5, .5, .6, .6, .7)} \\ ,(.4, .4, .5, .6,6, .7) \\ (.4, .5, .6, .7, .8, .9)] \end{array}$	$\begin{aligned} & {[(.7, .7, .7, .8, .8, .8),} \\ & (.5, .6, .6, .6, .6, .6), \\ & (.4, .4, .5, .5, .6, .6)] \end{aligned}$	$\begin{gathered} {[(.6,7,7,7, .8,8,8,8),} \\ (.4, .5,5, .6,6,7), \\ (.2, .3,4,4,5, .6, .7)] \end{gathered}$	$\begin{aligned} & {[(.2, .2, .2, .3,3, .3),} \\ & (.2,2,2, .3,4, .5), \\ & (.4,5, .5,6,6,7, .8)] \end{aligned}$
	A_{3}	$\begin{gathered} {[(.6, .7, .7, .8,9, .9),} \\ (.5, .6,7,7, .8,8), \\ (.3, .4, .5,5, .6, .6)] \end{gathered}$	$\begin{aligned} & {[(.4, .5, .6, .7, .8, .9),} \\ & (.7,7,7, .8,8, .8), \\ & (.1, .2, .3,4, .5, .6)] \end{aligned}$	$\begin{aligned} & {[(.8, .8, .8, .9,9,9),} \\ & (.5,5, .6, .6,7, .7), \\ & (.2, .3, .3,4, .4, .5)] \end{aligned}$	$[(.6,7,7,7,8,8,8,9)$, $(.1,1,1,1,1,1,1)$, $(.2, .2,2,3,3,3,3)]$
	A_{4}	$\begin{aligned} & {[(.6, .6, .6, .7,7, .7),} \\ & (.4, .5, .6,6, .7, .7), \\ & (.4, .5, .5,5,5,5, .6)] \end{aligned}$	$\begin{aligned} & {[(.8,8, .8, .9, .9, .9),} \\ & (.4,4,4,4,4,4), \\ & (.3,4, .4,5,5,5,5)] \end{aligned}$	$\begin{gathered} {[(.3, .4, .5, .6, .7, .8),} \\ (.5, .5, .5, .5, .5, .5) \\ (.4, .5,5, .6, .7, .8)] \end{gathered}$	$\begin{aligned} & {[(.2,3,3,3,3,4,4),} \\ & (.6,6,6,7,7,7,7), \\ & (.8,8,8,8,9,9,9)] \end{aligned}$

Table 5.2 Opinion of decision makers on performance values
Step 2. Normalize the hexagonal neutrosophic decision matrix $\widetilde{R}^{k}=\left(\widetilde{r}_{i j}^{k}\right)_{m \times n}$ given by the experts $D_{k}(k=1,2,3)$ to get the matrix $\widetilde{R}^{\prime}=\left(\widetilde{r}_{i j}^{\prime}\right)_{m \times n}$

Criteria				
Alternative	C_{1}	C_{2}	C_{3}	C_{4}

\bar{A}_{1}^{\prime}	$\begin{aligned} & {[(.3, .4, .5, .6, .7, .7),} \\ & (.1, .1, .2, .2, .3, .3), \\ & (.4, .5, .6, .6, .7, .7)] \end{aligned}$	$\begin{aligned} & {[(.3, .3, .4, .5, .6, .7),} \\ & (.3, .4, .4, .5, .6, .6) \\ & (.4, .5, .6, .7, .7, .7)] \end{aligned}$	$\begin{aligned} & {[(.6, .6, .7, .7, .7, .7),} \\ & (.3, .3, .3, .4, .4, .5), \\ & (.3, .3, .4, .4, .4, .4)] \end{aligned}$	$\begin{aligned} & {[(.4, .5, .5, .6, .6, .7),} \\ & (.2, .3, .3, .4, .4, .4) \\ & (.4, .4, .4, .5, .5, .6)] \end{aligned}$
\bar{A}_{2}^{\prime}	$\begin{aligned} & (.4, .5, .5, .6, .6, .7) \\ & (.3, .3, .4, .5, .6, .7) \\ & (.5, .5, .6, .7, .7, .7)] \end{aligned}$	$\begin{gathered} {[(.4, .5, .5, .6, .6, .6)} \\ (.4, .5, .5, .6,6,6,6) \\ (.4, .4, .5, .6, .6, .7)] \end{gathered}$	$\begin{aligned} & {[(.6, .7, .7, .8, .8, .8),} \\ & (.3, .4, .4, .5, .6, .7) \\ & (.3, .3, .4, .5, .5, .6)] \end{aligned}$	$\begin{aligned} & {[(.5, .5, .6, .6, .6, .7)} \\ & (.2, .2, .3, .3, .4, .4) \\ & (.2, .3, .3, .4, .5, .6)] \end{aligned}$
\bar{A}_{3}^{\prime}	$\begin{gathered} {[(.4, .5, .6, .7, .8, .8),} \\ (.4, .5, .5, .6, .6, .7) \\ (.2, .3, .3, .3, .4, .4)] \end{gathered}$	$\begin{aligned} & {[(.3, .4, .5, .5, .6, .6),} \\ & (.4, .5, .5, .6, .6, .7), \\ & (.3, .3, .4, .5, .5, .6)] \end{aligned}$	$\begin{aligned} & {[(.3, .4, .5, .6, .6, .7)} \\ & (.4, .4, .4, .5, .6, .6) \\ & (.3, .4, .4, .5, .5, .6)] \end{aligned}$	$\begin{aligned} & \hline[(.7, .8, .8, .8, .8, .9), \\ & (.1, .2, .2, .3, .4, .4), \\ & (.3, .3, .4, .4, .5, .5)] \end{aligned}$
\bar{A}_{4}^{\prime}	$\begin{aligned} & {[(.3, .4, .4, .5, .5, .5),} \\ & (.2, .3, .3, .4, .5, .5) \\ & (.3, .4, .5, .6, .6, .7)] \end{aligned}$	$\begin{aligned} & {[(.5, .5, .6, .6, .7, .7),} \\ & (.2, .3, .3, .3, .4, .4) \\ & (.3, .4, .4, .5, .5, .5)] \end{aligned}$	$\begin{aligned} & {[(.4, .5, .6, .6, .7, .8),} \\ & (.3, .3, .4, .4, .5, .5), \\ & (.3, .3, .3, .4, .4, .5)] \end{aligned}$	$\begin{aligned} & {[(.4, .5, .5, .5, .6, .6),} \\ & (.4, .4, .4, .5, .5, .5) \\ & (.4, .4, .5, .6, .6, .6)] \end{aligned}$

Table 5.3 Normalized hexagonal neutrosophic decision matrix

Step 3.

Once the decision makers provide the decision matrix we calculate the relative weight of each criterion C_{j} Consider the weight of each criterion as $w=(0.15,0.15,0.20,0.50)$
$w_{r}=\max \left\{w_{j} / j=1,2, \ldots . n\right\}$
$w_{r}=\max \{0.15,0.15,0.20,0.50\}$
$w_{r}=0.50$
Since $w_{r}=0.50$ then C_{4} is the reference criterion and the reference criterion weight is 0.50 . Then calculate the relative weights of the criterion $C_{j}(j=1,2,3,4)$ as
$w_{1 r}=\frac{w_{1}}{w_{r}}=\frac{0.15}{0.50}=0.3, w_{2 r}=0.3, w_{3 r}=0.4, w_{4 r}=1$
The parameter v the dilution factor of the loss is
$v=\sum_{j=1}^{4} w_{j r}=0.3+0.3+0.4+1=2$

Step 4. Consider the alternative A_{1} of $D M_{1}$ and the criteria C_{1}

Calculate the distance between \bar{A}_{1} and $\bar{A}_{1}^{\prime}, \bar{A}_{1}$ and \bar{A}_{1}^{C} of $D M_{1}$
$\bar{C}_{1}=[(.1, .2, .3, .4, .5, .6),(.1, .1, .1, .1, .1, .1)(.5, .6, .7, .8, .9, .9)], \quad \bar{C}_{1}^{\prime}=[(.3, .4, .4, .5, .6, .6),(.1, .1,2,2,2,3, .3)(.4, .5, .6, .6, .7, .7)]$
$\bar{C}_{1}{ }^{C}=[(.4, .5, .6,6, .7, .7)(.9, .9, .8, .8, .7, .7)(.3, .4, .4, .5, .6, .6)] \quad d\left(\bar{C}_{1}, \bar{C}_{1}^{\prime}\right)=\frac{1}{18}(2.2), \quad d\left(\bar{C}_{1}, \bar{C}_{1}{ }^{\prime}\right)=\frac{1}{18}(6.9)$
Step 5. The Degree of Similarity between \bar{A}_{1} and \bar{A}^{\prime} is defined as follows.

[^18]$$
\theta\left(\bar{C}_{1}, \bar{C}_{1}^{\prime}\right)=\left\{\frac{d\left(\bar{C}_{1}, \bar{C}_{1}^{\prime C}\right)}{d\left(\bar{C}_{1}, \bar{C}_{1}^{\prime}\right)+d\left(\bar{C}_{1}, \bar{C}_{1}^{C}\right)}\right\}=\frac{\frac{1}{18}(6.9)}{\frac{1}{18}(2.2+6.9)}=0.76
$$

Continuing the above process for all decision makers the consolidated Degree of Similarity is tabulated below.

Degree of Similarity	A_{1} of DM_{1}	$\begin{aligned} & \mathrm{A}_{2} \text { of } \\ & \mathrm{DM}_{1} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{A}_{3} \text { of } \\ & \mathrm{DM}_{1} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{A}_{4} \text { of } \\ & \mathrm{DM}_{1} \\ & \hline \end{aligned}$	A_{1} of DM_{2}	$\begin{aligned} & \mathrm{A}_{2} \text { of } \\ & \mathrm{DM}_{2} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{A}_{3} \text { of } \\ & \mathrm{DM}_{2} \\ & \hline \end{aligned}$	A_{4} of DM_{2}	A_{1} of DM_{3}	A_{2} of DM_{3}	A_{3} of DM_{3}	A_{4} of DM_{3}
$\theta\left(\bar{C}_{1}, \bar{C}_{1}^{\prime}\right)$	0.76	0.70	0.76	0.68	0.56	0.69	0.66	0.51	0.77	0.77	0.66	0.42
$\theta\left(\bar{C}_{1}, \bar{C}_{2}^{\prime}\right)$	0.68	0.53	0.53	0.57	0.74	0.56	0.50	0.81	0.45	0.57	0.59	0.72
$\theta\left(\bar{C}_{3}, \bar{C}_{3}^{\prime}\right)$	0.66	0.61	0.60	0.48	0.54	0.61	0.38	0.65	0.72	0.83	0.56	0.45
$\theta\left(\bar{C}_{4}, \bar{C}_{4}^{\prime}\right)$	0.62	0.57	0.81	0.50	0.68	0.78	0.80	0.51	0.44	0.54	0.80	0.45

Table 5.4 Degree of Similarity between the alternatives compared with the criteria

Step 6. Calculate the weight vectors of the decision makers using degree of similarity

$$
\begin{aligned}
& \theta\left(\widetilde{R}^{(k)}, \widetilde{R}^{\prime}\right)=\frac{1}{m \times n} \sum_{i=1}^{m} \sum_{j=1}^{n} \theta\left(\widetilde{r}_{i j}^{(k)}, \widetilde{r}_{i j}^{\prime}\right) \\
& \theta\left(\widetilde{R}^{(1)}, \widetilde{R}^{\prime}\right)=\frac{10.524}{12}=.877, \theta\left(\widetilde{R}^{(2)}, \widetilde{R}^{\prime}\right)=\frac{10 . .097}{12}=0.8814, \theta\left(\widetilde{R}^{(3)}, \widetilde{R}^{\prime}\right)=\frac{9.9000}{12}=0.825 \\
& w^{(1)}=\frac{\left(\theta\left(\widetilde{R}^{(1)}, \widetilde{R}^{\prime}\right)\right.}{\sum_{k=1}^{t}\left(\theta\left(\widetilde{R}^{(k)}, \widetilde{R}^{\prime}\right)\right.}=\frac{.877}{2.59}=.34 \quad w^{(2)}=\frac{\left(\theta\left(\widetilde{R}^{(2)}, \widetilde{R}^{\prime}\right)\right.}{\sum_{k=1}^{t}\left(\theta\left(\widetilde{R}^{(k)}, \widetilde{R}^{\prime}\right)\right)}=\frac{.8814}{2.59}=.33 \\
& w^{(3)}=\frac{\left(\theta\left(\widetilde{R}^{(2)}, \widetilde{R}^{\prime}\right)\right.}{\sum_{k=1}^{t}\left(\theta\left(\widetilde{R}^{(k)}, \widetilde{R}^{\prime}\right)\right)}=\frac{.825}{2.59}=.33
\end{aligned}
$$

Step 7. Using equation (1) HNWA the aggregated decision matrix is as follows.

Criteria				
Alternative	C_{1}	C_{2}	C_{3}	C_{4}
\bar{A}_{1}	$\begin{aligned} & {[(.4, .5, .6, .7, .8, .9)} \\ & (0, .1, .2, .3, .4, .5) \\ & (.1, .1, .1, .1, .1, .1)] \end{aligned}$	$\begin{aligned} & {[(0, .1, .2, .3, .4, .5)} \\ & (0, .1,2, .3, .4, .5) \\ & (.2, .3,4, .5, .6, .7)] \end{aligned}$	$\begin{aligned} & {[(.3, .4, .5, .6, .7, .8)} \\ & (0, .1,2, .3,4, .5) \\ & (.1, .1, .1, .1, .1, .1)] \end{aligned}$	$\begin{aligned} & {[(.3, .4, .5, .6, .7, .8)} \\ & (.1, .1, .1, .1, .1, .1) \\ & (.1, .2, .3, .4, .5, .6)] \end{aligned}$
\bar{A}_{2}	$\begin{aligned} & {[(.3, .4, .5, .6, .7, .8)} \\ & (.1, .1, .2,2, .3,3) \\ & (0, .1, .1,1, .2,2,2)] \end{aligned}$	$\begin{aligned} & {[(.1, .2, .3, .4, .5, .6)} \\ & (0, .1, .1,2, .3, .3) \\ & (0, .1, .1, .1, .2, .2)] \end{aligned}$	$\begin{aligned} & {[(0, .1, .1, .2, .2, .2)} \\ & (.1, .1, .1, .1, .1, .1) \\ & (.5, .6, .6, .7, .7, .8)] \end{aligned}$	$\begin{aligned} & {[(.3, .4, .5, .5, .6, .6),} \\ & (0,0, .1, .1, .1, .1) \\ & (.1, .1, .1, .1, .1, .1)] \end{aligned}$

\bar{A}_{3}	$\begin{aligned} & {[(.1, .1,1,1,1, .2,2),} \\ & (.2, .2,2,2,2,3,3), \\ & (.4,4, .5,5, .6, .6)] \end{aligned}$	$\begin{aligned} & {[(.2,2, .2, .3, .3,3)} \\ & (0, .1, .2,2,3,3,3) \\ & (.4, .5, .6, .7, .8, .9)] \end{aligned}$	$\begin{aligned} & {[(.3,4, .5, .6, .7, .8),} \\ & (0, .1, .2, .3,4,5), \\ & (.1, .2, .2,2,2, .3, .3)] \end{aligned}$	$\begin{aligned} & {[(.1,2,, 3,4,4,5, .6),} \\ & (.2, .2,2,2,2,2,2), \\ & (.4,5, .6,7, .8, .9)] \end{aligned}$
\bar{A}_{4}	$\begin{aligned} & {[(.1,2, .3,4, .5, .6),} \\ & (0,1,1,1,1, .2,4), \\ & (.1, .1, .2,2,4,4,4)] \end{aligned}$	$\begin{gathered} {[(.5, .5, .5, .5, .5, .5),} \\ (.2,3,3,4,4, .5), \\ (.1, .1, .1, .1, .2, .2)] \end{gathered}$	$\begin{aligned} & {[(.4, .5, .5, .6, .7, .8),} \\ & (.1,1,1,1,1,1,1), \\ & (.1,2, .3,4,4,4,4)] \end{aligned}$	$\begin{aligned} & {[(.1, .1, .1, .1, .1, .1),} \\ & (0, .1,1, .2,3, .3) \\ & (.5,5, .6, .6,7, .8)] \end{aligned}$

Table. 5.5 Aggregated decision matrix
Step 8 . Calculate the score value using the equation (6)

$$
S(A)=\begin{aligned}
& A_{1} \\
& A_{2} \\
& A_{3} \\
& A_{4}
\end{aligned}\left(\begin{array}{cccc}
C_{1} & C_{2} & C_{3} & C_{4} \\
0.59 & 0.48 & 0.48 & 0.62 \\
0.49 & 0.47 & 0.65 & 0.66 \\
0.58 & 0.54 & 0.56 & 0.73 \\
0.55 & 0.64 & 0.67 & 0.54
\end{array}\right)
$$

Step 9. Using the score function we check for the conditions and find $\left\lfloor d\left(r_{i j}, r_{p j}\right)\right\rfloor$
Here we consider $i=1, i=1,2,3,4$ and $p=1,2,3,4$ and check for the conditions in (7)

1) $\widetilde{r}_{i j}>\widetilde{r}_{p j}$ or 2) $\widetilde{r}_{i j}=\widetilde{r}_{p j}$ or 3) $\widetilde{r}_{i j}<\tilde{r}_{p j}$ for $i=1,2,3,4 j=1$ and $p=1,2,3,4$

$$
\left[d\left(r_{i j}, r_{p j}\right)\right]_{m \times n}=\begin{gathered}
A_{1} \\
A_{2} \\
A_{3} \\
A_{4}
\end{gathered}\left[\begin{array}{cccc}
C_{1} & C_{2} & C_{3} & C_{4} \\
0 & 0.1222 & 0.2266 & 0.1055 \\
0.1222 & 0 & 0.1666 & 0.111 \\
0.2266 & 0.1666 & 0 & 0.2111 \\
0.1055 & 0.111 & 0.2111 & 0
\end{array}\right]
$$

To construct the dominance matrix we check for $\left(\widetilde{r}_{i j} i s>,<o r=t o \widetilde{r}_{p j}\right)$
Since we have
$\left(r_{11}=r_{11}\right), \varepsilon_{1}\left(A_{1}, A_{1}\right)=0 \quad$ and as $\left(r_{11}>r_{21}\right) \quad \varepsilon_{1}\left(A_{1}, A_{2}\right)=\sqrt{\frac{w_{1 r} d\left(r_{11}, r_{21}\right)}{4}}=0.11055$

$$
\text { and } \quad\left(r_{21}<r_{11}\right), \varepsilon_{1}\left(A_{2}, A_{1}\right)=\sqrt{\frac{\sum_{j=1}^{4} w_{j r} d\left(r_{21}, r_{11}\right)}{w_{1 r}}}=-0.4401
$$

Using equation (7) calculate the dominance matrix $\varepsilon_{1}\left(A_{i}, A_{p}\right)$ as follows.

$$
\left.\left[\varepsilon_{1}\left(A_{i}, A_{p}\right)\right]_{m \times n}=\begin{array}{c}
\\
A_{1} \\
A_{2} \\
A_{3}
\end{array} \left\lvert\, \begin{array}{cccc}
C_{1} & C_{2} & C_{3} & C_{4} \\
0 & 0.1105 & 0.1632 & 0.1027 \\
-0.4401 & 0 & -0.5155 & -0.4214 \\
-0.6523 & 0.1290 & 0 & 0.1452 \\
A_{4} & -0.4108 & 0.1053 & -0.5810
\end{array}\right.\right]
$$

Similarly for the values $j=2, i=1,2,3,4$ and $p=1,2,3,4$,
$j=3, i=1,2,3,4$ and $p=1,2,3,4$ and $j=4, i=1,2,3,4$ and $p=1,2,3,4$ the dominance matrix are calculated.

$$
\begin{aligned}
& {\left[\varepsilon_{2}\left(A_{i}, A_{p}\right)\right]_{m \times n}=\begin{array}{c}
A_{1} \\
A_{2} \\
A_{3} \\
A_{4}
\end{array}\left[\begin{array}{cccc}
C_{1} & C_{2} & C_{3} & C_{4} \\
0 & 0.1393 & -0.2508 & -0.3154 \\
-0.2229 & 0 & -0.1977 & -0.3040 \\
0.1624 & 0.1235 & 0 & -0.2598 \\
0.1971 & 0.1900 & 0.1624 & 0
\end{array}\right]} \\
& {\left[\varepsilon_{3}\left(A_{i}, A_{p}\right)\right]_{m \times n}=\begin{array}{c}
A_{1} \\
A_{2} \\
A_{3} \\
A_{4}
\end{array}\left[\begin{array}{cccc}
C_{1} & C_{2} & C_{3} & C_{4} \\
0 & 0.1581 & 0.1786 & 0.1624 \\
-0.2529 & 0 & 0.1624 & -0.2304 \\
-0.2858 & -0.2598 & 0 & -0.2665 \\
-0.2598 & 0.1440 & 0.1440 & 0
\end{array}\right]}
\end{aligned}
$$

Step 10. On the basics of the above equation the overall dominance degree is obtained as

$$
\rho\left(A_{i}, A_{p}\right)=\sum_{j=1}^{n} \varepsilon_{j}\left(A_{i}, A_{p}\right),(i, p=1,2, \ldots m)
$$

$\delta=\left[\begin{array}{cccc}0 & 0.238 & -0.1331 & -0.1656 \\ -0.7789 & 0 & -0.7508 & -0.7298 \\ -0.5598 & 0.1927 & 0 & -0.0963 \\ -0.656 & 0.2133 & -0.8454 & 0\end{array}\right]$
Now $\sum_{j=1}^{4} \varepsilon_{j}\left(A_{i}, A_{p}\right),(i, p=1,2, \ldots . m$ are $(0.2363,-2.2266,-0.4654,-1.000)$
Step 12. Then the overall value of each A_{i} can be calculated using the equation (9)
$\rho\left(A_{1}\right)=1.000, \quad \rho\left(A_{2}\right)=0, \quad \rho\left(A_{3}\right)=0.7150, \quad \rho\left(A_{4}\right)=0.4980$
Step 13. Ranking the values of all alternatives $\rho\left(A_{i}\right)$ and selecting the most desirable alternatives in accordance with $\rho\left(A_{i}\right)$, among the four alternatives A_{1} is the best choice and the ranking order is $A_{1}>A_{3}>A_{4}>A_{2}$

Stage 2.

Step 7. Floor space requirement C_{1}, Feeding (Feeder) and watering space requirement C_{2} are benefiting type criteria $B_{1}=\left\langle C_{1}, C_{2}\right\rangle$. Maintenance of health and sanitization C_{3} and Productivity C_{4} are cost type $B_{2}=\left\langle C_{3}, C_{4}\right\rangle$. The hexagonal neutrosophic positive-ideal solution B^{+}and hexagonal neutrosophic negative-ideal solution B^{-}are obtained as follows

$$
\left.\begin{array}{rl}
B^{+} & =\left[\begin{array}{l}
(1,1,1,1,1,1)(0,0,0,0,0,0)(0,0,0,0,0,0),(1,1,1,1,1)(0,0,0,0,0,0)(0,0,0,0,0,0), \\
((0,0,0,0,0,0)(1,1,1,1,1,1)(1,1,1,1,1,1)),((0,0,0,0,0,0)(1,1,1,1,1,1)(1,1,1,1,1,1))
\end{array}\right)
\end{array}\right]
$$

Step 8. The vector of the attribute weight is $w=(0.15,0.15,0.20,0.50)$. By using equation (10) calculate the separation measure S_{i}^{+}of the each alternative from the hexagonal neutrosophic positive ideal solution where $d\left(r_{i j}, r_{j}^{+}\right)$is calculated using equation (2).

The calculated values are as follows
$S_{1}^{+}=0.1482 S_{2}^{+}=0.1408 S_{3}^{+}=0.1370 S_{4}^{+}=0.1164$
By using equation (11) calculate the separation measure S_{i}^{-}of the each alternative from the hexagonal neutrosophic negative ideal solution. The calculated values are as follows
$S_{1}^{-}=0.0989 S_{2}^{-}=0.1094 S_{3}^{-}=0.1129 S_{4}^{-}=0.1335$
Step 9. Using equation (12) calculate the relative closeness coefficient of the hexagonal neutrosophic ideal solution. The relative closeness coefficient values are as follows
$C_{1}=0.4002 \quad C_{2}=0.4372 \quad C_{3}=0.4517 \quad C_{4}=0.5342$
Step 10. Rank the alternatives in the decreasing order of closeness coefficient values.

$$
A_{4}>A_{3}>A_{2}>A_{1}
$$

6. Graphical Representation of the Comparative study

Figure 6.1 Ranking of the four alternatives using TODIM and TOPSIS

- The ranking results of TODIM show that A_{1} is the best alternative with maximum global value $\rho\left(A_{1}\right)=1$ and the least global value is $\rho\left(A_{2}\right)=0$ The ranking of the four alternatives using TODIM is $A_{1}>A_{3}>A_{4}>A_{2}$
- The ranking result using TOPSIS shows that A_{4} is the best suited alternative as it ranking is in first position and A_{1} is considered to be last as it takes fourth position in ranking.
- The ranking of the four alternatives using TOPSIS is $A_{4}>A_{3}>A_{2}>A_{1}$.
- In both the methods A_{3} take the same position and A_{4} is in the third level in TODIM which is nearest to the ranking of TOPSIS. Similarly, A_{2} is in the fourth level in TODIM which is very close to the ranking of TOPSIS.
- Both the MCDM ranking results shows that they are similar by large percentage which provides decision maker to increase the flexibility in choosing the optimal alternative.

Conclusion

The research presented in this article is an assessment study of the sustainability of commercial goat farming and its recent impact on self-employment for youth has been carried out in a context characterized by two MCDM methods, TODIM and TOPSIS. Using those methods the social, economic and ecological sustainability in housing and feeding systems of goat farming are evaluated by three experts and the evaluation was considered as hexagonal neutrosophic numbers in order to remove the ambiguity and increase the accuracy in the decision making process. Using the TODIM approach which is able to distinguish between risks based alternative and definite alternative in

[^19]uncertain circumstances is analyzed .At the same time, by using the TOPSIS method the ranking is performed based on distance of each alternatives to its positive and negative ideal solutions. The ranking results of TODIM show a large percentage of similarity with ranking resulting from TOPSIS.The result shows that stall feeding system with normal flooring and a part with both intensive and extensive grazing system are best suited for sustainable commercial goat farming. This study may be applied in several other fields like livestock management systems with technology adaptation as well as in the economics of goat farming and other livestock sectors..

References

[1] Abdel-Basset, M., Mohamed, R., Elhoseny, M., Chang, V.(2020) Evaluation framework for smart disaster response systems in uncertainty environment. Mechanical Systems and Signal Processing, 145, p.106941-106958.
[2] Abdel-Basset, M., Ali, M., Atef, A. (2020) Uncertainty assessments of linear time-cost tradeoffs using neutrosophic set. Computers \& Industrial Engineering, 141, p. 106286.
[3] Abdel-Basset, M., Ali, M., Atef, A. (2020) Resource levelling problem in construction projects under neutrosophic environment. The Journal of Supercomputing, 76 (2), p. 964-988.
[4] Abdel-Basset, M.,Gamal, A.,Son, L. H., Smarandache, F. (2020) A Bipolar Neutrosophic Multi Criteria Decision Making Framework for Professional Selection. Applied Sciences, 10 (4), p. 1202.
[5] Abdel-Basset, M., Mohamed, R., Zaied, A. E. N. H., Gamal, A., Smarandache, F. (2020) Solving the supply chain problem using the best-worst method based on a novel Plithogenic model. In Optimization Theory Based on Neutrosophic and Plithogenic Sets, p. 1-19. Academic Press.
[6] Abdel-Basset, M., Mohamed, R., Sallam, K., Elhoseny, M. (2020) A novel decision making model for sustainable supply chain under uncertainty environment, Journal of Cleaner Production doi: https://doi.org/10.1016/j.jclepro.2020.1223241.
[7] Duarte, A.M. (2018) Applying the TODIM fuzzy method to the valuation of Brazilian Banks, Pesquisa Operacional, 38 (1), p.153-171.
[8] Argüello, A. (2011) Trends in goat research, a review, Journal of Applied Animal Research, 39 (4), p.429-434.
[9] Biswas,A., Santanu, B., Rameswar, P., Chandra Roy,D. (2018) Economics of goat production in Two sub-regions of West Bengal. International Journal of Science, Environment and Technology 7 (1), p.70-74.
[10] Atanassov, K.T. (1986) Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1), p.87-96.
[11] Atanassov, K.T., Gargov, G. (1989) Interval valued intuitionistic fuzzy sets, Fuzzy Sets and Systems, 31 (3), p.343-349 .
[12] Biswas, P., Pramanik, S., Giri, B.C. (2014) A new methodology for neutrosophic multi - attribute Decision - making with unknown weight information, Neutrosophic Sets and Systems, 3, p. 44-54.
[13] Biswas, P., Pramanik, S., Giri, B.C. (2014) Cosine similarity measure based multi-attribute decision making with trapezoidal fuzzy neutrosophic numbers, Neurtosophic Sets and Systems, 8, p.46-56.
[14] Biswas, P., Pramanik, S., Giri, B.C. (2018) TOPSIS strategy for multi-attribute decision making with trapezoidal numbers, Neutrosophic Sets and Systems, 19, p. 29-39.
[15] Chakraborty,S., Chakraborty, A. (2018) Application of TODIM method for under-construction housing
project selection in Kolkata, Journal of Project Management, 3 (4), p.207-216.
[16] Dalapati,S., Pramanik,S.(2018) A revisit to NC-VIKOR based MAGDM strategy in neutrosophic cubic set environment. Neutrosophic Sets and Systems, 21, p.131-141.
[17] Fan, Z.P., Zhang, X., Chen, F.D., Liu, Y. (2013) Extended TODIM method for Hybrid Multiple Attribute Decision Making problems. Knowledge Based Systems, 42, p.40-48,
[18] Gomes, L.F.A.M., Lima, M. (1991) TODIM: Basics and application to multi-criteria ranking of projects with environmental impacts, Foundations of Computing and Decision Sciences,16 (3), p.113-127.
[19]Gomes, L.F.A.M., Machado, M.A.S., Rangel, L.A.D. (2014) Multi-criteria analysis of natural gas destination in Brazil: A comparison of TODIM against the use of the Choquet integral. Procedia Computer Science, 31, p.351-358.
[20] Gomes, L.F.A.M., Lima, M. (1992) From modelling individual preferences to multi-criteria ranking of discrete alternatives: A look at Prospect -Theory and the additive difference model, Foundation of Computing and Decision Sciences, 17 (3), p.171-184.
[21] Gomes, L.F.A.M., Rangel, L.A.D. (2009) An application of TODIM method to the multi-criteria rental evaluation of residential properties, European Journal of Operational Research, 193, p. 204-211.
[22] Gomes, L. F.A.M., Machado, M., Rangel, L.A.D. (2013) Behavioral multi-criteria decision analysis: the TODIM method with criteria interactions, Annals of Operations Research, 211. (1), p.531-548.
[23] Hwang, C.L., Yoon, K. (1981) Multiple Attribute Decision Making: Methods and Applications. New York: Springer-Verlag
[24] Kahneman, D., Tversky, A. (1979) Prospect theory: An analysis of decision under risk. Econometrica, 47 (2), p.263-291.
[25] Shalander, K. (2007) Multi-disciplinary project on transfer of technology for sustainable goat production, Annual Report 2006-07, Central Institute for Research on Goats, Makhdoom, Mathura.
[26] Shalander, K. (2007) Commercial Goat Farming in India: An Emerging Agri-Business Opportunity Agricultural Economics Research Review. 20 (Conference Issue) p. 503-520.
[27] Lourenzutti, R., Krohling, R.A. (2014) The Hellinger distance in multi-criteria decision making: An illustration to the TOPSIS and TODIM methods, Expert Systems with Applications, 41 (9), p. 4414-4421.
[28] Patil,M., Kumar,P., Teggelli,R., Ubhale,P. (2014) Study on Comparison of Stall Feeding System of Goat Rearing with Grazing System, APCBEE Procedia, 8, p.242-247
[29] Mondal, K., Pramanik,S.(2014) Multi-criteria group decision making approach for Teacher recruitment in higher education under simplified neutrosophic environment, Neutrosophic sets and Systems. 6, p.28-34
[30] Pramanik, S., Mallick, R. (2018) VIKOR based MAGDM Strategy with trapezoidal neutrosophic numbers, Neutrosophic Sets and Systems, 22, p.118-129.
[31] Qin, Q., Liang, F., Li, L., Chen, Y.W., Yu, G.F. (2017) A TODIM - based multi-criteria group decision making with triangular intuitionistic fuzzy numbers, Applied Soft Computing, 55, p.93-100.
[32] Rangel, L.A.D., Gomes, L.F.A.M., Cardoso, F.P. (2011) An application of the TODIM method to the evaluation of broadband internet plans, Pesquisa Operacional, 31 (2), p.235-249.
[33] Ren, P., Xu, Z., Gou, X. (2016) Pythagorean fuzzy TODIM approach to multi-criteria decision making, Applied Soft Computing, 42, p.246-259,
[34] Sang, X., Liu, X. (2016) An interval type-2 fuzzy sets-based TODIM method and its application to green supplier selection, Journal of the Operational Research Society, 67 (5), p.722-734.
[35] Choudhary, S.,Yamini, Raheja,N., Kamboj,M.L. (2018) Present Status and Proposed Breeding Strategies for Goat Production in India, Indian Dairyman,70 (7), p.98-102
[36] Smarandache, F. (2005) A unifying field in logics: Neutrosophic logic. Neutrosophy, Neutrosophic Set, Neutrosophic Probability and Statistics, American Research press, Rehoboth.
[37] Smarandache, F. (2017) Plithogeny, Plithogenic Set, Logic, Probability, and Statistics. Pons Publishing House, Brussels, Belgium, 141 p., arXiv.org. (Cornell University), Computer Science - Artificial Intelligence.
[38] Wang, H., Smarandache, F., Zhang, Y., Sunderraman, R. (2010) Single valued neutrosophic sets. Review of the Air Force Academy. 1(16), p.10-14.
[39] Wang, J .,Wang, J.Q., Zhang, H.Y. (2016) A likelihood-based TODIM approach based on multi-hesistant fuzzy linguistic information for evaluation in logistics and outsourcing. Computers and Industrial Engineering, 99, p. 287-299,
[40] Ye, J. (2014) Trapezoidal neutrosophic set and its application to multiple attribute decision-making, Neural Computing and Applications. 26 (5), p.1157-1166,
[41] Ye, J. (2017) Some weighted aggregation operators of trapezoidal neutrosophic numbers and their multiple attribute decision making method, Informatica, 28 (2), p.387-402.
[42] Zadeh, L.A. (1965) Fuzzy Sets, Information and Control, 8 (3), p. 338-353.
[43] Zhang, M., Liu, P., Shi, L. (2016) An extended multiple attribute group decision-making TODIM method based on the neutrosophic numbers, Journal of Intelligent and Fuzzy Systems,30 (3), p.1773-1781.
[44] Zindani, D., Maity, S.R., Bhowmik, S., Chakraborty, S. (2017) A material selection approach using the TODIM method and its analysis, International Journal of Materials Research, 2017, 108 (5), p.345-354.

Received: Apr 15, 2020. Accepted: July 5, 2020

[^20]
MBJ - Neutrosophic $\boldsymbol{\beta}$ - Ideal of $\boldsymbol{\beta}$ - Algebra

Prakasam Muralikrishna ${ }^{1}$ and Surya Manokaran ${ }^{2}$
Assistant Professor ${ }^{1}$ and Research Scholar ${ }^{2}$ PG \& Research Department of Mathematics, Muthurangam Govt. Arts College (A), Vellore-632002. TN. India
pmkrishna@rocketmail.com, suryamano95@gmail.com

Abstract

This paper extends the concept of ideal of a β - algebra to MBJ - Neutrosophic β - Ideal of a β - algebra. Further discusses about the homomorphic image, inverse image, cartesian product and related results.

Keywords: Neutrosophic Set, MBJ - Neutrosophic Set, MBJ - Neutrosophic β - Ideals, Cartesian Product of MBJ - Neutrosophic β - algebra.

1. Introduction

Zadeh [21, 22] first presented the idea of Fuzzy Set by which shown a meaningful application in many fields and this theory is welcomed to handle the uncertainty. As a generalization of fuzzy set Atanassov [7, 11] introduced Intuitionistic Fuzzy Set which assigns a pair with membership degree and non - membership degree. The Interval Valued Fuzzy Set [6, 10, 12] represents the membership degree with interval values to reflect the uncertainty in assigning membership degree. As an extension for all elements in any set, Neutrosophic Fuzzy Set provides with truth, intermediate and false membership function by Smarandache, F $[16,17,18]$ and is further developed to MBJ - Neutrosophic fuzzy set [19, 20] with truth membership function, intermediate interval valued membership function and false membership function.

Neggers and Kim [18] brought a new structure of algebra called β - algebra and Jun [17] dealt some related topics on β - algebra. The fusion of fuzzy with algebra and the notion was initiated by Rosenfeld [15]. Further many researchers correlated some algebras with fuzzy sets. Ansari [5, 8] initialized the fuzzy β - subalgebra of β - algebra and also introduced fuzzy β - ideal of β - algebra. With these inspirations, this paper extends to MBJ - Neutrosophic β - ideal of β - algebra and analyzed some result.

2. Preliminaries

In this section, some definitions and examples of β - algebra and fuzzy set are discussed.
2.1 Definition: $[5,8,14] \quad$ A non-empty set $(X,+,-, 0)$ is called a β-algebra if
i. $x-0=x$
ii. $(0-x)+x=0$
iii. $(x-y)-z=x-(z+y) \forall x, y, z \in X$.
2.2 Example: [9] The following Cayley's table is formed using a set $X=\{0,1,2,3,4,5\}$ with a constant 0 and two binary operations + and -

+	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	0	4	5	2	3
2	2	5	0	4	3	1
3	3	4	5	0	1	2
4	4	3	1	2	5	0
5	5	2	3	1	0	4

-	0	1	2	3	4	5
0	0	1	2	3	5	4
1	1	0	4	5	3	2
2	2	5	0	4	1	3
3	3	4	5	0	2	1
4	4	3	1	2	0	5
5	5	2	3	1	4	0

$\therefore \quad$ The set X is a β - algebra.
2.3 Definition: [5] A non - empty subset S of a $\beta-\operatorname{algebra}(X,+,-, 0)$ is known as β - subalgebra if
i. $x-y \in S$
ii. $x+y \in S \quad \forall x, y \in S$
2.4 Example: Let $U_{1}=\{0,2\}$ and $U_{2}=\{0,1\}$ be any two subset of a β - algebra $X=\{(0,1,2,3,4,5),+,-, 0\}$. Here U_{1} is a $\beta-$ subalgebra of X where as U_{2} is not a β - subalgebra of X.
2.5 Definition: [8] A non - empty subset I of a β - algebra is said to be β - ideal of ($\mathrm{X},+,-, 0$) if it has the following conditions
i. $\quad 0 \in I$
ii. $\quad x+y \in I$
iii. $\quad x-y$ and $y \in I$ then $x \in I \forall x, y \in X$
2.6 Exercise: [12] Consider a $\beta-\operatorname{algebra}(X,+,-, 0)$ in the Cayley's table

+	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

-	0	1	2	3
0	0	3	2	1
1	1	0	3	2
2	2	1	0	3
3	3	2	1	0

The subset $I_{1}=\{0,3\}$ of X is a β-ideal of X.
2.7 Definition: [5] A mapping $f: X \rightarrow Y$ is said to be a β - homomorphism where X and Y are two β - algebras with constant 0 and two binary operations + and - if

$$
\text { i. } \quad f(x+y)=f(x)+f(y)
$$

ii. $\quad f(x-y)=f(x)-f(y) \forall x, y \in X$.
2.8 Definition: [22] A Fuzzy Set in X is a mapping, $\rho: X \rightarrow[0,1]$ for each x in $X, \rho(x)$ is called the membership value of $x \in X$.
2.9 Definition: [7] A non - empty set X is said to be Intuitionistic Fuzzy Set and is defined by $A=\{<x, \rho(x), \eta(x)>/ x \in X\}$ where $\rho_{A}: X \rightarrow[0,1]$ is a membership function of A and $\eta_{A}: X \rightarrow[0,1]$ is a non - membership function of A with $0 \leq \rho_{A}(x)+\eta_{A} \leq 1$.
2.10 Definition: [6] An Interval Valued Fuzzy Set on X is represented as $A=\left\{\left(x, \bar{\rho}_{A}(x)\right)\right\} x \in X \quad$ where $\quad \bar{\rho}_{A}: X \rightarrow D[0,1]$ where $D[0,1]$ is the family of all closed subintervals of $[0,1]$. Also $\bar{\rho}_{A}(x)=\left[\rho_{A}^{L}(x), \rho_{A}^{U}(x)\right]$ where ρ_{A}^{L} and ρ_{A}^{U} are two fuzzy sets in X such that $\rho_{A}^{L}(x) \leq \rho_{A}^{U}(x) \forall x \in X$.

Remark: Now let us illustrate refined minimum (rmin) and refined maximum (rmax) of two elements in $D[0,1]$. Also characterized the symbols $\leq, \geq,=$ in case of two elements in $D[0,1]$.
Let $D_{1}=\left[a_{1}, b_{1}\right] \& D_{2}=\left[a_{2}, b_{2}\right] \in D[0,1]$ then
$\operatorname{rmin}\left(D_{1}, D_{2}\right)=\left[\min \left(a_{1}, a_{2}\right), \min \left(b_{1}, b_{2}\right)\right]$
$\operatorname{rmax}\left(D_{1}, D_{2}\right)=\left[\max \left(a_{1}, a_{2}\right), \max \left(b_{1}, b_{2}\right)\right]$.
For $D_{i}=\left[a_{i}, b_{i}\right] \in D[0,1]$ for $i=1,2,3, \ldots$.
$\operatorname{rsup}_{i}\left(D_{i}\right)=\left[\sup _{i}\left(b_{i}\right), \sup _{i}\left(b_{i}\right)\right] \& \operatorname{rinf}_{i}\left(D_{i}\right)=\left[\inf _{i}\left(b_{i}\right), \inf _{i}\left(b_{i}\right)\right]$
Now $D_{1} \geq D_{2}$ if and only if $a_{1} \geq a_{2}, b_{1} \geq b_{2}$. Likewise, for $D_{1} \leq D_{2}$ and $D_{1}=D_{2}$ are defined.
2.11 Definition: [6] The representation of an Interval Valued Intuitionistic Fuzzy Set A on X is $A=\left\{<x, \bar{\rho}_{A}(x), \bar{\eta}_{A}(x)>/ x \in X\right\} \quad$ where $\quad \bar{\rho}_{A}: X \rightarrow D[0,1] \quad$ and $\quad \bar{\eta}_{A}: X \rightarrow D[0,1] \quad$ where $\bar{\rho}_{A}(x)=\left[\rho_{A}^{L}(x), \rho_{A}^{U}(x)\right]$ and $\bar{\eta}_{A}(x)=\left[\eta_{A}^{L}(x), \eta_{A}^{U}(x)\right]$ with the condition that $0 \leq \rho_{A}^{L}(x)+\eta_{A}^{L} \leq 1$ and $0 \leq \rho_{A}^{U}(x)+\eta_{A}^{U} \leq 1$.
2.12 Definition: [16, 17] The definition of an Neutrosophic Fuzzy Set A on X is characterized by a Truth - membership function ρ_{T}, an indeterminacy membership function ξ_{I}, and a falsity - membership function η_{F} where $\rho_{T}, \xi_{I}, \eta_{F}$ are subsets of $[0,1]$ that is $\rho_{T}, \xi_{I}, \eta_{F}: X \rightarrow[0,1]$. Thus, the Neutrosophic Set is defined as $A=\left\{<x, \rho_{T}(x), \xi_{I}(x), \eta_{F}(x)>/ x \in X\right\}$.
2.13 Definition: [19,20] The structure $A=\left\{<x, \rho_{T}(x), \bar{\xi}_{I}(x), \eta_{F}(x)>/ x \in X\right\}$ is called MBJ - Neutrosophic Set in X where $\rho_{T}, \eta_{F}: X \rightarrow[0,1]$ and $\bar{\xi}_{I}: X \rightarrow D[0,1]$ with $\rho_{T}(x)$ denotes the truth membership function, $\bar{\zeta}_{I}(x)$ denotes an intermediate interval valued membership function and $\eta_{F}(x)$ denotes an false membership function.
2.14 Definition: An Fuzzy set is said to have a supremum property for any subset W of X there exists $x_{0} \in W$ such that $\rho_{A}\left(x_{0}\right)=\sup _{x \in W} \rho_{A}(x)$.
2.15 Definition: An Intuitionistic Fuzzy Set A is said to have a sup - inf property for any subset W of X, there exists $x_{0} \in W$ such that $\rho_{A}\left(x_{0}\right)=\sup _{x \in W} \rho_{A}(x)$ and $\eta_{A}\left(x_{0}\right)=\operatorname{in} f_{x \in W} \eta_{A}(x)$.
2.16 Definition: An Interval Valued Intuitionistic Fuzzy Set A in any set X is said to have rsup-rinf property if for subset W of X there exists $x_{0} \in W$ such that $\bar{\rho}_{A}\left(x_{0}\right)=\operatorname{rsup}_{x \in W} \bar{\rho}_{A}(x)$ and $\bar{\eta}_{A}\left(x_{0}\right)=\operatorname{rinf}_{x \in W} \bar{\eta}_{A}(x)$.
2.17 Definition: [19] An MBJ - Neutrosophic Fuzzy Set A in X has sup - rsup - inf property if for subset W of X there exists $x_{0} \in W$ such that $\rho_{A}\left(x_{0}\right)=\sup _{x \in W} \rho_{A}(x)$; $\bar{\xi}_{A}\left(x_{0}\right)=\operatorname{rsup}_{x \in W} \bar{\xi}_{A}(x) ; \eta_{A}\left(x_{0}\right)=\inf _{x \in W} \eta_{A}(x)$ respectively.
2.18 Definition: [12] An Interval Valued Fuzzy Set $A=\left\{<x, \bar{\rho}_{A}(x)>/ x \in X\right\}$ in X is said to be Interval Valued Fuzzy β-ideal of X if
i. $\quad \bar{\rho}_{A}(0) \geq \bar{\rho}_{A}(x)$
ii. $\quad \bar{\rho}_{A}(x+y) \geq r \min \left\{\bar{\rho}_{A}(x), \bar{\rho}_{A}(y)\right\}$
iii. $\quad \bar{\rho}_{A}(x) \geq \operatorname{rmin}\left\{\bar{\rho}_{A}(x-y), \bar{\rho}_{A}(y)\right\} \forall x, y \in X$.
2.19 Definition: An Intuitionistic Fuzzy Set $A=\{<x, \rho(x), \eta(x)>/ x \in X\}$ in X is known as Intuitionistic Fuzzy β - ideal of X if
i. $\quad \rho_{A}(0) \geq \rho_{A}(x) \quad ; \quad \eta_{A}(0) \leq \eta_{A}(x)$
ii. $\quad \rho_{A}(x+y) \geq \min \left\{\rho_{A}(x), \rho_{A}(y)\right\} \quad ; \quad \eta_{A}(x+y) \leq \max \left\{\eta_{A}(x), \eta_{A}(y)\right\}$
iii. $\quad \rho_{A}(x) \geq \min \left\{\rho_{A}(x-y), \rho_{A}(y)\right\} \quad ; \quad \eta_{A}(x) \leq \max \left\{\eta_{A}(x-y), \eta_{A}(y)\right\}$
2.20 Definition: [19] Let X be a $\beta-$ algebra and an MBJ Neutrosophic Set $A=\left\{\rho_{A}, \bar{\xi}_{A}, \eta_{A}\right\}$ is called an MBJ - Neutrosophic β - subalgebra of X if it satisfies
i. $\quad \rho_{A}(x+y) \geq \min \left\{\rho_{A}(x), \rho_{A}(y)\right\} \quad$;
$\rho_{A}(x-y) \geq \min \left\{\rho_{A}(x), \rho_{A}(y)\right\}$
ii. $\quad \bar{\xi}_{A}(x+y) \geq r \min \left\{\bar{\xi}_{A}(x), \bar{\xi}_{A}(y)\right\} \quad ; \quad \bar{\xi}_{A}(x-y) \geq r \min \left\{\bar{\xi}_{A}(x), \bar{\xi}_{A}(y)\right\}$
iii. $\quad \eta_{A}(x+y) \leq \max \left\{\eta_{A}(x), \eta_{A}(y)\right\} \quad ; \quad \eta_{A}(x-y) \leq \max \left\{\eta_{A}(x), \eta_{A}(y)\right\}$

3 MBJ - Neutrosophic $\boldsymbol{\beta}$ - Ideal of $\boldsymbol{\beta}$ - Algebra

This part frames the structure of MBJ - Neutrosophic β - Ideal of β - Algebra and studied the related results.
3.1 Definition: Let $(X,+,-, 0)$ be a β - algebra. An MBJ - Neutrosophic Set $K=\left\{\rho_{K}, \bar{\xi}_{K}, \eta_{K}\right\}$ in X is called an MBJ - Neutrosophic β - Ideal of X if it satisfies the following conditions:
i. $\quad \rho_{K}(0) \geq \rho_{K}(x)$
$\rho_{K}(x+y) \geq \min \left\{\rho_{K}(x), \rho_{K}(y)\right\}$
$\rho_{K}(x) \geq \min \left\{\rho_{K}(x-y), \rho_{K}(y)\right\}$
ii. $\quad \bar{\xi}_{K}(0) \geq \bar{\xi}_{K}(x)$

$$
\begin{aligned}
& \bar{\xi}_{K}(x+y) \geq r \min \left\{\bar{\xi}_{K}(x), \bar{\xi}_{K}(y)\right\} \\
& \bar{\xi}_{K}(x) \geq r \min \left\{\bar{\xi}_{K}(x-y), \bar{\xi}_{K}(y)\right\}
\end{aligned}
$$

iii. $\quad \eta_{K}(0) \leq \eta_{K}(x)$

$$
\begin{aligned}
& \eta_{K}(x+y) \leq \max \left\{\eta_{K}(x), \eta_{K}(y)\right\} \\
& \eta_{K}(x) \leq \max \left\{\eta_{K}(x-y), \eta_{K}(y)\right\} \quad \forall x, y \in X
\end{aligned}
$$

3.2 Example : A β - algebra X in example 2.6 defines a MBJ - Neutrosophic set as $\rho_{A}: X \rightarrow[0,1]$; $\bar{\xi}_{A}: X \rightarrow D[0,1]$ and $\eta_{A}: X \rightarrow[0,1]$ such that
$\rho_{A}(x)=\left\{\begin{array}{lr}0.4, & x=0 \\ 0.2, & x=1,3 \\ 0.3, & x=2\end{array}\right.$
$\bar{\xi}_{K_{A}}(x)=\left\{\begin{array}{lr}{[0.3,0.7]} & x=0 \\ {[0.1,0.5]} & x=1,3 \\ {[0.2,0.6]} & x=2\end{array}\right.$
$\eta_{A}(x)=\left\{\begin{array}{rr}0.1, & x=0 \\ 0.4, & x=1,3 \\ 0.5, & x=2\end{array} \quad\right.$ is an MBJ - Neutrosophic β - Ideal of X.
3.3 Theorem: The intersection of any two MBJ - Neutrosophic β - Ideal of a β - algebra is also an MBJ - Neutrosophic β - Ideal.
Proof: Let $K_{1} \& K_{2}$ be two MBJ - Neutrosophic β - Ideal of X.
Now, $\left(\rho_{K_{1} \cap K_{2}}\right)(0) \geq \min \left\{\rho_{K_{1}}(0), \rho_{K_{2}}(0)\right\}$
$=\min \left\{\rho_{K_{1}}(x), \rho_{K_{2}}(x)\right\}$
$=\left(\rho_{K_{1} \cap K_{2}}\right)(x)$
$\left(\rho_{K_{1} \cap K_{2}}\right)(x+y) \geq \min \left\{\rho_{K_{1}}(x+y), \rho_{K_{2}}(x+y)\right\}$
$=\min \left\{\min \left\{\rho_{K_{1}}(x), \rho_{K_{1}}(y)\right\}, \min \left\{\rho_{K_{2}}(x), \rho_{K_{2}}(y)\right\}\right\}$
$=\min \left\{\min \left\{\rho_{K_{1}}(x), \rho_{K_{2}}(x)\right\}, \min \left\{\rho_{K_{1}}(y), \rho_{K_{2}}(y)\right\}\right\}$
$=\min \left\{\rho_{K_{1} \cap K_{2}}(x), \rho_{K_{1} \cap K_{2}}(y)\right\}$
$\rho_{K_{1} \cap K_{2}}(x) \geq \min \left\{\rho_{K_{1}}(x), \rho_{K_{2}}(x)\right\}$
$=\min \left\{\min \left\{\rho_{K_{1}}(x-y), \rho_{K_{1}}(y)\right\}, \min \left\{\rho_{K_{2}}(x-y), \rho_{K_{2}}(y)\right\}\right\}$
$=\min \left\{\min \left\{\rho_{K_{1}}(x-y), \rho_{K_{2}}(x-y)\right\}, \min \left\{\rho_{K_{1}}(y), \rho_{K_{2}}(y)\right\}\right\}$
$=\min \left\{\min \left\{\rho_{K_{1} \cap K_{2}}(x-y), \rho_{K_{1} \cap K_{2}}(y)\right\}\right\}$
$\left(\bar{\xi}_{K_{1} \cap K_{2}}\right)(0) \geq r \min \left\{\bar{\xi}_{K_{1}}(0), \bar{\xi}_{K_{2}}(0)\right\}$
$=r \min \left\{\bar{\xi}_{K_{1}}(x), \bar{\xi}_{K_{2}}(x)\right\}$
$=\left(\bar{\xi}_{K_{1} \cap K_{2}}\right)(x)$
$\left(\bar{\xi}_{K_{1} \cap K_{2}}\right)(x+y) \geq r \min \left\{\bar{\xi}_{K_{1}}(x+y), \bar{\xi}_{K_{2}}(x+y)\right\}$
$=\operatorname{rmin}\left\{\operatorname{rmin}\left\{\bar{\zeta}_{K_{1}}(x), \bar{\zeta}_{K_{1}}(y)\right\}, \operatorname{rmin}\left\{\bar{\xi}_{K_{2}}(x), \bar{\zeta}_{K_{2}}(y)\right\}\right\}$
$=\operatorname{rmin}\left\{\operatorname{rmin}\left\{\bar{\zeta}_{K_{1}}(x), \bar{\zeta}_{K_{2}}(x)\right\}, \operatorname{rmin}\left\{\bar{\xi}_{K_{1}}(y), \bar{\zeta}_{K_{2}}(y)\right\}\right\}$
$=\operatorname{rmin}\left\{\bar{\xi}_{K_{1} \cap K_{2}}(x), \bar{\xi}_{K_{1} \cap K_{2}}(y)\right\}$
$\bar{\xi}_{K_{1} \cap K_{2}}(x) \geq r \min \left\{\bar{\xi}_{K_{1}}(x), \bar{\zeta}_{K_{2}}(x)\right\}$

$$
\begin{aligned}
= & \operatorname{rmin}\left\{\operatorname{rmin}\left\{\bar{\xi}_{K_{1}}(x-y), \bar{\zeta}_{K_{1}}(y)\right\}, \operatorname{rmin}\left\{\bar{\xi}_{K_{2}}(x-y), \bar{\zeta}_{K_{2}}(y)\right\}\right\} \\
= & \operatorname{rmin}\left\{\operatorname{rmin}\left\{\bar{\xi}_{K_{1}}(x-y), \bar{\zeta}_{K_{2}}(x-y)\right\}, \operatorname{rmin}\left\{\bar{\xi}_{K_{1}}(y), \bar{\xi}_{K_{2}}(y)\right\}\right\} \\
& =\operatorname{rmin}\left\{\operatorname{rmin}\left\{\bar{\xi}_{K_{1} \cap K_{2}}(x-y), \bar{\xi}_{K_{1} \cap K_{2}}(y)\right\}\right\} \\
\left(\eta_{K_{1} \cap K_{2}}\right)(0) \leq & \max \left\{\eta_{K_{1}}(0), \eta_{K_{2}}(0)\right\} \\
= & \max \left\{\eta_{K_{1}}(x), \eta_{K_{2}}(x)\right\} \\
= & \left(\eta_{K_{1} \cap K_{2}}\right)(x) \\
\left(\eta_{K_{1} \cap K_{2}}\right)(x+y) \leq & \max \left\{\eta_{K_{1}}(x+y), \eta_{K_{2}}(x+y)\right\} \\
& =\max \left\{\max \left\{\eta_{K_{1}}(x), \eta_{K_{1}}(y)\right\}, \max \left\{\eta_{K_{2}}(x), \eta_{K_{2}}(y)\right\}\right\} \\
& =\max \left\{\max \left\{\eta_{K_{1}}(x), \eta_{K_{2}}(x)\right\}, \max \left\{\eta_{K_{1}}(y), \eta_{K_{2}}(y)\right\}\right\} \\
& =\max \left\{\eta_{K_{1} \cap K_{2}}(x), \eta_{K_{1} \cap K_{2}}(y)\right\} \\
\eta_{K_{1} \cap K_{2}}(x) \leq & \max \left\{\eta_{K_{1}}(x), \eta_{K_{2}}(x)\right\} \\
= & \max \left\{\max \left\{\eta_{K_{1}}(x-y), \eta_{K_{1}}(y)\right\}, \max \left\{\eta_{K_{2}}(x-y), \eta_{K_{2}}(y)\right\}\right\} \\
= & \max \left\{\max \left\{\eta_{K_{1}}(x-y), \eta_{K_{2}}(x-y)\right\}, \max \left\{\eta_{K_{1}}(y), \eta_{K_{2}}(y)\right\}\right\} \\
= & \max \left\{\max \left\{\eta_{K_{1} \cap K_{2}}(x-y), \eta_{K_{1} \cap K_{2}}(y)\right\}\right\}
\end{aligned}
$$

Hence $K_{1} \cap K_{2}$ is an MBJ - Neutrosophic β - Ideal of X.
3.4 Theorem: The intersection of any set of MBJ - Neutrosophic β - Ideal of a β - Algebra X is also an MBJ - Neutrosophic β - Ideal.
3.5 Theorem: Let $K=\left\{\rho_{K}, \bar{\xi}_{K}, \eta_{K}\right\}$ be an MBJ - Neutrosophic β - Ideal. If $x \leq y$ then $\rho_{K}(x) \geq \rho_{K}(y) ; \bar{\xi}_{K}(x) \geq \bar{\zeta}_{K}(y)$ and $\eta_{K}(x) \leq \eta_{K}(y)$.
Proof: For any $x, y \in X, x \leq y \Rightarrow x-y=0$.

$$
\begin{aligned}
\rho_{K}(x) & \geq \min \left\{\rho_{K}(x-y), \rho_{K}(y)\right\} \\
& =\min \left\{\rho_{K}(0), \rho_{K}(y)\right\} \\
& =\rho_{K}(y) \\
\rho_{K}(x) & \geq \rho_{K}(y) \\
\bar{\xi}_{K}(x) & \geq \operatorname{rmin}\left\{\bar{\xi}_{K}(x-y), \bar{\xi}_{K}(y)\right\} \\
& =\operatorname{rmin}\left\{\bar{\xi}_{K}(0), \bar{\xi}_{K}(y)\right\} \\
& =\bar{\xi}_{K}(y) \\
\bar{\xi}_{K}(x) & \geq \bar{\xi}_{K}(y) \\
\eta_{K}(x) & \leq \max \left\{\eta_{K}(x-y), \eta_{K}(y)\right\} \\
& =\max \left\{\eta_{K}(0), \eta_{K}(y)\right\} \\
& =\eta_{K}(y) \\
\eta_{K}(x) & \leq \eta_{K}(y) .
\end{aligned}
$$

3.6 Theorem: Let K be an MBJ - Neutrosophic β - Ideal of X whenever $x \leq z+y$ then $\rho_{K}(x) \geq \min \left\{\rho_{K}(z), \rho_{K}(y)\right\} \quad ; \quad \bar{\xi}_{K}(x) \geq r \min \left\{\bar{\xi}_{K}(z), \bar{\xi}_{K}(y)\right\} \quad$ and $\eta_{K}(x) \leq \max \left\{\eta_{K}(z), \eta_{K}(y)\right\}$
Proof: For $x, y, z \in X$

$$
\begin{aligned}
\rho_{K}(x) & \geq \min \left\{\rho_{K}(x-y), \rho_{K}(y)\right\} \\
& =\min \left\{\min \left\{\rho_{K}((x-y)-z), \rho_{K}(z)\right\}, \rho_{K}(y)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =\min \left\{\min \left\{\rho_{K}(x-(z+y)), \rho_{K}(z)\right\}, \rho_{K}(y)\right\} \\
& =\min \left\{\min \left\{\rho_{K}(0), \rho_{K}(z)\right\}, \rho_{K}(y)\right\} \\
& \geq \min \left\{\rho_{K}(z), \rho_{K}(y)\right\} \\
\bar{\xi}_{K}(x) & \geq \operatorname{rmin}\left\{\bar{\xi}_{K}(x-y), \bar{\xi}_{K}(y)\right\} \\
& =\operatorname{rmin}\left\{\operatorname{rmin}\left\{\bar{\xi}_{K}((x-y)-z), \bar{\xi}_{K}(z)\right\}, \bar{\xi}_{K}(y)\right\} \\
& =\operatorname{rmin}\left\{\operatorname{rmin}\left\{\bar{\xi}_{K}(x-(z+y)), \bar{\xi}_{K}(z)\right\}, \bar{\xi}_{K}(y)\right\} \\
& =\operatorname{rmin}\left\{\operatorname{rmin}\left\{\bar{\xi}_{K}(0), \bar{\xi}_{K}(z)\right\}, \bar{\xi}_{K}(y)\right\} \\
& \geq r \min \left\{\bar{\xi}_{K}(z), \bar{\xi}_{K}(y)\right\} \\
\eta_{K}(x) & \leq \max \left\{\eta_{K}(x-y), \eta_{K}(y)\right\} \\
& =\max \left\{\max \left\{\eta_{K}((x-y)-z), \eta_{K}(z)\right\}, \eta_{K}(y)\right\} \\
& =\max \left\{\max \left\{\eta_{K}(x-(z+y)), \eta_{K}(z)\right\}, \eta_{K}(y)\right\} \\
& =\max \left\{\max \left\{\eta_{K}(0), \eta_{K}(z)\right\}, \eta_{K}(y)\right\} \\
& \leq \max \left\{\eta_{K}(z), \eta_{K}(y)\right\}
\end{aligned}
$$

3.7 Theorem: Let $K=\left\{\rho_{K}, \bar{\xi}_{K}, \eta_{K}\right\}$ be an MBJ - Neutrosophic β - Ideal of X, then sets
$X_{\rho_{K}}=\left\{x \in X: \rho_{K}(x)=\rho_{K}(0)\right\} \quad ; \quad X_{\bar{\xi}_{K}}=\left\{x \in X: \bar{\xi}_{K}(x)=\bar{\xi}_{K}(0)\right\} \quad$ and $X_{\eta_{K}}=\left\{x \in X: \eta_{K}(x)=\eta_{K}(0)\right\}$ are β-ideals of X.
Proof: Since $\rho_{K}(x)=\rho_{K}(0) \Rightarrow 0 \in X_{\rho_{K}}$
If $x-y, y \in X_{\rho_{K}}$
$\Rightarrow \rho_{K}(x-y)=\rho_{K}(0) ; \rho_{K}(y)=\rho_{K}(0)$
Now, $\rho_{K}(x) \geq \min \left\{\rho_{K}(x-y), \rho_{K}(y)\right\}$

$$
=\min \left\{\rho_{K}(0), \rho_{K}(0)\right\}
$$

$$
=\rho_{K}(0)
$$

$\rho_{K}(x) \geq \rho_{K}(0)$
But $\rho_{K}(x) \leq \rho_{K}(0)$ implies $\rho_{K}(x)=\rho_{K}(0)$
$\Rightarrow x \in X_{\rho_{K}}$
$x-y, y \in X_{\rho_{K}} \Rightarrow x \in X_{\rho_{K}}$
$\therefore X_{\rho_{K}}$ is an β - Ideal of X
$\bar{\xi}_{K}(x)=\bar{\xi}_{K}(0) \Longrightarrow 0 \in X_{\bar{\xi}_{K}}$
If $x-y, y \in X_{\bar{\xi}_{K}}$
$\Rightarrow \bar{\xi}_{K}(x-y)=\bar{\xi}_{K}(0) ; \bar{\xi}_{K}(y)=\bar{\xi}_{K}(0)$
Now, $\bar{\xi}_{K}(x) \geq \operatorname{rmin}\left\{\bar{\xi}_{K}(x-y), \bar{\xi}_{K}(y)\right\}$
$=\operatorname{rmin}\left\{\bar{\xi}_{K}(0), \bar{\xi}_{K}(0)\right\}$
$=\bar{\xi}_{K}(0)$
$\bar{\xi}_{K}(x) \geq \bar{\xi}_{K}(0)$
But $\bar{\xi}_{K}(x) \leq \bar{\zeta}_{K}(0)$ implies $\bar{\xi}_{K}(x)=\bar{\zeta}_{K}(0)$
$\Rightarrow x \in X_{\bar{\xi}_{K}}$
$x-y, y \in X_{\bar{\xi}_{K}} \Rightarrow x \in X_{\bar{\xi}_{K}}$
$\therefore X_{\bar{\xi}_{K}}$ is an β - Ideal of X.
Similarly, $X_{\eta_{K}}$ is also an β - Ideal of X.
3.8 Theorem: Suppose J is subset of X. An MBJ - Neutrosophic set $K=\left\{\rho_{K}, \bar{\xi}_{K}, \eta_{K}\right\}$ such that $\rho_{K}=\left\{\begin{array}{l}t, x \in J \\ s, x \notin J\end{array} \quad ; \quad \bar{\xi}_{K}=\left\{\begin{array}{l}\bar{t}, x \in J \\ \bar{s} x \notin J\end{array} \quad\right.\right.$ and $\quad \eta_{K}=\left\{\begin{array}{l}\alpha, x \in J \\ \beta, x \notin J\end{array} \quad\right.$ where $t, s, \alpha, \beta \in[0,1] \quad$ and $\bar{t}, \bar{s} \in D[0,1]$ with $\left[t_{0}, t_{1}\right] \geq\left[s_{0}, s_{1}\right]$. Then the MBJ - Neutrosophic set $K=\left\{\rho_{K}, \bar{\xi}_{K}, \eta_{K}\right\}$ is an MBJ - Neutrosophic β - ideal of X if and only if J is an β - ideal of X.
Proof: Consider an MBJ - Neutrosophic set $K=\left\{\rho_{K}, \bar{\xi}_{K}, \eta_{K}\right\}$ is an MBJ - Neutrosophic β - ideal of X
i) \quad a) $\rho_{K}(0) \geq \rho_{K}(x) \quad \forall x \in X$

$$
\rho_{K}(0)=t \Rightarrow 0 \in J
$$

b) For $x, y \in J$

$$
\Rightarrow \rho_{K}(x)=t=\rho_{K}(y)
$$

$$
\therefore \rho_{K}(x+y) \geq \min \left\{\rho_{K}(x), \rho_{K}(y)\right\}
$$

$$
=\min \{t, t\}
$$

$$
\rho_{K}(x+y)=t
$$

$$
\Rightarrow x+y \in J
$$

c) For $x, y \in J$ if $x-y$ and $y \in J$

$$
\Rightarrow \rho_{K}(x-y)=t=\rho_{K}(y)
$$

$\therefore \rho_{K}(x) \geq \min \left\{\rho_{K}(x-y), \rho_{K}(y)\right\}$

$$
=\min \{t, t\}=t
$$

$\rho_{K}(x)=t$
$\Rightarrow x \in J$
ii) \quad a) $\bar{\xi}_{K}(0) \geq \bar{\xi}_{K}(x) \quad \forall x \in X$

$$
\bar{\xi}_{K}(0)=\left[t_{0}, t_{1}\right] \Rightarrow 0 \in J
$$

b) For $x, y \in J$

$$
\Rightarrow \bar{\xi}_{K}(x)=\left[t_{0}, t_{1}\right]=\bar{\xi}_{K}(y)
$$

$$
\therefore \bar{\xi}_{K}(x+y) \geq \operatorname{rmin}\left\{\bar{\xi}_{K}(x), \bar{\xi}_{K}(y)\right\}
$$

$$
=\operatorname{rmin}\left\{\left[t_{0}, t_{1}\right],\left[t_{0}, t_{1}\right]\right\}
$$

$$
\begin{gathered}
\bar{\xi}_{K}(x+y)=\left[t_{0}, t_{1}\right] \\
\quad \Rightarrow x+y \in J
\end{gathered}
$$

c) For $x, y \in J$ if $x-y$ and $y \in J$

$$
\begin{aligned}
& \Rightarrow \bar{\xi}_{K}(x-y)=\left[t_{0}, t_{1}\right]=\bar{\xi}_{K}(y) \\
& \left.\begin{array}{rl}
\therefore \bar{\xi}_{K}(x) & \geq \operatorname{rmin}\left\{\bar{\xi}_{K}(x-y), \bar{\xi}_{K}(y)\right\} \\
& =\operatorname{rmin}\left\{\left[t_{0}, t_{1}\right],\left[t_{0}, t_{1}\right]\right\}=\left[t_{0}, t_{1}\right] \\
& \bar{\xi}_{K}(x)
\end{array}\right)=\left[t_{0}, t_{1}\right] \\
& \Rightarrow x \in J
\end{aligned}
$$

iii) a) $\eta_{K}(0) \leq \eta_{K}(x) \quad \forall x \in X$

$$
\eta_{K}(0)=\alpha \Rightarrow 0 \in J
$$

b) For $x, y \in J$

$$
\begin{aligned}
& \Rightarrow \eta_{K}(x)=\alpha=\eta_{K}(y) \\
& \therefore \eta_{K}(x+y) \leq \max \left\{\eta_{K}(x), \eta_{K}(y)\right\} \\
& \quad=\max \{\alpha, \alpha\} \\
& \eta_{K}(x+y)=\alpha
\end{aligned}
$$

$$
\Longrightarrow x+y \in J
$$

c) For $x, y \in J$ if $x-y$ and $y \in J$

$$
\begin{aligned}
& \Rightarrow \eta_{K}(x-y)=\alpha=\eta_{K}(y) \\
& \therefore \eta_{K}(x) \leq \max \left\{\eta_{K}(x-y), \eta_{K}(y)\right\} \\
& \quad=\max \{\alpha, \alpha\}=\alpha \\
& \eta_{K}(x)=\alpha \\
& \Rightarrow x \in J
\end{aligned}
$$

$\therefore J$ is an β - ideal of X
Conversely, assuming J is an β-ideal of X. Then
i) a) If $0 \in J$

Implies $\rho_{K}(0)=t$
Also $\forall x \in X, \operatorname{Im}\left(\rho_{K}\right)=[t, s] \& t>s$
$\Rightarrow \rho_{K}(0) \geq \rho_{K}(x) \forall x \in X$
b) For any $x, y \in J$
$\Rightarrow x+y \in J$
$\Rightarrow \rho_{K}(x)=\rho_{K}(x+y)=t=\rho_{K}(y)$

$$
=\min \left\{\rho_{K}(x), \rho_{K}(y)\right\}
$$

$\therefore \rho_{K}(x+y) \geq \min \left\{\rho_{K}(x), \rho_{K}(y)\right\}$
c) For any $x, y \in J$

$$
\begin{aligned}
& \text { If } x-y \text { and } y \in J \Longrightarrow x \in J \\
& \rho_{K}(x)=t=\min [t, t]=\min \left\{\rho_{K}(x-y), \rho_{K}(y)\right\}
\end{aligned}
$$

ii) a) If $0 \in J$

$$
\begin{aligned}
& \text { Implies } \bar{\xi}_{K}(0)=\bar{t} \\
& \text { Also } \forall x \in X, \operatorname{Im}\left(\bar{\xi}_{K}\right)=[\bar{t}, \bar{s}] \& \bar{t}>\bar{s} \\
& \Rightarrow \bar{\xi}_{K}(0) \geq \bar{\xi}_{K}(x) \forall x \in X
\end{aligned}
$$

b) For any $x, y \in J$

$$
\begin{aligned}
& \Rightarrow x+y \in J \\
& \Rightarrow \bar{\xi}_{K}(x)=\bar{\xi}_{K}(x+y)=\bar{t}=\bar{\xi}_{K}(y)
\end{aligned}
$$

$$
=\operatorname{rmin}\left\{\bar{\xi}_{K}(x), \bar{\xi}_{K}(y)\right\}
$$

$\therefore \bar{\xi}_{K}(x+y) \geq \operatorname{rmin}\left\{\bar{\xi}_{K}(x), \bar{\xi}_{K}(y)\right\}$
c) For any $x, y \in J$

If $x-y$ and $y \in J \Rightarrow x \in J$
$\bar{\xi}_{K}(x)=\bar{t}=\operatorname{rmin}[\bar{t}, \bar{t}]=\operatorname{rmin}\left\{\bar{\xi}_{K}(x-y), \bar{\xi}_{K}(y)\right\}$
iii) a) If $0 \in J$

Implies $\eta_{K}(0)=\alpha$
Also $\forall x \in X, \operatorname{Im}\left(\eta_{K}\right)=[\alpha, \beta] \& \alpha<\beta$
$\Rightarrow \eta_{K}(0) \leq \eta_{K}(x) \forall x \in X$
b) For any $x, y \in J$

$$
\begin{aligned}
& \Rightarrow x+y \in J \\
& \Rightarrow \eta_{K}(x)=\eta_{K}(x+y)=\alpha=\eta_{K}(y) \\
& \quad=\max \left\{\eta_{K}(x), \eta_{K}(y)\right\} \\
& \therefore \eta_{K}(x+y) \leq \max \left\{\eta_{K}(x), \eta_{K}(y)\right\}
\end{aligned}
$$

c) For any $x, y \in J$

If $x-y$ and $y \in J \Rightarrow x \in J$
$\eta_{K}(x)=\alpha=\max [\alpha, \alpha]=\max \left\{\eta_{K}(x-y), \eta_{K}(y)\right\}$
$\therefore K$ is an MBJ $-\beta$ - Ideal of X.
3.9 Definition: Let $K=\left\{<x, \rho_{K}(x), \bar{\xi}_{K}(x), \eta_{K}(x)>/ x \in X\right\}$ be an MBJ- Neutrosophic Set in X and $f: X \rightarrow Y$ be a mapping then the image of K under $f, f(K)$ is defined as $f(K)=\left\{<x, f_{\text {sup }}\left(\rho_{K}\right), f_{\text {rsup }}\left(\bar{\xi}_{K}\right), f_{\text {inf }} \eta_{K}(x)>/ x \in Y\right\}$ where $\quad f_{\text {sup }}\left(\rho_{K}\right)(y)=\sup _{x \in f^{-1}(y)} \rho_{K}(x) ;$ $f_{\text {rsup }}\left(\bar{\xi}_{K}\right)(y)=r \operatorname{rup}_{x \in f^{-1}(y)} \bar{\xi}_{K}(x)$ and $\quad f_{\text {inf }}\left(\eta_{K}\right)(y)=\inf _{x \in f^{-1}(y)} \eta_{K}(x)$
3.10 Definition: Let $f: X \rightarrow Y$ be a function and let K and L be two MBJ - Neutrosophic β - Ideal in $X \& Y$ respectively then the preimage of L under f is defined by $f^{-1}(L)=\left\{x, f^{-1}\left(\rho_{K}(x)\right), f^{-1}\left(\bar{\xi}_{K}(x)\right), f^{-1}\left(\eta_{K}(x)\right)>/ x \in X\right\}$ such that
$f^{-1}\left(\rho_{K}(x)\right)=\rho_{K}(f(x)) \quad ; f^{-1}\left(\bar{\xi}_{K}(x)\right)=\bar{\xi}_{K}(f(x))$ and $f^{-1}\left(\eta_{K}(x)\right)=\eta_{K}(f(x))$.
3.11 Theorem: Let $f: X \rightarrow Y$ be an onto homomorphism of β - algebra. Suppose K is an MBJ - Neutrosophic β - Ideal of Y, then the preimage of $f^{-1}(K)$ is an MBJ - Neutrosophic β - Ideal of X.
Proof: Suppose K be an MBJ - Neutrosophic β - ideal of Y
i) For $x \in X$

$$
\begin{aligned}
f^{-1}\left(\rho_{K}(0)\right) & =\rho_{K}(f(0)) \\
& =\rho_{K}(0) \\
& \geq \rho_{K}(x)
\end{aligned}
$$

For some $x, y \in X$

$$
f^{-1}\left(\rho_{K}\right)(x+y)=\rho_{K}(f(x+y))
$$

$$
=\rho_{K}(f(x)+f(y))
$$

$$
\geq \min \left\{\rho_{K}(f(x)), \rho_{K}(f(y))\right\}
$$

$$
=\min \left\{f^{-1}\left(\rho_{K}(x)\right), f^{-1}\left(\rho_{K}(y)\right)\right\}
$$

$$
f^{-1}\left(\rho_{K}\right)(x)=\rho_{K}(f(x))
$$

$$
\geq \min \left\{\rho_{K}(f(x)-f(y)), \rho_{K}(f(y))\right\}
$$

$$
=\min \left\{\rho_{K}(f(x-y)), \rho_{K}(f(y))\right\}
$$

$$
=\min \left\{f^{-1}\left(\rho_{K}(x-y)\right), f^{-1}\left(\rho_{K}(y)\right)\right\}
$$

ii) $\quad f^{-1}\left(\bar{\xi}_{K}(0)\right)=\bar{\xi}_{K}(f(0))$

$$
\begin{aligned}
& =\bar{\xi}_{K}(0) \\
& \geq \bar{\xi}_{K}(x)
\end{aligned}
$$

For some $x, y \in X$

$$
f^{-1}\left(\bar{\xi}_{K}\right)(x+y)=\bar{\xi}_{K}(f(x+y))
$$

$$
=\bar{\xi}_{K}(f(x)+f(y))
$$

$$
\geq \operatorname{rmin}\left\{\bar{\xi}_{K}(f(x)), \bar{\xi}_{K}(f(y))\right\}
$$

$$
=\operatorname{rmin}\left\{f^{-1}\left(\bar{\xi}_{K}(x)\right), f^{-1}\left(\bar{\xi}_{K}(y)\right)\right\}
$$

$$
\begin{aligned}
f^{-1}\left(\bar{\xi}_{K}\right)(x) & =\bar{\xi}_{K}(f(x)) \\
& \geq \operatorname{rmin}\left\{\bar{\xi}_{K}(f(x)-f(y)), \bar{\xi}_{K}(f(y))\right\} \\
& =\operatorname{rmin}\left\{\bar{\xi}_{K}(f(x-y)), \bar{\xi}_{K}(f(y))\right\} \\
& =\operatorname{rmin}\left\{f^{-1}\left(\bar{\xi}_{K}(x-y)\right), f^{-1}\left(\bar{\xi}_{K}(y)\right)\right\}
\end{aligned}
$$

iii) $\quad f^{-1}\left(\eta_{K}(0)\right)=\eta_{K}(f(0))$

$$
\begin{aligned}
& =\eta_{K}(0) \\
& \leq \eta_{K}(x)
\end{aligned}
$$

For some $x, y \in X$
$f^{-1}\left(\eta_{K}\right)(x+y)=\eta_{K}(f(x+y))$
$=\eta_{K}(f(x)+f(y))$
$\leq \max \left\{\eta_{K}(f(x)), \eta_{K}(f(y))\right\}$ $=\max \left\{f^{-1}\left(\eta_{K}(x)\right), f^{-1}\left(\eta_{K}(y)\right)\right\}$
$f^{-1}\left(\eta_{K}\right)(x)=\eta_{K}(f(x))$
$\leq \max \left\{\eta_{K}(f(x)-f(y)), \eta_{K}(f(y))\right\}$
$=\max \left\{\eta_{K}(f(x-y)), \eta_{K}(f(y))\right\}$
$=\max \left\{f^{-1}\left(\eta_{K}(x-y)\right), f^{-1}\left(\eta_{K}(y)\right)\right\}$
Hence $f^{-1}(K)$ is an MBJ - β - Ideal of X.
3.12 Theorem: Let $f: X \rightarrow X$ be an endomorphism on X. If K is an MBJ - Neutrosophic β - Ideal of X then $f(K)=\left\{\left\langle x, \rho_{f}(x)=\rho(f(x)), \bar{\xi}_{f}(x)=\bar{\xi}(f(x)), \eta_{f}(x)=\eta(f(x))>/ x \in X\right\}\right.$ is an MBJ - Neutrosophic β-Ideal of X.
Proof: Suppose K be an MBJ - Neutrosophic β-ideal of X. Then,
i)

$$
\begin{aligned}
\rho_{f}(0) & =\rho(f(0)) \\
= & \rho(0) \geq \rho(x) \forall x \in X \\
\rho_{f}(x+y) & =\rho(f(x+y)) \\
& =\rho(f(x)+f(y)) \\
& =\min \{\rho(f(x))+\rho(f(y))\} \\
& =\min \left\{\rho_{f}(x), \rho_{f}(y)\right\} \forall x, y \in X
\end{aligned}
$$

Also, $\rho_{f}(x)=\rho(f(x))$
$\geq \min \{\rho(f(x)-f(y)), \rho(f(y)))\}$
$=\min \{\rho(f(x-y)), \rho(f(y))\}$
$=\min \left\{\rho_{f}(x-y), \rho_{f}(y)\right\}$
ii) $\quad \bar{\xi}_{f}(0)=\bar{\xi}(f(0))$

$$
=\bar{\xi}(0) \geq \bar{\xi}(x) \forall x \in X
$$

$\bar{\xi}_{f}(x+y)=\bar{\xi}(f(x+y))$
$=\bar{\xi}(f(x)+f(y))$
$=\operatorname{rmin}\{\bar{\xi}(f(x))+\bar{\xi}(f(y))\}$ $=\operatorname{rmin}\left\{\bar{\xi}_{f}(x), \bar{\xi}_{f}(y)\right\} \forall x, y \in X$
Also, $\bar{\xi}_{f}(x)=\bar{\xi}(f(x))$

$$
\begin{aligned}
& \geq \operatorname{rmin}\{\bar{\xi}(f(x)-f(y)), \bar{\xi}(f(y))\} \\
& =\operatorname{rmin}\{\bar{\xi}(f(x-y)), \bar{\xi}(f(y))\} \\
& =\operatorname{rmin}\left\{\bar{\xi}_{f}(x-y), \bar{\xi}_{f}(y)\right\}
\end{aligned}
$$

iii) $\quad \eta_{f}(0)=\eta(f(0))$

$$
=\eta(0) \leq \eta(x) \forall x \in X
$$

$$
\eta_{f}(x+y)=\eta(f(x+y))
$$

$$
=\eta(f(x)+f(y))
$$

$$
=\max \{\eta(f(x))+\eta(f(y))\}
$$

$$
=\max \left\{\eta_{f}(x), \eta_{f}(y)\right\} \forall x, y \in X
$$

Also, $\eta_{f}(x)=\eta(f(x))$

$$
\begin{aligned}
& \quad \leq \max \{\eta(f(x)-f(y)), \eta(f(y)))\} \\
& =\max \{\eta(f(x-y)), \eta(f(y))\} \\
& =\max \left\{\eta_{f}(x-y), \eta_{f}(y)\right\}
\end{aligned}
$$

$\therefore f(K)$ is an MBJ - β - Ideal of X.
3.13 Theorem: Let $f: X \rightarrow Y$ be a homomorphism of β - algebra. If K is an MBJ - Neutrosophic β - Ideal of X, with sup - rsup - inf property and $\operatorname{ker}(f) \subseteq X_{K}$ then the image of the set $K, f(K)$ is an MBJ - Neutrosophic β-ideal of Y.
Proof: Suppose K is an MBJ - Neutrosophic β - Ideal of X, with sup - rsup - inf property and $\operatorname{ker}(f) \subseteq X_{K}$ then
i) $\quad f\left(\rho_{K}\right)(0)=\sup _{x \in f^{-1}(0)}\left\{\rho_{K}(x)\right\}$

$$
=\rho_{K}(0)
$$

$$
\geq \rho_{K}(x) \forall x \in X
$$

Hence, $f\left(\rho_{K}\right)(0)=\sup _{x \in f^{-1}(0)}\left\{\rho_{K}(x)\right\}$

$$
=f\left(\rho_{K}\right)(y) \forall y \in Y
$$

Let $y_{1}, y_{2} \in Y$
Then there exists $x_{1}, x_{2} \in X$ such that $f\left(x_{1}\right)=y_{1}, f\left(x_{2}\right)=y_{2}$.

$$
\begin{aligned}
f\left(\rho_{K}\right)\left(y_{1}+\right. & \left.y_{2}\right) \\
& =\sup \left\{\rho_{K}\left(x_{1}+x_{2}\right): x \in f^{-1}\left(y_{1}+y_{2}\right)\right\} \\
& \geq \sup \left\{\rho_{K}\left(x_{1}+x_{2}\right): x_{1} \in f^{-1}\left(y_{1}\right) \& x_{2} \in f^{-1}\left(y_{2}\right)\right\} \\
& \geq \sup \left\{\min \left\{\rho_{K}\left(x_{1}\right), \rho_{K}\left(x_{2}\right)\right\}, x_{1} \in f^{-1}\left(y_{1}\right), x_{2} \in f^{-1}\left(y_{2}\right)\right\} \\
& \geq \min \left\{\sup \left\{\rho_{K}\left(x_{1}\right): x_{1} \in f^{-1}\left(y_{1}\right)\right\}, \sup \left\{\rho_{K}\left(x_{2}\right): x_{2} \in f^{-1}\left(y_{2}\right)\right\}\right\} \\
& =\min \left\{\sup _{x_{1} \in f^{-1}\left(y_{1}\right)\{ }\left\{\rho_{K}\left(x_{1}\right)\right\}, \sup x_{x_{2} \in f^{-1}\left(y_{2}\right)}\left\{\rho_{K}\left(x_{2}\right)\right\}\right. \\
& =\min \left\{f\left(\rho_{K}\right)\left(y_{1}\right), f\left(\rho_{K}\right)\left(y_{2}\right)\right\}
\end{aligned}
$$

Suppose that for some $y_{1}, y_{2} \in Y$
Then $f\left(\rho_{K}\right)\left(y_{1}\right) \leq \min \left\{f\left(\rho_{K}\right)\left(y_{1}-y_{2}\right), f\left(\rho_{K}\right)\left(y_{2}\right)\right\}$
Since f is onto $\exists x_{1}, x_{2} \in X$ such that $f\left(x_{1}\right)=y_{1} \& f\left(x_{2}\right)=y_{2}$
$f\left(\rho_{K}\right)\left(f\left(x_{1}\right)\right)<\min \left\{f\left(\rho_{K}\right)\left(f\left(x_{1}\right)-f\left(x_{2}\right)\right), f\left(\rho_{K}\right)\left(f\left(x_{2}\right)\right)\right\}$
$=\min \left\{f\left(\rho_{K}\right)\left(f\left(x_{1}-x_{2}\right)\right), f\left(\rho_{K}\right)\left(f\left(x_{2}\right)\right)\right\}$
$<\min \left\{f^{-1}\left(f\left(\rho_{K}\right)\right)\left(x_{1}-x_{2}\right), f^{-1}\left(f\left(\rho_{K}\right)\right)\left(x_{2}\right)\right\}$

$$
\rho_{K}\left(x_{1}\right)<\min \left\{\rho_{K}\left(x_{1}-x_{2}\right), \rho_{K}\left(x_{2}\right)\right\}
$$

ii)

$$
\begin{aligned}
& \begin{aligned}
& f\left(\bar{\xi}_{K}\right)(0)= \operatorname{rsup}_{x \in f^{-1}(0)}\left\{\bar{\xi}_{K}(x)\right\} \\
&=\bar{\xi}_{K}(0) \\
& \geq \bar{\xi}_{K}(x) \forall x \in X \\
& \text { Hence, } f\left(\bar{\xi}_{K}\right)(0)= \operatorname{rsup}_{x \in f^{-1}(0)}\left\{\bar{\xi}_{K}(x)\right\} \\
& \quad=f\left(\bar{\xi}_{K}\right)(y) \forall y \in Y
\end{aligned}
\end{aligned}
$$

Let $f\left(x_{1}\right)=y_{1}, f\left(x_{2}\right)=y_{2}$.
$f\left(\bar{\xi}_{K}\right)\left(y_{1}+y_{2}\right)=r \sup \left\{\bar{\xi}_{K}\left(x_{1}+x_{2}\right): x \in f^{-1}\left(y_{1}+y_{2}\right)\right\}$

$$
\geq \operatorname{rsup}\left\{\bar{\zeta}_{K}\left(x_{1}+x_{2}\right): x_{1} \in f^{-1}\left(y_{1}\right) \& x_{2} \in f^{-1}\left(y_{2}\right)\right\}
$$

$$
\geq \operatorname{rsup}\left\{\operatorname{rmin}\left\{\bar{\xi}_{K}\left(x_{1}\right), \bar{\xi}_{K}\left(x_{2}\right)\right\}, x_{1} \in f^{-1}\left(y_{1}\right), x_{2} \in f^{-1}\left(y_{2}\right)\right\}
$$

$$
\geq \operatorname{rmin}\left\{\operatorname{rsup}\left\{\bar{\xi}_{K}\left(x_{1}\right): x_{1} \in f^{-1}\left(y_{1}\right)\right\}, \operatorname{rsup}\left\{\bar{\xi}_{K}\left(x_{2}\right): x_{2} \in f^{-1}\left(y_{2}\right)\right\}\right\}
$$

$$
=\operatorname{rmin}\left\{\operatorname{rsup}_{x_{1} \in f^{-1}\left(y_{1}\right)}\left\{\bar{\xi}_{K}\left(x_{1}\right)\right\}, r \sup _{x_{2} \in f^{-1}\left(y_{2}\right)}\left\{\bar{\xi}_{K}\left(x_{2}\right)\right\}\right\}
$$

$$
=\operatorname{rmin}\left\{f\left(\bar{\xi}_{K}\right)\left(y_{1}\right), f\left(\bar{\xi}_{K}\right)\left(y_{2}\right)\right\}
$$

For $y_{1}, y_{2} \in Y$
$f\left(\bar{\xi}_{K}\right)\left(y_{1}\right) \leq \operatorname{rmin}\left\{f\left(\bar{\xi}_{K}\right)\left(y_{1}-y_{2}\right), f\left(\bar{\xi}_{K}\right)\left(y_{2}\right)\right\}$
$f\left(\bar{\xi}_{K}\right)\left(f\left(x_{1}\right)\right)<\operatorname{rmin}\left\{f\left(\bar{\xi}_{K}\right)\left(f\left(x_{1}\right)-f\left(x_{2}\right)\right), f\left(\bar{\xi}_{K}\right)\left(f\left(x_{2}\right)\right)\right\}$
$=\operatorname{rmin}\left\{f\left(\bar{\xi}_{K}\right)\left(f\left(x_{1}-x_{2}\right)\right), f\left(\bar{\xi}_{K}\right)\left(f\left(x_{2}\right)\right)\right\}$
$<\operatorname{rmin}\left\{f^{-1}\left(f\left(\bar{\xi}_{K}\right)\right)\left(x_{1}-x_{2}\right), f^{-1}\left(f\left(\bar{\xi}_{K}\right)\right)\left(x_{2}\right)\right\}$
$\bar{\xi}_{K}\left(x_{1}\right)<\operatorname{rmin}\left\{\bar{\xi}_{K}\left(x_{1}-x_{2}\right), \bar{\xi}_{K}\left(x_{2}\right)\right\}$
iii)

$$
\begin{aligned}
f\left(\eta_{K}\right)(0) & =\inf _{x \in f^{-1}(0)}\left\{\eta_{K}(x)\right\} \\
& =\eta_{K}(0) \\
\leq & \{(x) \forall x \in X \\
\text { Hence, } f\left(\eta_{K}\right)(0) & =\inf _{x \in f^{-1}(0)\{ }\left\{\eta_{K}(x)\right\} \\
& =f\left(\eta_{K}\right)(y) \forall y \in Y
\end{aligned}
$$

Let $f\left(x_{1}\right)=y_{1}, f\left(x_{2}\right)=y_{2}$.
$f\left(\eta_{K}\right)\left(y_{1}+y_{2}\right)=\inf \left\{\eta_{K}\left(x_{1}+x_{2}\right): x \in f^{-1}\left(y_{1}+y_{2}\right)\right\}$
$\leq \inf \left\{\eta_{K}\left(x_{1}+x_{2}\right): x_{1} \in f^{-1}\left(y_{1}\right) \& x_{2} \in f^{-1}\left(y_{2}\right)\right\}$
$\leq \inf \left\{\max \left\{\eta_{K}\left(x_{1}\right), \eta_{K}\left(x_{2}\right)\right\}, x_{1} \in f^{-1}\left(y_{1}\right), x_{2} \in f^{-1}\left(y_{2}\right)\right\}$ $\leq \max \left\{\inf \left\{\eta_{K}\left(x_{1}\right): x_{1} \in f^{-1}\left(y_{1}\right)\right\}, \inf \left\{\eta_{K}\left(x_{2}\right): x_{2} \in f^{-1}\left(y_{2}\right)\right\}\right\}$
$=\max \left\{\inf _{x_{1} \in f^{-1}\left(y_{1}\right)}\left\{\eta_{K}\left(x_{1}\right)\right\}, \inf _{x_{2} \in f^{-1}\left(y_{2}\right)}\left\{\eta_{K}\left(x_{2}\right)\right\}\right.$
$=\max \left\{f\left(\eta_{K}\right)\left(y_{1}\right), f\left(\eta_{K}\right)\left(y_{2}\right)\right\}$
For $y_{1}, y_{2} \in Y$
$f\left(\eta_{K}\right)\left(y_{1}\right) \leq \max \left\{f\left(\eta_{K}\right)\left(y_{1}-y_{2}\right), f\left(\eta_{K}\right)\left(y_{2}\right)\right\}$
$f\left(\eta_{K}\right)\left(f\left(x_{1}\right)\right)<\max \left\{f\left(\eta_{K}\right)\left(f\left(x_{1}\right)-f\left(x_{2}\right)\right), f\left(\eta_{K}\right)\left(f\left(x_{2}\right)\right)\right\}$
$=\max \left\{f\left(\eta_{K}\right)\left(f\left(x_{1}-x_{2}\right)\right), f\left(\eta_{K}\right)\left(f\left(x_{2}\right)\right)\right\}$
$<\max \left\{f^{-1}(f(\eta))\left(x_{1}-x_{2}\right), f^{-1}\left(f\left(\eta_{K}\right)\right)\left(x_{2}\right)\right\}$
$\eta_{K}\left(x_{1}\right)<\max \left\{\eta_{K}\left(x_{1}-x_{2}\right), \eta_{K}\left(x_{2}\right)\right\}$
Thus, $f(K)$ is an MBJ - β - ideal of Y.
3.14 Theorem: Let $f: X \rightarrow Y$ be an onto homomorphism of β - algebra. If K is an MBJ - Neutrosophic β - ideal of X, with $\operatorname{ker}(f) \subseteq X_{K}$ then $f^{-1}(f(K))=K$.
Proof: To prove $f^{-1}(f(K))=K$.
It's necessary to prove

$$
f^{-1}\left(f\left(\rho_{K}\right)\right)(x)=\rho_{K}(x) ; f^{-1}\left(f\left(\bar{\xi}_{K}\right)\right)(x)=\bar{\xi}_{K}(x) \text { and } f^{-1}\left(f\left(\eta_{K}\right)\right)(x)=\eta_{K}(x) .
$$

For $\quad x \in X ; f(x)=y$
i) Now, $f^{-1}\left(f\left(\rho_{K}\right)\right)(x)=f\left(\rho_{K}\right)(f(x))$

$$
\begin{aligned}
& =f\left(\rho_{K}\right)(y) \\
& =\sup _{x \in f^{-1}(y)}\left\{\rho_{K}(x)\right\}
\end{aligned}
$$

For $x^{\prime} \in X, x^{\prime} \in f^{-1}(y) \Rightarrow f\left(x^{\prime}\right)=y$

$$
\begin{aligned}
& f\left(x^{\prime}\right)=f(x) \\
& \Rightarrow f\left(x^{\prime}\right)-f(x)=0
\end{aligned}
$$

$$
f\left(x^{\prime}-x\right)=0
$$

This implies $x^{\prime}-x \in \operatorname{Ker} f$

$$
\begin{aligned}
& x^{\prime}-x \in X_{\rho_{K}} \\
& \begin{aligned}
& \rho_{K}\left(x^{\prime}\right.-x)=\rho_{K}(0) \\
& \begin{aligned}
\rho_{K}\left(x^{\prime}\right) & \geq \min \left\{\rho_{K}\left(x^{\prime}-x\right), \rho_{K}(x)\right\} \\
& =\min \left\{\rho_{K}(0), \rho_{K}(x)\right\} \\
& =\rho_{K}(x)
\end{aligned} \\
& \begin{array}{l}
\rho_{K}\left(x^{\prime}\right)
\end{array} \geq \rho_{K}(x) \text { and similarly, } \rho_{K}(x) \geq \rho_{K}\left(x^{\prime}\right)
\end{aligned}
\end{aligned}
$$

Therefore, $\rho_{K}\left(x^{\prime}\right)=\rho_{K}(x)$

$$
\begin{aligned}
f^{-1}\left(f\left(\rho_{K}\right)\right)(x) & =f\left(\rho_{K}\right)(f(x)) \\
& =f\left(\rho_{K}\right)\left(f\left(x^{\prime}\right)\right) \\
& =\sup _{x \in f^{-1}(y)}\left\{\rho_{K}\left(x^{\prime}\right)\right\} \\
& =\rho_{K}(x) \\
f^{-1}\left(f\left(\rho_{K}\right)\right)(x) & =\rho_{K}(x)
\end{aligned}
$$

ii) $\quad f^{-1}\left(f\left(\bar{\xi}_{K}\right)\right)(x)=f\left(\bar{\xi}_{K}\right)(f(x))$

$$
\begin{aligned}
& =f\left(\bar{\xi}_{K}\right)(y) \\
& =\operatorname{rsup}_{x \in f^{-1}(y)}\left\{\bar{\xi}_{K}(x)\right\}
\end{aligned}
$$

For $x^{\prime} \in X, x^{\prime} \in f^{-1}(y) \Longrightarrow f\left(x^{\prime}\right)=y$

$$
\begin{aligned}
& f\left(x^{\prime}\right)=f(x) \\
& \Rightarrow f\left(x^{\prime}\right)-f(x)=0 \\
& f\left(x^{\prime}-x\right)=0
\end{aligned}
$$

This implies $x^{\prime}-x \in \operatorname{Ker} f$

$$
\left.\begin{array}{l}
\begin{array}{l}
x^{\prime}-x
\end{array} \begin{array}{rl}
\bar{\xi}_{K}\left(x^{\prime}-\right. & \bar{\xi}_{K} \\
\bar{\xi}_{K}\left(x^{\prime}\right) & \geq \operatorname{rmin}\left\{\bar{\xi}_{K}(0)\right. \\
& =\operatorname{rmin}\left\{\bar{\xi}_{K}\left(x^{\prime}-x\right), \bar{\xi}_{K}(x)\right\} \\
& \left.=\bar{\xi}_{K}(x)\right\}
\end{array} \\
\bar{\xi}_{K}\left(x^{\prime}\right)
\end{array}\right] \bar{\xi}_{K}(x) \text { and similarly, } \bar{\xi}_{K}(x) \geq \bar{\xi}_{K}\left(x^{\prime}\right) .
$$

Therefore, $\bar{\xi}_{K}\left(x^{\prime}\right)=\bar{\xi}_{K}(x)$

$$
\begin{aligned}
& f^{-1}\left(f\left(\bar{\xi}_{K}\right)\right)(x)=f\left(\bar{\xi}_{K}\right)(f(x)) \\
&=f\left(\bar{\xi}_{K}\right)\left(f\left(x^{\prime}\right)\right) \\
&=r \sup \\
& x \in f^{-1}(y) \\
&=\bar{\xi}_{K}(x) \\
&\left.f_{K}\left(x^{\prime}\right)\right\} \\
& f^{-1}\left(f\left(\bar{\xi}_{K}\right)\right)(x)=\bar{\xi}_{K}(x)
\end{aligned}
$$

iii) Proceeding in the same way,

$$
\begin{aligned}
f^{-1}\left(f\left(\eta_{K}\right)\right)(x) & =f\left(\eta_{K}\right)(f(x)) \\
& =f\left(\eta_{K}\right)(y) \\
& =\inf _{x \in f^{-1}(y)}\left\{\eta_{K}(x)\right\}
\end{aligned}
$$

For $x^{\prime} \in X, x^{\prime} \in f^{-1}(y) \Rightarrow f\left(x^{\prime}\right)=y$

$$
\begin{aligned}
& f\left(x^{\prime}\right)=f(x) \\
& \Rightarrow f\left(x^{\prime}\right)-f(x)=0
\end{aligned}
$$

$$
f\left(x^{\prime}-x\right)=0
$$

This implies $x^{\prime}-x \in \operatorname{Ker} f$

$$
\begin{aligned}
& x^{\prime}-x \in X_{\eta_{K}} \\
& \begin{aligned}
& \eta_{K}\left(x^{\prime}-x\right)=\eta_{K}(0) \\
& \begin{aligned}
\eta_{K}\left(x^{\prime}\right) & \leq \max \left\{\eta_{K}\left(x^{\prime}-x\right), \eta_{K}(x)\right\} \\
& =\max \left\{\eta_{K}(0), \eta_{K}(x)\right\} \\
& =\eta_{K}(x)
\end{aligned} \\
& \eta_{K}\left(x^{\prime}\right) \geq \eta_{K}(x) \text { and similarly, } \eta_{K}(x) \geq \eta_{K}\left(x^{\prime}\right)
\end{aligned}
\end{aligned}
$$

Therefore, $\eta_{K}\left(x^{\prime}\right)=\eta_{K}(x)$

$$
\begin{aligned}
f^{-1}\left(f\left(\eta_{K}\right)\right)(x) & =f\left(\eta_{K}\right)(f(x)) \\
& =f\left(\eta_{K}\right)\left(f\left(x^{\prime}\right)\right) \\
& =\inf _{x \in f^{-1}(y)}\left\{\eta_{K}\left(x^{\prime}\right)\right\} \\
& =\eta_{K}(x) \\
f^{-1}\left(f\left(\eta_{K}\right)\right)(x) & =\eta_{K}(x)
\end{aligned}
$$

Therefore, all these conditions are proved and hence $f^{-1}(f(K))=K$.

4 Cartesian Product of MBJ - Neutrosophic $\boldsymbol{\beta}$ - Ideal

This section introduces the cartesian product of MBJ - Neutrosophic β - ideal and discusses few associated results.
4.1.Definition:

Let

$$
K=\left\{<x, \rho_{K}(x), \bar{\xi}_{K}(x), \eta_{K}(x)>/ x \in X\right\}
$$

and
$L=\left\{<y, \rho_{K}(y), \bar{\xi}_{K}(y), \eta_{K}(y)>/ y \in Y\right\}$ be two MBJ - Neutrosophic sets $X \& Y$ respectively. The Cartesian product of K and L is denoted by $K \times L$ is defined as $K \times L=\left\{<(x, y), \rho_{K \times L}(x, y), \bar{\xi}_{K \times L}(x, y), \eta_{K \times L}(x, y)>/(x, y) \in X \times Y\right\}$ where $\rho_{K \times L}: X \times Y \rightarrow[0,1] ; \quad \bar{\xi}_{K \times L}: X \times Y \rightarrow D[0,1] \quad$ and $\quad \eta_{K \times L}: X \times Y \rightarrow[0,1] . \quad \rho_{K \times L}(x, y)=$
$\min \left\{\rho_{K}(x), \rho_{L}(y)\right\} \quad ;$
$\bar{\xi}_{K \times L}(x, y)=\operatorname{rmin}\left\{\bar{\xi}_{K}(x), \bar{\xi}_{L}(y)\right\}$
and
$\eta_{K \times L}(x, y)=\max \left\{\eta_{K}(x), \eta_{L}(y)\right\}$
4.2 Theorem: If K and L be two MBJ - Neutrosophic β - Ideal of $X \& Y$ respectively then $K \times L$ is an MBJ - Neutrosophic β - Ideal of $X \times Y$.
Proof: Let $K=\left\{<x, \rho_{K}(x), \bar{\xi}_{K}(x), \eta_{K}(x)>/ x \in X\right\}$ and
$L=\left\{<y, \rho_{K}(y), \bar{\xi}_{K}(y), \eta_{K}(y)>/ y \in Y\right\}$ be two MBJ - Neutrosophic sets $X \& Y$.
Take $(x, y) \in X \times Y$
i) $\quad \rho_{K \times L}(0,0)=\min \left\{\rho_{K}(0,0), \rho_{L}(0,0)\right\}$

$$
\begin{aligned}
& \geq \min \left\{\min \left\{\rho_{K}(0), \rho_{K}(0)\right\}, \min \left\{\rho_{L}(0), \rho_{L}(0)\right\}\right\} \\
& =\min \left\{\min \left\{\rho_{K}(x), \rho_{K}(y)\right\}, \min \left\{\rho_{L}(x), \rho_{L}(y)\right\}\right\} \\
& =\min \left\{\min \left\{\rho_{K}(x), \rho_{L}(x)\right\}, \min \left\{\rho_{K}(y), \rho_{L}(y)\right\}\right\} \\
& =\min \left\{\rho_{K \times L}(x), \rho_{K \times L}(y)\right\} \\
& \geq \rho_{K \times L}(x, y)
\end{aligned}
$$

Take $(u, v)) \in X \times Y$ where $u=\left(x_{1}, y_{1}\right), v=\left(x_{2}, y_{2}\right)$

$$
\rho_{K \times L}(u+v)=\rho_{K \times L}\left(\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)\right)
$$

$$
=\rho_{K \times L}\left(\left(x_{1}+x_{2}\right),\left(y_{1}+y_{2}\right)\right)
$$

$$
=\min \left\{\rho_{K}\left(x_{1}+x_{2}\right), \rho_{L}\left(y_{1}+y_{2}\right)\right\}
$$

$$
\geq \min \left\{\min \left\{\rho_{K}\left(x_{1}\right), \rho_{K}\left(x_{2}\right)\right\}, \min \left\{\rho_{L}\left(y_{1}\right), \rho_{L}\left(y_{2}\right)\right\}\right\}
$$

$$
=\min \left\{\min \left\{\rho_{K}\left(x_{1}\right), \rho_{L}\left(y_{1}\right)\right\}, \min \left\{\left(\rho_{K}\left(x_{2}\right), \rho_{L}\left(y_{2}\right)\right\}\right\}\right.
$$

$$
=\min \left\{\rho_{K \times L}\left(x_{1}, y_{1}\right), \rho_{K \times L}\left(\left(x_{2}, y_{2}\right)\right)\right\}
$$

$$
\geq \min \left\{\rho_{K \times L}(u), \rho_{K \times L}(v)\right\}
$$

$$
\rho_{K \times L}(u)=\rho_{K \times L}\left(x_{1}, y_{1}\right)
$$

$$
=\min \left\{\rho_{K \times L}\left(x_{1}\right), \rho_{K \times L}\left(y_{1}\right)\right\}
$$

$$
\geq \min \left\{\min \left\{\rho_{K}\left(x_{1}-x_{2}\right), \rho_{K}\left(x_{2}\right)\right\}, \min \left\{\rho_{L}\left(y_{1}-y_{2}\right), \rho_{L}\left(y_{2}\right)\right\}\right\}
$$

$$
\left.=\min \left\{\min \left\{\rho_{K}\left(x_{1}-x_{2}\right), \rho_{L}\left(y_{1}-y_{2}\right)\right)\right\}, \min \left\{\rho_{L}\left(x_{2}\right), \rho_{L}\left(y_{2}\right)\right\}\right\}
$$

$$
=\min \left\{\rho_{K \times L}\left(\left(x_{1}, y_{1}\right)-\left(x_{2}, y_{2}\right)\right), \rho_{K \times L}\left(x_{2}, y_{2}\right)\right\}
$$

$$
\geq \min \left\{\rho_{K \times L}(u-v), \rho_{K \times L}(v)\right\}
$$

ii) $\quad \bar{\xi}_{K \times L}(0,0)=\operatorname{rmin}\left\{\bar{\xi}_{K}(0,0), \bar{\xi}_{L}(0,0)\right\}$
$\geq r \min \left\{\operatorname{rmin}\left\{\bar{\xi}_{K}(0), \bar{\xi}_{K}(0)\right\}, \operatorname{rmin}\left\{\bar{\xi}_{L}(0), \bar{\xi}_{L}(0)\right\}\right\}$
$=r \min \left\{\operatorname{rmin}\left\{\bar{\xi}_{K}(x), \bar{\xi}_{K}(y)\right\}, \operatorname{rmin}\left\{\bar{\xi}_{L}(x), \bar{\xi}_{L}(y)\right\}\right\}$
$=r \min \left\{\operatorname{rmin}\left\{\bar{\xi}_{K}(x), \bar{\xi}_{L}(x)\right\}, \operatorname{rmin}\left\{\bar{\xi}_{K}(y), \bar{\xi}_{L}(y)\right\}\right\}$
$=\operatorname{rmin}\left\{\bar{\xi}_{K \times L}(x), \bar{\xi}_{K \times L}(y)\right\}$
$\geq \bar{\xi}_{K \times L}(x, y)$
$\bar{\xi}_{K \times L}(u+v)=\bar{\xi}_{K \times L}\left(\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)\right)$
$=\bar{\xi}_{K \times L}\left(\left(x_{1}+x_{2}\right),\left(y_{1}+y_{2}\right)\right)$
$=r \min \left\{\bar{\xi}_{K}\left(x_{1}+x_{2}\right), \bar{\xi}_{L}\left(y_{1}+y_{2}\right)\right\}$
$\geq r \min \left\{\operatorname{rmin}\left\{\bar{\xi}_{K}\left(x_{1}\right), \bar{\xi}_{K}\left(x_{2}\right)\right\}, \operatorname{rmin}\left\{\bar{\xi}_{L}\left(y_{1}\right), \bar{\xi}_{L}\left(y_{2}\right)\right\}\right\}$
$=r \min \left\{r \min \left\{\bar{\xi}_{K}\left(x_{1}\right), \bar{\xi}_{L}\left(y_{1}\right)\right\}, r \min \left\{\left(\bar{\xi}_{K}\left(x_{2}\right), \bar{\xi}_{L}\left(y_{2}\right)\right\}\right\}\right.$
$=\operatorname{rmin}\left\{\bar{\xi}_{K \times L}\left(x_{1}, y_{1}\right), \bar{\xi}_{K \times L}\left(\left(x_{2}, y_{2}\right)\right)\right\}$
$\geq \operatorname{rmin}\left\{\bar{\xi}_{K \times L}(u), \bar{\xi}_{K \times L}(v)\right\}$
$\bar{\xi}_{K \times L}(u)=\bar{\xi}_{K \times L}\left(x_{1}, y_{1}\right)$

$$
\begin{aligned}
& =\operatorname{rmin}\left\{\xi_{K \times L}\left(x_{1}\right), \xi_{K \times L}\left(y_{1}\right)\right\} \\
& \geq r \min \left\{\operatorname{rmin}\left\{\xi_{K}\left(x_{1}-x_{2}\right), \xi_{K}\left(x_{2}\right)\right\}, r \min \left\{\xi_{L}\left(y_{1}-y_{2}\right), \xi_{L}\left(y_{2}\right)\right\}\right\} \\
& \left.=r \min \left\{\operatorname{rmin}\left\{\xi_{K}\left(x_{1}-x_{2}\right), \xi_{L}\left(y_{1}-y_{2}\right)\right)\right\}, r \min \left\{\xi_{L}\left(x_{2}\right), \xi_{L}\left(y_{2}\right)\right\}\right\} \\
& =\operatorname{rmin}\left\{\xi_{K \times L}\left(\left(x_{1}, y_{1}\right)-\left(x_{2}, y_{2}\right)\right), \xi_{K \times L}\left(x_{2}, y_{2}\right)\right\} \\
& \geq \operatorname{rmin}\left\{\xi_{K \times L}(u-v), \xi_{K \times L}(v)\right\} \\
\eta_{K \times L}(0,0) & =\max \left\{\eta_{K}(0,0), \eta_{L}(0,0)\right\} \\
\leq & \max \left\{\max \left\{\eta_{K}(0), \eta_{K}(0)\right\}, \max \left\{\eta_{L}(0), \eta_{L}(0)\right\}\right\} \\
= & \max \left\{\max \left\{\eta_{K}(x), \eta_{K}(y)\right\}, \max \left\{\eta_{L}(x), \eta_{L}(y)\right\}\right\} \\
= & \max \left\{\max \left\{\eta_{K}(x), \eta_{L}(x)\right\}, \max \left\{\eta_{K}(y), \eta_{L}(y)\right\}\right\} \\
= & \max \left\{\eta_{K \times L}(x), \eta_{K \times L}(y)\right\} \\
\leq & \eta_{K \times L}(x, y) \\
\eta_{K \times L}(u+ & v) \\
& =\eta_{K \times L}\left(\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)\right) \\
& =\eta_{K \times L}\left(\left(x_{1}+x_{2}\right),\left(y_{1}+y_{2}\right)\right) \\
& =\max \left\{\eta_{K}\left(x_{1}+x_{2}\right), \eta_{L}\left(y_{1}+y_{2}\right)\right\} \\
& \leq \max \left\{\max \left\{\eta_{K}\left(x_{1}\right), \eta_{K}\left(x_{2}\right)\right\}, \max \left\{\eta_{L}\left(y_{1}\right), \eta_{L}\left(y_{2}\right)\right\}\right\} \\
& =\max \left\{\max \left\{\eta_{K}\left(x_{1}\right), \eta_{L}\left(y_{1}\right)\right\}, \max \left\{\left(\eta_{K}\left(x_{2}\right), \eta_{L}\left(y_{2}\right)\right\}\right\}\right. \\
& =\max \left\{\eta_{K \times L}\left(x_{1}, y_{1}\right), \eta_{K \times L}\left(\left(x_{2}, y_{2}\right)\right)\right\} \\
\leq & \max \left\{\eta_{K \times L}(u), \eta_{K \times L}(v)\right\} \\
\eta_{K \times L}(u)= & \eta_{K \times L}\left(x_{1}, y_{1}\right) \\
= & \max \left\{\eta_{K \times L}\left(x_{1}\right), \eta_{K \times L}\left(y_{1}\right)\right\} \\
\leq & \max \left\{\max \left\{\eta_{K}\left(x_{1}-x_{2}\right), \eta_{K}\left(x_{2}\right)\right\}, \operatorname{max\{ \eta _{L}(y_{1}-y_{2}),\eta _{L}(y_{2})\} \} }\right. \\
= & \left.\max \left\{\max \left\{\eta_{K}\left(x_{1}-x_{2}\right), \eta_{L}\left(y_{1}-y_{2}\right)\right)\right\}, \max \left\{\eta_{L}\left(x_{2}\right), \eta_{L}\left(y_{2}\right)\right\}\right\} \\
= & \max \left\{\eta_{K \times L}\left(\left(x_{1}, y_{1}\right)-\left(x_{2}, y_{2}\right)\right), \eta_{K \times L}\left(x_{2}, y_{2}\right)\right\} \\
\leq & \max \left\{\eta_{K \times L}(u-v), \eta_{K \times L}(v)\right\}
\end{aligned}
$$

Hence $K \times L$ is an MBJ - Neutrosophic β - Ideal of $X \times Y$.
4.3 Theorem: If $K_{1}, K_{2}, \ldots . . K_{n}$ be an MBJ - Neutrosophic β - Ideals of $X_{1}, X_{2}, \ldots X_{n}$ respectively, then $\prod_{i=1}^{n} K_{i}$ is also a MBJ - Neutrosophic β-Ideal of $\prod_{i=1}^{n} X_{i}$.
Proof: \quad By induction on Theorem 4.2,
i) $\quad \prod_{i=1}^{n} \rho_{K_{i}}(0) \geq \prod_{i=1}^{n} \rho_{K_{i}}\left(x_{i}\right)$
$\prod_{i=1}^{n} \rho_{K_{i}}\left(x_{i}+y_{i}\right) \geq \min \left\{\prod_{i=1}^{n} \rho_{K_{i}}\left(x_{i}\right), \prod_{i=1}^{n} \rho_{K_{i}}\left(y_{i}\right)\right\}$
$\prod_{i=1}^{n} \rho_{K_{i}}\left(x_{i}\right) \geq \min \left\{\prod_{i=1}^{n} \rho_{K_{i}}\left(x_{i}-y_{i}\right), \prod_{i=1}^{n} \rho_{K_{i}}\left(y_{i}\right)\right\}$
ii) $\quad \prod_{i=1}^{n} \bar{\xi}_{K_{i}}(0) \geq \prod_{i=1}^{n} \bar{\xi}_{K_{i}}\left(x_{i}\right)$
$\prod_{i=1}^{n} \bar{\xi}_{K_{i}}\left(x_{i}+y_{i}\right) \geq r \min \left\{\prod_{i=1}^{n} \bar{\xi}_{K_{i}}\left(x_{i}\right), \prod_{i=1}^{n} \bar{\xi}_{K_{i}}\left(y_{i}\right)\right\}$
$\prod_{i=1}^{n} \bar{\xi}_{K_{i}}\left(x_{i}\right) \geq r \min \left\{\prod_{i=1}^{n} \bar{\xi}_{K_{i}}\left(x_{i}-y_{i}\right), \prod_{i=1}^{n} \bar{\xi}_{K_{i}}\left(y_{i}\right)\right\}$
iii) $\quad \prod_{i=1}^{n} \eta_{K_{i}}(0) \leq \prod_{i=1}^{n} \eta_{K_{i}}\left(x_{i}\right)$
$\prod_{i=1}^{n} \eta_{K_{i}}\left(x_{i}+y_{i}\right) \leq \max \left\{\prod_{i=1}^{n} \eta_{K_{i}}\left(x_{i}\right), \prod_{i=1}^{n} \eta_{K_{i}}\left(y_{i}\right)\right\}$
$\prod_{i=1}^{n} \eta_{K_{i}}\left(x_{i}\right) \leq \max \left\{\prod_{i=1}^{n} \eta_{K_{i}}\left(x_{i}-y_{i}\right), \prod_{i=1}^{n} \eta_{K_{i}}\left(y_{i}\right)\right\}$
Hence the proof is clear.
4.4 Theorem: For the MBJ - Neutrosophic subsets K and L of $X \& Y$, if $K \times L$ is an MBJ - Neutrosophic β - ideal of $X \times Y$ then
i) $\quad \rho_{K}(0) \geq \rho_{L}(y) \& \rho_{L}(0) \geq \rho_{K}(x)$
ii) $\quad \bar{\xi}_{K}(0) \geq \bar{\zeta}_{L}(y) \& \bar{\xi}_{L}(0) \geq \bar{\xi}_{K}(x)$
iii) $\quad \eta_{K}(0) \leq \eta_{L}(y) \& \eta_{L}(0) \leq \eta_{K}(x)$

Proof: Let $K \& L$ be MBJ - Neutrosophic subsets of $X \& Y$ with $K \times L$ is an MBJ - Neutrosophic β-ideal of $X \times Y$.
Suppose $\rho_{L}(y) \geq \rho_{K}(0)$ and $\rho_{K}(x) \geq \rho_{L}(0)$ for some $x \in X, y \in Y$.
$\rho_{K \times L}(x, y)=\min \left\{\rho_{K}(x), \rho_{L}(y)\right\}$
$\geq \min \left\{\rho_{L}(0), \rho_{K}(0)\right\}$
$=\rho_{K \times L}(0,0)$
which is a contradiction.
Thus, $\rho_{K}(0) \geq \rho_{L}(y) \& \rho_{L}(0) \geq \rho_{K}(x)$
Similarly, $\bar{\xi}_{L}(y) \geq \bar{\xi}_{K}(0)$ and $\bar{\xi}_{K}(x) \geq \bar{\xi}_{L}(0)$ for some $x \in X, y \in Y$.

$$
\begin{aligned}
\bar{\xi}_{K \times L}(x, y) & =r \min \left\{\bar{\xi}_{K}(x), \bar{\xi}_{L}(y)\right\} \\
& \geq \operatorname{rmin}\left\{\bar{\xi}_{L}(0), \bar{\xi}_{K}(0)\right\} \\
& =\bar{\xi}_{K \times L}(0,0)
\end{aligned}
$$

Now, $\eta_{L}(y) \leq \eta_{K}(0)$ and $\eta_{K}(x) \leq \eta_{L}(0)$
$\eta_{K \times L}(x, y)=\max \left\{\eta_{K}(x), \eta_{L}(y)\right\}$
$\leq \max \left\{\eta_{L}(0), \eta_{K}(0)\right\}$
$=\eta_{K \times L}(0,0)$
Hence the condition is satisfied.
4.5 Theorem: Let $K \& L$ be two MBJ - Neutrosophic β - ideals of $X \& Y$ such that $K \times L$ is an MBJ - Neutrosophic β - ideals of $X \times Y$. Then, either K is an MBJ- β-ideals of X or L is an MBJ - Neutrosophic β - ideals of Y.
Proof: By using the above theorem
i) We consider $\rho_{K}(0) \geq \rho_{L}(y)$ then
$\rho_{K \times L}(0, y) \geq \min \left\{\rho_{K}(0), \rho_{L}(y)\right\}$
Given $K \times L$ is an MBJ - Neutrosophic β - ideals of $X \times Y$
$\rho_{K \times L}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right) \geq \min \left\{\rho_{K \times L}\left(\left(x_{1}, y_{1}\right)-\left(x_{2}, y_{2}\right)\right), \rho_{K \times L}\left(x_{2}, y_{2}\right)\right\}$
$\because \rho_{K \times L}\left(\left(x_{1}, y_{1}\right)-\left(x_{2}, y_{2}\right)\right) \geq \min \left\{\rho_{K \times L}\left(x_{1}, y_{1}\right), \rho_{K \times L}\left(x_{2}, y_{2}\right)\right\}$
$\rho_{K \times L}\left(x_{1}, y_{1}\right) \geq \min \left\{\rho_{K \times L}\left(\left(x_{1}-x_{2}\right),\left(y_{1}-y_{2}\right)\right), \rho_{K \times L}\left(x_{2}, y_{2}\right)\right\}$
Now,
$\rho_{K \times L}\left(\left(x_{1}-x_{2}\right),\left(y_{1}-y_{2}\right)\right) \geq \min \left\{\rho_{K \times L}\left(x_{1}, y_{1}\right), \rho_{K \times L}\left(x_{2}, y_{2}\right)\right\}$
Put $x_{1}=x_{2}=0$ in Equation (2 \& 3)
$\rho_{K \times L}\left(0, y_{1}\right) \geq \min \left\{\rho_{K \times L}\left(0,\left(y_{1}-y_{2}\right)\right), \rho_{K \times L}\left(0, y_{2}\right)\right\} \quad$ and
$\rho_{K \times L}\left(0,\left(y_{1}-y_{2}\right)\right) \geq \min \left\{\rho_{K \times L}\left(0, y_{1}\right), \rho_{K \times L}\left(0, y_{2}\right)\right\}$
From (1) \& (4)
$\rho_{L}\left(y_{1}\right) \geq \min \left\{\rho_{L}\left(y_{1}-y_{2}\right), \rho_{L}\left(y_{2}\right)\right\}$ and
$\rho_{L}\left(y_{1}-y_{2}\right) \geq \min \left\{\rho_{L}\left(y_{1}\right), \rho_{L}\left(y_{2}\right)\right\}$
ii) Consider $\quad \bar{\xi}_{K}(0) \geq \bar{\xi}_{L}(y)$. Then

$$
\begin{align*}
& \bar{\xi}_{K \times L}(0, y) \geq r \min \left\{\bar{\xi}_{K}(0), \bar{\xi}_{L}(y)\right\} \tag{5}\\
& \bar{\xi}_{K \times L}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right) \geq r \min \left\{\bar{\xi}_{K \times L}\left(\left(x_{1}, y_{1}\right)-\left(x_{2}, y_{2}\right)\right), \bar{\xi}_{K \times L}\left(x_{2}, y_{2}\right)\right\} \\
& \because \bar{\xi}_{K \times L}\left(\left(x_{1}, y_{1}\right)-\left(x_{2}, y_{2}\right)\right) \geq \operatorname{rmin}\left\{\bar{\xi}_{K \times L}\left(x_{1}, y_{1}\right), \bar{\xi}_{K \times L}\left(x_{2}, y_{2}\right)\right\} \\
& \bar{\xi}_{K \times L}\left(x_{1}, y_{1}\right) \geq \operatorname{rmin}\left\{\bar{\xi}_{K \times L}\left(\left(x_{1}-x_{2}\right),\left(y_{1}-y_{2}\right)\right), \bar{\xi}_{K \times L}\left(x_{2}, y_{2}\right)\right\}
\end{align*}
$$

\}

Now,
$\bar{\xi}_{K \times L}\left(\left(x_{1}-x_{2}\right),\left(y_{1}-y_{2}\right)\right) \geq \operatorname{rmin}\left\{\bar{\xi}_{K \times L}\left(x_{1}, y_{1}\right), \bar{\xi}_{K \times L}\left(x_{2}, y_{2}\right)\right\}$
Put $x_{1}=x_{2}=0 \quad$ in Equation ($6 \& 7$)
$\bar{\xi}_{K \times L}\left(0, y_{1}\right) \geq \operatorname{rmin}\left\{\bar{\xi}_{K \times L}\left(0,\left(y_{1}-y_{2}\right)\right), \bar{\xi}_{K \times L}\left(0, y_{2}\right)\right\}$ and
$\bar{\xi}_{K \times L}\left(0,\left(y_{1}-y_{2}\right)\right) \geq \operatorname{rmin}\left\{\bar{\xi}_{K \times L}\left(0, y_{1}\right), \bar{\xi}_{K \times L}\left(0, y_{2}\right)\right\}$
From (5) \& (7)
$\bar{\xi}_{L}\left(y_{1}\right) \geq \operatorname{rmin}\left\{\bar{\xi}_{L}\left(y_{1}-y_{2}\right), \bar{\xi}_{L}\left(y_{2}\right)\right\}$ and
$\bar{\xi}_{L}\left(y_{1}-y_{2}\right) \geq \operatorname{rmin}\left\{\bar{\xi}_{L}\left(y_{1}\right), \bar{\xi}_{L}\left(y_{2}\right)\right\}$
iii) As in the same way if we proceed, we get
$\eta_{L}\left(y_{1}\right) \leq \max \left\{\eta_{L}\left(y_{1}-y_{2}\right), \eta_{L}\left(y_{2}\right)\right\}$ and
$\eta_{L}\left(y_{1}-y_{2}\right) \leq \max \left\{\eta_{L}\left(y_{1}\right), \eta_{L}\left(y_{2}\right)\right\}$
\therefore B is an MBJ - β - ideals of Y.

5. Conclusion

This paper presents the characterization of MBJ - Neutrosophic β - Ideal of β - algebra. In depth, the study analysed the homomorphic image, pre - image, cartesian product and related results. The concept can be explored to other substructures of a β-algebra.

References

1. Abdel-Basset, Mohamed., Mai Mohamed, Mohamed Elhoseny., Francisco Chiclana., and Abd El-Nasser H. Zaied., Cosine similarity measures of bipolar neutrosophic set for diagnosis of bipolar disorder diseases, Artificial Intelligence in Medicine 101 (2019): 101735.
2. Abdel-Basset, Mohamed., Mohamed El-hoseny, Abduallah Gamal, and Florentin Smarandache., A novel model for evaluation Hospital medical care systems based on plithogenic sets, Artificial intelligence in medicine 100 (2019): 101710.
3. Abdel-Basset, Mohamed., Gunasekaran Manogaran., Abduallah Gamal., and Victor Chang., A Novel Intelligent Medical Decision Support Model Based on Soft Computing and IoT, IEEE Internet of Things Journal (2019).
4. Abdel-Basset, Mohamed., Abduallah Gamal., Gunasekaran Manogaran., and Hoang Viet Long., A novel group decision making model based on neutrosophic sets for heart disease diagnosis, Multimedia Tools and Applications 1-26 (2019).
5. Ansari, M. A. A., Chandramouleeswaran, M., Fuzzy β - subalgebra of β - algebras, Int. J. Math. Science Engineering Appl, 5(7), 239 - 249 (2013).
6. Atanassov, K. T., Gargov, G., Interval Valued Intuitionistic Fuzzy Sets System, 31(1), 343-349 (1989).
7. Atanassov, K. T., Intuitionistic Fuzzy Sets, Fuzzy Sets and Systems, J. Math, Appl, 20(1), 87-96 (1986).
8. Anasri, M. A. A., Chandramouleeswaran, M, Fuzzy β - Ideals of β - Algebras, Int. J. Math. Science and Engineering Appl, 5(1), 1-10 (2014).
9. Borumand Saeid, A., Muralikrishna, P., Hemavathi, P., Bi - Normed Intuitionistic Fuzzy $\quad \beta-$ Ideals of β - Algebras, Journal of Uncertain Systems, 13(1), 42-55 (2019).
10. Hemavathi, P., Muralikrishna, P., Palanivel, K., A Note on Interval Valued Fuzzy β - subalgebras, Global. J. Pure Appl. Math, 11(4), 2553 - 2560 (2015).
11. Hemavathi, P., Muralikrishna, P., Palanivel, K., On Interval Valued Intuitionistic Fuzzy $\beta-$ subalgebras, Afrika Mathematika, 29(1-2), 249-262 (2018).
12. Hemavathi, P., Muralikrishna, P., Palanivel, K., $\mathrm{i}-\mathrm{v}-\mathrm{f} \beta$ - algebras, IOP Conf. Series: Material Science and Engineering 263(2017) 042111.
13. Jun, Y.B., Kim, β - subalgebras and related topics, Communications Korean Math, Soc. 27(2), 243 255 (2017).
14. Neggers, J., and Kim, H.S., On β - Algebra, Math. Slovaca, 52(5), 517 - 530, 2002.
15. Rosenfeld, A., Fuzzy Groups, Journal of Mathematical Analysis and Applications, 35(3), 512-517 (1971).
16. Smarandache, F., A unifying fields in logics. Neutrosophy: Neutrosophic Probability, set and logic, Rehoboth: American Research Press (1999).
17. Smarandache, F., Neutrosophic Set, A generalization of Intuitionistic Fuzzy Sets, International Journal of Pure and Applied Mathematics, 24(5), 287 - 297 (2005).
18. Song, S.Z., Smarandache, F., and Jim, Y.B., Neutrosophic Commutative N - ideals in BCK - algebra Information 8, 130 (2017).
19. Surya, M., Muralikrishna, P., On MBJ - Neutrosophic β - subalgebra, Neutrosophic Sets and Systems, 28, 216-227(2019).
20. Talkalloo, M.M., Jun, Y.B., MBJ - Neutrosophic Structures and its applications in BCK $\backslash \mathrm{BCI}-$ Algebra, Neutrosophic Sets and System, 23, 72 - 84 (2018).
21. Zadeh, L. A., The concept of a Linguistic Variable and its application to approximate reasoning, I. Inf. Sci. 8, 199-249 (1975).
22. Zadeh, L.A., Fuzzy Sets, Information and Control, 8(3), 338 - 353 (1965).

A Study of Social Media linked MCGDM Skill under Pentagonal
 Neutrosophic Environment in the Banking Industry

Nidhi Singh ${ }^{1,2}$, Avishek Chakraborty ${ }^{3}$, Soma Bose Biswas ${ }^{4}$, Malini Majumdar ${ }^{5}$
${ }^{1}$ Registrar, Narula Institute of Technology, Kolkata-700109, W.B, India.
${ }^{2}$ Department of Management, Maulana Abul Kalam Azad University of Technology, West Bengal, Haringhata, Nadia-741249, W.B, India. Email: nidhi.singh@jisgroup.org
${ }^{3}$ Department of Basic Science \& Humanities, Narula Institute of Technology, Kolkata-700109, W.B, India. Email:tirtha.avishek93@gmail.com
${ }^{4}$ Heritage Business School, 994, Madurdaha, Chowbaga Road, Anandapur, P.O. East Kolkata Township, Kolkata-700107, West Bengal, India. Email: somabbiswas@gmail.com
${ }^{5}$ Army Institute of Management, Judges Court Road, Alipore, Kolkata 700027. Email: malini_majumdar@hotmail.com
*Corresponding author email address: tirtha.avishek93@gmail.com

Abstract

: Social media is a new observable fact in computer-based technology and neutrosophic theory. Researchers are now thinking of the power of social media in banks as it is the fastest expanding online noticeable fact and banks with poor presence in social media are facing identity crisis under uncertainty fields. Through social media we can share ideas and information through establishing virtual networks. Initially it was evident that people used it for personal interaction with friends and relatives but with changing time it is established that business houses and financial institutions including Banks are using this popular technology to reach out to the prospective customers. Especially in the banking industry digital communication is becoming most popular and powerful as here consumers' interface is obligatory. Online communication has become a powerful medium between banks and consumers. The power of social media is to connect and share information with people across globe. Social Media in Indian Bank is not only a medium of advertising but it also helps the Banks to be a part of their customers' life as this relation involves conversation beyond business under neutrosophic environment. The aim of this study is to find out the best social media as per users' preference and explore its impact on Banks' business in pentagonal neutrosophic (PNN) arena by increasing customer satisfaction and augment customer relationship management in banking industry.

Keywords: Social Media, Customer Relationship Management, Customer satisfaction, Banking Industry, PNN.

1. INTRODUCTION

1.1 Social Media:

The traditional marketing media consisting of radio, print, television etc offered a shotgun approach as they represent communication in One to Many modes which we may call as Passive Approach. However Social media marketing is following Many to Many mode, may be called Active Approach with the power of implementation of Word Of Mouth. They are interactive in nature and believe in peer to peer relationship [1] (Githa Heggde, 2018)

The substantial and considerable use of social media for last few years has elucidated that it is amongst a few powerful weapons that has shown tremendous impacts on social life of human beings and has hastened the mingling of people with each other. Previously, it was an encumbrance for us to keep ourselves in touch with all those who were a little distant from us. Things have apparently changed and social networking sites can take every credit for this prodigious platform which enabled people to create their own identity. Whether it is about uploading personal posts, surfing across the globe, getting all the indispensable information or even if one wants to express their cavernous feelings then social media can act as a gullible platform for everyone. At times a few of our problematic situations, disturbing sentiments need to get some succor and support by our loved ones. At times only a single post of ours explains everything about what we are actually feeling. Social media and its comprehensive enhancement is undeniable reality in this modern era. Verily speaking social networking sites has made our socialization a bit easier with the rest of the world. Data and statistics distinctly show the massive use of social media. Social Media has grown tremendously due to increase in penetration of Internet Connectivity and easy availability of smart phones and mobile gadgets. The conventional use of social media has changed from mere entertainment to opportunities for trade and commerce. An estimate confirms that nearly two third of Internet users are active on social media as well and this number is expected to cross approx three billion by the end of 2020.

1.2 Social Media Platforms:

Social Media is a blur of likes, tweets, shares, posts and contents. It has spread its wings in every corner of the world. The numbers are staggering. 70\% of the total internet users are now using social media as per the research [2] (Bullas, 2014). In a research by Pew Research, 2014 [3] (DUGGAN, 2014) , it is established that globally people are getting addicted to social media regardless of age, gender and profession.

There are a variety of technological driven services in social media like sharing of pictures, videos and audios, blogging, social games, social networking, business networks, reviews and much more. Social media consists of a variety of internet-based mediums that enable users to network, share content, interact with each other, and create communities around common interests. Social media is therefore the media that we use to be sociable online and it can be divided into three main categories:

- Messaging and communication, e,g. blogging and micro-blogging such as Twitter.
- Communities and social groups, e.g. Facebook
- Photo and video sharing, e.g. YouTube

Statistically speaking, number of people using social media has considerably increased. The number of people across globe who uses social media has extended 3 billion. As per a report Face book reported 1.871, Whatsapp a billion and Instagram 600 million active users in January 2017 due to the intensified use of social media.

1.3 Social Media in Bank:

The bank with no social media marketing strategy is at a risk of being left behind its competitors as social media is playing a big role in marketing field. The tremendous growth and popularity of this
medium is forcing banks to learn different social media platforms available to them and their customers, different strategies to be adapted for proper selection of right social media channel so as to reach out to maximum customers and improve their business. [4] ($\mathrm{L}, 2010$) Banks are opting social media channels due to the following main points:

- To increase engagement with customers
- To enhance their brand image by connecting with customers
- To find out ways to distinguish themselves with competitors
- To reduce cost as implementation of social media channels are less expensive in comparison to the traditional marketing methods and with higher results
- To boost innovations as through proper market research through social media more customized products/services can be incorporated
- To increase revenue as satisfies customers result in more business which in turn brings revenue

The advancement faced by the banking sector today in the field of digitalization is an amalgamation of social media and the wise users of this powerful tool which helps innumerable people in their everyday work. With the help of digital feed people can access different social media sites like Face book, Twitter, YouTube, Instagram etc to expand required knowledge about different products and services offered by banks.
Many people opined that the new generations with proper knowledge of digital technologies are more prone to use of social media but our response rate of seniors above 50 years was good. It was observed that this number is gradually on the rise. Customers are an integral part of Banking Industry and social media is an easiest and fastest way to reach to existing and prospective customers. All the leading banks worldwide are trying to create business opportunities through enhancing their creativity and innovative capacities. Through social media Banks can inform their customers about their product \& services offered in a most unique, attractive and innovative way. It also helps the customers to consider sensibly about their investments and eradicate all the complexity involved with the traditional banking processes. Traditional banks focused on providing services to customers through different strategies such as advertising, direct mail or face to face whereas banks and other financial institutions' is focusing on establishing relations with customers through continue digital interaction vide different social media channels. By this continuous interaction through social media Banks can discover customers' interests, feelings and behavior. Customers of today look ahead to personalized services and they need to be heard and answered promptly. Banks may fulfill their expectations through different digital media platforms like face book, twitter and you tube instead of face to face interactions between customers and managers. Bank's Monitoring centers may follow comments, posts and tweets on social Medias which can give a broad standpoint of customer insight about products and services banks can achieve an accurate perceptive of customers. Today Banks need to have an effective presence in social media due to the customers' anticipation and their obsession for the same.
Now a day social media has become crucial tool for banks. Banks are using the platform to discover and keep up the relation with customers, motivating sales through advertisement and sales
endorsement, guess change in consumer behavior and follow their trends and finally providing customized services and support. Social media also helps in building customer relationships through its reliability programs. It is an emerging concept in marketing especially in relation to Banking Industry. Banks have now realized the influence of this medium over traditional form of marketing strategy as it is the fastest growing online trend. Its influence has increased to the power that the Banks with no social media connections are at a risk of being left out from competitors.

1.4 Survey of Uncertainty \& Neutrosophic Theory:

In this current epoch, vagueness theory plays a vital position in social sciences and management fields. Initially, it was discovered by prof. L.A Zadeh [5] \& further, advancement of triangular [6], trapezoidal [7], pentagonal [8], hexagonal [9], heptagonal [10] fuzzy number are established by distinct researchers. It was extended by Prof. Attasonov [11] incorporating the idea of intuitionistic fuzzy \& further by Prof. Smarandache [12] discovering the concept of neutrosophic set. Nowadays, researchers from distinct area are specializing in neutrosophic idea and advanced lots of exciting articles in this domain. Recently, categorization of triangular [13], trapezoidal [14], pentagonal [15-18] neutrosophic numbers has been developed by Chakraborty et.al. Recently, some MCGDM based articles [19-23] are established in this neutrosophic arena which plays an essential impact in this research domain.

2. Literature Review and Preliminaries:

This study focuses on identifying the services provided by banks through social media and measuring its effect on customer satisfaction. The study also tries to find out the ways through which Bank support the customers with the help of social media and the problems faced by the customers to approach banks through social media.
Different customer services that can be provided by banks are;

- Sharing of financial offers and upcoming promotions
- Posting of education information and financial guidance
- Allow clients to post reviews, complaints and suggestions
- Reward them for recommending them

These virtual services are giving same level of personal interaction which was normally found in physical banking as well but the advantage is that clients need not physically visit the banks. The bank provides different services like Corporate banking, Investment banking, Asset Management, Treasury services, Retail Banking etc. With the growth of information technology and advent of Internet now banks are also using online banking. Internet banking is a convenient virtual banking activity that is available for all the customers of the banks with easy and secured access to their accounts. [2] Justified that now a day's social media is being regularly accessed by almost 72% of the internet users. Social Media helps the customers in providing utmost customer satisfaction through obtaining real time comments, suggestions, complaints and addressing them instantly.

2.1 Safety \& Reliability as Social Media Attribute:

Users' Safety \& Reliability is an important tool in consideration of social media channels. Data should be handled without breaching the users' privacy and data protection should be enormously scrutinized. The most grounded measure that needs to be taken is to make undaunted quality of one's privacy whoever has affiliated with the social media channel [24] (Senthil Kumar N*, 2016). Many a time's users' share their personal data intentionally and sometimes unknowingly. Often data are extracted from them extrinsically by offering them some payback, for e.g, Location-Based Social Network Services (LBSNS) like Google Latitude can trace the location of a person and his/her friends [25] (Paul Lowry, 2011).
According to the safety analytics viewpoint, many people supervise the benefits and threats associated while unveiling their credentials. It is often observed that customers are ready to forego some privacy for a satisfactory range of danger. But reliability may be attacked significantly if personal information is not utilized rationally and unvaryingly [26] (Patrick Van Eecke, 2010). Proper implementation of security settings may improvise the Safety \& Reliability of users' data as per their will [27] (Gail-Joon Ahn, 2011). Hence the quality of services provided by the social media platforms, in terms of Safety \& Reliability becomes an important criterion for its selection.

2.2 Responsiveness \& Effectiveness as Social Media Attribute:

Responsiveness and Effectiveness of a social media site is measured by the internet speed, expediency, response time etc with which customers access and use bank's social media sites. [28]
(Frederic Marimon, 2012). Efficiency of a bank's social media is observed by timely and convenient completion of all required interaction [29] (Chung Tin Fah, 2012). Social media can enhance the conventional personnel-client bonding with an effective technological knowledge-based relationship [30] (Rahimi \& Me, 2016) .
Prompt responses can effectively be done in social media by providing customers relevant and quick information as \& when required. It is surely required for enhancement of quick responses to customers' queries for the improvement of e-services and improved customer satisfaction [31] (Chinedu-Okeke \& Obi, 2016). Banks can provide unique banking experience to their clients by giving them services combined with technology [32] (Kalia, 2013). Banks may respond to its customers' query effectively through its social media sites but it needs to carefully monitor its personnel's' response on social media sites to assess effectiveness of its response.

2.3 Ease of Use \& Customer's Satisfaction as Social Media Attribute:

Social media platform should fulfill the customers' requirement and should be easy to be used with minimum response time. Customers generally choose the media which is easy to operate. By ease of use it means the service reliability and methods to use relevant information provided on a bank's social media websites [33] (Emel Kursunluoglu, 2015). Customers need punctual response for acknowledgement of their complaints. The satisfaction dimension concentrates on evaluating the banks promptness in responding to customers' requirements [34] (Ajimon George, 2013). For getting customer loyalty the banks create user generated customized content for getting the customers' satisfaction dimension [35] (Norman Gwangwava, 2014). Customer's confidence on Bank's social media platform to the extent their requirements are satisfied is termed as fulfillment or satisfaction. Recently, several articles are established [36-40] in this research arena which plays an essential role in research domain.

Definition 2.4: Neutrosophic Set: A set $\overparen{n e u s}$ in the universal discourse X, symbolically denoted by

$\left.T_{\text {nㅌūs }}(x): X \rightarrow\right]-0,1+[$ is said to be the true membership function, which has the degree of belongingness, $\left.I_{\text {ที่าแ }}(x): X \rightarrow\right]-0,1+[$ is said to be the indeterminacy membership, having degree of uncertainty, and $\left.F_{\text {ñสus }}(x): X \rightarrow\right]-0,1+[$ is said to be the incorrect membership, which has the
 following relation:

Definition 2.5: Single Typed Neutrosophic Number: Single Typed Neutrosophic Number(\tilde{n})is denoted as

$$
\tilde{n}=\left\langle\left[\left(u^{1}, v^{1}, w^{1}, x^{1}\right) ; \alpha\right],\left[\left(u^{2}, v^{2}, w^{2}, x^{2}\right) ; \beta\right],\left[\left(u^{3}, v^{3}, w^{3}, x^{3}\right) ; \gamma\right]\right\rangle
$$

where $\alpha, \beta, \gamma \in[0,1]$, where $\left(\varphi_{\tilde{n}}\right): \mathbb{R} \rightarrow[0, \alpha],\left(\gamma_{\tilde{n}}\right): \mathbb{R} \rightarrow[\beta, 1]$ and $\left(\delta_{\tilde{n}}\right): \mathbb{R} \rightarrow[\gamma, 1]$ is given as:

$$
\begin{aligned}
& \varphi_{\tilde{n}}(\mathrm{E})=\left\{\begin{array}{c}
\epsilon_{\widetilde{n l}}(\mathrm{E}) u^{1} \leq \mathrm{E} \leq v^{1} \\
\alpha \quad v^{1} \leq \mathrm{E} \leq w^{1} \\
\epsilon_{\widetilde{n u}}(\mathrm{E}) w^{1} \leq \mathrm{E} \leq x^{1}, \tilde{x}_{\tilde{n}} \\
0 \quad \text { otherwise }
\end{array} \quad=\left\{\begin{array}{c}
\gamma_{\widetilde{n l}}(\mathrm{E}) u^{2} \leq \mathrm{E} \leq v^{2} \\
\beta \quad v^{2} \leq \mathrm{E} \leq w^{2} \\
\gamma_{\widetilde{n u}}(\mathrm{E}) w^{2} \leq \mathrm{E} \leq x^{2} \\
1 \quad \text { otherwise }
\end{array}\right.\right. \\
& \delta_{\tilde{n}}(\epsilon)=\left\{\begin{array}{c}
\mu_{\widetilde{n i l}}(\mathrm{E}) u^{3} \leq \mathrm{E} \leq v^{3} \\
\gamma \quad v^{3} \leq \mathrm{E} \leq w^{3} \\
\mu_{\tilde{n u}}(\mathrm{E}) \mathrm{w}^{3} \leq \mathrm{E} \leq x^{3} \\
1 \quad \text { otherwise }
\end{array}\right.
\end{aligned}
$$

2.6 Definition: Single-Valued Pentagonal Neutrosophic Number: A Single-Valued Pentagonal Neutrosophic Number (\tilde{S}) is defined
as $\tilde{s}=\left\langle\left[\left(m^{1}, n^{1}, o^{1}, p^{1}, q^{1}\right) ; \pi\right],\left[\left(m^{2}, n^{2}, o^{2}, p^{2}, q^{2}\right) ; \rho\right],\left[\left(m^{3}, n^{3}, o^{3}, p^{3}, q^{3}\right) ; \sigma\right]\right\rangle$,
where $\pi_{s} \rho, \sigma \in[0,1]$. The accuracy membership function $\left(\tau_{s}\right): R \rightarrow[0, \pi]$, the indeterminacy
membership function $\left(\iota_{\xi}\right): R \rightarrow[\rho, 1]$ and the falsity membership function $\left(\varepsilon_{S}\right): R \rightarrow[\sigma, 1]$ are given as:

$$
\begin{aligned}
& \varepsilon_{s}(x)=\left\{\begin{array}{c}
\varepsilon_{\overparen{S T 1}}(x) m^{3} \leq x<n^{3} \\
\varepsilon_{S T 12}(x) n^{3} \leq x<o^{3} \\
\vartheta \\
x=o^{3} \\
\varepsilon_{S \widetilde{r 2}}(x) o^{3} \leq x<p^{3} \\
\varepsilon_{S T 11}(x) p^{3} \leq x<q^{3} \\
1
\end{array} \quad\right. \text { o.W }
\end{aligned}
$$

2.7 Proposed Score Function:

Score function of a PNN completely depends on the value of truth, falsity and hesitation membership indicator degree. The necessity of score function is to draw comparison or transfer a PNN into a crisp number. In this section we will generate a score function as follows. For any Pentagonal Single typed Neutrosophic Number (PSNN)
$\tilde{A}_{P t}=\left(s_{1}, s_{2}, s_{3}, s_{4}, s_{5} ; \pi, \mu, \sigma\right)$
We define the score function as $S_{P t}=\frac{1}{15}\left(s_{1}+s_{2}+s_{3}+s_{4}+s_{5}\right) \times(2+\pi-\sigma-\mu)$

2.7.1 Relationship between any two pentagonal neutrosophic fuzzy numbers:

Let us consider any two pentagonal neutrosophic fuzzy number defined as follows
$A_{P t 1}=\left(\pi_{P t 1}, \mu_{P t 1}, \sigma_{P t 1}\right), A_{P t 2}=\left(\pi_{P t 2}, \mu_{P t 2}, \sigma_{P t 2}\right)$

1) $S_{P t 1}>S_{P t 2}, A_{P t 1}>A_{P t 2}$
2) $S_{P t 1}<S_{P t 2}, A_{P t 1}<A_{P t 2}$
3) $S_{P t 1}=S_{P t 2}, A_{P t 1}=A_{P t 2}$

2.8 Basic Operations:

Let $\widetilde{m_{1}}=<\left(m_{1}, m_{2}, m_{3}, m_{4}, m_{5}\right) ; \pi_{\tilde{m}_{1}}, \mu_{\widetilde{m_{1}}}, \sigma_{\widetilde{m_{1}^{1}}}>$ and $\widetilde{m_{2}}=<\left(n_{1}, n_{2}, n_{3}, n_{4}, n_{5}\right) ; \pi_{\widetilde{n}_{2}}, \mu_{\widetilde{n_{2}}}, \sigma_{\widetilde{n_{2}}}>$ be two IPFNs and $\alpha \geq 0$. Then the following operational relations hold:
2.8.1 $\widetilde{m}_{1}+\widetilde{m_{2}}=<\left(m_{1}+n_{1}, m_{2}+n_{2}, m_{3}+n_{3}, m_{4}+n_{4}, m_{5}+n_{5}\right) ; \pi_{\widetilde{m}_{1}}+\pi_{\widetilde{n_{2}}}-\pi_{\widetilde{m}_{1}} \pi_{\widetilde{n}_{2}}, \mu_{\widetilde{m}_{1}}$.
$\mu_{\widetilde{n_{2}}}, \sigma_{\widetilde{m}_{1}} \cdot \sigma_{\widetilde{n}_{2}}>$
2.8.2 $\widetilde{m_{1}} \widetilde{m_{2}}=<\left(m_{1} n_{1}, m_{2} n_{2}, m_{3} n_{3}, m_{4} n_{4}, m_{5} n_{5}\right) ; \pi_{\tilde{m}_{1}} \pi_{\widetilde{n_{2}}}, \mu_{\tilde{m}_{1}}+, \mu_{\widetilde{n_{2}}}-\mu_{\tilde{m}_{1}}$
$\mu_{\widetilde{n}_{2}}, \sigma_{\widetilde{m}_{1}}+\sigma_{\widetilde{n}_{2}}-\sigma_{\widetilde{m}_{1}} \sigma_{\widetilde{n}_{2}}>$
2.8.3 $\left.\alpha \widetilde{m_{1}}=<\left(\alpha m_{1}, \alpha m_{2}, \alpha m_{3}, \alpha m_{4}, \alpha m_{5}\right) ; 1-\left(1-\pi_{\widetilde{m}_{1}}\right)^{\alpha}, \mu_{\widetilde{m}_{1}}{ }^{\alpha}, \sigma_{\widetilde{m}_{1}}{ }^{\alpha}\right)>$
2.8.4 $\widetilde{m}_{1}{ }^{\alpha}=<\left(m_{1}{ }^{\alpha}, m_{2}{ }^{\alpha}, m_{3}{ }^{\alpha}, m_{4}{ }^{\alpha}, m_{5}{ }^{\alpha}\right) ; \pi_{\widetilde{m}_{1}}{ }^{\alpha},\left(1-\mu_{\tilde{m}_{1}}\right)^{\alpha},\left(1-\sigma_{\widetilde{m_{1}}}\right)^{\alpha}>$

3. OBJECTIVE OF THE STUDY:

- To understand the factors affecting acceptance of Social Media Banking Technology across Gender.
- To understand the best suitable social media channel for Banking Industry as per customers' preference.

4. RESEARCH METHODOLOGY

The data have been collected from various respondents working in different organizations categorized mainly as education sector, service sectors as banks, hospitals, etc. engineering works and Government and Public sector companies in the Kolkata metro area. The study consisted of 94 respondents. A five point Likert scale is used where 5 indicates strongly agree, and 1 indicates strongly disagree. 40.43% respondents are female and 59.57% are male. Age wise respondents below the age <25 was 29.79%, between $25-45$ yrs was 52.13%, and >45 yrs was 18.08%
Research Instrument: The questinnaire is mainly focussed on: Social Media platforms used by the banks and users adaptability of the same.

TABLE 4.1 DEMOGRAPPHIC DETAILS OF RESPONDENTS			
CHARACTERISTICS		FREQUENCY	$\%$
GENDER	MALE	56	59.57
	FEMALE	38	40.43
AGE	<25	28	29.79
	$25-45$	49	52.13
	>45	17	18.08

SOURCE: QUESTIONNAIRE

Table 4.2 Indicate acceptance of Online Banking Technology across Gender

Table 4.2 Indicate acceptance of Online Banking Technology across Gender																
$\begin{aligned} & \text { GEND } \\ & \text { ER } \end{aligned}$	ATTRIBUTES	Safety \& Reliability					Responsiveness \& Effectiveness					Ease of Use \& Customer's Satisfaction				
		SD	D	N	A	SA	SD	D	N	A	SA	SD	D	N	A	SA
M	TWITTER	5	20	28	34	7	3	18	39	28	6	6	24	29	29	6
		$\begin{array}{\|l} \hline 5.3 \\ 2 \end{array}$	$\begin{aligned} & \hline 21.2 \\ & 8 \end{aligned}$	$\begin{aligned} & \hline 29.7 \\ & 9 \end{aligned}$	$\begin{array}{\|l\|} \hline 36.1 \\ 7 \end{array}$	7.45	$\begin{array}{\|l\|} \hline 3.1 \\ 9 \end{array}$	$\begin{aligned} & \hline 19.1 \\ & 5 \end{aligned}$	$\begin{array}{\|l\|} \hline 41.4 \\ 9 \end{array}$	$\begin{array}{\|l\|} \hline 29.7 \\ 9 \end{array}$	$\begin{aligned} & \hline 6.3 \\ & 8 \end{aligned}$	$\begin{array}{\|l} \hline 6.3 \\ 8 \end{array}$	$\begin{aligned} & \hline 25.5 \\ & 3 \end{aligned}$	$\begin{array}{\|l\|} \hline 30.8 \\ 5 \end{array}$	$\begin{array}{\|l\|} \hline 30.8 \\ 5 \end{array}$	$\begin{array}{\|l} \hline 6.3 \\ 8 \end{array}$
	FACEBOOK	3	24	26	30	11	5	19	45	20	5	4	22	39	20	9
		$\begin{array}{\|l} \hline 3.1 \\ 9 \end{array}$	$\begin{aligned} & 25.5 \\ & 3 \end{aligned}$	$\begin{aligned} & \hline 27.6 \\ & 6 \end{aligned}$	$\begin{aligned} & \hline 31.9 \\ & 1 \end{aligned}$	$\begin{array}{\|l\|} \hline 11.7 \\ 0 \end{array}$	$\begin{aligned} & \hline 5.3 \\ & 2 \end{aligned}$	$\begin{array}{\|l\|} \hline 20.2 \\ 1 \end{array}$	$\begin{array}{\|l\|} \hline 47.8 \\ 7 \end{array}$	$\begin{array}{\|l\|} \hline 21.2 \\ 8 \end{array}$	$\begin{aligned} & \hline 5.3 \\ & 2 \end{aligned}$	$\begin{array}{\|l} \hline 4.2 \\ 6 \end{array}$	$\begin{aligned} & 23.4 \\ & 0 \end{aligned}$	$\begin{array}{\|l\|} \hline 41.4 \\ 9 \end{array}$	$\begin{array}{\|l\|} \hline 21.2 \\ 8 \end{array}$	$\begin{array}{\|l\|} \hline 9.5 \\ 7 \end{array}$
	YOU TUBE	5	18	23	39	9	7	15	42	26	4	5	22	29	31	7
		$\begin{array}{\|l} \hline 5.3 \\ 2 \end{array}$	$\begin{aligned} & \hline 19.1 \\ & 5 \end{aligned}$	$\begin{array}{\|l\|} \hline 24.4 \\ 7 \end{array}$	$\begin{array}{\|l\|} \hline 41.4 \\ 9 \end{array}$	9.57	$\begin{aligned} & \hline 7.4 \\ & 5 \end{aligned}$	$\begin{array}{\|l\|l\|} \hline 15.9 \\ 6 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 44.6 \\ 8 \end{array}$	$\begin{array}{\|l\|} \hline 27.6 \\ 6 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 4.2 \\ 6 \end{array}$	$\begin{array}{\|l} \hline 5.3 \\ 2 \end{array}$	$\begin{array}{\|l\|} \hline 23.4 \\ 0 \end{array}$	$\begin{aligned} & \hline 30.8 \\ & 5 \end{aligned}$	$\begin{array}{\|l\|} \hline 32.9 \\ 8 \end{array}$	$\begin{array}{\|l\|} \hline 7.4 \\ 5 \end{array}$
F	TWITTER	9	31	26	24	4	9	21	44	16	4	3	26	38	21	6
		$\begin{aligned} & \hline 9.5 \\ & 7 \end{aligned}$	$\begin{array}{\|l\|} \hline 32.9 \\ 8 \end{array}$	$\begin{array}{\|l\|} \hline 27.6 \\ 6 \end{array}$	$\begin{aligned} & \hline 25.5 \\ & 3 \end{aligned}$	4.26	$\begin{aligned} & 9.5 \\ & 7 \end{aligned}$	$\begin{array}{\|l\|} \hline 22.3 \\ 4 \end{array}$	$\begin{array}{\|l\|} \hline 46.8 \\ 1 \end{array}$	$\begin{aligned} & 17.0 \\ & 2 \end{aligned}$	$\begin{array}{\|l} \hline 4.2 \\ 6 \end{array}$	$\begin{array}{\|l} \hline 3.1 \\ 9 \end{array}$	$\begin{aligned} & \hline 27.6 \\ & 6 \end{aligned}$	$\begin{array}{\|l\|} \hline 40.4 \\ 3 \end{array}$	$\begin{array}{\|l\|} \hline 22.3 \\ 4 \end{array}$	$\begin{array}{\|l} \hline 6.3 \\ 8 \end{array}$
	FACEBOOK	8	23	22	34	7	5	19	34	30	6	6	21	34	25	8
		$\begin{array}{\|l} 8.5 \\ 1 \end{array}$	$\begin{aligned} & \hline 24.4 \\ & 7 \end{aligned}$	$\begin{array}{\|l\|} \hline 23.4 \\ 0 \end{array}$	$\begin{aligned} & \hline 36.1 \\ & 7 \end{aligned}$	7.45	$\begin{array}{\|l} 5.3 \\ 2 \end{array}$	$\begin{aligned} & 20.2 \\ & 1 \end{aligned}$	$\begin{array}{\|l\|} \hline 36.1 \\ 7 \end{array}$	$\begin{array}{\|l\|} \hline 31.9 \\ 1 \end{array}$	$\begin{array}{\|l} \hline 6.3 \\ 8 \end{array}$	$\begin{array}{\|l\|} \hline 6.3 \\ 8 \end{array}$	$\begin{array}{\|l\|} \hline 22.3 \\ 4 \end{array}$	$\begin{array}{\|l\|} \hline 36.1 \\ 7 \end{array}$	$\begin{array}{\|l\|} \hline 26.6 \\ 0 \end{array}$	$\begin{aligned} & 8.5 \\ & 1 \end{aligned}$
	YOU TUBE	7	32	20	29	6	4	30	31	24	5	7	27	28	25	7
		$\begin{array}{\|l} \hline 7.4 \\ 5 \\ \hline \end{array}$	$\begin{array}{\|l} \hline 34.0 \\ 4 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 21.2 \\ 8 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 30.8 \\ 5 \\ \hline \end{array}$	6.38	$\begin{array}{\|l\|} \hline 4.2 \\ \hline \end{array}$	$\begin{array}{\|l\|l} 31.9 \\ 1 \end{array}$	$\begin{array}{\|l} \hline 32.9 \\ 8 \\ \hline \end{array}$	$\begin{array}{\|l} 25.5 \\ 3 \\ \hline \end{array}$	$\begin{array}{\|l} \hline 5.3 \\ 2 \\ \hline \end{array}$	$\begin{array}{\|l} \hline 7.4 \\ 5 \\ \hline \end{array}$	$\begin{aligned} & 28.7 \\ & 2 \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 29.7 \\ 9 \\ \hline \end{array}$	$\begin{array}{\|l} \hline 26.6 \\ 0 \\ \hline \end{array}$	$\begin{array}{\|l} \hline 7.4 \\ 5 \\ \hline \end{array}$

GENDER	ATTRIBUTES	 Reliability	Responsiveness \& Effectiveness	Ease of Use \& Customer's Satisfaction
<25	TWITTER	16	6	6
		57.14	21.43	21.43
	FACEBOOK	16	7	5
		57.14	25.00	17.86
	YOU TUBE	17	5	6
		60.71	17.86	21.43
25-45	TWITTER	29	11	8
		59.18	22.45	16.33
	FACEBOOK	29	14	6

Nidhi Singh, Avishek Chakraborty, Soma Bose Biswas, Malini Majumdar; A Study of Social Media linked MCGDM Skill under Pentagonal
Neutrosophic Environment in the Banking Industry

		59.18	28.57	12.24
	YOU TUBE	31	12	8
		63.27	24.49	16.33
>45	TWITTER	9	5	3
		52.94	29.41	17.65
		8	4	5
	-	47.06	23.53	29.41
	YOU TUBE	10	4	3
		58.82	23.53	17.65

5. Multi-Criteria Group Decision Making Problem in Pentagonal Neutrosophic Environment

In this current decade, researchers are very much interested in doing MCGDM problem in different fields. Its main goal of this problem is to find out the best option among finite number of different options in presence of distinct attributes, different decision maker's choice and hesitation in human thinking.

5.1 Illustration of the MCGDM problem

Let $G=\left\{G_{1}, G_{2}, G_{3} \ldots \ldots \ldots G_{m}\right\} \quad$ is the distinct alternative set and
$H=\left\{H_{1}, H_{2}, H_{3} \ldots \ldots \ldots H_{n}\right\}$ is the distinct attribute set respectively. Let $\omega=\left\{\omega_{1}, \omega_{2}, \omega_{3} \ldots \ldots \ldots \omega_{n}\right\}$ be the weight set associated with the decision maker $D=\left\{D_{1}, D_{2}, D_{3} \ldots \ldots \ldots . D_{K}\right\}$ and each $\omega \geq 0$ and also satisfies the relation $\sum_{i=1}^{n} \omega_{i}=1$. Also, weight vector of the attribute function is defined as $\delta=\left\{\delta_{1}, \delta_{2}, \delta_{3} \ldots \ldots \ldots . \delta_{k}\right\}$ where each $\delta_{i} \geq 0$ and also satisfies the relation $\sum_{i=1}^{k} \delta_{i}=1$.

5.2 Normalisation Algorithm of MCGDM Problem:

Step 1: Framework of Decision Matrices

Here, we considered all decision matrices according to the decision maker's choice related with finite alternatives and finite attribute functions. It is noted that the member's $y_{i j}$ for each matrices are of triangular fuzzy numbers. Thus, the final matrix is defined as follows:

$$
X^{K}=\left(\begin{array}{cccccccc}
. & R_{1} & R_{2} & R_{3} & . & . & . & R_{n} \tag{4.1}\\
P_{1} & y_{11}^{k} & y_{12}^{k} & y_{13}^{k} & . & . . & . & y_{1 n}^{k} \\
P_{2} & y_{21}^{k} & y_{22}^{k} & y_{23}^{k} & . & . & . & y_{2 n}^{k} \\
P_{3} & . & . & . & . & . & . \\
\cdot & \vdots & . \dot{c} & \cdot \dot{.} & . & . & . & . \\
P_{m} & y_{m 1}^{k} & y_{m 2}^{k} & y_{m 3}^{k} & . & . & . & y_{m n}^{k}
\end{array}\right) .
$$

Step 2: Framework of Standardized Decision matrix

We consider the following skill of normalization to obtain the standardized decision matrix where $V^{*}=\left(\bar{y}_{i j}\right)_{m n}$ in which the entity $\bar{y}_{i j}=\left(\left[\bar{y}_{i j^{\prime}}^{1}, \bar{y}_{i j^{\prime}}^{2} \bar{y}_{i j^{\prime}}^{3}, \bar{y}_{i j^{\prime}}^{4}, \bar{y}_{i j}^{5}\right] ; \bar{T}_{p t}, \bar{I}_{p t}, \bar{F}_{p t}\right) \quad$ is formulated as $\bar{Y}_{i j}=\left(\left[\frac{y_{i j}^{1}}{s}, \frac{y_{i j}^{2}}{s}, \frac{y_{i j}^{5}}{s}, \frac{y_{i j}^{4}}{s}, \frac{y_{i j}^{5}}{s}\right] ; T_{P t}, I_{P t}, F_{P t}\right)$ where $\mathrm{S}=\sqrt{y_{i j}^{1^{2}}+y_{i j}^{2^{2}}+y_{i j}^{3^{2}}+y_{i j}^{4^{2}}+y_{i j}^{5^{2}}}$.
Hence the new matrix becomes,

$$
M^{K}=\left(\begin{array}{cccccccc}
. & R_{1} & R_{2} & R_{3} & . & . & . & R_{n} \tag{5.2}\\
P_{1} & Y_{11}^{k} & Y_{12}^{k} & Y_{13}^{k} & . & . . & . & Y_{1 n}^{k} \\
P_{2} & Y_{21}^{k} & Y_{22}^{k} & Y_{23}^{k} & . & . & . & Y_{2 n}^{k} \\
P_{3} & \cdot & \cdot & . & . & . & . \\
\cdot & : & \cdot & \cdot & . & . & . \\
P_{m} & Y_{m 1}^{k} & Y_{m 2}^{k} & Y_{m 3}^{k} & . & . & . & Y_{m n}^{k}
\end{array}\right) .
$$

Step 3: Framework of Single Decision matrix

To formulate a single group decision matrix M we utilized these logical operations of PNN [2.8] $S_{i j}^{*}=\left\{\sum_{i=1}^{k} \omega_{i} M^{i}\right\}$ where ω_{i} are the weights of the decision makers for individual decision matrix M^{i}. So, the matrix becomes as follows:

$$
M=\left(\begin{array}{cccccccc}
\cdot & R_{1} & R_{2} & R_{3} & . & . & . & R_{n} \tag{5.3}\\
P_{1} & S_{11}^{*} & S_{12}^{*} & S_{13}^{*} & \cdot & . & . & S_{1 n}^{*} \\
P_{2} & S_{21}^{*} & S_{22}^{*} & S_{23}^{*} & . & . & . & S_{2 n}^{*} \\
P_{3} & \cdot & \cdot & \cdot & . & . & \cdot \\
\cdot & \vdots & * & * & . & . & \cdot & \cdot \\
P_{m} & S_{m 1}^{*} & S_{m 2}^{*} & S_{m 3}^{*} & \cdot & . & . & S_{m n}^{*}
\end{array}\right) .
$$

Step 4: Framework of Final matrix

To make the final decision matrix we used the logical operation [2.8] for different weights of the attribute values and also finally operated $R_{1}{ }^{\circ}=R_{1}+R_{2}+\cdots+R_{n}$ and converted the total matrix into a Colum matrix form, finally we get the decision matrix as,

$$
M=\left(\begin{array}{cc}
. & R_{1} \tag{5.4}\\
P_{1} & S_{11}^{w} \\
P_{2} & S_{21}^{w} \\
\vdots & \vdots \\
P_{m} & S_{m 1}^{m}
\end{array}\right) .
$$

Step 5: Ranking

Now, by considering the Score value (2.7) and converting the matrix (5.3) into crisp form, so that we could evaluate the best alternative corresponding to the best attributes.

5.3 Flowchart:

Figure 5.3.1: Flowchart for the problem
5.4 Illustrative Example: Here, we constructed a social media selection problem based on the questionnaire table from which we have three different social medias are available. The problem is to find out the best social media platform among these after computing the decision maker's opinion and maintain the attribute weights properly for this problem. Generally, social media platforms are related with the attributes like safety \& reliability, Responsiveness \& Effectiveness, Ease of Use \& Customer's Satisfaction of the system. Keeping these points in mind decision maker's (Male/Female) gives their opinion in hesitation arena and using verbal phrase we set the problem in pentagonal neutrosophic domain. According to their suggestions we constructed the distinct decision matrices in PNN environment as shows below:

$$
\begin{gathered}
G_{1}=\text { Twitter }, G_{2}=\text { Facebook, } G_{3}=\text { Youtube are the alternatives. } \\
\qquad H_{1}=\text { Safety \& Reliability, }
\end{gathered}
$$

$$
\begin{gathered}
H_{2}=\text { Responsiveness \& Effectivness, } \\
H_{3}=\text { Ease of Use \& Customer's Satisfaction are the attributes. }
\end{gathered}
$$

According to our problem there are two distinct decision makers are available in our environment, $D_{1}=$ Male sOpinion, $D_{2}=$ Female's Opinion having weight distribution $D=\{0.55,0.45\}$ and the weight vector related with the attribute function $\delta=\{0.32,0.30,0.38\}$.

5.5 List of Verbal Phrase

No.	Quantitative Attributes	Verbal phrase
$\mathbf{1}$	Safety \& Reliability	Strongly Agree (SA), Agree(A), Neutral(N), Disagree(D), Strongly Disagree (SD)
$\mathbf{2}$	Responsiveness \& Effectivness	Strongly Agree (SA), Agree(A), Neutral(N), Disagree(D), Strongly Disagree (SD)
$\mathbf{3}$	Ease of Use \& Customer's Satisfaction	Strongly Agree (SA), Agree(A), Neutral(N), Disagree(D), Strongly Disagree (SD)

Step 1

According to the decision maker's opinion from the questionnaire table we constructed the decision matrices are as follows:

$$
\begin{aligned}
& D^{2}=\left(\begin{array}{ccccc}
H_{2} & H_{2} & H_{z} & \\
G_{1} & \langle 5.3,7.4,21.3,29.8,36.2,0.6,0.7,0.6\rangle & \langle 3.2,6.38,19.1,29.8,41.5 ; 0.7,0.5,0.7\rangle & \langle 6.3,6.4,25.5,30.8,31.0 ; 0.7,0.4,0.5\rangle \\
G_{z} & \langle 3.2,11.7,25.5,27.7,31.9 ; 0.7,0.6,0.7\rangle & \langle 5.3,5.35,20.2,21.3,0.8,0.6,0.7\rangle & \langle 4.3,9.8,21.9,23.4,41.5 ; 0.6,0.7,0.4\rangle \\
G_{z} & \langle 5.3,9.6,19.2,24.5,41.8 ; 0.8,0.3,0.6\rangle & \langle 4.3,7.5,15.9,27.7,44.7,0.7,0.4,0.6\rangle & \langle 5.3,7.5,23.4,30.8,32.9 ; 0.7,0.3,0.5\rangle
\end{array}\right) \\
& \text { Malés opinion } \\
& D^{2}
\end{aligned}
$$

Female's Opinion

[^21]Step 2: Framework of Standardized decision matrix

```
D 1
```


Male s opinion

D^{2}
$=\left(\begin{array}{ccccc}G_{1} & H_{2} & H_{2} & H_{2} & \\ G_{1} & \langle 0.083,0.188,0.499,0.542,0.644 ; 0.6,0.7,0.5\rangle & \langle 0.077,0.173,0.308,0.401,0.842,0.7,0.8,0.3\rangle & \langle 0.058,0.118,0.411,0.51,0.744 ; 0.3,0.5,0.6\rangle> \\ G_{2} & \langle 0.146,0.167,0.459,0.48,0.709 ; 0.6,0.5,0.4\rangle & \langle 0.1,0.121,0.381,0.602,0.683 ; 0.6,0.5,0.3\rangle & \langle 0.125,0.166,0.437,0.518,0.705 ; 0.8,0.8,0.4\rangle \\ G_{z} & \langle 0.124,0.144,0.412,0.597,0.661 ; 0.7,0.5,0.7\rangle & \langle 0.081,0.1,0.481,0.602,0.623 ; 0.8,0.6,0.7\rangle & \langle 0.147,0.151,0.528,0.571,0.591 ; 0.5,0.7,0.6\rangle>\end{array}\right)$

Female ${ }^{\text {s }}$ Opinion

Step 3: Framework of weighted Single Decision matrix

D^{1}

Step 4: Framework of Final Single Decision matrix

$$
M=\left(\begin{array}{l}
<1.2974,1.559,2.184,2.376,2.597 ; 0.65,0.52,0.43> \\
<1.392,1.476,2.212,2.336,2.609 ; 0.69,0.39,0.43> \\
<1.406,1.564,2.188,2.386,2.574 ; 0.62,0.54,0.46>
\end{array}\right)
$$

Step 4: Ranking

Now, we consider the established Score function (2.7), to convert the pentagonal neutrosophic numbers into crisp one, thus we get the final ideal decision matrix as

$$
M=\left(\begin{array}{l}
<1.135> \\
<1.249> \\
<1.093>
\end{array}\right)
$$

Thus, ranking of the social media service is as $G_{2}>G_{1}>G_{3}$.

5.6 Results and Sensitivity Analysis

To understand how the attribute weights of each criterion affecting the relative matrix and their ranking a sensitivity analysis is done. The below table is the evaluation table which shows the sensitivity results.

[^22]| Decision Maker's Weight | Final Decision Matrix | Ordering |
| :---: | :---: | :---: |
| $<(\mathbf{0 . 5 5 , 0 . 4 5})>$ | $\left(\begin{array}{l}<1.135> \\ <1.249> \\ <1.093>\end{array}\right)$ | $G_{2}>G_{1}>G_{3}$ |
| $<(\mathbf{0 . 4 5 , 0 . 5 5})>$ | $\left(\begin{array}{l}<1.024> \\ <1.132> \\ <1.048>\end{array}\right)$ | $G_{2}>G_{3}>G_{1}$ |
| $<(\mathbf{0 . 4 8 , 0 . 5 2) >}$ | $\left(\begin{array}{l}<1.035> \\ <1.185> \\ <1.042>\end{array}\right)$ | $G_{2}>G_{3}>G_{1}$ |
| $<(\mathbf{0 . 5 2 , 0 . 4 8) >}$ | $\left(\begin{array}{l}<1.078> \\ <1.202> \\ <1.044>\end{array}\right)$ | $G_{2}>G_{1}>G_{3}$ |
| $<(\mathbf{0 . 5 , 0 . 5) >}$ | $\left.\begin{array}{l}<1.062> \\ <1.195> \\ <1.046>\end{array}\right)$ | $G_{2}>G_{1}>G_{3}$ |

Figure 5.6.1: Sensitivity analysis table on Decision Maker's Weight.

Figure 5.6.2: Best Alternative Social Media Service Table

5.7 Comparison Table

We compared this proposed work with the established works proposed by the researchers to find the best social media and it is noticed that in each cases the alternative G_{2} becomes the best social media service. The comparative table given as follows:

Approach	Ranking
(Chakraborty et al.) [18]	$G_{2}>G_{1}>G_{3}$
(Biswas et al.) [41]	$G_{2}>G_{3}>G_{1}$
Our Proposed	$G_{2}>G_{1}>G_{3}$

6. Implication:

Different social media platforms are available for communication with customers and digital marketing like face book, twitter, Google plus, linked in, you tube etc. This study was primarily done to identify the best suited social media platform for Banking Industry especially for customers of West Bengal. We wanted to discover the right social media platform based on different attributes as desired by customers. The perception of neutrosophy plays a critical role in designing

[^23]mathematical calculations. In this research work, we set the MCGDM problem in PNN environment using the realistic data set. Applying the verbal phrases we formulate the MCGDM problem and hence applied our logical operations of PNN on it to get the best alternatives. Finally, sensitivity analysis is also performed here to which has a crucial impact in the ranking results. This novel thought will help the other researchers in doing MCGDM problem from realistic data in social media platform.

There are a lot of researches already done in social media implementation in Banking Industry. However many results are still unknown. Our work is to explore the idea in the following points:

- Defining the attributes necessary for social media platform for Banking Industry in West Bengal.
- Discovering the best suitable social media site for Banking Industry in West Bengal as per customers' preference.
- Finding the best social media site which satisfies customers and generate revenue by increasing business.
- The graphical representation of adaptation of social media platform based on its attributes.
- Covert the problem into PNN environment using verbal phrases.
- Apply proposed MCGDM method in PNN arena.
- Sensitivity analysis for Ranking in different cases.

7. Discussion

The main focus of this study was to find out the best social media platform for Banks. In total 94 respondents were asked varied questions and their choices and preferences about use of social media in banks. Three parameters focusing their requirement were fixed as Safety, Efficiency and Ease of use. The study examined different social media platform like Messaging and communication, e,g. Twitter, Communities and social groups, e.g. Face book and Photo and video sharing, e.g. YouTube. Face book was found to be most preferred channels both by the male and female considering all the three factors. However other two channels have different opinion based on different factors. In the sample considered here men respondents are more than women; most of the respondents are under 45 years of age and they frequently uses social media. Both men and women are equally boasting the use of social media however the worldwide trend also applied here as it was observed that youngsters are dominating the social media sites. Social media mainly has not only impacted the life of youngsters but it has also become drastically momentous since last ten years across all age groups. It was also observed that awareness about the use of social media for banking transactions is comparatively low in this region. It is agreed that Banks must publicize the use of social media as an important tool for banking transactions. Social media has proven to be the fastest communication mode and banks may use it for satisfying the ever increasing customized needs of its customers. The more satisfied customers would result in more improved business for banks. Moreover in the long run these satisfied customers would foster the brand loyalty and customer loyalty would further result in improved customer relationship management. Quantification of social media quality and its effects has got very less attention in the state. It is accepted that the overall social media quality should be measured by banks to satisfy customers.

Long tern connectivity with banks will improve if the services experienced by customers are satisfactory. Better customer satisfaction in turn will bring customer loyalty. The objective of adaption of social media for banking sector is not merely for likes and shares but it goes beyond that. It is more of creating brand awareness and brand advocacy. Hence Banks should design their social media strategy focusing realistic goals.

8. Findings:

Customers basically want three things from Banks like, better and responsive services, easier way to bank and most importantly they want to be understood. Customers do not want generic ads and offers, they want products and services tailored to them and will exchange data in order to receive this. All the above is possible if the banks implement social media methodically and keep a proper follow up for the same. As of now it is the best, easier and fastest responsive way to communicate with customers. The following findings were done:

- Face book is most preferred social media medium in comparison to other options like you tube and twitter etc. considering all the three attributes
- After applying pentagonal neutrosophic numbers into crisp one, we get the final ideal decision matrix which gives the ranking of the social media as follows, Facebook>Twitter>YouTube.
- In spite of changing the weight age of attributes Face book remains the most preferred choice across gender.
- The three different attributes like Security, Efficiency and Ease of use have a strong impact on overall customers' satisfaction which resulted in selection of Bank's social media platform
- Banks profit margin would be boosted with the help of proper implementation of social media strategies. This will increase customers' base without expansion of physical branches which will result in reduction in cost..

9. Conclusions:

It may be concluded that Social Medias can greatly influence and enhance the function which is being carried out in banks. This research found out that almost big banks in the state are using social media for banking operations. On the questionnaire received from respondents the main concern or obstacle for using social media was Security and privacy issues. Almost majority preferred social media in terms of its efficiency and ease of use. Face book was found to be most acceptable mode compare to any other media across gender and age. Majority of the respondents showed positive indications for use of social media for banking operations in case of higher security. Hence we can conclude that customers are willing to accept the social media for banking operations if Banks take complete care of their security and privacy of data. Therefore for banks in West Bengal all conditions are met and it is up to the Banks' policy of achieving the highest security in order to help the customers to adapt the transactional social media. Our forecast is that transactional social media will become more acceptable and popular in banking industry in coming years.

Our future study includes more questionnaire collection and feedback received from customers and banks to analysis the functionality of transactional social media and to suggest the ways to improve the same.

Reference:

[1] Githa Heggde, G. S. (2018). Social Media Marketing: Emerging Concepts and Applications. Singapore: Springer Nature.
[2] Bullas, J. (2014). Social Media facts and statistics you should know in 2014. Springer.
[3] DUGGAN, A. L. (2014). COUPLES, THE INTERNET, AND SOCIAL MEDIA. America: Pew Research Centre.
[4] L, E. (2010). Social Media Marketing, Strategies for engaging in facebook, twitter and other social media. Que Publishing.
[5] Zadeh L.A; (1965); Fuzzy sets. Information and Control, 8(5): 338-353.
[6] Yen, K. K.; Ghoshray, S.; Roig, G.; (1999); A linear regression model using triangular fuzzy number coefficients, fuzzy sets and system, doi: 10.1016/S0165-0114(97)00269-8.
[7] Abbasbandy, S. and Hajjari, T.; (2009); A new approach for ranking of trapezoidal fuzzy numbers; Computers and Mathematics with Applications, 57(3), 413-419.
[8] A.Chakraborty, S.P Mondal, A.Ahmadian, N.Senu, D.Dey, S.Alam, S.Salahshour; (2019); The Pentagonal Fuzzy Number: Its Different Representations, Properties, Ranking, Defuzzification and Application in Game Problem, Symmetry, Vol-11(2), 248; doi: 10.3390/sym11020248.
[9] A.Chakraborty, S. Maity, S.Jain, S.P Mondal, S.Alam; (2020); Hexagonal Fuzzy Number and its Distinctive Representation, Ranking, Defuzzification Technique and Application in Production Inventory Management Problem, Granular Computing, Springer, DOI: 10.1007/s41066-020-00212-8.
[10] S. Maity, A.Chakraborty, S.K De, S.P.Mondal, S.Alam; (2019); A comprehensive study of a backlogging EOQ model with nonlinear heptagonal dense fuzzy environment,Rairo Operations Research; DOI: 10.1051/ro/2018114.
[11] Atanassov K.;(1986); Intuitionistic fuzzy sets. Fuzzy Sets and Systems 20: 87-96.
[12] Smarandache, F. A unifying field in logics neutrosophy: neutrosophic probability, set and logic.American Research Press, Rehoboth. 1998.
[13] A.Chakraborty, S.P Mondal, A.Ahmadian, N.Senu, S.Alam and S.Salahshour; (2018); Different Forms of Triangular Neutrosophic Numbers, De-Neutrosophication Techniques, and their Applications, Symmetry, Vol-10, 327.
[14] A. Chakraborty, S. P Mondal, S.Alam, A. Mahata; (2019); Different Linear and Non-linear Form of Trapezoidal Neutrosophic Numbers, De-Neutrosophication Techniques and its Application in Time-Cost Optimization Technique, Sequencing Problem; Rairo Operations Research, doi: 10.1051/ro/2019090.
[15] A. Chakraborty, S. Broumi, P.K Singh; (2019); Some properties of Pentagonal Neutrosophic Numbers and its Applications in Transportation Problem Environment, Neutrosophic Sets and Systems, vol.28, pp.200-215.
[16] A. Chakraborty, S. Mondal, S. Broumi; (2019); De-neutrosophication technique of pentagonal neutrosophic number and application in minimal spanning tree; Neutrosophic Sets and Systems; vol. 29, pp. 1-18, doi: 10.5281/zenodo. 3514383 .
[17] A. Chakraborty ; (2020); A New Score Function of Pentagonal Neutrosophic Number and its Application in Networking Problem; International Journal of Neutrosophic Science; Vol-1(1), p.p-35-46.
[18] A. Chakraborty, B. Banik, S. P. Mondal and S. Alam; (2020); Arithmetic and Geometric Operators of Pentagonal Neutrosophic Number and its Application in Mobile Communication Based MCGDM Problem; Neutrosophic Sets and System, Vol 32, pp: 61-79, DOI: 10.5281/zenodo. 3723145.
[19] A. Mahata, S.P Mondal , S. Alam, A. Chakraborty, A. Goswami, S. Dey; (2018); Mathematical model for diabetes in fuzzy environment and stability analysis- Journal of of intelligent and Fuzzy System, doi: https://doi.org/10.3233/JIFS-171571.
[20] A.Chakraborty; (2019); Minimal Spanning Tree in Cylindrical Single-Valued Neutrosophic Arena; Neutrosophic Graph theory and algorithm; DOI-10.4018/978-1-7998-1313-2.ch009.
[16] A. Chakraborty, S. P Mondal, S.Alam, A. Mahata; (2020); Cylindrical Neutrosophic Single-Valued Number and its Application in Networking problem, Multi Criterion Decision Making Problem and Graph Theory; CAAI Transactions on Intelligence Technology, Vol-5(2), pp:68-77, DOI: 10.1049/trit.2019.0083.
[21] T.S. Haque, A. Chakraborty, S. P Mondal, S.Alam, A. Mahata; (2020); A new approach to solve multi criteria group decision making problems by exponential law in generalized spherical fuzzy environment; CAAI Transactions on Intelligence Technology, Vol-5(2), pp: 106-114, DOI: 10.1049/trit.2019.0078.
[22] S. Broumi, A. Bakali, M. Talea, Prem Kumar Singh, F. Smarandache;(2019); Energy and Spectrum Analysis of Interval-valued Neutrosophic graph Using MATLAB, Neutrosophic Set and Systems, vol. 24, pp. 46-60.
[23] A. Chakraborty, S. P Mondal, S. Alam ,A. Ahmadian, N. Senu, D. De and S. Salahshour; (2019); Disjunctive Representation of Triangular Bipolar Neutrosophic Numbers, De-Bipolarization Technique and Application in Multi-Criteria Decision-Making Problems, Symmetry, Vol-11(7), 932.
[24] Senthil Kumar N, S. K. (2016). On Privacy and Security in Social Media - A Comprehensive Study. Procedia Computer Science (pp. 114-119). Nagpur, India: Elsevier.
[25] Paul Lowry, J. C. (2011). Privacy Concerns versus Desire for Interpersonal Awareness in Driving the Use of Self-Disclosure. Journal of Management Information Systems , 163-200.
[26] Patrick Van Eecke, M. T. (2010). Privacy and social networks. Computer Law \& Security Review, 533-546.
[27] Gail-Joon Ahn, M. S. (2011). Security and Privacy in Social Networks. IEEE Internet Computing , 10-12.
[28] Frederic Marimon, L. H. (2012). Impact of e-Quality and service recovery on loyalty: A study of e-banking in Spain. Total Quality Management and Business Excellence .
[29] Chung Tin Fah, M. A. (2012). Money Supply, Interest Rate, Liquidity and Share Prices: A Test of Their Linkage. Global Finance Journal .
[30] Rahimi, R., \& Me, K. (2016). Impact of Customer Relationship Management on Customer Satisfaction: The Case of a Budget Hotel Chain. Journal of Travel \& Tourism Marketing .
[31] Chinedu-Okeke, C. F., \& Obi, I. (2016). Social Media As A Political Platform In Nigeria: A Focus On Electorates In South-Eastern Nigeria. IOSR Journal of Humanities And Social Science
[32] Kalia, G. (2013). A Research Paper on Social media: An Innovative Educational Tool.
[33] Emel Kursunluoglu, I. (2015). A Review of Service and E-Service Quality Measurements: Previous Literature and Extension. Journal of Economic and Social Studies .
[34] Ajimon George, G. G. (2013). Antecedents of Customer Satisfaction in Internet Banking: Technology acceptance Model Redefined. Global Business Review .
[35] Norman Gwangwava, M. M. (2014). E- Manufacturing and E-Servise Strategies in contemporary organizations. Hershey-USA: IGI Global.
[36] Abdel-Basset, M., El-hoseny, M., Gamal, A., \& Smarandache, F. (2019). A novel model for evaluation Hospital medical care systems based on plithogenic sets. Artificial intelligence in medicine, 100, 101710.
[37] Abdel-Basset, M., Manogaran, G., Gamal, A., \& Chang, V. (2019). A Novel Intelligent Medical Decision Support Model Based on Soft Computing and IoT. IEEE Internet of Things Journal.
[38] Abdel-Basset, M., Mohamed, R., Zaied, A. E. N. H., \& Smarandache, F. (2019). A hybrid plithogenic decision-making approach with quality function deployment for selecting supply chain sustainability metrics. Symmetry, 11(7), 903.
[39] Abdel-Basset, M., Nabeeh, N. A., El-Ghareeb, H. A., \& Aboelfetouh, A. (2019). Utilising neutrosophic theory to solve transition difficulties of IoT-based enterprises. Enterprise Information Systems, 1-21.
[40] Abdel-Baset, M., Chang, V., \& Gamal, A. (2019). Evaluation of the green supply chain management practices: A novel neutrosophic approach. Computers in Industry, 108, 210-220.
[41] P. Biswas, S. Pramanik and B. C. Giri, Topsis method for multiattribute group decision-making under single-valued neutrosophic environment, Neural Computing and Applications, 27(3)(2016), 727-737.

Received: Apr 17, 2020 Accepted: July 7, 2020.

Neutrosophic Multiset Topological Space

Rakhal Das ${ }^{1}$ and Binod Chandra Tripathy ${ }^{2}$
${ }^{1}$ Department of Mathematics, Tripura University Agartala -799022; Tripura, INDIA; E mail: ${ }^{1}$ rakhaldas95@gmail.com and rakhal.mathematics@tripurauniv.in
${ }^{2}$ Department of Mathematics, Tripura University Agartala -799022; Tripura, INDIA; E mail binodtripathy@tripurauniv.in, tripathybc@yahoo.com and tripathybc@gmail.com

Abstract

In this article we have investigated some properties of netrosophic multiset topology. The behavior of compactness and connectedness in netrosophic multiset topology, continuous function on netrosophic multiset topology etc have been examined. Neutrosophic multiset is a generalization of multisets and neutrosophic sets. Several properties of neutrosophic topological space in view of neutrosophic multiset topological space have been studied.

Keywords: Neutrosophic Multiset; Neutrosophic Minimal set; Neutrosophic Maximal set; Neutrosophic Multiset topology; Compactness, Connectedness; Continuous Neutrosophic Multiset; Separation axioms; Distance function.

1. Introduction

In recent years, multisets and neutrosophic sets have become a subject of great interest for researchers. Mathematicians always like to solve a complicated problem in a simple way and to find out the most feasible solution. Neutrosophy has been introduced and studied by Smarandache [13, 15] as a new branch of philosophy. Recently various papers published on neutrosophic topology and many researchers doing very well, neutrosophic decision making had been studied in [15, 17]. Algebraic properties of neutrosophic set studied in [9, 13], Neutrosophic Bipolar Vague Soft Set, and its property studied in [9]. Smarandache generalizes intuitionistic fuzzy sets (IFSs) and other kinds of sets to neutrosophic sets (NSs). In Smarandache [12, 13], some distinctions between NSs and IFSs are underlined. decision-making problem, algebraic property one can analysis by topological property connectedness and compactness property that property can help to take the decision into a more reliable way. Smarandache $[13,14,15]$ also defined various notions of neutrosophic topologies on the non-standard interval. The logic of the neutrosophic set is very clear and its utilization on topology is very beneficial for many standard problems like diagnosis of bipolar disorder diseases group decision making and analytical property and evaluation Hospital medical care systems etc. $[1,9,13]$. The relation between the intuitionistic fuzzy topology (IFT) on an IFS and the neutrosophic topology are also analyzed by Smarandache.

Multiset theory was introduced by Bilzard [3]. Later on multiset topological space was studied by many researcher Shravan and Tripathy [17, 18, 19]. The purpose of this paper is to construct a new
generalization of topological space called the neutrosophic multiset topological space. The possible application of neutrosophic multiset topological space has been studied. For the different types of behavior of objects in nature sometimes set theory and multiset theory fails to describe some particular situation. Sometimes it is observed that Neutrosophic Multiset can be described in an easier way to handle such cases. Neutrosophic set and topological space have been studied by Salama and Alblowi [10,11]. The concept of multiset topological space has been applied for studying different properties of spatial objects. In this article we have used multiset neutrosophic topological space for studying various spatial topological properties, like closeness connectedness and the completeness property and its application further in various fields.

2. Materials and Methods

We procure some existing definitions in this paper, one may refer to Smarandache ([13], [15]) and S. Alias, et.al [2].

We define functions T, F and I from X to $[0,1]$. Where T is membership value, F fails membership value and I is the indeterminacy value.

The definition of neutrosophic multiset was first define by Smarandache [12] as follows.

Definition 2.1. [12] A Neutrosophic Multiset is a neutrosophic set where one or more elements are repeated with the same neutrosophic components, or with different neutrosophic components.

Definition 2.2. The Empty neutrosophic multiset is denoted by N_{Θ} and define by
$N_{\Theta}=\left\{\left\langle x_{(0,1,1)}\right\rangle: \forall x \in X\right\}$ where x can be repeated.

Definition 2.3. The Whole neutrosophic multiset is denoted by W_{x} and define by
$W_{X}=\left\{\left\langle x_{(1,0,0)}\right\rangle: \forall x \in X\right\}$ where x can be repeated.

The power set of neutrosophic multiset is denoted by $P(X)$.

The collection of all possible subsets of X is called the power set of the netrosophic multiset.
 compliment of A is denoted by A^{c} and define by
$\left.A^{c}=\left\{\left(x_{\left.<\mathrm{F}_{A(x)}\right)^{1-1}} \mathrm{I}_{A(x)}\right)^{T} A(x)>\right): x \in X\right\}$.
Where x can be repeated based on its multiplicity and the corresponding T, F, I values may or may not be equal.

Definition 2.5. The intersection of $N M$ sets are defined by $A \cap B=\{x: x \in A$ and $x \in B\}$.

Definition 2.6. The union of $N M$ sets are defined by $A \cup B=\{x: x \in A$ or $x \in B\}$.

Definition 2.7. In the $N M$ sets $A \subset B$ if $x \in A$ implies that $x \in B$.

Definition 2.8. Cardinality of a $N M$ set A is denote the number of elements in a set A which is define by $\operatorname{card}(A)$.

Definition 2.9. The Cartesian product of two neutrosophic multiset is defined by $A \times B=\{(x, y): x \in A$ and $y \in B\}$.

Definition 2.10 The difference of two $N M$ sets A and B is the collection of members such that all members belong to A but not in B.

Now we introduce two new types of operation maximal union NM set and minimal intersection NM set.

Definition 2.11. Let X be a non-empty set, and neutrosophic multiset A and B in the form $A=\{($ $\left.\left.x_{<T_{A(x)} \mathrm{I}_{A(x)}, \mathrm{F}_{A(x)}>}\right): x \in X\right\}$ and $B=\left\{\left(x_{\left.<T_{B(x)}\right)^{\mathrm{I}} \mathrm{B}(x) \mathrm{p}} \mathrm{F}_{B(x)}>\right): x \in X\right\}$, then the operations of maximal union and minimal intersection $N M$ set relation are defined as follows:

1. $(A \cup B)_{\max }=\left\{\left(x_{\left.\left.<T_{(A \cup B)_{\max }(x)} \mathrm{I}_{(A \cup B)_{\max }(x)} \mathrm{F}_{(A \cup B)_{\max }(x)}\right): x \in X\right\} \text {, where } T_{(A \cup B)_{\max }}(x)}\right.\right.$ $=\max \left\{T_{A(x)}, T_{B(x)}\right\}, \quad \mathrm{F}_{(A \cup B)_{\max }(x)}=\min \left\{T_{A(x)}, T_{B(x)}\right\}$ and $\mathrm{I}_{(A \cup B)_{\max }(x)}=$ $\min \left\{\mathrm{I}_{A(x)}, \mathrm{I}_{B(x)}\right\}$.
 $T_{(A \cap B)_{\min }(x)}=\min \left\{T_{A(x)}, T_{B(x)}\right\}$ and $\mathrm{F}_{(A \cap B)_{\min }(x)}=\max \left\{\mathrm{F}_{A(x)}, \mathrm{F}_{B(x)}\right\}$ and

$$
\mathrm{I}_{(A \cap B)_{\min }(x)}=\max \left\{\mathrm{I}_{A(x)}, \mathrm{I}_{B(x)}\right\}
$$

Example 2.1. Let $X=\{x, y, z, t\}$ and $\left.A=\left\{x_{<0.7,0.2,0.3>}, x_{<0.7,0.2,0.3>}, \mathrm{y}<0.3,0.2,0.7>, \mathrm{y}<0.9,0.3,0.1>, z<0.0,1,1>, \mathrm{t}<0.5,0.7,0.5\right\rangle\right\}$, $\left.B=\left\{x<0.7,0.2,0.3>x_{<0.8}, 0.5,0.2>, \mathrm{y}<0.3,0.2,0.7>, \mathrm{y}<0.3,0.2,0.7>, \mathrm{z}<0.7,0.8,0.3>, \mathrm{t}<0.0,1,1\right\rangle\right\}$ be neutrosophic multisets, then the maximal union and minimal intersection are

$$
(A \cap B)_{\operatorname{Min}}=\left\{x_{<0.7,0.5,0.3>}, \mathrm{y}<0.3,0.3,0.7>, z<0.0,1,1>, \mathrm{t}<0.0,1,1>\right\}
$$

We formulate the following results without proof.

Result 2.1. Union of any family of neutrosophic multisets is always a neutrosophic multiset.

Result 2.2. Intersection of any family of neutrosophic multisets is always a neutrosophic multiset.

Result 2.3. The compliment of a neutrosophic multiset is always a neutrosophic multiset.

Result 2.4. Every neutrosophic set is a neutrosophic multiset but not necessarily conversely.

Example 2.2. Let $A=\left\{8_{\langle 0.6,0.3, ~}^{0.2\rangle}, 8_{\langle 0.6,0.3, ~}^{0.2\rangle}, 8_{\langle 0.4, ~ 0.1, ~ 0.3), ~} 7_{\langle 0.2,0.7,0.0\rangle}\right\}$.
Here A is a neutrosophic multiset but not a neutrosophic set.

Result 2.5. Let $\left\{A_{j}: j \in \Lambda\right\}$ be an arbitrary family of $N M$ set in X, then the arbitrary maximal union and arbitrary minimal intersection is also a $N M$ set.

Remark 2.1. A neutrosophic multiset is a natural generalization of multiset as well as Cantor set.

We introduced neutrosophic multiset topological space and study some of its properties.

Definition 2.12. Let X be neutrosophic multiset and a non-empty family τ subsets of W_{x} is said to be neutrosophic multiset topological space if the following axioms hold:

1. $N_{\Theta}, W_{X} \in \tau$.
2. $A \cap B \in \boldsymbol{\tau}$, for $A, B \in \boldsymbol{\tau}$.
3. $\mathrm{U}_{i \in \Lambda} A_{i} \in \boldsymbol{\tau}$, for $\forall\left\{A_{i}: i \in \Lambda\right\} \in \boldsymbol{\tau}$

In this case the pair $\left(W_{x}, \boldsymbol{\tau}\right)$ is called a neutrosophic multiset topological space (NMTS in short) and any neutrosophic multiset in τ is known as open neuterosophic multiset (ONMS in short) in W_{x}. The elements of τ^{σ} are called closed neutrosophic multisets, otherwise a neutrosophic set F is closed if and only if its complement F^{C} is an open neutrosophic multiset.

Definition 2.13. Let $\left(W_{x}, \boldsymbol{\tau}_{1}\right)$ and $\left(W_{x}, \boldsymbol{\tau}_{2}\right)$ be two neutrosophic multiset topological spaces on W_{x}. Then $\boldsymbol{\tau}_{1}$ is said be contained in $\boldsymbol{\tau}_{2}$ that is if $\boldsymbol{\tau}_{1} \subseteq \boldsymbol{\tau}_{2}$ i.e, $A \in \boldsymbol{\tau}_{2}$ for each $A \in \boldsymbol{\tau}_{1}$. In this case, we also say that τ_{1} is coarser than $\boldsymbol{\tau}_{2}$.

Definition 2.14. Let $\left(W_{x}, \tau\right)$ be a neutrosophic multiset topological space on W_{x}. A non-empty family of subsets β of X is called neutrosophic multiset basis of the neutrosophic multiset topological space W_{x} if any element of τ can be express as the union of the element of β.

Remark 2.2. As usual, basis of a neutrosophic multiset topological space is not unique.

Definition 2.15. Let $\left(W_{x}, \tau\right)$ be a neutrosophic multiset topological space with base β. The interior of the neutrosophic multiset A is the union of basis element of τ which is contained in A and it denoted by $N M_{\text {int }} A$, i.e, $N M_{\text {int }}(A)=\left\{\cup \beta_{i}: \beta_{i} \subseteq A\right.$ and $\left.\beta_{i \in \beta}\right\}$.

Definition 2.16. Let $\left(W_{x}, \tau\right)$ be a neutrosophic multiset topological space. The closure of the neutrosophic multiset A is the intersection of all closed neutrosophic multiset containing the set A it is denoted by $\operatorname{NMcl}(A)$, i.e, $\operatorname{NMcl}(A)=\left\{\cap F_{i}: A \subseteq F_{i}\right.$ and $\left.F_{i}^{c} \in \boldsymbol{\tau}\right\}$.

In view of the definitions, we formulate the following result.

Proposition 2.1. Let $\left(W_{x}, \tau\right)$ be a neutrosophic multiset topological space and A, B be two neutrosophic multiset on W_{x}, then the following property hold:

1. $N M_{i n t} A \subseteq A$.
2. $A \subseteq B \Rightarrow N M_{i n t}(A) \subseteq N M_{\text {int }}(B)$.
3. $A \subseteq N M \subset l(A)$.
4. $A \subseteq B \Rightarrow N M \subset l(A) \subseteq N M c l(B)$
5. $\quad N M_{\text {int }}\left(N M_{\text {int }}(A)\right)=N M_{\text {int }}(A)$.
6. $\quad N M_{c l}(N M c l(A))=N M c l(A)$.
7. $N M c l(A \cup B)=N M c l(A) \cup N M c l(B)$.
8. $\quad N M_{i n t}(W x)=W x$.
9. $\quad N M c l\left(N_{\Theta}\right)=N_{\Theta}$.

Definition 2.17. Let $\left(W_{x}, \tau\right)$ be a neutrosophic multiset topological space a non-empty set S is called a subbasis if the finite intersection of the elements of S can form a basis for τ.

Definition 2.18. Let $\left(W_{x}, \boldsymbol{\tau}\right)$ be a neutrosophic multiset topological space a point $P \in A \subseteq W_{x}$ is said to be a limit point of A if for every basis element β containing p contains one element of A other than p, i.e, $\beta \cap A \neq N_{\Theta}$.

3. Results

3.1. Compactness, Connectedness and Continuous map.

Definition 3.1.1. Let $(W x, \boldsymbol{\tau})$ be a neutrosophic multiset topological space. A neutrosophic multiset A is said to be disjoint if \exists two neutrosophic multisubsets B, C such that $B \cap C=N_{\Theta}$ and $A=B \cup C$.

Definition 3.1.2. Let $\left(W_{x}, \boldsymbol{\tau}\right)$ be a neutrosophic multiset topological space. The space W_{x} is said to be connected if W_{x} cannot be express as the union of two disjoint neutrosophic multisets.

Definition 3.1.3. Let $\left(W_{x}, \tau\right)$ be a neutrosophic multiset topological space. The space W_{x} is said to be compact if every open cover of W_{X} has a finite subcover.

Proposition 3.1.1. Every finite neutrosophic multiset topological space is compact.

Definition 3.1.4. Let $\left(W_{x}, \boldsymbol{\tau}_{1}\right)$ and $\left(W x, \tau_{2}\right)$ be two neutrosophic multiset topological space. The NMS function $f:\left(W_{x}, \tau_{1}\right) \rightarrow\left(W_{x}, \tau_{2}\right)$ is said to be continuous if for each open neutrosophic multiset V of $\boldsymbol{\tau}_{2}$ the neutrosophic multiset $f^{-1}(V)$ is an open submset of $\boldsymbol{\tau}_{1}$.

Proposition 3.1.2. Let f be a continuous function from a $N M S$ topological space ($W_{x}, \boldsymbol{\tau}_{1}$) to another $N M S$ topological space $\left(W_{x}, \boldsymbol{\tau}_{2}\right)$, the function f is said to be a homomorphism if $f(A \cup B)=f(A) \cup f(B)$ where $A, B \in \boldsymbol{\tau}_{1}$ and $f(A), \quad f(B) \in \boldsymbol{\tau}_{2}$.

3.2. Separation axioms on neutrosophic multiset.

We have defined disjoint neutrosophic multiset, connectedness, compactness and the continuous image of neutrosophic multiset topological space. In this section we define separation axioms on NMS topological space.
In the NMS a singleton set $\{p\}$ is define by $\{p\}=\left\{x_{\left.<T_{(x) y} \mathbb{I}_{(x)}\right)} \mathrm{F}_{(x)}\right\rangle: T_{(x)} \neq 0$, when $x=p$ otherwise $T_{(x)}=$ $0, \mathrm{I}_{(x)}=1-T_{(x)}$ and $\mathrm{F}_{(x)}=1-T_{(x)}$ for all $\left.x \in W x\right\}$.

Where x can be occurs more than one times it's depends on its multiplicity and then T, F, I value may or may not be equal.

Definition 3.2.1. Let $\left(W_{x}, \boldsymbol{\tau}\right)$ be a neutrosophic multiset topological space. If there exist only two open neutrosophic multiset in $(W x, \tau)$ is called indiscrete $N M S$ topological space.

Definition 3.2.2. Let $(W x, \tau)$ be a neutrosophic multiset topological space. If every singleton neutrosophic multiset is an open NMS set then $\left(W_{x}, \boldsymbol{\tau}\right)$ is called discrete $N M S$ topological space.

Definition 3.2.3. Let $\left(W_{x}, \boldsymbol{\tau}\right)$ be a neutrosophic multiset topological space. If for every two distinct NMS singleton sets, $\left\{x_{1}\right\} ;\left\{x_{2}\right\}$ then there exist $V, U \in \boldsymbol{\tau}$ such that $\left\{x_{1}\right\} \subseteq V$ and $\left\{x_{2}\right\} \not \subset V$ or $\left\{x_{2}\right\} \subseteq U$ and $\left\{x_{1}\right\} \not \subset U$. Hence, $(W x, \tau)$ is $N M S T_{o}$-space. i.e., there exists $\boldsymbol{\tau}$-open $N M S$ which contains one of them but not the other.

Definition 3.2.4. Let $\left(W_{x}, \tau\right)$ be a neutrosophic multiset topological space. If for every two distinct NMS singleton sets, $\left\{x_{1}\right\} ;\left\{x_{2}\right\}$ then there exist $V, U \in \tau$ such that $\left\{x_{1}\right\} \subseteq V$ and $\left\{x_{2}\right\} \not \subset V$ and $\left\{x_{2}\right\} \subseteq U$ and $\left\{x_{1}\right\} \not \subset U$. Hence, $\left(W_{x}, \tau\right)$ is NMST_{1}-space.

Definition 3.2.5. Let $(W x, \boldsymbol{\tau})$ be a neutrosophic multiset topological space. If for every two distinct NMS singleton sets, $\left\{x_{1}\right\} ;\left\{x_{2}\right\}$ then there exist $V, U \in \tau$ such that $\left\{x_{1}\right\} \subseteq V$ and $\left\{x_{2}\right\} \not \subset V$ and $\left\{x_{2}\right\} \subseteq U$ and $\left\{x_{1}\right\} \not \subset U$ and $U \cap V=N_{\Theta}$. Hence, $\left(W_{x}, \tau\right)$ is $N M S T_{2}$-space.

Proposition 3.2.1. Every $N M S T_{2}$-space is $N M S T_{1}$-space but it is not necessarily conversely.

Example 3.2.1. In co-finite neutrosophic multiset topological space is not a NMST_{2}-space but when the space has the finite neutrosophic multiset topology then it is $N M S T_{1}$-space.

So when we consider the infinite neutrosophic multiset topology we can get our desire result.

Proposition 3.2.2. Every $N M S T_{1}$-space is $N M S T_{0}$-space but it is not necessarily conversely.

Example 3.2.2. Let $W_{X}=\left\{x_{<0.5,0.7,0.5>}, x_{<0.5,0.7,0.5>}, y_{<0.3,0.4,0.7>}\right\}$ and $\tau=\left\{W_{X}, N_{\Theta},\{y\}\right\}$.

Here $\left(W_{x}, \boldsymbol{\tau}\right)$ is a $N M S T_{0}$-space but it is not a $N M S T_{1}$.

Proposition 3.2.3. Every $N M S T_{2}$-space is $N M S T_{0}$-space but it is not necessarily conversely.

Example 3.2.3. Since every $N M S T_{0}$-space is not a $N M S T_{1}$-space and every $N M S T_{1}$-space is not a NMST_{2}-space so every NMST_{0}-space is not a NMST_{2}-space.
Proposition 3.2.4. Every discrete $N M S$ topological space is $N M S T_{2}$-space.

3.3. Distance function on NMS.

In this section we are going to define a distance function on Neutrosophic set. Since in Neutrosophic set we have defined Neutrosophic elements, Neutrosophic subset so it is natural to ask, can we measure the distance between two Neutrosophic points or two Neutrosophic sets or is there any distance between a Neutrosophic point to a Neutrosophic set?

The distance function between multiset points is defined by Shravan and Tripathy [12], based on the multiplicity and the elements.

The Neutrosophic point p of a Neutrosophic multiset W_{X} is define by $p=\left\{\left(T_{(x)}, \mathrm{I}_{(x)}, \mathrm{F}_{(x)}\right): T_{(x)} \neq 0\right.$, when $x=p$, otherwise $T_{(x)}=0, \mathrm{I}_{(x)}=1-T_{(x)}$ and $\mathrm{F}_{(x)}=1-T_{(x)}$ for all $x \in W_{x}$.

Note: The Neutrosophic point p can have multiple time it's depends on its multiplicity.

Definition 3.3.1. Let x, y be two Neutrosophic points on a Neutrosophic set Wx. The distance between the points is denoted by $\bar{d}(x, y)$ and is define by $\bar{d}(x, y)=\sup \left\{|x-y|,\left|T_{(x)}-T_{(y)}\right|\right.$,
$\left.\left|\mathrm{I}_{(x)}-\mathrm{I}_{(y)}\right|,\left|\mathrm{F}_{(x)}-\mathrm{F}_{(y)}\right|\right\}$, where the distance function \bar{d} is define by, $\bar{d}: W_{x} \rightarrow R^{+} \cup\{0\}$.

Definition 3.3.2. Let x be a Neutrosophic point and A be a subset on a Neutrosophic set W_{x}. The distance between the point x and set the A is denoted by $\bar{d}(x, A)$ and is define by $\bar{d}(x, B)$ $=\inf -\sup \left\{\left|x-y_{i}\right|,\left|T_{(x)}-T_{(y)_{i}}\right|,\left|\mathrm{I}_{(x)}-\mathrm{I}_{(y)_{i}}\right|,\left|\mathrm{F}_{(x)}-\mathrm{F}_{(y)_{i}}\right|:\right.$ for all $\left.y_{i} \in A\right\}$.

Definition 3.3.3. Let A, B be two Neutrosophic subset of a Neutrosophic set W_{x} the distance between the sets A and set B is denoted by $\bar{d}(A, B)$ and is define by $\bar{d}(A, B)=\inf \sup \left\{\left|x_{i}-y_{i}\right|,\left|T_{(x)_{i}}-T_{(y)_{i}}\right|\right.$, $\left|\mathrm{I}_{(x)_{i}}-\mathrm{I}_{(y)_{i}}\right|,\left|\mathrm{F}_{(x)_{i}}-\mathrm{F}_{(y)_{i}}\right|: \forall x_{i} \in A$, and $\left.y_{i} \in B\right\}$.

From the definition 5.1, 5.2 and 5.3 we can define another definition of matric space on a Neutrosophic multiset.

Definition 3.3.4. A non-empty Neutrosophic set W_{x} is said to be a Neutrosophic metric space with the distance function $\bar{d}: W_{X} X W_{X} \rightarrow R_{+} \cup\{0\}$, if W_{X} satisfy following:

1. $\bar{d}(x, y) \geq 0, \forall x, y \in W_{x}$.
2. $\bar{d}(x, y)=0$, iff $x=y$ and $T_{(x)_{i}}=T_{(y)_{i^{\prime}}} \mathrm{F}_{(x)_{i}}=\mathrm{F}_{(y)_{i^{\prime}}} \mathrm{I}_{(x)_{i}}=\mathrm{I}_{(y)_{i}}$.
3. $\bar{d}(x, y)=\bar{d}(y, x), \forall x, y \in W_{X}$
4. $\bar{d}(x, z) \leq \bar{d}(x, y)+\bar{d}(y, z), \forall x, y, z \in W_{x}$

Theorem 3.3.1. If \bar{d}^{1} and \bar{d}^{2} be two Neutrosophic metric spaces then $\bar{d}=\max \left\{\bar{d}^{1}, \bar{d}^{2}\right\}$ is also a Neutrosophic metric space.

Theorem 3.3.2. If \bar{d}^{1} and \bar{d}^{2} be two Neutrosophic metric space then $\bar{d}=\min \left\{\bar{d}^{1}, \bar{d}^{2}\right\}$ is not a Neutrosophic metric space.

The proof of the above two theorem is obvious using the concept of general matric space.

4. Applications

The work done in this paper is based on the application of neutrosophic sets in multiset topological space. These can be further applicable for the development of neutrosophic topology separation axioms on neutrosophic multiset topology and neutrosophic multisets.

5. Conclusions

In this paper we have established some properties of the neutrosophic multiset topological space such as compactness and connectedness, continuous function on netrosophic multiset topology, separation axioms on neutrosophic multiset topology. Also we have introduced the notion of the distance function in neutrosophic multiset and examined some properties. This paper can be useful for further development of neutrosophic multiset theory and neutrosophic topology.
Acknowledgments: The authors express their sincere thanks to Prof. F. Smarandache, Department of Mathematics, University of New Mexico, USA for his comments, those improved the presentation of the article.

Conflicts of Interest: The authors declare that no conflicting interest is involved in this article.

References

1 Md. Abdel-Basset, A. Gamal, G. Manogaran, and H. V. Long. "A novel group decision making model based on neutrosophic sets for heart disease diagnosis." Multimedia Tools and Applications (2019) pp.1-26.

2 S. Alias, D. Mohamad, and A. Shuib "Rough Neutrosophic Multisets Relation with Application in Marketing Strategy" Neutrosophic Sets and Systems, Vol. 21, (2018) pp.36-55.

3 W. Blizard, Multiset theory. Notre Dame Jour. Formal Logic, 30, (1989) pp.36-66.
4 C.L. Chang, "Fuzzy Topological Spaces" J. Math. Anal. Appl. 24, (1968) pp.182-1 90.
5 R. Das, F. Smarandache and B.C. Tripathy, "Neutrosophic Fuzzy Matrices and Some Algebraic Operations" Neutrosophic Sets and Systems, Vol. 32, (2020) pp.401-409.
6 F. G. Lupianez, "On neutrosophic topology" The International Journal of Systems and Cybernetics, 37(6), (2008) pp.797-800.

7 F.G. Lupianez, "On various neutrosophic topologies" The International Journal of Systems and Cybernetics, 38(6), (2009) pp.1009-1013.
8 P. K. Maji, "Neutrosophic soft set", Annals of Fuzzy Mathematics and Informatics, 5(1), (2013) pp.157-168.
9 A. Mukherjee and R. Das. "Neutrosophic Bipolar Vague Soft Set and Its Application to Decision Making Problems" Neutrosophic Sets and Systems, Vol. 32, (2020) pp.410-424.

10 A. Salama, S. AL-Blowi, "Generalized neutrosophic set and generalized neutrosophic topological spaces", Computer Science and Engineering, 2(7), (2012) pp.129-132
11 A. Salama, S.A.Alblowi, "Neutrosophic Set and Neutrosophic Topological Spaces" IOSR Journal of Mathematics, 3(4), (2012) pp.31-35.
12 F. Smarandache, "Neutrosophic Set - A Generalization of the Intuitionistic Fuzzy Set" International Journal of Pure and Applied Mathematics, 24(3), (2004) pp.1-15.

13 F. Smarandache, " N-norm and N-conorm in neutrosophic logic and set, and the neutrosophic topologies", A Unfying Field in Logics: Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Neutrosophic Probability, Ed-4, American Research Press, Rehoboth, NM(2005)

14 F. Smarandache, "Introduction to Neutrosophic Measure, Neutrosophic Integral and Neutrosophic Probability" Ed-1, Sitech \& Education Publishing, Columbus, Ohio, USA, (2013).

15 F. Smarandache, "Introduction to Neutrosophic Statistics" Ed-1, Sitech \& Education Publishing, Columbus, Ohio, USA (2014).

16 F. Smarandache, "Neutrosophic Theory and Applications" Ed-1, Le Quy Don Technical University, Faculty of Information Technology, Hanoi, Vietnam, (2016).

17 K. Shravan, B.C. Tripathy, "Generalised Closed Sets in Multiset Topological Space" Proyecciones Jour. Math., 37(2), (2018) pp.223-237.
18 K. Shravan, B.C. Tripathy, "Multiset Ideal Topological Spaces and Local Functions", Proyecciones Jour. Math., 37(4), (2018) pp.699-711.
19 K. Shravan, B.C. Tripathy, "Multiset mixed topological space", Soft Computing, 23(2019) pp.9801-9805, doi.org/10.1007/s00500-019-03831-9

Received: Apr 18, 2020. Accepted: July 8, 2020

Impact of Social Media in Banking Sector under Triangular Neutrosophic Arena Using MCGDM Technique

Nidhi Singh ${ }^{1,2}$, Avishek Chakraborty ${ }^{3 *}$, Soma Bose Biswas ${ }^{4}$, Malini Majumdar ${ }^{5}$
${ }^{1}$ Registrar, Narula Institute of Technology, Kolkata-700109, W.B, India.
${ }^{2}$ Department of Management, Maulana Abul Kalam Azad University of Technology, West Bengal, Haringhata, Nadia-741249, W.B, India. Email: nidhi.singh@jisgroup.org
${ }^{3}$ Department of Basic Science \& Humanities, Narula Institute of Technology, Kolkata-700109, W.B, India. ${ }^{4}$ Heritage Business School, 994, Madurdaha, Chowbaga Road, Anandapur, P.O. East Kolkata Township, Kolkata-700107, West Bengal, India. Email: somabbiswas@gmail.com
${ }^{5}$ Army Institute of Management, Judges Court Road, Alipore, Kolkata 700027. Email: malini_majumdar@hotmail.com
*Corresponding author email address: tirtha.avishek93@gmail.com

Abstract

This paper aims to uncover the position of social media in customer relationship management (CRM) in banking industry in West Bengal (W.B) under neutrosophic environment. It also tries to identify the attributes that influence the adaptation of different social media platforms for marketing by Banks and finally its use in CRM approaches. The scope of this research is, however, limited to the West Bengal (India) state. In this study a qualitative in-depth questionnaire has been used in presence of impreciseness. Three case studies were developed, which explained the adaptation and implementation of social media in retail banks in W.B. The responses, gathered through in-depth interviews with top bank officials and estimated data from official web sites of the banks have been used for MCGDM and sensitivity analysis. Different attributes like Safety \& Privacy, Effectiveness \& Efficiency and Fulfillment \& Responsiveness have a significant impact on the overall service quality perception for Banks using social media and its platforms. We have performed comparative analysis with the established method to find out the best social media platform under neutrosophic environment in WB's banking Industry. Successful implementation of these platforms would then ensure Customer Loyalty and effective CRM. It was also noted that customers mainly refrain from Banking through social media due to safety and privacy concerns. The study was done to suggest betterment of social media marketing performance for banks in WB in presence of uncertainty. It recommended managers to continuously monitor the overall service quality of social media platforms as they lead to customer loyalty and CRM.

Keywords: West Bengal, Social media, Customer loyalty, Service quality, Customer Relationship Management, Neutrosophic, CRM, Retail banking.

1. INTRODUCTION:

1.1. SOCIAL MEDIA: Social Media is a communication platform that facilitates communication via virtual networks. It is a virtual medium which is designed to aid people to share contents, pictures, videos, and views swiftly and in real-time through websites and applications. The ability to share photos, opinions, events, etc instantaneously has transformed the way we communicate and, also, the way we do business. It provides the facility of continuously communicating with a large number of people at a time. The revolution of Social media and its increasing impact has transformed its old conventional image of amusement to an opportunity to work and trade. This vibrant use of social media has affected almost every business sectors either positively or negatively. It has changed the way business was done and Marketing has taken a new shift after this. Social media offers different ways to promote business either through organic marketing (free) or by paid marketing. Web 2.0 technologies are the stage of Internet expansion where static web pages were converted to user generated content [1]. The business communication is enhanced to a new height via online mode through Social media [2]. According to [3] People share a lot of information about their personal lives, their needs and preferences on social media and it may assist the institutions to design their marketing policies. Based on the above data it can be said that the social media set-up facilitate in building virtual group for individuals with similar mind-set, hobbies, work culture etc [4]. Therefore, use of social networking could assist Banks build up their brand awareness and brand loyalty which ultimately help in customer acquirement and retention [5]. Communication between clients and Banks has improved a lot after successful implementation of Internet mainly because it has eliminated geographical hindrances [6]. Now it has almost become mandatory for all the banks to adapt social media for getting customer loyalty and effective CRM.
1.2. Social media statistics in India: India is the 2 nd largest country in the world in terms of Population with over 1.36 billion people.

- India currently has a population of $1,369,566,180$ - this is 17.1% of the world's total population
- Median age is 27.1 years - it's a young country
- Life expectancy is 69 years
- Internet penetration is low in India - yet, in December 2018, 566 million users were online in India. Out of this - 493 million are regular users of the internet. (source: livemint).
- At the end of 2018, the number of social media users in India stood at 326.1 million. (statista)
- At the end of 2019, this number has been estimated to grow to 351.4 million.
- On average, Indian users spend 2.4 hours on social media a day (slightly below the global average of 2.5 hours a day). (Source: The Hindu)
- 290 million active social media users in India access social networks through their mobile devices. (Source: Hootsuite)

India: social network penetration 2017-2023

Based on customer's requirement and rapid market the number of social media sites is increasing day by day to cater to the needs of different audience groups. Before choosing social media platform, it is essential for banks to realize the available social media platforms and location of their customer base in these Medias. Some of the social media categories are as follows:

1.2.1 Communities and social groups:

"We build technologies to give people the power to connect with friends and family, find communities and grow businesses"- face book

These sites allow connecting people of similar interests and background. This is used to share information and events to large number of customers and building relationship by regular interaction. Banks may also pose their brand on social network as an expert information source. This may also be used for educating and training customers regarding different products and services provided by banks.
Face book Statistics in India:

- India ranks first in terms of face book users. Currently is has 269 million active users in India (Source: Investopedia)
- The largest user group by age on Face book is 18-24 years, with a massive 97.2 million users.

Face book usage penetration in India from 2015 to 2023
Messaging and communication: (e.g. blogging and micro-blogging such as Twitter):
"Follow everything from breaking news and entertainment, to sports, politics, and everyday interests. Then, join the conversation"- Twitter
Blogging and Micro Blogging are used for creating online communities where customers can seek out information and answers to their questions. It is used to listen and resolve customer queries/issues in banking world. It creates a vast online, viral, and word of mouth, which is optimal for establishing brand loyalty and monitoring reputation.

Twitter Statistics in India:

- India has 7.75 million users on Twitter. (Source: statista)
- 18% of social media users in India look at Twitter as a source of news. (Source: Reuters)
- Twitter usage unlike other platforms is actually decreasing $=2.2 \%$ per quarter (Source: Digital 2019 report from Hootsuite)

Content Communities: (Photo and video sharing, e.g. YouTube):

"Enjoy the videos and music you love, upload original content, and share it all with friends, family, and the world" - YouTube. They are content specific. These could be used for brand promotion, engaging customer through sharing pictures, videos etc.

You Tube statistics in India

- As per Google announcement, as of August 2018, there were 245 million active You Tube users in India.
- This figure is predicted to double over the next two years.
- Online video accounts for 75% of data traffic in the country - and with 4 G networks improving; this is likely to further increase.

The literature on the banking sector has abundant references to online and electronic services (e.g. e-banking), but has paid relatively little attention to the adoption and use of social media [7-9].

1.3. BANKING AND SOCIAL MEDIA

Banking sector is the backbone of any emerging economy. Banks are instrumental in implementing the economic reforms. Any revolution in the banking sector because of the acceptance of technology is bound to have a broad impact on an economy's growth. These days, banks are seeking unconventional ways to provide and differentiate amongst their various services. Customers now demand a facility to conduct their banking activities at any time and place according to their convenience [10].

Banking sector is the backbone of any emerging economy. Banks are instrumental in implementing the economic reforms. Any revolution in the banking sector because of the acceptance of technology is bound to have a broad impact on an economy's growth. These days, banks are seeking unconventional ways to provide and differentiate amongst their various services. Customers now demand a facility to conduct their banking activities at any time and place according to their convenience [11].
Social media has changed the entire gamut of business and marketing and Banking Industry is no exception to this because here the Customer Interaction is a must. Today Social media is universal and pervasive, so banks can rely on it. Digital communication is becoming a strong communication medium between Banks and customers. This media is proving itself indispensable in connecting to the potential clients. By allowing transfer of money, getting credit and even simply opening a bank account, it has improved customer services which in turn are improving the customer relationship. Assessing people's sentiments is a very significant and staggering job, particularly in case of service industry. Social media has a unique ability to create and sustain associations with customers, creating better Customer relations. Hence banks need to consider social media as an integral part of their overall marketing strategy [12].
People use Face book, Twitter, YouTube, Instagram, LinkedIn etc to understand different information regarding the different products and services provided by banks only after understanding the facilities and prospects of various social media platforms. Banks are using this network to inform their customers about their products and upgrade them according to customers' feedback. On the other hand, there is the talk of turnover in social networks. Also, purchases can be made through social networks.
Physical Banking opted tactics like advertising, direct mail or face to face communication for customer interaction so far but now the approaches have changed from providing customer service to affiliation and long term relationship with customers. For doing it, banks need to diagnose customers' interests, emotions and behavior and with help of social media this analysis are being done easily. Today, customers expect that they should be heard and answered and receive the services they need through social media.
Social Medias can greatly affect the reputation and the brand image of the banks. Banks need a transparent understanding of the key elements in the development of social media and adopt a road
map and a strategy. The banks may use the following pathway in social media to listen to the customers.

- As Is: Banks need to understand the customers' requirements initially by analyzing their data in social networks.
- Listen: The next step would be to analyze the data carefully. Then the bank should design and provide support as per their expectation,
- Engage: Information can be collected through customers and through feedback taken Bank's can fulfill the customers' needs.
- Optimize: In the last step bank should attract fans and increase the loyalty of existing customers by using customers' feedback and analyzing their interactions with each other.

In a media landscape increasingly dominated by social media, Bank's marketing strategy for these platforms can make or break its success as a brand. Banks need to hold their social media efforts to high standard, creating custom made strategies that build their brand, win customers, and yield high ROI. Therefore social media techniques have become essential communication tools for banks to communicate with people across globe. Banks are adapting social media because they are finding it difficult to fight with traditional banking methods such as interest rates and product differentiation to attract new clients and sustain the existing ones. In today's aggressive atmosphere customer loyalty can be gained through allocation of finer service quality to ensure maximum customer satisfaction [13]. The purpose of this study is thus, to explore the implication of social media on service quality perception and client loyalty in the banking industry of West Bengal. Social media service quality can be used to boost customers' loyalty by Banks in the India banking industry [14]. There are limited studies on social media service quality and client loyalty for Indian Banking industry. This study will contribute towards reducing the knowledge gap between impact of social media on service quality and customers' loyalty. These attributes so discussed would be able to improve the quality of social media performance.

The article is structured as follows: The next section will provide a discussion on the use of social media in the Indian banking industry, followed by a discussion on the methodology that was used for data collection, and a presentation of the results. The last section provides the study's findings and conclusion.
2. Literature Review: Indian Banks have started using social media in their regular operations in various capacities a little lately and are at different stages of maturity. As of April 2013, some private banks provide regular updates on the latest offers and allow basic customer operations through popular social media sites. A large private bank in India hosted Face book application on its secure servers allowing balance amount check, cheque book request, stop payment, etc. Some of the private banks are using their social media websites to provide their customers, distinct offers, detailed product information and consumer care services. With some banks taking the lead by setting
example, the others also have started following their footsteps. In a survey by the Financial Brand newsletter in July 2013, it was established that ICICI, Axis and HDFC Banks are among the top 10 Banks with Social Media presence. Of late public sector banks have also started using this media in a grand way. As per present scenario, Indian banks can no longer live in denial by avoiding and not using Social Media if they do not want threatening their own business. The Indian banking industry has envisaged some social media channels to attract tech-savvy clients and improve customer services to bring customer loyalty [15]. The use of social media in India has gained its importance.
2.1 Social Media Safety \& Privacy: Privacy refers to the extent by which the customers' details are protected by bank's social media platform [16].Banks need to give their customers enough confidence to use their social media accounts so that they may perceive that their personal information will be secured and not to be misused by banks [17]. Banks can build new healthy relationship with customers if the privacy is perceived positively by customers [18]. The information get disclosed and shared through social media so easily, that it has raised doubts about its privacy among the users [19]. Maintenance of privacy in bank's social media channel has been a big challenge for the banking industry. The main challenge is to monitor and control the posts in these sites [20]. A proper privacy setting of social media site is very essential in banks because privacy invasion may lead to theft of personal identification and may lead to criminal proceedings. In case of low security features hackers may hack the social media sites and/or may clone the original, befooling customers and duping them [21].
2.2 Social Media Efficiency \& Effectiveness: Effectiveness refers to the ease of use, internet speed, expediency etc with which customers may access and use bank's social media sites [22]. Effectiveness measures the efficiency of bank's social media and it estimates the speed of accessing and working on the bank's social media sites to ensure timely and convenient completion of all required interaction [23]. Social media can augment the conventional personnel-client bonding with an effective technological knowledge-based relationship [24].
Today's customers need prompt responses and it can effectively be done in social media by providing them relevant and quick information as \& when required. It is surely required for enhancement of quick responses to customers' queries for the improvement of e-services and clients' improved customer satisfaction [25]. Banks can provide unique banking experience to their clients by giving them services combined with technology. Hence the primary task of the bank is to find out and respond to customers' queries effectively on Bank's social media sites. By monitoring the response of bank personnel on social media sites, Banks need to assess the service quality. As per the above discussion we can make the following hypothesis:
2.3 Social Media Fulfillment \& Responsiveness: Fulfillment concentrate on the service truthfulness and ease of use of relevant information provided on a bank's social media websites [26]. Customers need prompt response and acknowledgement of their complaints or suggestions. The fulfillment dimension concentrates on evaluating the banks promptness in responding to customers' requirements [27]. For getting customer loyalty the banks create user generated customized content
for getting the Fulfillment dimension [28]. Hence Fulfillment refers to the customer's confidence on Bank's social media platform to the extent their requirements are fulfilled.
2.4 Theory of Vagueness and Multi-Criteria Decision-Making Problem (MCDM): Due to the complication of detached things and hesitation in human thinking, [29] manifested a remarkable perception of neutrosophic set theory, which has been widely applied on disjunctive arenas of science and engineering. Recently, researchers developed pentagonal [30], Hexagonal [31], Heptagonal [32] fuzzy numbers in research domain. Researchers also established some useful techniques [33-35] which linked the hesitant number and the crisp number in real life scenario. In this era, MCDM is the paramount topic in decision scientific research. Recently, it is more essential in such problems where a group of criteria is apprised. For such problems involving multi-criteria group, decision-making problems (MCGDM) have come into existence. In this current epoch, several works has been already published in this arena. [36] Introduced MCDM skill in Pythagorean fuzzy set field, [37] focused on linguistic aggregation operators based on MCGDM problem, [38] surveyed intuitionistic interval fuzzy information and applied it in MCGDM problem, [39] derived MCGDM methodology using type-2 neutrosophic linguistic judgments, [40] manifested the idea of MCGDM in human resource development arena, [41] developed MCGDM skill in thermal enovation of masonry buildings field,[42] introduced best-Worst-Method and ELECTRE Method using MCGDM, [43] applied MCGDM in garage location selection based civil engineering problems, [44] derived decision making method in intuitionistic neutrosophic environment, [45] utilized MCDM in bipolar neutrosophic set arena, [46] wielded MCGDM in entropy based problem, [47] used MCGDM in smart phone selection problem, [48] developed MCGDM in selection of advanced manufacturing technology in neutrosophic set, [49] derived attribute based MCDM in linguistic variable in intuitionistic fuzzy set.
Motivated by Smarandache's neutrosophic theory [52], researchers established several articles [53-62] in this domain and it is fruitfully applied in various field of mathematics. Also, a few new techniques are manifested in neutrosophic theory which can grab and solve MCDM, MCGDM problems in disjunctive domain. In this phenomenon, Vikor [63], TOPSIS [64], MOORA [65], GRA [66] skills are developed to solve decision making problems using some suitable and logical operators in neutrosophic theory. So, in case of social science related hesitant data, decision making problem becomes one of the key topics in neutrosophic ambient.

In this research article, we consider a triangular neutrosophic based MCGDM technique to select the best social media for online marketing in banking sector. Here, we collect all the information's from different banks based on their online marketing report. But, we observed that these data's are fluctuating and filled with lots of hesitations. Now, due to the presence of impreciseness we need to improve our general established method. Thus, we have introduced triangular neutrosophic number to tackle this system for better results. Additionally, we also incorporate different weights in distinct attribute functions as well as decision maker's choice. Finally, we performed a sensitivity analysis and comparative study which reflects different case studies in disjunctive scenario.

2.5 Preliminaries:

Definition 2.5.1: Fuzzy Set: A set $\tilde{\mathrm{F}}$, generally defined as $\tilde{\mathrm{F}}=\left\{\left(\alpha, \mu_{\widetilde{\mathrm{F}}}(\alpha)\right): \alpha \in \mathrm{S}, \mu_{\widetilde{\mathrm{F}}}(\alpha) \in[0,1]\right\}$, denoted by the $\operatorname{pair}\left(\alpha, \mu_{\widetilde{\mathrm{F}}}(\alpha)\right)$, where α belongs to the crisp set F and $\mu_{\widetilde{\mathrm{S}}}(\alpha)$ belongs to the interval $[0,1]$, then set \tilde{S} is called a fuzzy set.

Definition 2.5.2: Triangular Fuzzy Number: A triangular fuzzy number $\widetilde{A}=\left(s_{1}, s_{2}, s_{3}\right)$ should satisfy the following condition
(1) $\mu_{\tilde{\mathrm{A}}}(\mathrm{x})$ is a continuous function which is in the interval $[0,1]$
(2) $\mu_{\widetilde{\mathrm{A}}}(\mathrm{x})$ is strictly increasing and continuous function on the intervals $\left[\mathrm{s}_{1}, \mathrm{~s}_{2}\right]$.
(3) $\mu_{\widetilde{\mathrm{A}}}(\mathrm{x})$ is strictly decreasing and continuous function on the intervals $\left[\mathrm{s}_{2}, \mathrm{~s}_{3}\right]$.

Definition 2.5.3: Linear Triangular Fuzzy Number (TFN): A linear triangular fuzzy number can be written as $\widetilde{\mathrm{A}}_{\text {TFN }}=\left(\mathrm{s}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{3}\right)$ whose membership function is defined as follows:

$$
\mu_{\tilde{A}_{T F N}}(x)=\left\{\begin{array}{c}
\frac{x-s_{1}}{s_{2}-s_{1}} \text { if } s_{1} \leq x \leq s_{2} \\
1 \text { if } x=s_{2} \\
\frac{s_{3}-x}{s_{3}-s_{2}} \text { if } s_{2} \leq x \leq s_{3} \\
0 \quad \text { Elsewhere }
\end{array}\right.
$$

Figure 2.5.3.1: Graphical Representation of Linear Triangular Fuzzy Number

Definition 2.5.4: Neutrosophic Set: [52] A set $\widehat{n e u S}$ in the universal discourse X, symbolically denoted by x, it is called a neutrosophic set if $\widetilde{\text { neuS }}=\left\{\left\langle x ;\left[T_{\overparen{\text { neus }}}(x), I_{\overline{\text { neus }}}(x), \mathrm{F}_{\widehat{\text { neus }}}(x)\right]\right\rangle: x \in X\right\}$, where $\left.T_{\overline{\text { neus }}}(x): X \rightarrow\right]-0,1+[$ is said to be the true membership function, which has the degree of belongingness, $\left.I_{\overparen{n e u s}}(x): X \rightarrow\right]-0,1+[$ is said to be the indeterminacy membership, having degree of uncertainty, and $\left.F_{\overline{n e u s}}(x): X \rightarrow\right]-0,1+[$ is said to be the incorrect membership, which has the degree of non-belongingness of the decision maker. $T_{\overparen{n e u S}}(x), I_{\widetilde{\text { neus }}}(x) \& F_{\widetilde{\text { neus }}}(x)$ exhibits the following relation:

$$
-0 \leq \operatorname{Sup}\left\{T_{\widetilde{\text { neus }}}(x)\right\}+\operatorname{Sup}\left\{I_{\widetilde{\text { neus }}}(x)\right\}+\operatorname{Sup}\left\{F_{\widetilde{\text { neus }}}(x)\right\} \leq 3+
$$

2.5.5: Triangular Single Valued Neutrosophic number: [33] A Triangular Single Valued Neutrosophic number is defined as $\tilde{A}_{N e u}=\left(p_{1}, p_{2}, p_{3} ; q_{1}, q_{2}, q_{3} ; r_{1}, r_{2}, r_{3}\right)$ whose truth membership, indeterminacy and falsity membership is defined as follows:

$$
\begin{gathered}
T_{\tilde{A}_{\text {Neu }}}(x)=\left\{\begin{array}{cc}
\frac{x-p_{1}}{p_{2}-p_{1}} & \text { when } p_{1} \leq x<p_{2} \\
1 & \text { when } x=p_{2} \\
\frac{p_{3}-x}{p_{3}-p_{2}} & \text { when } p_{2}<x \leq p_{3} \\
0 & \text { otherwise }
\end{array}, \quad I_{\tilde{A}_{\text {Neu }}}(x)=\left\{\begin{array}{cc}
\frac{q_{2}-x}{q_{2}-q_{1}} & \text { when } q_{1} \leq x<q_{2} \\
0 & \text { when } x=q_{2} \\
\frac{x-q_{2}}{q_{3}-q_{2}} & \text { when } q_{2}<x \leq q_{3} \\
1 & \text { otherwise }
\end{array}\right.\right. \\
F_{\tilde{A}_{\text {Neu }}(x)}=\left\{\begin{array}{cc}
\frac{r_{2}-x}{r_{2}-r_{1}} & \text { when } r_{1} \leq x<r_{2} \\
0 & \text { when } x=r_{2} \\
\frac{x-r_{2}}{r_{3}-r_{2}} & \text { when } r_{2}<x \leq r_{3} \\
1 & \text { otherwise }
\end{array}\right.
\end{gathered}
$$

$$
\text { Where, } 0 \leq T_{\tilde{A}_{\text {Neu }}}(x)+I_{\tilde{A}_{\text {Neu }}}(x)+F_{\tilde{A}_{\text {Neu }}}(x) \leq 3, x \in \tilde{A}_{\text {Neu }}
$$

2.5.6: Score Function: [50] If $\tilde{A}_{N e u}=\left(p_{1}, p_{2}, p_{3} ; \pi, \rho, \sigma\right)$ be a triangular neutrosophic number then its score function is defined as $S_{C}=\frac{1}{8}\left(p_{1}+p_{2}+p_{3}\right) \times(2+\pi-\rho-\sigma)$ and accuracy value is defined as,

$$
A_{C}=\frac{1}{8}\left(p_{1}+p_{2}+p_{3}\right) \times(2+\pi-\rho+\sigma)
$$

3. Purpose/ Objectives of the Study:

1. To understand the factors affecting the customers' attitude towards acceptance of Social Media Channels,
2. To help Banks understand the impact of Social Media Channels on customer satisfaction and customer loyalty.

4. Research Methodology:

The data have been collected from various respondents working in different organizations categorized mainly as education sector, service sectors as banks, hospitals, etc. engineering works and Government and Public sector companies in the Kolkata metro area. The study consisted of 234 respondents whose income is above 15,000 per month as it is assumed that those people at least above Rs. 15000 earning/ month will be transacting more through online mode and can afford a smart phone. We have used a five point Likert scale where 5 indicates strongly agree, and 1 indicates strongly disagree. 64.9% respondents are male and 35.1% are female.
Research Instrument: Demographic Profile is the independent variable in this paper. Technology acceptance model by Ajzen \& Fishbein, 1980, Davis, 1989 and Ajzen, 1991 are used for validating questionnaire. The questionnaire is mainly focused on: Social Media platforms used by the banks and attributes affecting the users' adaptability of the same.

TABLE 4.1.1 DEMOGRAPPHIC DETAILS OF RESPONDENTS

CHARACTERISTICS	TYPES	FREQUENCY	\%
GENDER	MALE	135	57.69
	FEMALE	99	42.31

AGE	<25	75	32.05
	25-40	154	65.81
	>40	5	02.14
OCCUPATION	EMPLOYED	92	39.32
	UNEMPLOYED	22	9.40
	PROFESSIONAL	14	5.98
	STUDENT	95	40.60
	BUSINESS	10	4.27
	OTHERS	1	0.43
SOCIAL MEDIA PLATFORM	FACEBOOK	132	56.41
	TWITTER	47	20.09
	YOUTUBE	55	23.50
HOURS OF SURFING THROUGH SOCIAL MEDIA	DAILY	149	63.68
	WEEKLY	13	5.55
	MONTHLY	6	2.56
	VERY RARE	66	28.21

Table 4.1.2 Indicate acceptance of Social Media based on various attributes

BANK	PLATFORM	$\begin{aligned} & \text { SAFET } \\ & \text { PRIVACY } \end{aligned}$		EFFICIENCY \& EFFECTIVENESS (\%)	FULFILLMENT \& RESPONSIVENESS (\%)
1	FACEBOOK	10		65	54
	TWITTER	6		16	50
	YOUTUBE	5		26	28
2	FACEBOOK	15		76	56
	TWITTER	12		37	26
	YOUTUBE	21		24	15
3	FACEBOOK	23		29	45
	TWITTER	13		15	16
	YOUTUBE	45		9	7

4.1 Multi-Criteria Group Decision Making Problem in Triangular Neutrosophic Environment

One of the most dependable, logistical and widely used topic in this recent era is Multi criteria decision making problem. Its main objective is to find out the finest option among finite number of different alternatives based on finite unlike attribute values. Its execution process was quiet tough to estimate in triangular neutrosophic environment. To handle this MCGDM problem an algorithm was developed using some mathematical operator and de-fuzzification technique.

4.1.1 Illustration of the MCGDM problem

We consider the problem as follows:
Let $P=\left\{P_{1}, P_{2}, P_{3}\right.$ \qquad .$\left.P_{m}\right\}$ is the distinct alternative set and $R=\left\{R_{1}, R_{2}, R_{3} \ldots \ldots \ldots . R_{n}\right\}$ is the distinct attribute set respectively. Let $\omega=\left\{\omega_{1}, \omega_{2}, \omega_{3} \ldots \ldots \ldots . \omega_{n}\right\}$ be the weight set associated with the attributes R where each $\omega \geq 0$ and also satisfies the relation $\sum_{i=1}^{n} \omega_{i}=1$. We also consider the set of decision maker $D=\left\{D_{1}, D_{2}, D_{3} \ldots \ldots \ldots D_{K}\right\}$ associated with alternatives whose weight vector is defined as $\Delta=\left\{\Delta_{1}, \Delta_{2}, \Delta_{3} \ldots \ldots \ldots . \Delta_{k}\right\}$ where each $\Delta_{i} \geq 0$ and also satisfies the relation $\sum_{i=1}^{k} \Delta_{i}=1$.

4.1.2 Normalisation Algorithm of MCGDM Problem:

Step 1: Framework of Decision Matrices

Here, we considered all decision matrices according to the decision maker's choice related with finite alternatives and finite attribute functions. It is noted that the member's $y_{i j}$ for each matrices are of triangular neutrosophic numbers. Thus, the final matrix is defined as follows:

$$
X^{K}=\left(\begin{array}{cccccccc}
. & R_{1} & R_{2} & R_{3} & . & . & . & R_{n} \tag{4.1}\\
P_{1} & y_{11}^{k} & y_{12}^{k} & y_{13}^{k} & . & . . & . & y_{1 n}^{k} \\
P_{2} & y_{21}^{k} & y_{22}^{k} & y_{23}^{k} & . & . & . & y_{2 n}^{k} \\
P_{3} & . & \cdot & \cdot & . & . & . \\
. & \cdot & \cdot & . \dot{.} & . & . & . & . \\
P_{m} & y_{m 1}^{k} & y_{m 2}^{k} & y_{m 3}^{k} & . & . & . & y_{m n}^{k}
\end{array}\right) \ldots
$$

Step 2: Framework of normalised matrix

To formulate a single group decision matrix X we utilized this logical operation $y_{i j}^{\prime}=\left\{\sum_{i=1}^{k} \omega_{i} X^{i}\right\}$ for individual decision matrix X^{i}. hence, the final matrix becomes as follows:

$$
X=\left(\begin{array}{cccccccc}
. & R_{1} & R_{2} & R_{3} & . & . & . & R_{n} \tag{4.2}\\
P_{1} & y_{11}^{\prime} & y_{12}^{\prime} & y_{13}^{\prime} & . & . & . & y_{1 n}^{\prime} \\
P_{2} & y_{21}^{\prime} & y_{22}^{\prime} & y_{23}^{\prime} & . & . & . & y_{2 n}^{\prime} \\
P_{3} & \cdot & \cdot & \cdot & . & . & . \\
\cdot & \vdots & . & . & . & . & . & . \\
P_{m} & y_{m 1}^{\prime} & y_{m 2}^{\prime} & y_{m 3}^{\prime} & . & . & . & y_{m n}^{\prime}
\end{array}\right) .
$$

Step 3: Framework of Final matrix

To formulate the final decision matrix we utilized the logical operation $y_{i j}^{\prime \prime}=\left\{\sum_{i=1}^{n} \Delta_{i} y_{c i}^{\prime}, c=\right.$ $1,2 \ldots . m\}$ for each individual Colum and finally, we get the decision matrix as,

$$
X=\left(\begin{array}{cc}
. & R_{1} \tag{4.3}\\
P_{1} & y_{11}^{\prime \prime} \\
P_{2} & y_{21}^{\prime \prime} \\
. & \vdots \\
P_{m} & y_{m 1}^{\prime \prime}
\end{array}\right) . .
$$

Step 4: Ranking

Now, by considering the score and accuracy value (2.5.6) and converting the matrix (4.3) into crisp form, so that we could evaluate the best alternative corresponding to the best attributes.

4.1.3 Flowchart:

Figure 4.1.3.1: Flowchart for the problem

4.1.4 Illustrative Example:

Here, we constructed a social media selection problem in which we have considered three different social media services. Among these different social media platforms we want to select the best social media service in a logical way. Normally, social media services are fully dependent on the attributes like Safety \& Privacy, efficiency \& effectiveness and fulfilment \& responsiveness of the system. Keeping these points in mind different banks provided some realistic information in which vagueness was present. Thus, we considered the data in the form of triangular neutrosophic number and according to their suggestions we constructed the distinct decision matrices in triangular neutrosophic environment as shows below: $P_{1}=$ Facebook, $P_{2}=$ Twitter, $P_{3}=$ Youtube are the alternatives $R_{1}=$ Safety \& Privacy, $R_{2}=$ Efficiency \& Effectivness,$R_{3}=$ Fulfilment \& Reponsiveness are the attributes.

Let us select four distinct decision makers from our environment, $D_{1}=\operatorname{Bank} 1, D_{2}=\operatorname{Bank} 2, D_{3}=$ Bank 3 having weight distribution $D=\{0.35,0.33,0.32\}$ and the weight vector related with the attribute function $\Delta=\{0.32,0.35,0.33\}$.

Step 1

According to the decision maker's opinion the decision matrices are shown as follows:

$$
D^{1}=\left(\begin{array}{cccc}
. & R_{1} & R_{2} & R_{3} \\
P_{1} & <8.5,10,11 ; 0.8,0.5,0.4> & <62,65,67 ; 0.7,0.4,0.5> & <51,54,57 ; 0.6,0.5,0.5> \\
P_{2} & <3,6,8 ; 0.6,0.4,0.5> & <13,16,18 ; 0.7,0.3,0.4> & <47,50,54 ; 0.5,0.2,0.3> \\
P_{3} & <3,5,7 ; 0.5,0.3,0.2> & <23,26,30 ; 0.6,0.3,0.4> & <24,28,30 ; 0.4,0.6,0.7>
\end{array}\right)
$$

Bank 1 opinion

$$
D^{2}=\left(\begin{array}{cccc}
. & R_{1} & R_{2} & R_{3} \\
P_{1} & <12,15,17 ; 0.6,0.4,0.3> & <72,76,79 ; 0.5,0.6,0.4> & <53,56,60 ; 0.6,0.4,0.5> \\
P_{2} & <10,12,15 ; 0.5,0.4,0.3> & <35,37,39 ; 0.5,0.2,0.3> & <24,26,29 ; 0.5,0.4,0.5> \\
P_{3} & <18,21,25 ; 0.5,0.6,0.4> & <21,24,27 ; 0.5,0.3,0.4> & <11,15,18 ; 0.8,0.5,0.4>
\end{array}\right)
$$

Bank 2 opinion

$$
D^{3}=\left(\begin{array}{cccc}
\cdot & R_{1} & R_{2} & R_{3} \\
P_{1} & <21,23,25 ; 0.6,0.4,0.5> & <26,29,31 ; 0.6,0.4,0.5> & <41,45,47 ; 0.7,0.3,0.2> \\
P_{2} & <10,13,17 ; 0.5,0.2,0.3> & <12,15,19 ; 0.7,0.5,0.5> & <14,16,18 ; 0.8,0.5,0.4> \\
P_{3} & <42,45,49 ; 0.6,0.4,0.5> & <6,9,13 ; 0.6,0.4,0.5> & <5,7,10 ; 0.4,0.2,0.3>
\end{array}\right)
$$

Bank 3 opinion

Step 2: Framework of Normalised decision matrix

M
$=\left(\begin{array}{cccc}. & R_{1} & R_{2} & R_{3} \\ P_{1} & <13.65,15.81,17.46 ; 0.8,0.4,0.3> & <53.78,57.11,59.44 ; 0.7,0.4,0.4> & <48.46,51.78,54.79 ; 0.7,0.3,0.2> \\ P_{2} & <7.55,10.22,13.19 ; 0.6,0.2,0.3> & <19.94,22.61,25.25 ; 0.7,0.2,0.3> & <28.85,31.2,34.23 ; 0.8,0.2,0.3> \\ P_{3} & <20.43,23.08,26.38 ; 0.6,0.3,0.2> & <16.9,19.9,23.57 ; 0.6,0.3,0.4> & <13.63,16.99,19.64 ; 0.8,0.2,0.3>\end{array}\right)$

Step 3: Framework of Final matrix

$$
M=\left(\begin{array}{c}
<39.18,42.13,44.47 ; 0.74,0.36,0.26> \\
<18.92,21.48,24.35 ; 0.68,0.2,0.3> \\
<16.95,19.96,23.17 ; 0.7,0.25,0.32>
\end{array}\right)
$$

Step 4: Ranking

Now, we consider the score and Accuracy function technique (2.5.6), to convert the triangular neutrosophic numbers into crisp one, thus we get the final ideal decision matrix as

$$
M=\left(\begin{array}{l}
<33.34> \\
<17.65> \\
<16.01>
\end{array}\right)
$$

Thus, ranking of the social media service is as $P_{1}>P_{2}>P_{3}$.

4.1.5 Results and Sensitivity Analysis

To understand how the attribute weights of each criterion affecting the relative matrix and their ranking a sensitivity analysis is done. The basic idea of sensitivity analysis is to exchange weights of the attribute values keeping the rest of the terms are fixed. The below table is the evaluation table which shows the sensitivity results.

Attribute Weight	Final Decision Matrix	Ordering
$<(\mathbf{0 . 4 , 0 . 3 , 0 . 3})>$	$\left(\begin{array}{l}<28.26> \\ <15.56> \\ <14.42>\end{array}\right)$	$P_{1}>P_{2}>P_{3}$
$<(\mathbf{0 . 3}, \mathbf{0 . 4 , 0 . 3})>$	$\left(\begin{array}{l}<31.45> \\ <16.42> \\ <16.20>\end{array}\right)$	$P_{1}>P_{2}>P_{3}$
$<(\mathbf{0 . 3 , 0 . 3 , 0 . 4})>$	$\left(\begin{array}{l}<30.54> \\ <16.44> \\ <17.30>\end{array}\right)$	
$<(\mathbf{0 . 3 2 , 0 . 3 5 , 0 . 3 3) >}$	$\left(\begin{array}{l}<33.34> \\ <17.65> \\ <16.01>\end{array}\right)$	$P_{1}>P_{3}>P_{2}$
$<(\mathbf{0 . 3 7 , 0 . 3 2 , 0 . 3 1) >}$	$\left(\begin{array}{l}<35.62> \\ <16.23> \\ <15.45>\end{array}\right)$	$P_{1}>P_{2}>P_{3}$

Figure 4.1.5.1: Sensitivity analysis table on attribute function.

Figure 4.1.5.2: Best Alternative Social Media Service Table

4.1.6 Comparison Table

We compared this proposed work with the established works proposed by the researchers to find the best social media and it is noticed that in each cases P_{1} (facebook) becomes the best social media service. The comparison table given as follows:

Approach	Ranking
(Deli, Ali, \& Smarandache, 2015) [51]	$P_{1}>P_{2}>P_{3}$
(H.Garg, 2016) [36]	$P_{1}>P_{3}>P_{2}$
Our Proposed	$P_{1}>P_{2}>P_{3}$

5. Implication:

There are a lot of social media sites like face book, twitter, Google plus, linked in, you tube etc. available for online marketing. This study was primarily done to identify the impact of social media marketing especially in Banking Industry based on different social media attributes. We wanted to discover the right social media platform best suited for Banking Industry in West Bengal. The perception of vagueness plays a vital role in designing mathematical calculations. In this study we wanted to check the functionality of this system to find out the impact of different social media
attributes on its acceptance in Online banking system in WB. Later we pioneered some more fascinating outcome on score and exactness function.

There are a lot of researches already done in social media implementation in Banking Industry. However many results are still unknown. Our work is to explore the idea in the following points:

- Defining the attributes necessary for social media platform for Banking Industry in West Bengal.
- Discovering the best suitable social media site for Banking Industry in West Bengal.
- The graphical representation of adaptation of social media platform based on its attributes.
- Application of Triangular neutrosophic number based MCGDM problem for selection of social media platforms.

Discussion

This study was done primarily to understand the perceptions of the people of West Bengal to use social media for their banking transactions. The study examined the three different types of websites i.e. Face book, Twitter and You Tube individually using three different attributes: Safety \& Privacy, Efficiency \& Effectiveness and Fulfillment \& Responsiveness.
The study yielded new viewpoints that are useful to both academicians and Banks. This study showed that the selection of social media for Banking depends on various attributes which differs based on customers' perception.
All the three social media considered in this paper is different in nature. Communications \& Social groups like Face book, Messaging \& Communication like Twitter, and Content \& Communication like You tube. Publicity in these three different social media sites differ both in content and context.
In the sample considered here men respondents are more than women; most of the respondents are under 40 years of age and they frequently uses social media. Like the worldwide trend here also it was observed that youngsters are dominating the social media sites. Social media mainly has impacted the life of youngsters. It has become radically significant since last ten years and it has attracted all age groups.

In West Bengal banking industry very less attention has been given to the measurement of social media quality and its effects. It is agreed that Banks must consider the overall social media quality measurement to satisfy customers. If the services experienced by customers are satisfactory, then it will induce them for long tern connectivity with banks. Long term connectivity with improved customer satisfaction in turn will bring customer loyalty.
Adaption of social media for banking industry is something beyond likes, comments and shares. The main aim of adaption of social media is brand awareness, creation of leads and ultimately conversions and finally brand advocacy. Banks should design their social media strategy considering their pragmatic goals. Once the goals are set it is important to find their KPIs (Key Performance Indicator) before implementing social media campaigns. A KPI is a quantifiable measurement to evaluate their campaign in relation to their defined goals. The common social media KPIs for banks can include Leads generation (through email signups or fulfilling some contact
forms), Conversions (account sign ups, deposits), Referral traffic (from social media to website), Brand Advocacy (Like, comment and share)

Figure 5.1: Example of Social Media KPI

6. Findings:

- All the three websites; Face book, Twitter and YouTube have gained attention among the social media users in India, but Face book is the widely used social media website.
- Banks are mostly using all international brands of social media channels for their operations due to lack of availability of good national social media networks. There is a great chance of development of some social media channels locally by the Govt.
- Bank's Social media Privacy drastically influences the endorsement of social media platform in the banking industry of West Bengal.
- Social media Efficiency appreciably control the acceptance of bank's social media platform in the West Bengal Banking Industry.
- Social media Fulfillment extensively influences the acceptance of social media platform in the West Bengal banking industry.
- Customers' prefer a bank that proposes them an experience that comprises all their service needs.
- All the three mentioned attributes have significant impact on overall customers' satisfaction which resulted in selection of Bank's social media platform
- Social media privacy appreciably persuades overall customer decision in selecting Banks social media sites in West Bengal banking industry. The study findings discovered that customers worth the social media privacy highly in banking operations.
- Face book is most preferred platform for all demography regardless of age, gender and occupation for all the Banks services.
- For You Tube and Twitter websites, people have different perceptions and choices depending on different Banks.
- Banks may augment their profit margin by increased customers' base through implementing proper social media strategies and reduction in cost due to lesser no of physical branches.

7. Conclusions:

In this current era, the West Bengal Banking Industry has conventionally been a high contact service submission. As implementation of social media reduces direct human interaction, hence there arises the need of continuous evaluation of service quality offered by Banks' social media sites and monitoring client's perception on it. It was observed that clients were satisfied with the traditional banking; still their expectations have grown bigger after introduction of e-services including social media.
This study concluded that the following attributes of social media like Safety \& Privacy, efficiency \& effectiveness and fulfillment \& responsiveness have a significant influence on the service quality of social media in the West Bengal Banking Industry under neutrosophic environment. It was observed that customers mainly focuses on the attributes and service quality of Bank's social media, hence it is suggested that West Bengal Banking sector may priorities social media factors in their marketing mixes. Additionally, comparison analysis is done with the established methods and sensitivity analysis is performed in MCGDM technique under triangular neutrosophic arena. Finally it was concluded that successful implementation of social media in banking industry generates customer satisfaction and long term association which in turn converts to customer loyalty.
Further, researchers can apply this conception of triangular neutrosophic number in various fields like social business problem, diagnoses problem, mathematical modeling, pattern recognition problem, industrial problem, banking problem, marketing policy problem etc.

References:

[1] McNutt, K. (2014, March 13). Public engagement in the Web 2.0 era: Social collaborative technologies in a public sector context. Wiley Online Library .
[2] Constantinides E., F. S. (2008). Web 2.0: Conceptual foundations and marketing issues. Journal of Direct, Data and Digital Marketing Practice , 231-244.
[3] Alexandros Kapoulas, M. M. (2012). Understanding challenges of qualitative research: Rhetorical issues and reality traps. QUALITATIVE MARKET RESEARCH, QMRIJ .
[4] Cata, V. B. (2011). Marketing Opportunities with social networks. Journal of Internet Social Networking and Virtual Communities .
[5] Kaplan Andreas, H. M. (2009). Users of the world, Unite; The challenges and oppurtunities of social media. Business Horizons .
[6] Vadivelu Tharanikaran1, S. S. (2017). Service Quality and Customer Satisfaction in the Electronic Banking. International Journal of Business and Management .
[7] Cahyono, D. (2014). The influence of perceived service quality, attitudinal loyalty and corporate social responsibility on repeat patronage intention in retail banking in Indonesia. Journal of Business and Retail Management Research .
[8] Alexandros Kapoulas, M. M. (2012). Understanding challenges of qualitative research: Rhetorical issues and reality traps. QUALITATIVE MARKET RESEARCH, QMRIJ
[9] Bausys, R., \& Juodagalviene, B. (2017). Garage location selection for residential house by WASPAS-SVNS method. Journal of civil engineering and management , 421-429.
[10] Nisha Anupama Jayasuriya, S. M. (2017). The Impact of Social Media Marketing on Brand Equity: A Study of Fashion-Wear Retail in Sri Lanka. International Review of Management and Marketing .
[11] Kim, Y. (2016). Digital Media Use and Social Engagement: How Social Media and Smartphone Use Influence Social Activities of College Students. Cyberpsychology, Behavior, and Social Networking .
[12] Jalan, A. (2018). Where will Man take us? The bold story of the man technology is creating. Penguin.
[13] faisal shah, k. k. (2015). Impact of Service Quality on Customer Satisfaction of Banking Sector Employees: A Study of Lahore, Punjab. Vidyabharati International Interdisciplinary Reserach Journal .
[14] Louis Potgieter, R. N. (2017). Factors explaining user loyalty in a social media-based brand community. SA Journal of Information Management .
[15] Kumar, A. G. (2014). Impact of service quality dimensions in internet banking on customer satisfaction. Decision .
[16] Kim, Y. (2016). Digital Media Use and Social Engagement: How Social Media and Smartphone Use Influence Social Activities of College Students. Cyberpsychology, Behavior, and Social Networking .
[17] Cahyono, D. (2014). The influence of perceived service quality, attitudinal loyalty and corporate social responsibility on repeat patronage intention in retail banking in Indonesia. Journal of Business and Retail Management Research .
[18] K., G. B., L., V. K., \& Liezel, C. (2019). The influence of social media service quality on client loyalty in the South African banking industry. ACTA COMMERCII .
[19] Ayesha L Bevan-Dye, U. A. (2015). South African Generation Y students' self-disclosure on Facebook. South African Journal of Psychology .
[20] Bramwell K. Gavaza, K. L. (2019). The influence of social media service quality on client loyalty in the South African banking industry. ACTA COMMERCII .
[21] Bevan-Dye, A. (2012). Relationship between self-esteem and Facebook usage amongst black Generation Y students. African Journal for Physical Health Education .
[22] Frederic Marimon, L. H. (2012). Impact of e-Quality and service recovery on loyalty: A study of e-banking in Spain. Total Quality Management and Business Excellence .
[23] Chung Tin Fah, M. A. (2012). Money Supply, Interest Rate, Liquidity and Share Prices: A Test of Their Linkage. Global Finance Journal .
[24] Rahimi, R., \& Me, K. (2016). Impact of Customer Relationship Management on Customer Satisfaction: The Case of a Budget Hotel Chain. Journal of Travel \& Tourism Marketing .
[25] Chinedu-Okeke, C. F., \& Obi, I. (2016). Social Media As A Political Platform In Nigeria: A Focus On Electorates In South-Eastern Nigeria. IOSR Journal of Humanities And Social Science .
[26] Emel Kursunluoglu, I. (2015). A Review of Service and E-Service Quality Measurements: Previous Literature and Extension. Journal of Economic and Social Studies .
[27] Ajimon George, G. G. (2013). Antecedents of Customer Satisfaction in Internet Banking: Technology acceptance Model Redefined. Global Business Review .
[28] Norman Gwangwava, M. M. (2014). E- Manufacturing and E-Servise Strategies in contemporary organizations. Hershey-USA: IGI Global.
[29] L.A, Z. (1965). Fuzzy sets. Information and Control , 8(5):338- 353 .
[30] A.Chakraborty, S.P Mondal, A.Ahmadian, N.Senu, D.Dey, S.Alam, S.Salahshour; (2019); The Pentagonal Fuzzy Number: Its Different Representations, Properties, Ranking, Defuzzification and Application in Game Problem, Symmetry, Vol-11(2), 248; doi: 10.3390/sym11020248.
[31] A.Chakraborty, S. Maity, S.Jain, S.P Mondal, S.Alam; (2020); Hexagonal Fuzzy Number and its Distinctive Representation, Ranking, Defuzzification Technique and Application in Production Inventory Management Problem, Granular Computing, Springer, DOI: 10.1007/s41066-020-00212-8.
[32] S. Maity, A.Chakraborty, S.K De, S.P.Mondal, S.Alam; (2019); A comprehensive study of a backlogging EOQ model with nonlinear heptagonal dense fuzzy environment,Rairo Operations Research; DOI: 10.1051/ro/2018114.
[33] A.Chakraborty, S.P Mondal, A.Ahmadian, N.Senu,S.Alam and S.Salahshour; (2018); Different Forms of Triangular Neutrosophic Numbers, De-Neutrosophication Techniques, and their Applications, Symmetry, Vol-10, 327.
[34] A. Chakraborty, S. P Mondal, S.Alam, A. Mahata; (2019); Different Linear and Non-linear Form of Trapezoidal Neutrosophic Numbers, De-Neutrosophication Techniques and its Application in Time-Cost Optimization Technique, Sequencing Problem; Rairo Operations Research, doi: 10.1051/ro/2019090.
[35] A. Chakraborty, S. Broumi, P.K Singh;(2019); Some properties of Pentagonal Neutrosophic Numbers and its Applications in Transportation Problem Environment, Neutrosophic Sets and Systems, vol.28, pp.200-215.
[36] Garg, H. (2016). A novel accuracy function under interval-valued Pythagorean fuzzy environment for solving multicriteria decision making problem. Journal of Intelligent \& Fuzzy Systems , 529-540.
[37] Wanga, X.-F., Jian-QiangWanga, \& Yanga, W.-E. (2014). Multi-criteria group decision making method based on intuitionistic linguistic aggregation operators. Journal of Intelligent \& Fuzzy Systems, 115-125.
[38] Wang, J., \& Han, Z. Z. (2014). Multi-criteria Group Decision-Making Method Based on Intuitionistic Interval Fuzzy Information. Group Decis Negot. , 715-733.
[39] Chaio, K. (2016). The multi-criteria group decision making methodology using type 2fuzzy linguistic judgments. Applied Soft Computing.
[40] Wibowo, S., Grandhi, S., \& Deng, H. (2016). Multicriteria Group Decision Making for Selecting Human Resources Management Information Systems Projects. IEEE.Trans.
[41] Seddikia, M., Anouchea, K., Bennadjib, A., \& Boatengba, P. (2016). A multi-criteria group decision-making method for the thermal enovation of masonry buildings: The case of Algeria. Energy and Buildings , 471-483.
[42] You, X., Chen, T., \& Yang, Q. (2016). Approach to Multi-Criteria Group Decision-Making Problems Based on the Best-Worst-Method and ELECTRE Method . Symmetry , 1-16.
[43] Bausys, R., \& Juodagalviene, B. (2017). Garage location selection for residential house by WASPAS-SVNS method. Journal of civil engineering and management , 421-429.
[44] J.Ye. (2009). Multicriteria fuzzy decision making method based on a novel accuracy function under interval-valued intuitionistic fuzzy environment, . Expert systems with Applications, 6809-6902.
[45] Chakraborty, A., Mondal, S. P., Alam, S., Ahmadian, A., Senu, N., De, D., et al. (2018). Disjunctive Representation of Triangular Bipolar Neutrosophic Numbers,De-Bipolarization Technique and Application in Multi-Criteria Decision-Making Problems. Symmetry, 932.
[46] Xiaohong, C., Yang, L., Wang, P., \& Yue, W. (2013). A Fuzzy Multicriteria Group Decision-Making Method with New Entropy of Interval-Valued Intuitionistic Fuzzy Sets. Journal of Applied Mathematics. , 1-8.
[47] Büyüközkan, G., \& Güleryüz, S. (2016). Multi Criteria Group Decision Making Approach for Smart Phone Selection Using Intuitionistic Fuzzy TOPSIS . International Journal of Computational Intelligence Systems , 9(4), 709-725.
[48] Chuu, S. J. (2007). Selecting the advanced manufacturing technology using fuzzy multiple attributes group decision making with multiple fuzzy information. Computers \mathcal{E} Industrial Engineering , 57(3), 1033-1042.
[49] Liu, P., \& Liu, X. (2017). Multi attribute Group Decision Making Methods Based on Linguistic Intuitionistic Fuzzy Power Bonferroni Mean Operators. Complexity , 1-15.
[50] M. Sahin, A. Kargın, F. Smarandache; (2018); Generalized Single Valued Triangular Neutrosophic Numbers and Aggregation Operators for Application to Multi-attribute Group Decision MakingNew Trends in Neutrosophic Theory and Applications. Volume-2.
[51] I. Deli, M. Ali, F. Smarandache, Bipolar Neutrosophic Sets and Their Application Based on Multi-Criteria Decision Making Problems; Doi- arXiv: 1504.02773.
[52] Smarandache, F. A unifying field in logics neutrosophy: neutrosophic probability, set and logic.American Research Press, Rehoboth. 1998.
[53] Abdel-Basset, M., Mohamed, R., Elhoseny, M., \& Chang, V. (2020). Evaluation framework for smart disaster response systems in uncertainty environment. Mechanical Systems and Signal Processing, 145, 106941.
[54] A. Chakraborty, S. Mondal, S. Broumi; (2019); De-neutrosophication technique of pentagonal neutrosophic number and application in minimal spanning tree; Neutrosophic Sets and Systems; vol. 29, pp. 1-18, doi : 10.5281/zenodo. 3514383.
[55] Abdel-Basset, M., Ali, M., \& Atef, A. (2020). Uncertainty assessments of linear time-cost tradeoffs using neutrosophic set. Computers \& Industrial Engineering, 141, 106286.
[56] A. Chakraborty, B. Banik, S.P Mondal, \& S. Alam, (2020), Arithmetic and Geometric Operators of Pentagonal Neutrosophic Number and its Application in Mobile Communication Service Based MCGDM Problem, Neutrosophic Sets and Systems, 32, p.p-61-79.
[57] Abdel-Basset, M., Ali, M., \& Atef, A. (2020). Resource levelling problem in construction projects under neutrosophic environment. The Journal of Supercomputing, 76(2), 964-988.
[58] A. Chakraborty, S. P Mondal, S. Alam, A. Mahata; (2020); Cylindrical Neutrosophic Single-Valued Numberand its Application in Networking problem, Multi Criterion Decision Making Problem and Graph Theory; CAAI Transactions on Intelligence Technology, Vol-5(2), pp:68-77, Doi: 10.1049/trit.2019.0083.
[59] Abdel-Basset, M., Gamal, A., Son, L. H., \& Smarandache, F. (2020). A Bipolar Neutrosophic Multi Criteria Decision Making Framework for Professional Selection. Applied Sciences, 10(4), 1202.
[60] A. Chakraborty, (2020), Application of Pentagonal Neutrosophic Number in Shortest Path Problem. International Journal of Neutrosophic Science (IJNS), Vol-3(1), 21-28
[61] Abdel-Basset, M., Mohamed, R., Zaied, A. E. N. H., Gamal, A., \& Smarandache, F. (2020). Solving the supply chain problem using the best-worst method based on a novel Plithogenic model. In Optimization Theory Based on Neutrosophic and Plithogenic Sets (pp. 1-19). Academic Press.
[62] Mohamed, Mai, Mohamed Abdel-Baset, Florentin Smarandache, and Yongquan Zhou. A Critical Path Problem Using Triangular Neutrosophic Number. Infinite Study, 2017.
[63] Huang, Y. H., Wei, G. W., \& Wei, C. (2017). VIKOR method for interval neutrosophic multiple attribute group decision-making. Information, 8(4), 144.
[64] Broumi S, Ye J, Smarandache F (2015) An extended TOPSIS method for multiple attribute decision making based on interval neutrosophic uncertain linguistic variables. Neutrosophic Sets Syst 8:22-31
[65] Brauers WKM, Zavadskas EK (2006) The MOORA method and its application to privatization in a transition economy. Control Cybern 35(2):445-469
[66] S. Pramanik, and K. Mondal; (2015); Interval neutrosophic multi-attribute decision-making based on grey relational analysis. Neutrosophic Sets and Systems, Vol-9, Pp-13-22.

Received: Apr 19, 2020 Accepted: July 9, 2020.

A Generalized Neutrosophic Solid Transportation Model with Insufficient Supply

Nilabhra Paul ${ }^{1}$, Deepshikha Sarma ${ }^{2}$, Akash Singh ${ }^{3}$ and Uttam Kumar Bera ${ }^{4}$
${ }^{1}$ Department of Mathematics, NIT Agartala, Jirania, Tripura, 799046, India. E-mail: nilabhrapaul@gmail.com ${ }^{2}$ Department of Mathematics, NIT Agartala, Jirania, Tripura, 799046, India. E-mail: deepshikhasarma4@gmail.com
${ }^{3}$ Department of Mathematics, NIT Agartala, Jirania, Tripura, 799046, India. E-mail: akssngh1242@gmail.com
${ }^{4}$ Department of Mathematics, NIT Agartala, Jirania, Tripura, 799046, India. E-mail: bera_uttam@yahoo.co.in

Abstract

The classical transportation problem and the solid transportation problem are special types of linear programming problems which are very important in Operations Research. In this paper, a solid transportation model is described, where the total supply of goods is insufficient to fulfil the total demand of goods, due to which the supplier company tries to obtain the required remaining goods from another source. An expression is derived to determine the import plan. The parameters of the model are considered to be uncertain and imprecise and are taken as trapezoidal neutrosophic numbers. The paper gives a general formulation of such a model and an algorithm is proposed to solve the model. The main objective function of the model present in the manuscript is to minimize the total cost. A formula is provided to check the degree of sufficiency of such a solution. The model is elucidated with a numerical example and its solution shows its efficiency and optimality in practical aspect. Finally, the paper provides a brief discussion about the computational time and some relative points of research.

Keywords: Solid Transportation Model, Insufficient supply, Trapezoidal Neutrosophic Number, Ranking function.

1 Introduction

Transportation is the movement of humans, animals, commodities, etc. from one location to another. Modes of transport include air, land (rail and road), water cable, pipeline and space. The field can be divided into infrastructure, vehicles and operations. Transportation is important because it enables trade between people, which is essential for the development of civilizations. It is a key component of growth and globalization.

The transportation problem (TP) was first forwarded by Hitchcock [1] in 1941. It is a popular type of problem in Operations Research where the decision maker wants to find the optimal way to transport goods from source warehouses to destination warehouses. So, there are two types of constraints, namely source constraints and demand constraints. But, real systems may contain other type of constraints too such as product type constraints or transportation mode constraints. This gives a third dimension to the transportation problem and converts the classical transportation problem into the solid transportation problem (STP).

The STP was first stated by Schell [2] in 1955 and later, in 1962, it was formally introduced by Haley [3]. In this paper, we consider that different types of conveyances are required for shipping goods and so, the third type of constraints here are the conveyance constraints.

The classical theories of Mathematics cannot solve problems which simulate real life situations. The information is imprecise and uncertain in nature. To deal with vague information, the fuzzy set theory was introduced by Zadeh [4] in 1965. But, fuzzy sets cannot represent imprecise information efficiently as they only consider the truth membership values of the data. Then, Atanassov [5, 6] introduced the concept of intuitionistic fuzzy sets, where the data are represented by their membership and non-membership values. But, they can only handle incomplete information, not indeterminate or inconsistent information.

Smarandache [8] proposed the concept of neutrosophic set theory by adding an independent inde-
terminacy membership. The neutrosophic set theory generalizes the concepts of classical set theory, fuzzy set theory, intuitionistic fuzzy set theory, and so on, since it considers all three aspects of de-cision-making, viz. "agree", "disagree" and "not sure".Basset et al. [24] used Neutrosophic theory to solve transition difficulties of Internet of Things identifying some challenge affectingthe process by non-traditional methods. In the article [26], an advance type of Neutrosophic set called type-2 Neutrosophic number are defined with TOPSIS method. A green supply chain model is developed incorporated with neutrosophic set and robust ranking technique and its performance is shown in decision making process [25].

Various researchers like Jiménez and Verdegay [7], Yang and Liu [9], Hussain and Kumar [10], Kundu et al. [11], Singh and Yadav [13], Das et al. [14], Giri et al. [16], Das et al. [18], Aggarwal and Gupta [19], etc. have studied the classical and solid transportation models in different fuzzy and intuitionistic fuzzy environments. A supply chain model is formulated based on some importance matrices based on economic, environment, social aspect as well as information gathering [23]. A hybrid pliogenic decision making approach is developed in this regard. Basset et al. [22] developed an evaluation model to show the performance and efficiency of medical care system with pliogenic set.

In this paper, a mathematical model is developed for the solid transportation model. The model is considered in neutrosophic environment so that we can address the fact of truth, indeterminacy and falsity arises in the data due to factors like unawareness of the scale of the problem, imperfection in data, poor forecasting, etc. As the concept of neutrosophic set theory is relatively new, a few of article is available dealing the transportation or solid transportation models with neutrosophic parameters in literature. A few of them in this context are by Thamaraiselvi and Santhi [15], and Rizk-Allah et al. [21].

The mathematical model present in this paperdescribes a transportation model shipping a homogeneous product from some source warehouses to some destination warehouses by means of heterogeneous conveyances. It is assumed that the conveyances have the necessary overall capacity to transport the whole demanded quantity of the commodity. In this research work, it is considered that the source warehouses do not have the sufficient quantity of goods to supply at a time and they fall short of some amount. At that time, the supplier decides to import the goods from another source. Again, if this new source does not have the requisite amount of goods, it imports the remaining amount from another source, and so on. This process is continued until the fulfilment of the total demand. It terminates after a certain number of sources, since the total original demand of goods is a fixed quantity. The paper addresses the general notion of the situation and also the presence of uncertainties in the data.

The main contribution of the paper is to develop the mathematical model for solid transportation plan to satisfy the demand of customer with insufficient supply of source point.The main objective function of the model is to minimize the total cost. In this research work, parameters of the model are considered in neutrosophic environment. Consideration of neutrosophic number gives an ideal approach of a decision making process dealing the uncertainty with truth, false and in determinant state of information. In this regard, trapezoidal neutrosophic number is used in this STP model. A proposition is provided to establish the relation between the import goods and the cost which define a degree of insufficiency. Hereby, a solution algorithm is given in his manuscript. A numerical example is also shown to discuss the performance of the model.

In this paper, Section 2 contains some preliminary definitions and concepts regarding the model. Section 3 describes the model and gives a general formulation of the model. Section 4 is all about the solution approach to the problem, concerned with the model and Section 5 helps in understanding the model with the help of a numerical example and its solution by the given procedure. Finally, Section 6 briefly discusses the model along with the computational time of the solution process, exemplified by the numerical example. It also suggests some relative points of research and is followed by the conclusion.

2 Preliminaries

In this section, we recall some important definitions and concepts.

2.1 Single-valued neutrosophic set [20]

Let X be a non-empty set. Then a single-valued neutrosophic (SVN) set \tilde{A} of X is defined as

$$
\tilde{A}=\left\{\left\langle x, T_{\tilde{A}}(x), I_{\tilde{A}}(x), F_{\tilde{A}}(x)\right\rangle \mid x \in X\right\},
$$

where $T_{\tilde{A}}(x), I_{\tilde{A}}(x), F_{\tilde{A}}(x) \in[0,1]$ and $0 \leq T_{\tilde{A}}(x)+I_{\tilde{A}}(x)+F_{\tilde{A}}(x) \leq 3, \forall x \in X . T_{\tilde{A}}(x), I_{\tilde{A}}(x)$ and $F_{\tilde{A}}(x)$ respectively represent truth membership, indeterminacy membership and falsity membership degrees of x in \tilde{A}.

2.2 Trapezoidal neutrosophic number [20]

A trapezoidal neutrosophic number (TNN) \tilde{A} is a neutrosophic set in R with the following truth, indeterminacy and falsity membership functions:

$$
\begin{aligned}
& T_{\tilde{A}}(x)=\left\{\begin{array}{cl}
\alpha_{\tilde{A}}\left(\frac{x-a_{1}}{a_{2}-a_{1}}\right) & \text { for } a_{1} \leq x \leq a_{2}, \\
\alpha_{\tilde{A}} & \text { for } a_{2} \leq x \leq a_{3}, \\
\alpha_{\tilde{A}}\left(\frac{a_{4}-x}{a_{4}-a_{3}}\right) & \text { for } a_{3} \leq x \leq a_{4}, \\
0 & \text { otherwise, }
\end{array}\right. \\
& I_{\tilde{A}}(x)=\left\{\begin{array}{cl}
\frac{a_{2}-x+\theta_{\tilde{A}}\left(x-a_{1}^{\prime}\right)}{a_{2}-a_{1}^{\prime}} & \text { for } a_{1}^{\prime} \leq x \leq a_{2}, \\
\theta_{\tilde{A}} & \text { for } a_{2} \leq x \leq a_{3}, \\
\frac{x-a_{3}+\theta_{\tilde{A}}\left(a_{4}^{\prime}-x\right)}{a_{4}^{\prime}-a_{3}} & \text { for } a_{3} \leq x \leq a_{4}^{\prime}, \\
1 & \text { otherwise, }
\end{array}\right. \\
& F_{\tilde{A}}(x)=\left\{\begin{array}{cl}
\frac{a_{2}-x+\beta_{\tilde{A}}\left(x-a_{1}^{\prime \prime}\right)}{a_{2}-a_{1}^{\prime \prime}} & \text { for } a_{1}^{\prime \prime} \leq x \leq a_{2}, \\
\beta_{\tilde{A}} & \text { for } a_{2} \leq x \leq a_{3}, \\
\frac{x-a_{3}+\beta_{\tilde{A}}\left(a_{4}^{\prime \prime}-x\right)}{a_{4}^{\prime \prime}-a_{3}} & \text { for } a_{3} \leq x \leq a_{4}^{\prime \prime}, \\
1 & \text { otherwise, }
\end{array}\right.
\end{aligned}
$$

where $\alpha_{\tilde{A}}, \theta_{\tilde{A}}$ and $\beta_{\tilde{A}}$ represent the maximum degree of truthiness, minimum degree of indeterminacy and minimum degree of falsity respectively, $\alpha_{\tilde{A}}, \theta_{\tilde{A}}, \beta_{\tilde{A}} \in[0,1]$. Also, $a_{1}^{\prime \prime} \leq a_{1} \leq a_{1}^{\prime} \leq a_{2} \leq a_{3} \leq$ $a_{4}^{\prime} \leq a_{4} \leq a_{4}^{\prime \prime}$.

The membership functions of trapezoidal neutrosophic number are shown in Fig. 1.

Figure 1: Truth, indeterminacy and falsity membership functions of trapezoidal neutrosophic number.

2.3 Ranking function [20]

A ranking function of neutrosophic numbers is a function $\mathfrak{R}: N(R) \rightarrow \boldsymbol{R}$, where $N(R)$ is a set of neutrosophic numbers defined on the set of real numbers, which convert each neutrosophic number into the real line.

Let $\tilde{A}=\left\langle\left(a_{1}, a_{2}, a_{3}, a_{4}\right) ; \alpha_{\tilde{A}}, \theta_{\tilde{A}}, \beta_{\tilde{A}}\right\rangle$ and $\tilde{B}=\left\langle\left(b_{1}, b_{2}, b_{3}, b_{4}\right) ; \alpha_{\tilde{B}}, \theta_{\tilde{B}}, \beta_{\tilde{B}}\right\rangle$ betwo trapezoidal neutrosophic numbers.

- If $\mathfrak{R}(\tilde{A})>\mathfrak{R}(\tilde{B})$, then $\tilde{A} \sim \tilde{B}$,
- If $\mathfrak{R}(\tilde{A})<\mathfrak{R}(\tilde{B})$, then $\tilde{A} \widetilde{<} \tilde{B}$,
- If $\mathfrak{R}(\tilde{A})=\mathfrak{R}(\tilde{B})$, then $\tilde{A} \approx \tilde{B}$.

3 Description and formulation of model

Real life situations regarding transportation of commodities are complex which give rise to various transportation models. This paper discusses one such situation where the primary "supplier" company (say, Y_{1}) has shortage of goods to meet the adequate demand of the primary "purchaser" company (say, Y_{o}).

It may happen that the total required amount of goods cannot be produced due to shortage of time or lack of raw materials or some other factors to fulfill the total demand. So, Company Y_{1} decides to import the remaining amount of goods from another company (say, Y_{2}) and then transport the aggregate amount to Company Y_{0}. Again, it may happen that Company Y_{2} faces the same problem, where it is unable to fulfill the total demand of Company Y_{1}. So, Company Y_{2} imports the remaining amount from another company (say, Y_{3}). The chain continues until Company Y_{N} (say) fulfills the total demand of Company $\mathrm{Y}_{\mathrm{N}-1}$ (say). The process surely terminates, since the total original demand of Company Y_{0} is a finite quantity. Here, N is at least 2.

While stating its demand, Company Y_{0} may not be sure about the exact quantity of goods it needs. This may be due to the nature of the commodities, uncertain market trend and business scope, etc. Similarly, due to possible production and technical issues, the supply quantity of goods may be uncertain. Also, uncertainty may arise in determining the costs of transportation and the exact capacities of the conveyances due to road issues, weather issues, etc. So, here, all of these parameters in all the N steps are considered as trapezoidal neutrosophic numbers.

3.1 Assumptions

- The total supply (in stock) of Company Y_{p} from its origin warehouses is insufficient to fulfill the total demand of the destination warehouses of Company $Y_{p-1}(p=1,2, \ldots, N-1)$.
- Company Y_{p-1} is indifferent to the arrangement of goods by Company Y_{p} and Company Y_{p+1} is indifferent to the use of the goods imported by Company $Y_{p}(p=1,2, \ldots, N-1)$.
- Company Y_{p} does not have any extra warehouse to import goods. It imports the remaining amount of goods to its existing warehouses ($p=1,2, \ldots, N-1$).
- The warehouses of company Y_{p} have the capacity to hold the remaining amount, but the whole amount cannot be stored in a single warehouse and is transported to each of the warehouses in parts ($\mathrm{p}=1,2, \ldots, \mathrm{~N}-1$).
- The total conveyance capacity of Company Y_{p} is greater than or equal to the total demand of Company $\quad Y_{p-1}(p=1,2, \ldots, N)$.
- Company Y_{N} can supply the remaining quantity of goods, demanded (required) by Company $\mathrm{Y}_{\mathrm{N}-1}$, from its warehouses sufficiently. So, the model saturates in the $\mathrm{N}^{\text {th }}$ step and thus it is an N -step model.

3.2 Notations

- $c_{i j k}^{(p)} \quad:$ Per unit cost of transportation from the $i^{\text {th }}$ origin warehouse to the $j^{\text {th }}$ destination warehouse by the $k^{\text {th }}$ conveyance in the $p^{\text {th }}$ step.
- $x_{i j k}^{(p)}$: Amount of goods to be transported from the $i^{\text {th }}$ origin warehouse to the $j^{\text {th }}$ destination warehouse by the $k^{\text {th }}$ conveyance in the $p^{\text {th }}$ step.
- : Amount by which the supply falls short in the $p^{\text {th }}$ step.
- $A_{i}^{(p)}$: Original amount of supply of the $i^{\text {th }}$ origin in the $p^{\text {th }}$ step.
- $a_{i}^{(p)}$: Total amount of supply of the $i^{\text {th }}$ origin in the $p^{\text {th }}$ step.
- $b_{j}^{(p)}$: Amount of demand of the $j^{\text {th }}$ destination in the $p^{\text {th }}$ step.
- $e_{k}^{(p)}$: Capacity of the $k^{\text {th }}$ conveyance in the $p^{\text {th }}$ step.
- m_{p} : Number of origin warehouses in the $p^{\text {th }}$ step.
- m_{p-1} : Number of destination warehouses in the $p^{\text {th }}$ step.
- $K_{p}:$ Number of conveyances in the $p^{\text {th }}$ step.
- $A C_{i}^{(p)}$: Average per unit cost of transportation from the $i^{\text {th }}$ origin in the $p^{\text {th }}$ step.
- $H^{(p)}$: Harmonic mean of $A C_{i}^{(p)}$,s $\left(i=1,2, \ldots, m_{p}\right)$ in the $p^{\text {th }}$ step.

3.3 Formulation

The model is formulated mathematically as follows:

$$
\begin{equation*}
\operatorname{Min}^{(p)}=\sum_{i=1}^{m_{p}} \sum_{j=1}^{m_{p-1}} \sum_{k=1}^{k_{p}} c_{i j k}^{(p)} x_{i j k}^{(p)} \quad ; p=1,2, \ldots \ldots, N \tag{1}
\end{equation*}
$$

Subject to

$$
\begin{align*}
\sum_{j=1}^{m_{p-1}} \sum_{k=1}^{k_{p}} x_{i j k}^{(p)} \leq a_{i}^{(p)} ; & p=1,2, \ldots ., N ; \tag{2}\\
\sum_{i=1}^{m_{p}} \sum_{k=1}^{k_{p}} x_{i j k}^{(p)} \geq b_{j}^{(p)} ; & p=1,2, \ldots ., N ; \quad j=1,2, \ldots \ldots, m_{p} \tag{3}\\
\sum_{i=1}^{m_{p}} \sum_{j=1}^{m_{p-1}} x_{i j k}^{(p)} \leq e_{k}^{(p)} ; & p=1,2, \ldots \ldots, N ; \quad k=1,2, \ldots \ldots, m_{p-1} \tag{4}\\
& \text { and } x_{i j k}^{(p)} \geq 0 \quad \forall \mathrm{p}, \mathrm{i}, \mathrm{j}, \mathrm{k} \tag{5}
\end{align*}
$$

where

$$
\begin{align*}
& a_{i}^{(p)}=A_{i}^{(p)}+b_{i}^{(p+1)} \quad p=1,2, \ldots \ldots \ldots, n-1 ; \quad i=1,2, \ldots \ldots \ldots \ldots, m_{p} \tag{6}\\
& a_{i}^{(N)}=A_{i}^{(N)} i=1,2, \ldots \ldots \ldots \ldots, m_{N} \tag{7}
\end{align*}
$$

$$
\begin{align*}
& b_{j}^{(p)}=\left\lfloor\left.\frac{x_{s}^{(p-1)} H^{(p-1)}}{A C_{j}^{(p-1)} m_{p-1}} \right\rvert\, ; \quad p=2,3, \ldots \ldots \ldots \ldots, N ; \quad j=1,2, \ldots \ldots m_{p-1}\right. \tag{8}\\
& x_{s}^{(p)}=\sum_{j=1}^{m_{p-1}} b_{j}^{(p)}-\sum_{i=1}^{m_{p}} A_{i}^{(p)}>0 ; \quad p=1,2, \ldots \ldots . N-1 \tag{9}
\end{align*}
$$

$$
\begin{align*}
& A C_{i}^{(p)}=\sum_{j=1}^{m_{p-1}} \sum_{k=1}^{k_{p}} c_{i j k}^{(p)} ; p=1,2, \ldots ., N-1 ; \quad i=1,2, \ldots \ldots ., m_{p} \tag{10}\\
& H^{(p)}=\frac{m_{p}}{\sum_{i=1}^{m_{p}} \frac{1}{A C_{i}^{(p)}}} ; \quad p=1,2, \ldots \ldots . N-1 \tag{11}
\end{align*}
$$

As it can be seen, there are N objective functions in (1) for N steps $(p=1,2, \ldots, N)$ of the model. Here, the value of N is always a finite natural number greater than or equal to 2. (2), (3) and (4) are the supply, demand and conveyance constraints respectively. The non-negativity constraints (5) are must, since the quantity of goods is always non-negative.

Here, all the parameters and the decision variables $x_{i j k}^{(p)}$ are taken as trapezoidal neutrosophic numbers. But, $x_{i j k}^{(p)}$ denote quantities of goods to be transported and in reality, any manager or decision maker would want to obtain the crisp optimal solution of the problem through considering vague, imprecise and inconsistent information while defining the problem.

Equation (8) is used to calculate $b_{j}^{(p)}$,s (crisp values) after all the given parameters are converted into their corresponding crisp values by a suitable ranking function. So, (8) becomes

$$
\begin{equation*}
b_{j}^{(p)}=\left\lceil\frac{x_{s}^{(p-1)} H^{(p-1)}}{A C_{j}^{(p-1)} m_{p-1}}\right\rceil ; \quad \quad p=2,3, \ldots, N, \quad j=1,2, \ldots, m_{p-1} \tag{12}
\end{equation*}
$$

Proposition 3.3.1

If the import plan due to insufficient supply for each supplier Company $Y_{p}(p=1,2, \ldots, N-1)$ is "import the highest quantity of goods from $\mathrm{Y}_{\mathrm{p}+1}$ to that warehouse j from which the average per unit cost of transportation of goods to $\mathrm{Y}_{\mathrm{p}-1}$ is minimum", then the import plan (quantity of goods to be imported to each warehouse j) is mathematically given by:

$$
b_{j}^{(p)}=\left\lceil\frac{x_{s}^{(p-1)} H^{(p-1)}}{A C_{j}^{(p-1)} m_{p-1}}\right\rceil ; \quad \quad p=2,3, \ldots, N, \quad j=1,2, \ldots, m_{p-1}
$$

Proof:

Here, $b_{j}^{(p)}$,s denote the demands of the destination warehouses in the $p^{\text {th }}$ step, which are also the origin warehouses in the $(p-1)^{\text {th }}$ step. In the $p^{\text {th }}$ step, we want to import the highest quantity of goods to that warehouse j from which the average per unit cost of transportation of goods $A A C_{j}^{(p-1)}$ ninimum. So, $b_{j}^{(p)}$ inversely proportional to $A C_{j}^{(p-1)}$ i.e.,

$$
\begin{aligned}
b_{j}^{(p)} & \propto \frac{1}{A C_{j}^{(p-1)}} \\
b_{j}^{(p)} & =\kappa \frac{1}{A C_{j}^{(p-1)}}
\end{aligned}
$$

where κ is the proportionality constant.
Now, \quad total demand $=x_{s}^{(p-1)}$
i.e., $\sum_{j=1}^{m_{p-1}} b_{j}^{(p)}=x_{s}^{(p-1)}$
i.e., $\sum_{j=1}^{m_{p-1}} K \frac{1}{A C_{j}^{(p-1)}}=x_{s}^{(p-1)}$
i.e., $K=\frac{x_{s}^{(p-1)}}{\sum_{j=1}^{m_{p-1}} \frac{1}{A C_{j}^{(p-1)}}}$

But, $H^{(p-1)}=\frac{m_{p-1}}{\sum_{i=1}^{m_{p-1}} \frac{1}{A C_{i}^{(p-1)}}}=\frac{m_{p-1}}{\sum_{j=1}^{m_{p-1}} \frac{1}{A C_{j}^{(p-1)}}}$
Therefore,

$$
K=\frac{x_{s}^{(p-1)} H^{(p-1)}}{m_{p-1}}
$$

And so,

$$
\begin{equation*}
b_{j}^{(p)}=\frac{x_{s}^{(p-1)} H^{(p-1)}}{A C_{j}^{(p-1)} m_{p-1}} \tag{13}
\end{equation*}
$$

Now, while calculating $b_{j}^{(p)}$'s using (13), rounding off their decimals may result in loss of significant quantity of $x_{s}^{(p-1)}$'s. So, we use the ceiling function and hence, obtain

$$
b_{j}^{(p)}=\left\lceil\frac{x_{s}^{(p-1)} H^{(p-1)}}{A C_{j}^{(p-1)} m_{p-1}}\right\rceil ; \quad \quad p=2,3, \ldots, N, \quad j=1,2, \ldots, m_{p-1}
$$

4 Solution approach

An approach is suggested to find the optimal solution of such problems. The step by step procedure is as follows:

Step I. Collect the information for a given problem as trapezoidal neutrosophic numbers from the decision makers with the information that we always want to maximize the truth degree and minimize the indeterminacy and falsity degrees of the data.

Step II. Construct the neutrosophic solid transportation table of the given problem for $p=1$.
Step III. Convert all the trapezoidal neutrosophic numbers into their equivalent crisp values by the use of the ranking function, proposed by M. Abdel-Basset et al. [20], which is given by:

$$
\mathfrak{R}(\tilde{a})=\frac{a^{l}+a^{u}-3\left(a^{m 1}+a^{m 2}\right)}{2}+\text { confirmation degree },
$$

or mathematically,

$$
\begin{equation*}
\mathfrak{R}(\tilde{a})=\frac{a^{l}+a^{u}-3\left(a^{m 1}+a^{m 2}\right)}{2}+\left(T_{\tilde{a}}-I_{\tilde{a}}-F_{\tilde{a}}\right), \tag{14}
\end{equation*}
$$

where $T_{\tilde{a}}, I_{\tilde{a}}$ and $F_{\tilde{a}}$ are respectively the truth, indeterminacy and falsity degrees of the trapezoidal neutrosophic number $\tilde{a}=\left(a^{l}, a^{u}, a^{m l}, a^{m 2}\right)$. Here, $a^{l}, a^{u}, a^{m l}$ and $a^{m 2}$ are the lower bound, upper bound, first median and second median values of \tilde{a} respectively, which can be obtained from the form $\quad \tilde{a}=$ $\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$ by the transformations: $a^{l}=a_{2}, a^{u}=a_{3}, a^{m l}=a_{2}-a_{1}$ and $a^{m 2}=a_{4}-a_{3}$.
Step IV.Compute $x_{s}^{(p)}$ r $p=1$ using the crisp form of (9).
Step V. Calculate $b_{j}^{(p)}$,s for $p=2$ using (12).
Step VI. Construct the crisp solid transportation table for $p=2$ using the ranking function (14) for the values of supply and conveyance capacity.
Step VII. Repeat Steps (IV - VI) until some $x_{s}^{(p-1)}$ (say, for $p=N$) is found, which can be totally satisfied by the next supplier company $\left(\mathrm{Y}_{\mathrm{N}}\right)$.
Step VIII.Calculate $b_{j}^{(p)}$,s for $p=N$ using (12).
Step IX. Construct the crisp solid transportation table for $p=N$ using the ranking function (14) for the values of supply and conveyance capacity.

Step X. Solve the crisp solid transportation table for $p=N$ using a standard method as used for solving a general crisp STP and obtain the optimal solution for this step.
Step XI. Compute the new crisp values of supply for $p=N-1$ using the crisp form of (6) and similarly, solve the table for $p=N-1$ as solved for $p=N$.
Step XII. Repeat Step XI and similarly, solve the tables for $p=N-2, N-3, \ldots, 1$.
Step XIII.Conclude the solution with the degree of sufficiency η, which is defined as:

$$
\begin{gather*}
\eta=\frac{1}{N-1} \sum_{p=1}^{N-1} \eta^{(p)} \tag{15}\\
\eta^{(p)}=\frac{\sum_{i=1}^{m_{p}} a_{i}^{(p)}-\sum_{i=1}^{m_{p}} A_{i}^{(p)}}{x_{s}^{(p)}}-1 \tag{16}
\end{gather*}
$$

where

The proposed solution approach in the paper is a first of its kind. The solution approach is depicted as follows:

Transportation Possible if $X \geq Y$

Transportation Not Possible if $X<Y$

The model proposed in the paper makes the transportation possible in the second case (shown above).

5Numerical example

Suppose, Company Y_{1} has to transport a commodity (e.g., wheat) to Company Y_{0}. But, it falls short of some amount and wants to import the required amount from Company Y_{2}. Similarly, Company Y_{2} does not have the sufficient amount of wheat to fulfill the total demand of Company Y_{1}, so Company Y_{2} imports the required amount from Company Y_{3}. It is assumed that Company Y_{3} has the right amount of wheat to fulfill the total demand of Company Y_{2}.

The neutrosophic data for the transportations $\mathrm{Y}_{1} \rightarrow \mathrm{Y}_{0}, \mathrm{Y}_{2} \rightarrow \mathrm{Y}_{1}$ and $\mathrm{Y}_{3} \rightarrow \mathrm{Y}_{2}$ are given in Table 1, Table 2 and Table 3 respectively. For the sake of simplicity, $\left(T_{\tilde{a}}, I_{\tilde{a}}, F_{\tilde{a}}\right)$ is taken as $(0.9,0.1,0.1)$ for all the trapezoidal neutrosophic numbers. The costs are considered in INR and the commodity is measured in kilograms.

Table 1: Neutrosophic data table for $\mathrm{Y}_{1} \rightarrow \mathrm{Y}_{0}$.

$\mathrm{Y}_{2} \rightarrow \mathrm{Y}_{1}$	$E_{1}^{(2)}$						Conveyance Capacity
			$E_{1}^{(2)}$		$E_{1}^{(2)}$		(3400,4150,150,130)
		$E_{2}^{(2)}$		$E_{2}^{(2)}$		$E_{2}^{(2)}$	(3250,3900,155,140)
	$D_{1}^{(2)}$		$D_{2}^{(2)}$		$D_{3}^{(2)}$		Supply
$O_{1}^{(2)}$	(90,110,10,8)	(50,70,4,6)	$(40,55,5,7)$	(70,85,9,6)	$(35,55,4,5)$	$(75,85,8,6)$	(1000,1300,120,135)

Nilabhra Paul, Deepshikha Sarma, Akash Singh and Uttam Kumar Bera, A Generalized Neutrosophic Solid Transportation Model with Insufficient SupplyN. Paul, D. Sarma, A. Singh and U.K. Bera. A Generalized NSTM with Insufficient Supply

$O_{2}^{(2)}$	(75,90,7,8)	$(65,80,6,5)$	(85,95,6,6)	(50,60,4,3)	(60,80,4,6)	$(60,85,9,7)$	(1250,1500,145,160)
$O_{3}^{(2)}$	(80,90,6,7)	(90,105,9,8)	$(55,75,8,7)$	$(75,90,5,5)$	(100,120,5,7)	$(40,55,6,5)$	$(1000,1350,105,125)$
$\mathrm{O}_{4}^{(2)}$	(30,50,4,4)	$(70,85,5,6)$	(80,95,5,7)	$(60,80,4,6)$	$(65,75,8,7)$	$(50,65,4,3)$	$(1200,1450,110,100)$
Demand	()		()		()		

Table 2: Neutrosophic data table for $\mathrm{Y}_{2} \rightarrow \mathrm{Y}_{1}$.

Table 3: Neutrosophic data table for $\mathrm{Y}_{3} \rightarrow \mathrm{Y}_{2}$.

The crisp tables are solved with LINGO 17.0 software. Table 4, Table 5 and Table 6 show the optimal crisp solutions for $\mathrm{Y}_{3} \rightarrow \mathrm{Y}_{2}, \mathrm{Y}_{2} \rightarrow \mathrm{Y}_{1}$ and $\mathrm{Y}_{1} \rightarrow \mathrm{Y}_{0}$ respectively.

The minimum values of the objective functions are given below:
$z^{(1)}: \quad ₹ 308719.43$
$z^{(2)}: \quad ₹ 216642.65$
$z^{(3)}: \quad ₹ 90474.05$
The degree of sufficiency η is found out to be 0.00062 .

Table 4: Optimal solution table for $\mathrm{Y}_{3} \rightarrow \mathrm{Y}_{2}$.

Nilabhra Paul, Deepshikha Sarma, Akash Singh and Uttam Kumar Bera, A Generalized Neutrosophic Solid Transportation Model with Insufficient SupplyN. Paul, D. Sarma, A. Singh and U.K. Bera. A Generalized NSTM with Insufficient Supply

	(60.70)	(56.70)	(72.70)	(45.20)	(55.70)	(49.20)	
$\boldsymbol{o}_{3}^{(2)}$	0	0	0	0	0	1415.7	1415.7
	(66.20)	(72.70)	(43.20)	(68.20)	(92.70)	(31.70)	
$\boldsymbol{O}_{4}^{(2)}$	1712.7	0	0	0	0	0	1712.7
	(28.70)	(61.70)	(70.20)	(55.70)	(48.20)	(47.70)	
Demand	2220			1833			

Table 5:Optimal solution table for $\mathrm{Y}_{2} \rightarrow \mathrm{Y}_{1}$.

Table 6: Optimal solution table for $\mathrm{Y}_{1} \rightarrow \mathrm{Y}_{0}$.

6Discussion

The model, discussed in this paper, is a very interesting solid transportation model, which can be useful in the business sector. It can be safely concluded that the problem of insufficient supply that arises in the model, is dealt with effectively, as the degree of sufficiency η is positive for the given example and is very close to 0 (zero). $\quad \eta$ should always be non-negative and the closer η is to zero, the more sufficient the solution is for the model.

The numerical example given above is a 3-step model with fewer amounts of data. The computational time for this problem is not too high, but in real systems, the data is greater in amount and so, higher will be the computational time. The computational time T for an N-step model may roughly be given by the expression:

$$
T=\operatorname{Ca}(n)+\operatorname{Co}(n)+\operatorname{Sol}(n)
$$

where
$C a(n)$ is the total time component for calculatio $b_{j}^{(p)} \quad \mathrm{s}$'s,
Co(n) is the total time component for conversion of the trapezoidal neutrosophic numbers into crisp values,

Sol (n) is the total time component for solving the crisp data,
and all these components depend on the amount of data n, each of them varying directly with n.
Clearly, the amount of data n consists of N heterogeneous components. So, Ca(n)has $N-1$ subcomponents, $\operatorname{Co}(n)$ has N sub-components and $\operatorname{Sol}(n)$ also has N sub-components. For the given numerical example, $\mathrm{Ca}(n)$ has 2 components, while $\operatorname{Co}(n)$ and $\operatorname{Sol}(n)$ have 3 components each.

Equation (12) is a key part of the solution method and a point of research for constructing a more efficient model. The degree of sufficiency η is evidently dependent on (12). The ranking function (14) converts the trapezoidal neutrosophic numbers into their equivalent crisp values effectively by considering the degrees of all three aspects of decision, but efforts can be made to construct a better ranking function to get more accurate crisp models and better results. The model may also be considered with a time constraint (along with some time penalty) for each supplier. Also, as we know that the notion of neutrosophic set theory is relatively new and it broadly covers all the aspects of decision mak-
ing, so there is a good potential for its extensive research and tems.
applications in complex logistic sys-

7 Conclusion and future scope

The solid transportation problem is a significant problem in Operations Research, where the primary goal is to transport commodities from some source warehouses to some destination warehouses via different modes of conveyance. This paper formulates a model, where the source cannot fulfill the total demand and brings in the required amount from another source, which in turn, if unable to supply the necessary amount, brings in the remaining amount from another source, and so on. An expression is derived to provide the distribution of demand of the deficient quantity of goods among the importing warehouses. The paper also considers the impreciseness and uncertainty that may exist in the data and takes the input as trapezoidal neutrosophic numbers. An approach is presented to solve the model and the quality of the solution is checked with the degree of sufficiency. Also, the computational time is shown for the model and it is believed that the model is useful and has an interesting scope.

In this manuscript, the mathematical model has considered the minimization of cost as an objective function. But it is very important to complete the fulfilment of demand of customers as early as possible. Therefore, for future research, one can consider the minimization of time as an objective function. In the business purpose, profit is essential to grow. In this regard, maximization of profit can be treated as an objective function for further study. In this manuscript, uncertainty is used in terms of trapezoidal neutrosophic number. But in the direction of future research, one can use different parameters e.g. uncertain number, fuzzy number, type-2 fuzzy number etc. To solve the problem, genetic algorithm can be developed in future research.

References

[1] F.L. Hitchcock, The distribution of a product from several sources to numerous localities, Journal of Mathematics and Physics, vol. 20, 1941, pp. 224-230.
[2] E. Shell, Distribution of a product by several properties, Directorate of Management Analysis, Proceedings of the Second Symposium on Linear Programming, DCS/Comptroller H.Q. U.S.A.F., Washington, DC, vol. 2, 1955, pp. 615-642.
[3] K.B. Haley, The solid transportation problem, Operations Research, vol. 10, 1962, pp. 448 - 463.
[4] L.A. Zadeh, Fuzzy sets, Information and Control, vol. 8, 1965, pp. 338 - 353.
[5] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, vol. 20, 1986, pp. $87-96$.
[6] K. Atanassov, More on intuitionistic fuzzy sets, Fuzzy Sets and Systems, vol. 33, 1989, pp. $37-46$.
[7] F. Jiménez and J.L. Verdegay, Uncertain solid transportation problems, Fuzzy Sets and Systems, vol. 100, 1998, pp. 45-57.
[8] F. Smarandache, Neutrosophic set - a generalization of the intuitionistic fuzzy set, International Journal of Pure and Applied Mathematics, vol. 24(3), 2005, pp. 287 - 297.
[9] L. Yang and L. Liu, Fuzzy fixed charge solid transportation problem and algorithm, Applied Soft Computing, vol. 7, 2007, pp. 879 - 889.
[10]R. J. Hussain and P. S. Kumar, Algorithmic approach for solving intuitionistic fuzzy transportation problem, Applied Mathematical Sciences, vol. 6(80), 2012, pp. 3981 - 3989.
[11]P. Kundu, S. Kar and M. Maiti, Some solid transportation models with crisp and rough costs, International Journal of Mathematical and Computational Sciences, vol. 7, 2013, pp. 14-21.
[12]P. Liu, Y. Chu, Y. Li and Y. Chen, Some generalized neutrosophic number Hamacher aggregation operators and their application to group decision making, International Journal of Fuzzy Systems, vol. 16(2), 2014, pp. 242-255.
[13]S. K. Singh and S. P. Yadav, Efficient approach for solving type-1 intuitionistic fuzzy transportation problem, International Journal of System Assurance Engineering and Management, vol. 6(3), 2015, pp. 259 - 267.
[14]A. Das, U.K. Bera and M. Maiti, Defuzzification of trapezoidal type-2 fuzzy variables and its application to solid transportation problem, Journal of Intelligent and Fuzzy Systems, vol. 30(4), 2016, pp. 2431 - 2445.
[15]A. Thamaraiselvi and R. Santhi, A new approach for optimization of real life transportation problem in neutrosophic environment, Mathematical Problems in Engineering, vol. 2016, 2016.
[16]P.K. Giri, M.K. Maiti and M. Maiti, Profit maximization solid transportation problem under budget constraint using fuzzy measures, Iranian Journal of Fuzzy Systems, vol. 13, 2016, pp. 35 - 63.
[17]I. Deli and Y. Şubaş, A ranking method of single valued neutrosophic numbers and its applications to multiattribute decision making problems, Int. J. Mach. Learn. \& Cyber., vol. 8, 2017, pp. 1309 - 1322.
[18]A. Das, U.K. Bera and M. Maity, A profit maximizing solid transportation model under a rough interval approach, IEEE Transaction of Fuzzy System, vol. 25(3), 2017, pp. 485-498.
[19]S. Aggarwal and C. Gupta, Sensitivity analysis of intuitionistic fuzzy solid transportation problem, International Journal of Fuzzy Systems, vol. 19(6), 2017, pp. 1904-1915.
[20]M. Abdel-Basset, M. Gunasekaran, M. Mohamed and F. Smarandache, A novel method for solving the fully
neutrosophic linear programming problems, Neural Computing and Applications, Springer, 2018, pp. 1 - 11.
[21]R.M. Rizk-Allah, A.E. Hassanien and M. Elhoseny, A multi-objective transportation model under neutrosophic environment, Computers and Electrical Engineering, 2018, pp. 1-15.
[22]Abdel-Basset, M., El-hoseny, M., Gamal, A., \& Smarandache, F. (2019). A novel model for evaluation Hospital medical care systems based on plithogenic sets. Artificial intelligence in medicine, 100, 101710.
[23]Abdel-Basset, M., Mohamed, R., Zaied, A. E. N. H., \& Smarandache, F. (2019). A hybrid plithogenic decisionmaking approach with quality function deployment for selecting supply chain sustainability metrics. Symmetry, 11(7), 903.
[24]Abdel-Basset, M., Nabeeh, N. A., El-Ghareeb, H. A., \& Aboelfetouh, A. (2019). Utilising neutrosophic theory to solve transition difficulties of IoT-based enterprises. Enterprise Information Systems, 1-21.
[25]Abdel-Baset, M., Chang, V., \& Gamal, A. (2019). Evaluation of the green supply chain management practices: A novel neutrosophic approach. Computers in Industry, 108, 210-220.
[26]Abdel-Basset, M., Saleh, M., Gamal, A., \& Smarandache, F. (2019). An approach of TOPSIS technique for developing supplier selection with group decision making under type-2 neutrosophic number. Applied Soft Computing, 77, 438-452.

Generalized b Closed Sets and Generalized b Open Sets in Fuzzy Neutrosophic bi-Topological Spaces

Fatimah M. Mohammed ${ }^{1, *}$ and Sarah W. Raheem ${ }^{2}$
${ }^{1}$ Department of Mathematics, College of Education for Pure Sciences, Tikrit University, Tikrit, IRAQ;
dr.fatimahmahmood@tu.edu.iq
${ }^{2}$ Department of Mathematics, College of Education for Pure Sciences, Tikrit University, Tikrit, IRAQ; sarahwaad470@gmail.com
* Correspondence: dr.fatimahmahmood@tu.edu.iq

Abstract

In this paper, the authors study and introduce a new class of sets called generalized b-closed sets and its complement generalized b-open sets via fuzzy neutrosophic bi-topological spaces. Also, we prove some theorem related to this definitions. Then, we investigate the relations between the new defined sets by hand and some other fuzzy neutrosophic sets on the other hand. Some applications and many examples are presented and discussed.in fuzzy neutrosophic bi-topological spaces.

Keywords: fuzzy neutrosophic set; fuzzy neutrosophic bi-topology; fuzzy neutrosophic b-open set; fuzzy neutrosophic b-closed set; fuzzy neutrosophic generalized b-closed sets.

1. Introduction

At the beginning use of the concept of fuzzy sets "FS" was submitted by L. Zadeh's conference paper in 1965 [1] where each element had a degree of membership. Then many extension done by several studies. Intuitionistic fuzzy set "IFS" was one of the extension proved and known by K .Atanassov in 1983 [2-4], when he has proved the degree of membership of an item of any set in"FS" and added a degree of non-membership in "IFS". Then many studies are being on the generalizations of the notion of "IFS", one of them proved was by F. Smarandache in 2005 [5,6], when he developed something else in membership and added indeterminacy membership between the last two membership and non-membership which were known in "IFS" and called it neutrosophic sets "NSs". After that, A Salama et.al. in 2014 [7,8] introduced neutrosophic topological spaces "NTSs".

The term of neutrosophic sets "NSs" was defined with membership, non-membership not specified degree. In the last three year ago, Veereswari [9] submitted his paper in fuzzy neutrosophic topological spaces "FNTSs" to be the solution and representation of the problems different fields where he takes all values between the closed interval 0 and 1 instead of the unitary non-standard interval]-0,1+[in NSs.

In this work, as generalized of the work of R.K. Al-Hamido [10] and the last papers which studied by F. Mohammed [11-13], we have identified a new category of fuzzy neutrosophic sets

[^24] Neutrosophic bi-Topological Spaces
"FNSs" called fuzzy neutrosophic generalized b-closed sets in fuzzy neutrosophic bi-topological spaces. Finally, on the basis of our manster's we will discuss some new characteristics and apply it. Finally, there are many application of NSs in many fields see [14-19], so before we ended our work we added some applications based in our new sets via fuzzy neutrosophic bi-topological spaces.

2. Preliminaries:

In this part of our study, we will refer to some basic definitions and operations which are useful in our work.

Definition 2.1 [9]: Let U be a non-empty fixed set. The fuzzy neutrosophic set "FNS" μ_{N} is an object having the form $\mu_{N}=\left\{<u, \lambda \mu_{N}(u), \delta \mu_{N}(u), V \mu_{N}(u)>: u \in U\right\}$ where the functions $\lambda \mu_{N}(u), \gamma \mu_{N}(u), V \mu_{N}(u)$: $U \rightarrow[0,1]$ denote the degree of membership function (namely $\lambda \mu_{N}(u)$), the degree of indeterminacy function (namely $\gamma \mu_{N}(u)$) and the degree of non-membership function (namely $V \mu_{N}(u)$) respectively of each element $u \in \mathbb{U}$ to the set μ_{N} and $0 \leq \lambda_{\mu N}(u)+\gamma_{\mu N}(u)+V_{\mu N}(u) \leq 3$, for each $u \in \mathrm{U}$.

Remark 2.2: FNS $\mu_{N}=\left\{<u, \lambda_{\mu N}(u), \sigma_{\mu N}(u), V_{\mu N}(u)>: u \in U\right\}$ can be identified to an ordered triple $<u$, $\lambda_{\mu N}, \sigma_{\mu N}, V_{\mu N}>$ in $[0,1]$ on U.

Lemma 2.3 [9]: Let U be a non-empty set and the "FNS" μ_{N} and γ_{N} be in the form $\mu_{N}=\left\{<u, \lambda_{\mu N}, \sigma_{\mu N}\right.$, $\left.V_{\mu N}>\right\}$ and $\gamma^{N}=\left\{<u, \lambda_{y^{N},}, \sigma_{y N}, V_{y^{N}}>\right\}$ on U. Then,
i. $\quad \mu_{N} \subseteq_{\gamma_{N}}$ iff $\lambda_{\mu N} \leq \lambda_{\gamma^{N},} \sigma_{\mu N} \leq \sigma_{\gamma^{N}}$ and $V_{\mu N} \geq V_{\gamma} N$,
ii. $\mu_{N}=\gamma_{N}$ iff $\mu_{N} \subseteq_{\gamma_{N}}$ and $\gamma_{N} \subseteq \mu_{N}$,
iii. $\quad\left(\mu_{N}\right)^{c}=\left\{<u, V_{\mu N}, 1-\sigma_{\mu N}, \lambda_{\mu N}>\right\}$,
iv. $\quad \mu_{N} \cup_{\gamma^{N}}=\left\{<u, M x\left(\lambda_{\mu N}, \lambda_{\gamma^{N}}\right), M x\left(\sigma_{\mu N}, \sigma_{\gamma^{N}}\right), M n\left(V_{\mu N}, V_{\gamma^{N}}\right)>\right\}$,
v. $\quad \mu_{N} \cap \gamma_{N}=\left\{<u, M n\left(\lambda_{\mu N}, \lambda_{\gamma^{N}}\right), M n\left(\sigma_{\mu N}, \sigma_{y^{N}}\right), M x\left(V_{\mu N}, V_{\gamma^{N}}\right)>\right\}$,
vi. $\quad 0_{N}=\{\langle u, 0,0,1\rangle\}$ and $1_{N}=\{\langle u, 1,1,0\rangle\}$.

Definition 2.4 [9]: Fuzzy neutrosophic topology (for short, FNT) on a non-empty set U is a family T_{N} of fuzzy neutrosophic subset in U satisfying the following axioms:
i. $0_{N}, 1_{N} \in T_{N}$,
ii. $\mu_{\mathrm{N} 1} \cap \mu_{\mathrm{N} 2} \in T_{N} \forall \mu_{\mathrm{N} 1}, \mu_{\mathrm{N} 2} \in T_{\mathrm{N}}$,
iii. $\cup \mu_{N j} \in T_{N}, \forall\left\{\mu_{N j}: j \in J\right\} \subseteq T_{N}$.

In this case the pair $\left(\mathrm{U}, \mathrm{T}_{\mathrm{N}}\right)$ is called fuzzy neutrosophic topological space (for short, FNTS). The elements of T_{N} are called fuzzy neutrosophic-open sets (for short, FN-OS). The complement of FN-OS in the FNTS ($\mathrm{U}, \mathrm{T}_{\mathrm{N}}$) is called fuzzy neutrosophic- closed set (for short, FN-CS).

Definition 2.5 [9]: Let ($\mathrm{U}, \mathrm{T}_{\mathrm{N}}$) is FNTS and $\mu \mathrm{N}=<\mathrm{u}, \lambda_{\mu \mathrm{N}}, \sigma_{\mu \mathrm{N}}, \mathrm{V}_{\mu \mathrm{N}}>$ is FNS in U. Then the fuzzy neutrosophic-closure (for short, $\mathrm{FN}-\mathrm{Cl}$) and the fuzzy neutrosophic-interior (for short, FN-In) of μ_{N} are defined by:

$$
F N-C l\left(\mu_{N}\right)=\cap\left\{\gamma_{N}: \gamma_{N} \text { is } F N-C S \text { in } U \text { and } \mu_{N} \subseteq_{\gamma_{N}}\right\} \text {, }
$$

$$
F N-\operatorname{In}\left(\mu_{N}\right)=\cup\left\{\gamma_{N}: \gamma_{N} \text { is } F N-O S \text { in } U \text { and } \gamma_{N} \subseteq \mu_{N}\right\} .
$$

Now, the $\mathrm{FN}-\mathrm{Cl}\left(\mu_{\mathrm{N}}\right)$ is $\mathrm{FN}-\mathrm{CS}$ and $\mathrm{FN}-\mathrm{In}\left(\mu_{\mathrm{N}}\right)$ is $\mathrm{FN}-\mathrm{OS}$ in U .
Further,
i. μ_{N} is FN-CS in U iff $\operatorname{FN}-C l\left(\mu_{N}\right)=\mu_{N}$,
ii. μ_{N} is $\mathrm{FN}-\mathrm{OS}$ in U iff $F N-\operatorname{In}\left(\mu_{\mathrm{N}}\right)=\mu_{\mathrm{N}}$.

Definition 2.6: Let ($U_{N}, T_{N 1}, T_{N 2}$) is FNTS and $\mu_{N}=<u, \lambda_{\mu N}, \sigma_{\mu N}, V_{\mu N}>$ is FNS in U_{N}. Then the fuzzy neutrosophic semi-closure (resp. fuzzy neutrosophic Pre-closure and fuzzy neutrosophic α-closure) of μ_{N} and denoted by $\mathrm{FN}-\mathrm{SCl}\left(\mu_{N}\right)$ (resp. $\mathrm{FN}-\mathrm{PCl}\left(\mu_{N}\right)$ and $F N-\alpha C l\left(\mu_{N}\right)$ are defined by:
$F N-S C l\left(\mu_{N}\right)=\cap\left\{\gamma_{N}: \gamma_{N}\right.$ is FN-SCS set in U and $\left.\mu_{N} \subseteq_{\gamma_{N}}\right\}=\mu_{N} \cup F N-\operatorname{In}\left(F N-C l\left(\mu_{N}\right)\right)$,
$F N-P C l\left(\mu_{N}\right)=\cap\left\{\gamma_{N}: \gamma_{N}\right.$ is FN-PCS set in U and $\left.\mu_{N} \subseteq_{\gamma_{N}}\right\}=\mu_{N} \cup F N-C l\left(F N-\operatorname{In}\left(\mu_{N}\right)\right)$,
$F N-\alpha \operatorname{Cl}\left(\mu_{N}\right)=\cap\left\{\gamma_{\mathrm{N}}: \gamma_{\mathrm{N}}\right.$ is $F N-\alpha C S$ set in U and $\left.\mu_{N} \subseteq_{\gamma^{\prime}}\right\}=\mu_{N} \cup F N-C l\left(F N-\operatorname{In}\left(F N-C l\left(\mu_{N}\right)\right)\right)$,

Definition 2.7 [11, 12]: FNS λ_{N} in FNTS ($\mathrm{U}, \mathrm{T}_{\mathrm{N}}$) is called:
i. Fuzzy neutrosophic-regular open set (FN-ROS) if $\mu_{N}=F N-\operatorname{In}\left(F N-C l\left(\mu_{N}\right)\right)$,
ii. Fuzzy neutrosophic-regular closed set (FN-RCS) if $\mu_{N}=F N-C l\left(F N-I n\left(\mu_{N}\right)\right.$,
iii. Fuzzy neutrosophic-semi open set (FN-SOS) if $\mu_{N} \subseteq F N-C l\left(F N-\operatorname{In}\left(\mu_{N}\right)\right)$,
iv. Fuzzy neutrosophic-semi closed set(FN-SCS) if $\operatorname{FN}-\operatorname{In}\left(F N-C l\left(\mu_{N}\right)\right) \subseteq \mu_{N}$,
v. Fuzzy neutrosophic pre-open set(FN-POS) if $\mu_{N} \subseteq F N-\operatorname{In}\left(F N-C l\left(\mu_{N}\right)\right)$,
vi. Fuzzy neutrosophic pre-closed set(FN-PCS) if $\operatorname{FN}-C l\left(F N-\operatorname{In}\left(\mu_{N}\right)\right) \subseteq \mu_{N}$,
vii. Fuzzy neutrosophic- α-open set(FN- $\alpha \mathrm{OS})$ if $\mu_{N} \subseteq F N-\operatorname{In}\left(F N-C l\left(F N-\operatorname{In}\left(\mu_{N}\right)\right)\right)$,
viii. Fuzzy neutrosophic- α-closed $\operatorname{set}(\mathrm{FN}-\alpha \mathrm{CS})$ if $\mathrm{FN}-\mathrm{Cl}\left(\mathrm{FN}-\operatorname{In}\left(\mathrm{FN}-\mathrm{Cl}\left(\mu_{\mathrm{N}}\right)\right)\right) \subseteq \mu_{\mathrm{N}}$,
ix. Fuzzy neutrosophic generalized closed set ($\mathrm{FN}-\mathrm{GCS}$) if $F N-C l(K \subseteq N$) whenever $\mathrm{K} \subseteq \mathrm{N}$ and N is a FN-OS,
x. Fuzzy neutrosophic generalized pre closed set ($\mathrm{FN}-\mathrm{GPCS}$) if $F N-P C l(K) \subseteq N$, whenever $K \subseteq \mathrm{~N}$ and N is a FN-OS,
xi. Fuzzy neutrosophic α generalized closed set (FN- $\alpha G C S$) if $F N \alpha-C l(K) \subseteq N$ whenever $K \subseteq \mathrm{~N}$ and N is a FN-OS,
xii. Fuzzy neutrosophic generalized semi closed set ($\mathrm{FN}-\mathrm{GSCS}$) if $F N-S C l(K) \subseteq N$, whenever $K \subseteq \mathrm{~N}$ and N is a FN -OS.

Definition 2.8 [13]: A fuzzy neutrosophic set K in FNTs ($\mathrm{U}, \mathrm{T}_{\mathrm{N}}$) is called fuzzy neutrosophic b-closed set (FN-b-CS) set if and only if $F N-\operatorname{In}(F N-C l(K)) V F N-C l(F N-I n(K)) \leq K$.

Definition 2.9 [13]: Let U_{N} be a non-empty set and $\left(U, T_{N 1}\right),\left(U, T_{N 2}\right)$ be two topological spaces then, the triple ($U_{N}, T_{N 1}, T_{N 2}$) is a fuzzy neutrosophic bi-topological space (for short, FN-bi-TS).

3. Generalized b-Open Sets and Generalized b-Closed Sets in Fuzzy Neutrosophic biTopological Spaces

In this section, we generalized our work [13] and study the concept of generalized b-closed sets and generalized b-open sets based of fuzzy neutrosophic bi- topological spaces and introduced it after giving the definition of fuzzy neutrosophic bi- topological spaces as follows:

Definition 3. 1: Let U be a non-empty set and $T_{N 1}, T_{N 2}$ be two topologies on FNTS ($\mathrm{U}, \mathrm{T}_{\mathrm{N}}$), then the triple ($\mathrm{U}, \mathrm{T}_{\mathrm{N} 1}, \mathrm{~T}_{\mathrm{N} 2}$) is a fuzzy neutrosophic bi- topological space (for short, FN-bi-TS).

Definition 3.2: Let U be a non-empty set and $T_{\mathrm{N} 1}, \mathrm{~T}_{\mathrm{N} 2}$ be two topologies on FNTS $\left(\mathrm{U}, \mathrm{T}_{\mathrm{N}}\right)$. A subset A of U is called fuzzy neutrosophic open set (for short, FN-OS) set if $A \in T_{N 1} \cup T_{N 2}$. A is called fuzzy neutrosophic closed set (for short, FN-CS) if $1_{\mathrm{N}}-\mathrm{A}$ is FN-OS.
Note: In this work we refer to $\mathrm{T}_{\mathrm{N} 1} \cup \mathrm{~T}_{\mathrm{N} 2}$ by T_{N}.

Example 3.3: Let $U=\left\{\begin{array}{lllllllll} & k_{1}, & k_{2}\end{array}\right\}, T_{N 1}=\left\{0_{N}, 1_{N}\right\}, T_{N 2}=\left\{\begin{array}{lll}0_{N}, & 1_{N}, & \left.E_{1}\right\} \text { and, }\end{array}\right.$ $T_{N}=\left\{0_{N}, E_{1}, 1_{N}\right\}$ be a FN-bi-TS on U,
Where, $\quad E_{1}=\left\langle u,\left(k_{1(0.2)}, k_{1(0.5)}, k_{1(0.8)}\right),\left(k_{2(0.3)}, k_{2(0.5)}, k_{2(0.7)}\right)\right\rangle$.
Then the neutrosophic set $Z=\left\langle u,\left(k_{1(0.7)}, k_{1(0.5)}, k_{1(0.3)}\right),\left(k_{2(0.6)}, k_{2(0.5)}, k_{2(0.4)}\right)\right\rangle$ is a FN-b-CS in U.

Definition 3.4: Let ($\mathrm{U}, \mathrm{T}_{\mathrm{N}}$) be any FN-bi-TS and $\mu_{N}=<u, \lambda_{\mu N}, \sigma_{\mu N}, V_{\mu N}>$ be FNS in U. Then the fuzzy neutrosophic-b-closure (for short, $\mathrm{FN}-\mathrm{bCl}$) and the fuzzy neutrosophic-b-interior (for short, FN-bIn) of μ_{N} are defined by:

$$
\begin{aligned}
& F N-b C l\left(\mu_{N}\right)=\cap\left\{\gamma_{N}: \gamma_{N} \text { is FN-bCS in } U \text { and } \mu_{N} \subseteq_{\gamma_{N}}\right\}, \\
& F N-b I n\left(\mu_{N}\right)=\cup\left\{\gamma_{N}: \gamma_{N} \text { is FN-bOS in } U \text { and } \gamma_{N} \subseteq \mu_{N}\right\} .
\end{aligned}
$$

Definition 3.5: Let $\left(\mathrm{U}, \mathrm{T}_{\mathrm{N}}\right)$ be a FN-bi-TS, then, for each $\mu_{1}, \lambda_{1} \in I^{U}$ the fuzzy set μ_{1} is called fuzzy neutrosophic- generalized b-open set (for short, FN-gb-OS) set if $\mu_{1} \leq F N-b I n\left(\lambda_{1}\right)$ such that $\mu_{1} \leq \lambda_{1}$ and μ_{1} is $\mathrm{FN}-\mathrm{CS}$.

Theorem 3.6: A fuzzy neutrosophic set Z of FN -bi-TS ($\mathrm{U}, \mathrm{T}_{\mathrm{N}}$) is a FN-gb-OS iff $N \subseteq F N-b I n(Z)$ whenever N is a $\mathrm{FN}-\mathrm{CS}$ and $N \subseteq Z$.
Proof: Necessity : Suppose Z is a FN -gb-OS in FN-bi-TS ($\mathrm{U}, \mathrm{T}_{\mathrm{N}}$) and let E be a $\mathrm{FN}-\mathrm{CS}$ and $\mathrm{N} \subseteq \mathrm{Z}$.
Then $\mathrm{H}^{\mathrm{c}}=1_{\mathrm{N}}-\mathrm{H}$ is a $\mathrm{FN}-\mathrm{OS}$ in U such that $\mathrm{Z}^{\mathrm{c}}=1_{\mathrm{N}}-\mathrm{Z} \subseteq \mathrm{N}^{\mathrm{c}}=1_{\mathrm{N}}-\mathrm{N}$
$\Rightarrow 1 \mathrm{~N}-\mathrm{Z}$ is a $\mathrm{FN}-\mathrm{gb}-\mathrm{CS}$ and $\mathrm{FN}-\mathrm{bCl}\left(1_{\mathrm{N}}-\mathrm{Z}\right) \subseteq 1_{\mathrm{N}}-\mathrm{N}$,
Hence, $\left(1_{\mathrm{N}}-\mathrm{FN}-\mathrm{bIn}(\mathrm{Z})\right) \subseteq 1_{\mathrm{N}}-\mathrm{N} \quad \Longrightarrow \mathrm{N} \subseteq \mathrm{FN}-\mathrm{bIn}(\mathrm{Z})$.
Sufficiency: Let Z be any FNS of U and let $\mathrm{N} \subseteq \mathrm{FN}-\mathrm{bIn}(\mathrm{Z})$ whenever, N is a $\mathrm{FN}-\mathrm{CS}$ and $\mathrm{N} \subseteq \mathrm{Z}$.

Theorem 3.7: Let $\left(\mathrm{U}, \mathrm{T}_{\mathrm{N}}\right)$ be FN-bi-TS, then:

Fatimah M. Mohammed and Sarah W. Raheem, Generalized b Closed Sets and Generalized b Open Sets in Fuzzy Neutrosophic bi-Topological Spaces
(1) Every FN-CS is a FN-gb-CS,
(2) Every $\mathrm{FN}-\alpha \mathrm{CS}$ is a FN-gb-CS,
(3) Every FN-PCS is a FN-gb-CS,
(4) Every FN-b-CS is a FN-gb-CS,
(5) Every FN-RCS is a FN-gb-CS,
(6) Every FN-GCS is a FN-gb-CS,
(7) Every $\mathrm{FN}-\alpha \mathrm{GCS}$ is a $\mathrm{FN}-\mathrm{gb}-\mathrm{CS}$,
(8) Every FN-GPCS is a FN-gb-CS
(9) Every FN-SCS is a FN-gb-CS.
(10) Every FN-GSCS is FN-gb-CS.

Proof : (1): Let $\mathrm{Z} \subseteq \mathrm{N}$ and N be_a $\mathrm{FN}-\mathrm{CS}$ in $\mathrm{FN}-\mathrm{bi}-\mathrm{TS}\left(\mathrm{U}, \mathrm{T}_{\mathrm{N}}\right)$ with $\mathrm{FN}-\mathrm{bCl}(\mathrm{Z}) \subseteq \mathrm{FN}-\mathrm{Cl}(\mathrm{Z})$.
But, $\mathrm{FN}-\mathrm{bCl}(\mathrm{Z})=\mathrm{Z} \subseteq \mathrm{N}$. Therefore, Z is a $\mathrm{FN}-\mathrm{gb}-\mathrm{CS}$ in FN -bi-TS $\left(\mathrm{U}, \mathrm{T}_{\mathrm{N}}\right)$.
(2): Let $\mathrm{Z} \subseteq \mathrm{N}$ and $\mathrm{N} \in \mathrm{T}_{\mathrm{N}}, \Rightarrow \mathrm{Z}$ is a $\mathrm{FN}-\alpha \mathrm{Cl}(\mathrm{Z})=\mathrm{Z}$. Therefore, $\mathrm{FN}-\mathrm{bCl}(\mathrm{Z}) \subseteq \mathrm{FN}-\alpha \mathrm{Cl}(\mathrm{Z})=\mathrm{Z} \subseteq \mathrm{N}$. Hence, Z is a $\mathrm{FN}-\mathrm{gb}-\mathrm{CS}$ in FN -bi-TS $\left(\mathrm{U}, \mathrm{T}_{\mathrm{N}}\right)$.
(3): Let $Z \subseteq N$ and $N \in T_{N}$.

Since Z is a $\mathrm{FN}-\mathrm{PCS}$, and $\mathrm{FN}-\mathrm{Cl}(\mathrm{FN}-\operatorname{In}(\mathrm{Z})) \subseteq \mathrm{Z}$.
Therefore, $\quad \mathrm{FNCl}(\mathrm{FN}-\operatorname{In}(\mathrm{Z})) \cap \mathrm{FN}-\operatorname{In}(\mathrm{FN}-\mathrm{Cl}(\mathrm{Z})) \subseteq \mathrm{FN}-\mathrm{Cl}(\mathrm{Z}) \cap \mathrm{FN}-\mathrm{Cl}(\mathrm{FN}-\operatorname{In}(\mathrm{Z})) \subseteq \mathrm{Z}$.
$\Rightarrow \mathrm{FN}-\mathrm{bCl}(\mathrm{Z}) \subseteq \mathrm{N}$. Hence, Z is a $\mathrm{FN}-\mathrm{gb}-\mathrm{CS}$ in U .
(4): Let $\mathrm{Z} \subseteq \mathrm{N}$ and N be_a FN-OS in FN-bi-TS (U, T_{N})
$\Rightarrow \mathrm{Z}$ is a $\mathrm{FN}-\mathrm{b}-\mathrm{CS}$ and $\mathrm{FN}-\mathrm{bCl}(\mathrm{Z})=\mathrm{Z}$.
Therefore, $\mathrm{FN}-\mathrm{bCl}(\mathrm{Z})=\mathrm{Z} \subseteq \mathrm{N}$. Hence, Z is a FN -gb-CS in FN -bi- $\mathrm{TS}\left(\mathrm{U}, \mathrm{T}_{\mathrm{N}}\right)$.
(5): Let $Z \subseteq N$ and $N \in T_{N}$ and let Z be a FN-RCS.

But, $\mathrm{FN}-\mathrm{Cl}(\mathrm{FN}-\mathrm{In}(\mathrm{Z}))=\mathrm{Z} \Rightarrow \mathrm{FN}-\mathrm{Cl}(\mathrm{Z})=\mathrm{FN}-\mathrm{Cl}(\mathrm{FN}-\mathrm{In}(\mathrm{Z}))$. Therefore, $\mathrm{FN}-\mathrm{Cl}(\mathrm{Z})=\mathrm{Z}$.
Hence, Z is a FN-CS in U. By (1), we get Z is a $F N-g b-C S$ in FN-bi-TS $\left(U, T_{N}\right)$.
(6): Let $Z \subseteq \mathrm{~N}$ and $\mathrm{N} \in \mathrm{T}_{\mathrm{N}} \Rightarrow \mathrm{Z}$ is a FN-GCS, $\mathrm{FN}-\mathrm{Cl}(\mathrm{Z}) \subseteq \mathrm{N}$.

Therefore, $\mathrm{FN}-\mathrm{bCl}(\mathrm{Z}) \subseteq \mathrm{FN}-\mathrm{Cl}(\mathrm{Z})$.
But,_FN-bCl(Z) \subseteq N. Hence, Z is a FN -gb-CS in FN -bi-TS $\left(\mathrm{U}, \mathrm{T}_{\mathrm{N}}\right)$.
(7): Let $\mathrm{Z} \subseteq \mathrm{N}$ and $\mathrm{N} \in \mathrm{T}_{\mathrm{N}} \Rightarrow \mathrm{Z}$ is a $\mathrm{FN}-\alpha \mathrm{GCS}$.

But, $\mathrm{FN}-\alpha \mathrm{Cl}(\mathrm{Z}) \subseteq \mathrm{N}$. Therefore, $\mathrm{FNbCl}(\mathrm{Z}) \subseteq \mathrm{FN}-\alpha \mathrm{Cl}(\mathrm{Z})$,
So, $\mathrm{FN}-\mathrm{bCl}(\mathrm{Z}) \subseteq \mathrm{N}$. Hence, Z is a FN-gb-CS in FN-bi-TS $\left(\mathrm{U}, \mathrm{T}_{\mathrm{N}}\right)$.
(8): Let $\mathrm{Z} \subseteq \mathrm{N}$ and $\mathrm{N} \in \mathrm{T}_{\mathrm{N}} \Rightarrow \mathrm{Z}$ is a $\mathrm{FN}-\mathrm{gp}-\mathrm{CS}$ and $\mathrm{FN}-\mathrm{PCl}(\mathrm{Z}) \subseteq \mathrm{N}$.

Therefore, $\mathrm{FNbCl}(\mathrm{Z}) \subseteq \mathrm{FN}-\mathrm{pCl}(\mathrm{Z})$, so $\mathrm{FN}-\mathrm{bCl}(\mathrm{Z}) \subseteq \mathrm{N}$.

Fatimah M. Mohammed and Sarah W. Raheem, Generalized b Closed Sets and Generalized b Open Sets in Fuzzy Neutrosophic bi-Topological Spaces

Hence, Z is a FN-gb-clos. set in FN-bi-TS $\left(\mathrm{U}, \mathrm{T}_{\mathrm{N}}\right)$.
(9): Let $Z \subseteq N$ and $N \in T_{N} \Rightarrow Z$ is a FN-SCS.

But, $\mathrm{FN}-\mathrm{bCl}(\mathrm{Z}) \subseteq \mathrm{FN}-\mathrm{SCl}(\mathrm{Z}) \subseteq \mathrm{N}$. Therefore, Z is a $\mathrm{FN}-\mathrm{gb}-\mathrm{CS}$ in FN -bi-TS $\left(\mathrm{U}, \mathrm{T}_{\mathrm{N}}\right)$.
(10): Obivious

Proposition 3.8: The converse of theorem 3.7 is not true in general for all cases and we can see it in (Diagram 1.)

(Diagram 1)

Example 3.9: (i): Let $U=\left\{k_{1}, k_{2}\right\}, T_{N l}=\left\{0_{N}, 1_{N}\right\}, T_{N 2}=\left\{0_{N}, 1_{N}, E_{l}\right\}$.
Then, $T_{N}=\left\{0_{N}, E_{1}, 1_{N}\right\}$ is a FN-bi-TS on U ,
1- \quad Take $E_{I}=\left\langle u,\left(k_{1(0.3)}, k_{1(0.5)}, k_{1(0.0)}\right),\left(k_{2(0.2)}, k_{2(0.5)}, k_{2(0.7)}\right)\right\rangle$.

Then, the FNS " Z " $=<u,\left(k_{1(0.5)}, k_{1(0.5)}, k_{1(0.4)}\right),\left(k_{2(0.6)}, k_{2(0.5)}, k_{2(0.3)}\right)$ is a FN-gb-CS but, not a FN-CS in U \Longrightarrow FN-Cl("Z") = $\mathrm{E}_{1} \neq$ "Z".

2- Let $E_{l}=<u,\left(k_{1(0.3)}, k_{1(0.5)}, k_{1(0.6)}\right),\left(k_{2(0.2)}, k_{2(0.5)}, k_{2(0.8)}\right)>$. Then, the FNS "Z" $=<\mathrm{u},\left(\mathrm{k}_{1(0.5)}, \mathrm{k}_{1(0.5)}\right.$, $\left.\mathrm{k}_{1(0.3)}\right),\left(\mathrm{k}_{2(0.6)}, \mathrm{k}_{2(0.5)}, \mathrm{k}_{2(0.3)}\right)>$ is a $\mathrm{FN}-\alpha \mathrm{CS}$ in $\mathrm{U} \Longrightarrow F N-C l(F N-C l(Z))=1_{N^{-}} E_{1} \nsubseteq \quad$ " Z^{\prime}.
$3-\quad$ Let $E_{I}=\left\langle u,\left(k_{1(0.9)}, k_{1(0.5)}, k_{1(0.8)}\right), \quad\left(k_{2(0.3)}, k_{2(0.5)}, k_{2(0.7)}\right)\right\rangle$.
Then, the FNS " Z " $=\left\langle u,\left(k_{1(0.4)}, k_{1(0.5)}, k_{1(0.6)}\right),\left(k_{2(0.5)}, k_{2(0.5)}, k_{2(0.5)}\right)>\right.$ is a FN-gb-CS but, not a FN-PCS in $\mathrm{U} \Longrightarrow \mathrm{FN}-\mathrm{Cl}(\mathrm{FN}-\mathrm{In}(" \mathrm{Z} "))=\mathrm{E}_{1} \nsubseteq$ "Z".
4 - Let $\quad E_{1}=\left\langle u,\left(k_{1(0.6)}, k_{1(0.5)}, k_{1(0.4)}\right),\left(k_{2(0.8)}, k_{2(0.5)}, k_{2(0.2)}\right)>\right.$.

Then, the FNS " Z " $=<u,\left(k_{1(0.8)}, k_{1(0.5)}, k_{1(0.2)}\right),\left(k_{2(0.9)}, k_{2(0.5)}, k_{2(0.1)}\right)>$ is a FN-gb-CS but, not a FN-b-CS in FN-bi-TS $\left(\mathrm{U}, \mathrm{T}_{\mathrm{N}}\right) \Rightarrow$ FN-RCS is a FN-gb-CS but, not a FN-b-CS in FN-bi-TS $\left(\mathrm{U}, \mathrm{T}_{\mathrm{N}}\right)$,
$\Rightarrow \mathrm{FN}-\mathrm{Cl}(\mathrm{FN}-\mathrm{In}(\mathrm{ZZ} \mathrm{Z})) \cap \mathrm{FN}-\mathrm{In}(\mathrm{FN}-\mathrm{Cl}(\mathrm{ZZ"}))=1_{\mathrm{N}} \nsubseteq \mathrm{ZZ}$ ".
5- Let $\mathrm{E}_{1}=<\mathrm{u},\left(\mathrm{k}_{1(0.2)}, \mathrm{k}_{1(0.5)}, \mathrm{k}_{1(0.8)}\right),\left(\mathrm{k}_{2(0.4)}, \mathrm{k}_{2(0.5)}, \mathrm{k}_{2(0.6)}\right)>$.

Then, the FNS " $Z^{\prime \prime}=<u,\left(k_{1(0.7)}, k_{1(0.5)}, k_{1(0.3)}\right),\left(k_{2(0.5)}, k_{2(0.5)}, k_{2(0.5)}\right)>$ is a FN-gb-CS but, not a FN-RCS in $F N-b i-T S\left(U, T_{N}\right) \Longrightarrow F N-C l(F N-I n(" Z "))=1_{N}-E_{I} \neq{ }^{\prime \prime} Z^{\prime \prime}$.
$6-\quad$ Let $E_{I}=\left\langle u,\left(k_{1(0.2)}, k_{1(0.5)}, k_{1(0.8)}\right),\left(k_{2(0.4)}, k_{2(0.5)}, k_{2(0.6)}\right)>\right.$.

Then, the FNS " Z " $=<u$, $\left(k_{1(0.1)}, k_{1(0.5)}, k_{1(0.8)}\right),\left(k_{2(0.3)}, k_{2(0.5)}, k_{2(0.7)}\right)>$ is a FN-gb-CS but, not a FN-GCS in $F N-b i-T S\left(U, T_{N}\right) . \Rightarrow F N-C l(" Z ")=E_{1}^{c} \nsubseteq E_{l}$.

7- Let $\quad E_{1}=\left\langle u,\left(k_{1(0.5)}, k_{1(0.5)}, k_{1(0.4)}\right),\left(k_{2(0.5)}, k_{2(0.5)}, k_{2(0.5)}\right)>\right.$.

Then, the FNS " $Z^{\prime \prime}=\left\langle u\right.$, $\left(k_{1(0.5)}, k_{1(0.5)}, k_{1(0.5)}\right),\left(k_{2(0.3)}, k_{2(0.3)}, k_{2(0.7)}\right)>$ is a FN-gb-CS but, not a FN- $\alpha G C S$ in FN-bi-TS $\left(\mathrm{U}, \mathrm{T}_{\mathrm{N}}\right) . \Rightarrow \mathrm{FN}-\mathrm{Cl}\left(\mathrm{FN}-\mathrm{In}\left(\mathrm{FN}-\mathrm{Cl}\left(\mathrm{CZ}^{\prime}\right)\right)\right)=1_{\mathrm{N}} \nsubseteq \mathrm{E}_{1}$.

```
8- Let }\mp@subsup{E}{1}{}=<u,(\mp@subsup{k}{1(0.9)}{},\mp@subsup{k}{1(0.5)}{},\mp@subsup{k}{1(0.1)}{}),(\mp@subsup{k}{2(0.7)}{},\mp@subsup{k}{2(0.5)}{},\mp@subsup{k}{2(0.2)}{})>
```

Then, the FNS " $Z "=<u,\left(k_{1(0.7)}, k_{1(0.5)}, k_{1(0.3)}\right),\left(k_{2(0.6)}, k_{2(0.5)}, k_{2(0.4)}\right)>$ is a FN-gb-CS but, not a FN-SCS in FN-bi-TS $\left(\mathrm{U}, \mathrm{T}_{\mathrm{N}}\right), \Longrightarrow \operatorname{FN}-\operatorname{In}(F N-C l(" Z "))=1_{N} \nsubseteq{ }^{\prime \prime} Z^{\prime \prime}$.

9- Let $E_{1}=\left\langle u,\left(k_{1(0.8)}, k_{1(0.5)}, k_{1(0.6)}\right),\left(k_{2(0.0)}, k_{2(0.5)}, k_{2(0.1)}\right)>\right.$.

Then, the $F N S^{\prime \prime} Z^{\prime \prime}=<u$, $\left(k_{1(0.6)}, k_{1(0.5)}, k_{1(0.5)}\right),\left(k_{2(0.2)}, k_{2(0.5)}, k_{2(0.3)}\right)>$ is a FN-gb-CS but, not a FN-GSCS in FN-bi-TS $\left(\mathrm{U}, \mathrm{T}_{\mathrm{N}}\right), \Rightarrow F N-\operatorname{In}(F N-C l(" Z "))=1_{N} \nsubseteq \quad " Z "$.

10- Let $U=\{k 1, k 2\}, T_{N 1}=\left\{0_{N}, E_{1}\right\}, T_{N 2}=\left\{0_{N}, 1_{N}, E_{1}, E_{2}\right\}=T_{N}$ be a FN-bi-TS on U.
Where, $\quad E_{I}=\left\langle u,\left(k_{1(0.2)}, k_{1(0.5)}, k_{1(0.8)}\right),\left(k_{2(0.3)}, k_{2(0.5)}, k_{2(0.7)}\right)>\right.$,

$$
E_{2}=\left\langle u,\left(k_{1(0.4)}, k_{1(0.5)}, k_{1(0.6)}\right),\left(k_{2(0.5)}, k_{2(0.5)}, k_{2(0.5)}\right)>.\right.
$$

Then, the FNS "Z" $=<u,\left(k_{1(0.4)}, k_{1(0.5)}, k_{1(0.6)}\right),\left(k_{2(0.5)}, k_{2(0.5)}, k_{2(0.5)}\right)>$ is a FN-gb-CS but, not a FN-GPCS in U $\Rightarrow F N-P C l(" Z)=1_{N}-E_{2} \nsubseteq E_{2}$.

Theorem 3.10: The union of any two FN-gb-CS need not be a FN-gb-CS in general as seen from the following example:

Example 3.11: Let $U=\left\{k_{1}, k_{2}\right\}, T_{N 1}=\left\{0_{N}, E_{l}\right\}$ and $T_{N 2}=\left\{0_{N}, 1_{N}, E_{l}\right\}=T_{N}$ be a FNT on U, where $\mathrm{E}_{1}=\left\langle\mathrm{u},\left(\mathrm{k}_{1(0.6)}, \mathrm{k}_{1(0.5)}, \mathrm{k}_{1(0.4)}\right),\left(\mathrm{k}_{2(0.8)}, \mathrm{k}_{2(0.5)}, \mathrm{k}_{2(0.2)}\right)\right\rangle$.

Then, the FNS " Z " $=<u,\left(k_{1(0.1)}, k_{1(0.5)}, k_{1(0.9)}\right),\left(k_{2(0.8)}, k_{2(0.5)}, k_{2(0.2)}\right)>$,
$M=<u,\left(k_{1(0.6)}, k_{1(0.5)}, k_{1(0.4)}\right),\left(k_{2(0.7)}, k_{2(0.5)}, k_{2(0.3)}\right)>$ is a FN-gb-CS but, $\mathrm{Z} \cap \mathrm{M}$ is not a FN-gb-CS in U
$\Longrightarrow F N-b C l(" Z " \cap M)=1_{N} \nsubseteq E_{1}$.

Theorem 3.12: If Z is a FN -gb-CS in FN -bi-TS $\left(\mathrm{U}, \mathrm{T}_{\mathrm{N}}\right)$, such that $\mathrm{Z} \subseteq \mathrm{M} \subseteq \mathrm{FN}-\mathrm{bCl}(\mathrm{Z})$ then, M is a FN-gb-CS in ($\mathrm{U}, \mathrm{T}_{\mathrm{N}}$)
Proof : Let M be any FNS in a FN-bi-TS $\left(U, T_{N}\right)$, such that $M \subseteq N$ and $N \in T_{N} \Longrightarrow Z \subseteq N$, since Z is a $\mathrm{FN}-\mathrm{gb}-\mathrm{CS}$ and $\mathrm{FN}-\mathrm{bCl}(\mathrm{Z}) \subseteq \mathrm{N}$.
By hypothesis, we have $\mathrm{FN}-\mathrm{bCl}(\mathrm{M}) \subseteq \mathrm{FNbCl}(\mathrm{FN}-\mathrm{bCl}(\mathrm{Z}))=\mathrm{FN}-\mathrm{bCl}(\mathrm{Z}) \subseteq \mathrm{N}$.
Hence, M is FN -gb-CS in U.

Theorem 3.13: If Z is a $\mathrm{FN}-\mathrm{b}-\mathrm{OS}$ and FN -gb-CS in FN -bi-TS $\left(\mathrm{U}, \mathrm{T}_{\mathrm{N}}\right)$, then Z is a $\mathrm{FN}-\mathrm{b}-\mathrm{CS}$.
Proof : Since Z is a FN-b-OS and FN-gb-CS in FN-bi-TS $\left(\mathrm{U}, \mathrm{T}_{\mathrm{N}}\right)$ such that $\mathrm{FN}-\mathrm{bCl}(\mathrm{Z}) \subseteq \mathrm{Z}$. But, $\mathrm{Z} \subseteq \mathrm{FN}-\mathrm{bCl}(\mathrm{Z})$.
Thus, $\mathrm{FN}-\mathrm{bCl}(\mathrm{Z})=\mathrm{Z}$ and hence, Z is $\mathrm{FN}-\mathrm{b}-\mathrm{CS}$ in FN -bi-TS $\left(\mathrm{U}, \mathrm{T}_{\mathrm{N}}\right)$.

Definition 3.14: A fuzzy neutrosophic set Z is said to be a fuzzy neutrosophic generalized b open set (FN-gb-OS) in FN-bi-TS $\left(\mathrm{U}, \mathrm{T}_{\mathrm{N}}\right)$. If the complement 1_{N} - Z is a FN -gb-CS in U . The family of all FN -gb-OS of FN-bi-TS $\left(\mathrm{U}, \mathrm{T}_{\mathrm{N}}\right)$ is denoted by FN -gb-O (U).

Example 3.15: Let $U=\left\{k_{1}, k_{2}\right\}, T_{N 1}=\left\{0_{N}, E_{l}\right\}, T_{N 2}=\left\{0_{N}, l_{N}, E_{1}\right\}=T_{N}$ be FN-bi-TS on U, where $E_{1}=\left\langle u,\left(k_{1(0.3)}, k_{1(0.5)}, k_{1(0.7)}\right),\left(k_{2(0.4)}, k_{2(0.5)}, k_{2(0.6)}\right)\right\rangle$.

Then, the FNS $Z=<u$, $\left(k_{1(0.4)}, k_{1(0.5)}, k_{1(0.6)}\right),\left(k_{2(0.5)}, k_{2(0.5)}, k_{2(0.5)}\right)>$ is a FN-gb-OS in U.

4. Some Applications of Generalized b-Closed Sets in Fuzzy Neutrosophic bi-Topological Spaces

In [14] they propose two models for solving Neutrosophic Goal Programming Problem (NGPP), and in [15-19], we can see many applications of neutrosophic so, we will try in our study to give some application of our new studies concepts.

Definition 4.1: A FN-bi-TS $\left(\mathrm{U}, \mathrm{T}_{\mathrm{N}}\right)$ is called:
i. a fuzzy neutrosophic $\mathrm{b} \frac{1}{2}$ space (for short, FN-b $\frac{1}{2}$ S) if every FN-bCS is a FN-CS.
ii. a fuzzy neutrosophic $\mathrm{gb} \frac{1}{2}$ space (for short, $\mathrm{FN}-\mathrm{gb} \frac{1}{2} \mathrm{~S}$) if every FN -gb-CS is a FN-CS.
iii. a fuzzy neutrosophic $\mathrm{gbU}_{\mathrm{b}}$ space $\left(\mathrm{FN}^{-\mathrm{gb}} \mathrm{b}_{\mathrm{b}} \mathrm{S}\right)$ if every $\mathrm{FN}-\mathrm{gb}-\mathrm{CS}$ is a $\mathrm{FN}-\mathrm{b}-\mathrm{CS}$.

Theorem 4.2: Every $\mathrm{FN}-\mathrm{gb} \frac{1}{2} \mathrm{~S}$ is a $\mathrm{FN}-\mathrm{gb} \mathrm{U}_{\mathrm{b}} \mathrm{S}$ in any $\mathrm{FN}-\mathrm{bi}-\mathrm{TS}\left(\mathrm{U}, \mathrm{T}_{\mathrm{N}}\right)$,.
Proof : Let ($\mathrm{U}, \mathrm{T}_{\mathrm{N}}$) be a FN-gb $\frac{1}{2} \mathrm{~S}$ and let Z be any FN -gb-CS in FN-bi-TS_ $\mathrm{U}, \mathrm{T}_{\mathrm{N}}$), By hypothesis, Z is a FN-CS in U.
Since every FN-CS is a FN-b-CS in U. Hence, $\left(\mathrm{U}, \mathrm{T}_{\mathrm{N}}\right)$, is a $\mathrm{FN}-\mathrm{gbU} \mathrm{U}_{\mathrm{b}} \mathrm{S}$.

The converse of above theorem need not be true in general as seen from the following example:

Fatimah M. Mohammed and Sarah W. Raheem, Generalized b Closed Sets and Generalized b Open Sets in Fuzzy Neutrosophic bi-Topological Spaces

Example 4.3: Let $U=\left\{k_{1}, k_{2}\right\}, T_{N 1}=T_{N}=\left\{0_{N}, 1_{N}, E_{1}\right\}$ and $T_{N 2}=\left\{0_{N}, 1_{N}\right\}$ be a FNT on U, where, $E 1=\left\langle u,\left(k_{1(0.9)}, k_{1(0.5)}, k_{1(0.9)}\right),\left(k_{2(0.1)}, k_{2(0.5)}, k_{2(0.1)}\right)\right\rangle$.

Then, the FNS " $Z^{\prime \prime}=<u,\left(k_{1(0.2)}, k_{1(0.5)}, k_{1(0.3)}\right),\left(k_{2(0.8)}, k_{2(0.5)}, k_{2(0.7)}\right)>$ is a FN-gbU S but, not a $\mathrm{FN}-\mathrm{gb} \frac{1}{2} \mathrm{~S}$.
Theorem 4.4: Let $\left(\mathrm{U}, \mathrm{T}_{\mathrm{N}}\right)$ be a FN-bi-TS and $\left(\mathrm{U}, \mathrm{T}_{\mathrm{N}}\right)$. A FN-gb $\frac{1}{2} \mathrm{~S}$. Then we have the following statement:
i- Any union of FN-gb-CS is a FN-gb-CS.
ii- Any intersection of any FN-gb-OS is a FN-gb-OS.
Proof: (i) Let $\left\{N_{i}\right\}_{i} \in{ }_{J}$ be a collection of FN -gb-CS in a FN-gb- $\frac{1}{2} \mathrm{~S},\left(\mathrm{U}, \mathrm{T}_{\mathrm{N}}\right)$.
Therefore, every FN-gb-CS is a FN-CS.
But, the union of FN-CS is a FN-CS. Hence, the union of FN-gb-CS is a FN-gb-CS in U.
(ii) It can be proved by taking complement in (i).

Theorem 4.5: A FN-bi-TS $\left(\mathrm{U}, \mathrm{T}_{\mathrm{N}}\right)$ is a $\mathrm{FN}-\mathrm{gb} \mathrm{U}_{\mathrm{b}} \mathrm{S}$ if and only if $\mathrm{FN}-\mathrm{gb}(\mathrm{U})=\mathrm{FNb}-\mathrm{O}(\mathrm{U})$
Proof : Necessity : Let "Z" be a FN-gb-OS in a FN-bi-TS (U, T_{N}). Then, $1_{N}-Z$ is a FN-gb-CS.
By hypothesis, 1_{N} - Z is a $\mathrm{FN}-\mathrm{b}-\mathrm{CS}$ in U . Therefore, Z is a $\mathrm{FN}-\mathrm{b}-\mathrm{OS}$
Hence, $\mathrm{FN}-\mathrm{gb}-\mathrm{O}(\mathrm{U})=\mathrm{FNb}-\mathrm{O}(\mathrm{U})$.
Sufficiency : Let Z be a FN-gb-CS in any FN-bi-TS $\left(U, T_{N}\right)$. Then, $1_{N}-Z$ is a FN-gb-OS in U.
By hypothesis, $1_{\mathrm{N}}-\mathrm{Z}$ is a FN-b-OS in U .
Therefore, Z is a FN-b-CS in U. Hence, $\left(\mathrm{U}, \mathrm{T}_{\mathrm{N}}\right)$ is a $\mathrm{FN}-\mathrm{gbU}_{\mathrm{b}} S$.
Theorem 4.8: A FN-bi-TS $\left(U, T_{N}\right)$ is a $\mathrm{FN}-\mathrm{gb} \frac{1}{2}$ if and only if $\mathrm{FN}-\mathrm{gb}-\mathrm{O}(\mathrm{U})=\mathrm{FN}-\mathrm{O}(\mathrm{U})$.
Proof : Necessity : Let Z be a FN-gb-OS in a FN-bi-TS $\left(U, T_{N}\right)$. Then $1_{N}-Z$ is a FN -gb-CS in U .
By hypothesis, $1_{\mathrm{N}}-\mathrm{Z}$ is a FN-CS in U . Therefore, Z is a FN-OS in U .
Hence, $\mathrm{FN}-\mathrm{gb}-\mathrm{O}(\mathrm{U})=\mathrm{FN}-\mathrm{O}(\mathrm{U})$
Sufficiency : Let Z be a FN -gb-CS. Then, $1_{\mathrm{N}}-\mathrm{Z}$ is a FN -gb-OS in U. By hypothesis, $1_{\mathrm{N}}-\mathrm{Z}$ is a FN-OS in U . Therefore, Z is a $\mathrm{FN}-\mathrm{CS}$ in U . Hence, $\left(\mathrm{U}, \mathrm{T}_{\mathrm{N}}\right)$ is a $\mathrm{FN}-\mathrm{gb} \frac{1}{2}$.

5. Conclusions

In this paper, the new concept of a new class of sets was studied and called fuzzy neutrosophic generalized b-closed sets and its complement fuzzy neutrosophic generalized b-open sets. We investigated the relations between fuzzy neutrosophic generalized b closed sets and other fuzzy neutrosophic sets such as α closed sets, regular closed sets, semi closed sets pre closed sets, generalized closed sets, b closed sets, α generalized closed sets and semi generalized closed sets based of fuzzy neutrosophic bi-topological spaces and applied some new spaces to be applications of the new defined sets.

Fatimah M. Mohammed and Sarah W. Raheem, Generalized b Closed Sets and Generalized b Open Sets in Fuzzy Neutrosophic bi-Topological Spaces

6. Acknowledgements

The authors would like to thanks the reviewers for their valuable suggestions to improve the paper and get it as in this design.

References

1. L. A. Zadeh (1965). Fuzzy sets. Information and Control, , 8(3), 338-353..
2. K. Atanassov and S. Stoeva (1983). Intuitionistic Fuzzy Sets, in: Polish Syrup. On Interval \& Fuzzy Mathematics, Poznan, 23-26.
3. K. Atanassov. Review and New Results on Intuitionistic Fuzzy Sets, Preprint IM- MFAIS, Sofia, 1988, pp. 1-88.
4. K. Atanassov (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20(1), 87-96.
5. F. Smarandache (2005). Neutrosophic set- a generalization of intuitionistic fuzzy sets. International Journal of Pure and Applied Mathematics, 24(3), 287-297.
6. F. Smaradache (2010), Neutrosophic Set A Generalization of Intuitionistic Fuzzy set. Journal of Defense Resourses Management, Vol. 1, 107-114
7. S. A. Alblowi, A. A. Salama and M. Eisa (2014). New concepts of neutrosophic sets. International Journal of Mathematics and Computer Applications Research, 4(1), 59-66.
8. A. A. Salama and F. Smarandache (2014). Neutrosophic Crisp Set Theory. Neutrosophic Sets and Systems, Vol. 5, 27-35.
9. Y. Veereswari (2017). An Introduction to Fuzzy Neutrosophic Topological Spaces, IJMA,,Vol.8, 144-149.
10. R. K. Al-Hamido (2018). Neutrosophic Crisp Bi-Topological Spaces, Neutrosophic Sets and Systems, Vol. 21, 66-73
11. F. M. Mohammed and Sh. F. Matar (2018). Fuzzy Neutrosophic Alpha ${ }^{\text {m}}$ - closed set in Fuzzy Neutrosophic Topological Spaces. Neutrosophic Set and Systems, Vol. 21, 56-65.
12. F. M. Mohammed, A. A. Hijab and Sh. F. Matar (2018). Fuzzy Neutrosophic Weakly- Generalized closed set in Fuzzy Neutrosophic Topological Spaces. University of Anbar for Pure Science, Vol. 12, 63-73.
13. F. M. Mohammed \& S.W. Raheem (2020). Weakly b-Closed Sets and Weakly b.Open Sets based of Fuzzy Neutrosophic bi-Topological Spaces. (In Press).
14. A., Mohamed, I. M. Hezam, and F. Smarandache (2016). Neutrosophic goal programming, Neutrosophic set and systems, Vol. 11, 112-118.
15. Abdel-Basset, M., Mohamed, R., Elhoseny, M., \& Chang, V. (2020). Evaluation framework for smart disaster response systems in uncertainty environment. Mechanical Systems and Signal Processing, 145, 106941.
16. Abdel-Basset, M., Ali, M., \& Atef, A. (2020). Uncertainty assessments of linear time-cost tradeoffs using neutrosophic set. Computers \& Industrial Engineering, 141, 106286.
17. Abdel-Basset, M., Ali, M., \& Atef, A. (2020). Resource levelling problem in construction projects under neutrosophic environment. The Journal of Supercomputing, 76(2), 964-988.
18. Abdel-Basset, M., Gamal, A., Son, L. H., \& Smarandache, F. (2020). A Bipolar Neutrosophic Multi Criteria Decision Making Framework for Professional Selection. Applied Sciences, 10(4), 1202.
19. Abdel-Basset, M., Mohamed, R., Zaied, A. E. N. H., Gamal, A., \& Smarandache, F. (2020). Solving the supply chain problem using the best-worst method based on a novel Plithogenic model. In Optimization Theory Based on Neutrosophic and Plithogenic Sets (pp. 1-19). Academic Press.

Received: Apr 21, 2020. Accepted: July 11, 2020

Fatimah M. Mohammed and Sarah W. Raheem, Generalized b Closed Sets and Generalized b Open Sets in Fuzzy Neutrosophic bi-Topological Spaces

Neutrosophic Soft Rough Topology and its Applications to Multi-Criteria Decision-Making

Muhammad Riaz ${ }^{1}$, Florentin Smarandache ${ }^{2}$, Faruk Karaaslan ${ }^{3}$, Masooma Raza Hashmi ${ }^{4}$, Iqra Nawaz ${ }^{5}$
1 Department of Mathematics, University of the Punjab Lahore, Pakistan. E-mail: mriaz.math@pu.edu.pk
2 Department of Mathematics, University of New Mexico, Gallup, NM 87301, USA. E-mail: smarand@unm.edu
3 Department of Mathematics, Çankiri Karatekin University, Çankiri, Turkey. Email: fkaraaslan@karatekin.edu.tr
4 Department of Mathematics, University of the Punjab, Lahore, Pakistan. E-mail: masoomaraza25@gmail.com
5 Department of Mathematics, University of the Punjab, Lahore, Pakistan. E-mail: iqra.nawaz245@gmail.com

Abstract

In this manuscript, we introduce the notion of neutrosophic soft rough topology (NSRtopology) defined on neutrosophic soft rough set (NSR-set). We define certain properties of NSRtopology including NSR-interior, NSR-closure, NSR-exterior, NSR-neighborhood, NSR-limit point, and NSR-bases. Furthermore, we aim to develop some multi-criteria decision-making (MCDM) methods based on NSR-set and NSR-topology to deal with ambiguities in the real-world problems. For this purpose, we establish algorithm 1 for suitable brand selection and algorithm 2 to determine core issues to control crime rate based on NSR-lower approximations, NSR-upper approximations, matrices, core, and NSR-topology.

Keywords: Neutrosophic soft rough (NSR) set, NSR-topology, NSR-interior, NSR-closure, NSRexterior, NSR-neighborhood, NSR-limit point, NSR-bases, Multi-criteria group decision making.

1. Introduction

The limitations of existing research are recognized in the field of management, social sciences, operational research, medical, economics, artificial intelligence, and decision-making problems. These limitations can be dealt with the Fuzzy set [1], rough set [2, 3], neutrosophic set [4, 5], soft set [6], and different hybrid structures of these sets. Rough set theory was initiated by Pawlak [2], which is an effective mathematical model to deal with vagueness and imprecise knowledge. Its boundary region gives the concept of vagueness, which can be interpreted by using the vagueness of Frege's idea. He invented that vagueness can be dealt with the upper and lower approximations of precise set using any equivalence relation. In the real life, rough set theory has many applications in different fields such as social sciences, operational research, medical, economics, and artificial intelligence, etc. Many real-world problems have neutrosophy in their nature and cannot handle by using fuzzy or intuitionistic fuzzy set theory. For example, when we are dealing with conductors and nonconductors there must be a possibility having insulators. For this purpose, Smarandache [4, 5] inaugurated the neutrosophic set theory as a generalization of fuzzy and intuitionistic fuzzy set theory. The neutrosophic set yields the value from real standard or non-standard subsets of $]^{-} 0,1^{+}[$. It is difficult to utilize these values in daily life science and technology problems. Therefore, the concept of a single-valued neutrosophic set, which takes value from the subset of [0,1], as defined by Wang et al. [7]. The beauty of this set is that it gives the membership grades for truth, indeterminacy
and falsity for the corresponding attribute. All the grades are independent of each other and provide information about the three shades of an arbitrary attribute. Smarandache [8] extended the neutrosophic set respectively to neutrosophic Overset (when some neutrosophic components are > 1), Neutrosophic Underset (when some neutrosophic components are <0), and to Neutrosophic Offset (when some neutrosophic components are off the interval $[0,1]$, i.e. some neutrosophic components are >1 and other neutrosophic components <0). In 2016, Smarandache introduced the Neutrosophic Tripolar Set and Neutrosophic Multipolar Set, also the Neutrosophic Tripolar Graph and Neutrosophic Multipolar Graph [8].

The soft set is a mathematical model to deal ambiguities and imprecisions in parametric manners. This is another abstraction of the crisp set theory. In 1999, Molodtsov [9] worked on parametrizations of the universal set and invented a parameterized family of subsets of the universal set called soft set. In recent years, many mathematicians worked on different hybrid structures of the fuzzy and rough sets. Ali et al. [10, 11] established some novel operations in the soft sets, rough soft sets and, fuzzy soft set theory. Aktas and Çağman [12] introduced various results on soft sets and soft groups. Bakier et al. [13] introduced the idea of soft rough topology. Çağman et al. [14] introduced various results on soft topology. Chen [15] worked on parametrizations reduction of soft sets and gave its applications in decision-making. Feng et al. [16, 17] established various results on soft set, fuzzy set, rough set and soft rough sets with the help of illustrations. Hashmi et al. [18] introduced the notion of m-polar neutrosophic set and m-polar neutrosophic topology and their applications to multicriteria decision-making (MCDM) in medical diagnosis and clustering analysis. Hashmi and Riaz [19] introduced a novel approach to the census process by using Pythagorean m-polar fuzzy Dombi's aggregation operators. Kryskiewicz [20] introduced the rough set approach to incomplete information systems. Karaaslan and Çağman [21] introduced bipolar soft rough sets and presented their applications in decision-making. Kumar and Garg [22] introduced the TOPSIS method based on the connection number of set pair analyses under an interval-valued intuitionistic fuzzy set environment. Maji et al. [23,24,25] worked on some results of a soft set and gave its applications in decision-making problems. He also invented the idea of a neutrosophic soft set and gave various results to intricate the concept with numerous applications. Naeem et al. [26] introduced the novel concept of Pythagorean m-polar fuzzy sets and the TOPSIS method for the selection of advertisement mode. Peng and Garg [27] introduced algorithms for interval-valued fuzzy soft sets in emergency decision making based on WDBA and CODAS with new information measures. Peng and Yang [28] presented some results for Pythagorean fuzzy sets. Peng et al. [29] introduced Pythagorean fuzzy information measures and their applications. Peng et al. [30] introduced a Pythagorean fuzzy soft set and its application. Peng and Dai [31] introduced certain approaches to single-valued neutrosophic MADM based on MABAC, TOPSIS and, new similarity measure with score function. Marei [32] invented some more results on neutrosophic soft rough sets and worked on its modifications. Pei and Miao [33] worked on the information system using the idea of a soft set. Quran et al. [34] introduced a novel approach to neutrosophic soft rough set under uncertainty. Riaz et al. [35] introduced soft rough topology with its applications to group decision making.

Riaz and Hashmi [36] introduced the notion of linear Diophantine fuzzy Set (LDFS) and its applications towards the MCDM problem. Linear Diophantine fuzzy Set (LDFS) is superior to IFS, PFS and, q-ROFS. Riaz and Hashmi [37] introduced novel concepts of soft rough Pythagorean mPolar fuzzy sets and Pythagorean m-polar fuzzy soft rough sets with application to decision-making. Riaz and Tehrim [38] established the idea of cubic bipolar fuzzy ordered weighted geometric aggregation operators and, their application using internal and external cubic bipolar fuzzy data. They presented various illustrations and decision-making applications of these concepts by using different algorithms. Roy and Maji [39] introduced a fuzzy soft set-theoretic approach to decisionmaking problems. Salama [40] investigated some topological properties of rough sets with tools for data mining. Shabir and Naz [41] worked on soft topological spaces and presented their applications. Thivagar et al. [42] presented some mathematical innovations of a modern topology in medical events. Xueling et al. [43] presented some decision-making methods based on certain hybrid soft set models. Zhang et al. [44, 45, 46] established fuzzy soft β-covering based fuzzy rough sets, fuzzy soft coverings based fuzzy rough sets and, covering on generalized intuitionistic fuzzy rough sets with their applications to multi-attribute decision-making (MADM) problems. Broumi et al. [47] established the concept of rough neutrosophic sets. Christianto et al. [48] introduced the idea about the extension of standard deviation notion with neutrosophic interval and quadruple neutrosophic numbers. Adeleke et al. [49,50] invented the concepts of refined eutrosophic rings I and refined neutrosophic rings II. Parimala et al. [51] worked on $\alpha \omega$-closed sets and its connectedness in terms of neutrosophic topological spaces. Ibrahim et al. [52] introduced the neutrosophic subtraction algebra and neutrosophic subraction semigroup.
The neutrosophic soft rough set and neutrosophic soft rough topology have many applications in MCDM problems. This hybrid erection is the most efficient and flexible rather than other constructions. It is constructed with a combination of neutrosophic, soft and, rough set theory. The interesting point in this structure is that by using this idea, we can deal with those type of models which have roughness, neutrosophy and, parameterizations in their nature.
The motivation of this extended and hybrid work is presented step by step in the whole manuscript. This model is generalized form and use to collect data at a large scale and applicable in medical, engineering, artificial intelligence, agriculture and, other daily life problems. In the future, this work can be gone easily for other approaches and different types of hybrid structures.
The layout of this paper is systematized as follows. Section 2, implies some basic ideas including soft set, rough set, neutrosophic set, neutrosophic soft set and, neutrosophic soft rough set. We elaborate on these ideas with the help of illustrations. In Section 3, we establish neutrosophic soft rough topology (NSR-topology) with some examples. We introduce some topological structures on NSRtopology named NSR-interior, NSR-closure, NSR-exterior, NSR-neighborhood, NSR-limit point and, NSR-bases. In Section 4 and 5, we present multi-criteria decision-making problems by using two different algorithms on NSR-set and NSR-topology. We use the idea of upper and lower approximations for NSR-set and construct algorithms using NSR-sets and NSR-bases We discuss the optimal results obtained from both algorithms and present a comparitive analysis of proposed approach with some existing approaches. Finally, the conclusion of this research is summarized in section 6.

2. Preliminaries

This section presents some basic definitions including soft set, rough set, neutrosophic soft set, and neutrosophic soft rough set.

Definition 2.1 [18]

Let U be the universal set. Let $I(U)$ is collection of subsets of U. A pair (Θ, \mathfrak{A}) is said to be a soft set over the universe U, where $\mathfrak{A} \subseteq E$ and $\Theta: \mathfrak{A} \rightarrow I(U)$ is a set-valued function. We denote soft set as (Θ, \mathfrak{H}) or $\Theta_{\mathfrak{A}}$ and mathematically write it as

$$
\Theta_{\mathfrak{A}}=\{(\xi, \Theta(\xi)): \xi \in \mathfrak{A}, \Theta(\xi) \in \mathrm{I}(\mathrm{U})\} .
$$

For any $\xi \in \mathfrak{A}, \Theta(\xi)$ is ξ-approximate elements of soft set $\Theta_{\mathfrak{A}}$.
Definition 2.2 [21]
Let U be the initial universe and $Y \subseteq U$. Then, lower, upper, and boundary approximations of Y are defined as

$$
\begin{gathered}
\Re_{\mathrm{a}}(\mathrm{Y})=\mathrm{U}_{\mathrm{g} \in \mathrm{U}}\{\Re(\mathrm{~g}): \Re(\mathrm{g}) \subseteq \mathrm{Y}\}, \\
\mathfrak{R}^{\mathrm{a}}(\mathrm{Y})=\mathrm{U}_{\mathrm{g} \in \mathrm{U}}\{\mathfrak{R}(\mathrm{~g}): \Re(\mathrm{g}) \cap \mathrm{Y} \neq \emptyset\},
\end{gathered}
$$

and

$$
\mathrm{B}_{\mathfrak{R}}(\mathrm{Y})=\mathfrak{R}^{\mathrm{a}}(\mathrm{Y})-\mathfrak{R}_{\mathrm{a}}(\mathrm{Y}),
$$

respectively. Where \mathfrak{R} is an indiscernibility relation $\mathfrak{R} \subseteq U \times U$ which indicates our information about elements of U. The set Y is said to be defined if $\mathfrak{R}^{\mathfrak{a}}(Y)=\mathfrak{R}_{\mathfrak{a}}(Y)$. If $\mathfrak{R}^{\mathfrak{a}}(Y) \neq \mathfrak{R}_{\mathfrak{a}}(Y)$ i.e $B_{R}(Y) \neq$ \emptyset, the set Y is rough set w.r.t \mathfrak{R}.
Definition 2.3 [41] Let U be the initial universe. Then, a neutrosophic set N on the universe U is defined as

$$
\begin{gathered}
N=\left\{<\mathrm{g}, \mathfrak{T}_{\mathrm{N}}(\mathrm{~g}), \mathfrak{I}_{\mathrm{N}}(\mathrm{~g}), \mathfrak{F}_{\mathrm{N}}(\mathrm{~g})>: \mathrm{g} \in \mathrm{U}\right\}, \text { where } \\
-0 \leq \mathfrak{T}_{\mathrm{N}}(\mathrm{~g})+\mathfrak{I}_{\mathrm{N}}(\mathrm{~g})+\mathfrak{F}_{\mathrm{N}}(\mathrm{~g}) \leq 3^{+}, \text {where } \\
\mathfrak{T}, \mathfrak{I}, \mathfrak{F}: \mathrm{U} \rightarrow]^{-} 0,1^{+}[.
\end{gathered}
$$

Where $\mathfrak{T}, \mathfrak{J}$ and \mathfrak{F} represent the degree of membership, degree of indeterminacy and degree of nonmembership for some $g \in U$, respectively.
Definition 2.4 [16] Let U be an initial universe and E be a set of parameters. Suppose $\mathfrak{A} \subset E$, and let $\mathcal{J}(\mathrm{U})$ represents the set of all neutrosophic sets of U . The collection (Φ, \mathfrak{A}) is said to be the neutrosophic soft set over U, where Φ is a mapping given by

$$
\Phi: \mathfrak{A} \rightarrow \mathcal{J}(\mathrm{U}) .
$$

The set containing all neutrosophic soft sets over U is denoted by $N S_{U}$.
Example 2.5 Consider $\mathrm{U}=\left\{\mathrm{g}_{1}, \mathrm{~g}_{2}, \mathrm{~g}_{3}, \mathrm{~g}_{4}, \mathrm{~g}_{5}\right\}$ be set of objects and attribute set is given by $\mathfrak{H}=$ $\left\{\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}\right\}=\mathrm{E}=\mathfrak{A}$, where

The neutrosophic soft set represented as $\Phi_{\mathfrak{A}}$. Consider a mapping $\Phi: \mathfrak{A} \rightarrow I(U)$ such that
$\Phi\left(\xi_{1}\right)=\left\{<g_{1}, 0.7,0.7,0.3>,<g_{2}, 0.5,0.7,0.7>,<g_{3}, 0.7,0.5,0.2>,<g_{4}, 0.7,0.4,0.4>,<g_{5}, 0.9,0.3,0.4>\right\}$,
$\Phi\left(\xi_{2}\right)=\left\{<\mathrm{g}_{1}, 0.9,0.5,0.4>,<\mathrm{g}_{2}, 0.7,0.3,0.5>,<\mathrm{g}_{3}, 0.9,0.2,0.4>,<\mathrm{g}_{4}, 0.9,0.3,0.3>,<\mathrm{g}_{5}, 0.9,0.4,0.3>\right\}$,
$\Phi\left(\xi_{3}\right)=\left\{<\mathrm{g}_{1}, 0.8,0.5,0.4>,<\mathrm{g}_{2}, 0.7,0.5,0.4>,<\mathrm{g}_{3}, 0.8,0.3,0.6>,<\mathrm{g}_{4}, 0.6,0.3,0.7>,<\mathrm{g}_{5}, 0.8,0.4,0.5>\right\}$,
$\Phi\left(\xi_{4}\right)=\left\{<\mathrm{g}_{1}, 0.9,0.7,0.5>,<\mathrm{g}_{2}, 0.8,0.7,0.7>,<\mathrm{g}_{3}, 0.8,0.7,0.5>,<\mathrm{g}_{4}, 0.8,0.6,0.7>,<\mathrm{g}_{5}, 1.0,0.6,0.7>\right\}$.
The tabular representation of neutrosophic soft set $K=(\Phi, \mathfrak{H})$ is given in Table 1 .

(Φ, \mathfrak{R})	g_{1}	$\mathrm{~g}_{2}$	$\mathrm{~g}_{3}$	$\mathrm{~g}_{4}$	$\mathrm{~g}_{5}$
ξ_{1}					
ξ_{2}	$(0.7,0.7,0.3)$	$(0.5,0.7,0.7)$	$(0.7,0.5,0.2)$	$(0.7,0.4,0.4)$	$(0.9,0.3,0.4)$
	$(0.9,0.5,0.4)$	$(0.7,0.3,0.5)$	$(0.9,0.2,0.4)$	$(0.9,0.3,0.3)$	$(0.9,0.4,0.3)$
ξ_{3}	$(0.8,0.5,0.4)$	$(0.7,0.5,0.4)$	$(0.8,0.3,0.6)$	$(0.6,0.3,0.7)$	$(0.8,0.4,0.5)$
ξ_{4}					
	$(0.9,0.7,0.5)$	$(0.8,0.7,0.7)$	$(0.8,0.7,0.5)$	$(0.8,0.6,0.7)$	$(1.0,0.6,0.7)$

Table 1: Neutrosophic soft set (Φ, \mathfrak{H})

Definition 2.6 Let (Φ, \mathfrak{H}) be a neutrosophic soft set on a universe U. For some elements $g \in U$, a neutrosophic right neighborhood, regarding $\xi \in \mathfrak{A}$ is interpreted as follows;

$$
\mathrm{g}_{\xi}=\left\{\mathrm{g}_{\mathrm{i}} \in \mathrm{U}: \mathfrak{I}_{\xi}\left(\mathrm{g}_{\mathrm{i}}\right) \geq \mathfrak{I}_{\xi}(\mathrm{g}), \mathfrak{J}_{\xi}\left(\mathrm{g}_{\mathrm{i}}\right) \geq \mathfrak{J}_{\xi}(\mathrm{g}), \mathfrak{F}_{\xi}\left(\mathrm{g}_{\mathrm{i}}\right) \leq \mathfrak{F}_{\xi}(\mathrm{g})\right\}
$$

Definition 2.7 Let (Φ, \mathfrak{A}) be a neutrosophic soft set over a universe U. For some elements $g \in U$, a neutrosophic right neighborhood regarding all parameters \mathfrak{A} is interpreted as follows;

$$
\mathrm{g}]_{\mathfrak{A}}=\cap\left\{\mathrm{g}_{\xi_{i}}: \xi_{\mathrm{i}} \in \mathfrak{A}\right\}
$$

Example 2.8 Consider Example 2.5 then we find the following neutosophic right neighborhood regarding all parameters \mathfrak{A} as

$$
\begin{gathered}
\mathrm{g}_{1 \xi_{1}}=\mathrm{g}_{1 \xi_{2}}=\mathrm{g}_{1 \xi_{3}}=\mathrm{g}_{1 \xi_{4}}=\left\{\mathrm{g}_{1}\right\}, \mathrm{g}_{2 \xi_{1}}=\mathrm{g}_{2 \xi_{3}}=\left\{\mathrm{g}_{1}, \mathrm{~g}_{2}\right\}, \mathrm{g}_{2 \xi_{2}}=\left\{\mathrm{g}_{1}, \mathrm{~g}_{2}, \mathrm{~g}_{4}, \mathrm{~g}_{5}\right\}, \mathrm{g}_{2 \xi_{4}}=\left\{\mathrm{g}_{1}, \mathrm{~g}_{2}, \mathrm{~g}_{3}\right\}, \mathrm{g}_{3 \xi_{1}} \\
=\mathrm{g}_{3 \xi_{4}}=\left\{\mathrm{g}_{1}, \mathrm{~g}_{3}\right\}, \mathrm{g}_{3 \xi_{2}}=\left\{\mathrm{g}_{1}, \mathrm{~g}_{3}, \mathrm{~g}_{4}, \mathrm{~g}_{5}\right\}, \mathrm{g}_{3 \xi_{3}}=\left\{\mathrm{g}_{1}, \mathrm{~g}_{3}, \mathrm{~g}_{5}\right\}, \mathrm{g}_{4 \xi_{1}}=\left\{\mathrm{g}_{1}, \mathrm{~g}_{3}, \mathrm{~g}_{4}\right\}, \mathrm{g}_{4 \xi_{2}} \\
=\left\{\mathrm{g}_{4}, \mathrm{~g}_{5}\right\}, \mathrm{g}_{4 \xi_{3}}=\mathrm{U}, \mathrm{~g}_{4 \xi_{4}}=\mathrm{U}, \mathrm{~g}_{5 \xi_{1}}=\mathrm{g}_{5 \xi_{2}}=\mathrm{g}_{5 \xi_{4}}=\left\{\mathrm{g}_{5}\right\}, \mathrm{g}_{5 \xi_{3}}=\left\{\mathrm{g}_{1}, \mathrm{~g}_{5}\right\} .
\end{gathered}
$$

It follows that,

$$
\begin{aligned}
\left.\mathrm{g}_{1}\right]_{\mathfrak{A}} & =\left\{\mathrm{g}_{1}\right\}, \\
\left.\mathrm{g}_{2}\right]_{\mathfrak{A}} & =\left\{\mathrm{g}_{1}, \mathrm{~g}_{2}\right\}, \\
\left.\mathrm{g}_{3}\right]_{\mathfrak{A}} & =\left\{\mathrm{g}_{1}, \mathrm{~g}_{3}\right\}, \\
\left.\mathrm{g}_{4}\right]_{\mathfrak{A}} & =\left\{\mathrm{g}_{4}\right\}, \\
\left.\mathrm{g}_{5}\right]_{\mathfrak{A}} & =\left\{\mathrm{g}_{5}\right\} .
\end{aligned}
$$

Definition 2.9 Let (Φ, \mathfrak{U}) be a neutrosophic soft set over U. For any $X \subseteq U$, neutrosophic soft lower $\left(\underline{a p r}_{\text {NSR }}\right)$ approximation, neutrosophic soft upper ($\overline{\mathrm{apr}}_{\mathrm{NSR}}$) approximation, and neutrosophic soft boundary ($\mathrm{B}_{\mathrm{NSR}}$) approximation of X are defined as

$$
\begin{gathered}
\left.\left.\underline{\operatorname{apr}}_{\mathrm{NSR}}(\mathrm{X})=\mathrm{U}\{\mathrm{~g}]_{\mathfrak{R}}: \mathrm{g} \in \mathrm{U}, \mathrm{~g}\right]_{\mathfrak{R}} \subseteq \mathrm{X}\right\} \\
\left.\left.\overline{\operatorname{apr}}_{\mathrm{NSR}}(\mathrm{X})=\mathrm{U}\{\mathrm{~g}]_{\mathfrak{R}}: \mathrm{g} \in \mathrm{U}, \mathrm{~g}\right]_{\mathfrak{R}} \cap \mathrm{X} \neq \emptyset\right\} \\
\mathrm{B}_{\mathrm{NSR}}(\mathrm{X})=\overline{\operatorname{apr}}_{\mathrm{NSR}}(\mathrm{X})-\underline{\operatorname{apr}_{\mathrm{NSR}}}(\mathrm{X}),
\end{gathered}
$$

respectively. If $\operatorname{apr}_{\text {NSR }}(X)=\overline{\operatorname{apr}}_{\text {NSR }}(X)$ then X is neutrosophic soft definable set.
Example 2.10 Consider Example 2.5, If $\mathrm{X}=\left\{\mathrm{g}_{1}\right\} \subseteq \mathrm{U}$, then $\underline{\operatorname{apr}}_{\mathrm{NSR}}(\mathrm{X})=\left\{\mathrm{g}_{1}\right\}$ and $\overline{\operatorname{apr}}_{\mathrm{NSR}}(\mathrm{X})=$ $\left\{\mathrm{g}_{1}, \mathrm{~g}_{2}, \mathrm{~g}_{3}\right\}$. Since its clear $\underline{\operatorname{apr}}_{\mathrm{NSR}}(\mathrm{X}) \neq \overline{\operatorname{apr}}_{\mathrm{NSR}}(\mathrm{X})$, so X is neutrosophic soft rough set on U.

3 Neutrosophic Soft Rough Topology

In this section, we introduce and study the idea of neutrosophic soft rough topology and its related properties. Concepts of (NSR)-open set, (NSR)-closed set, (NSR)-closure, (NSR)-interior, (NSR)exterior, (NSR)-neighborhood, (NSR)-limit point, and (NSR)-bases are defined.
Definition 3.1 Let U be the initial space, $\mathscr{V} \subseteq U$ and $G=(U, K)$ be a neutrosophic soft approximation space, where $K=(\Phi, \mathfrak{U})$ is a neutrosophic soft set. The upper and lower approximations are calculated on the basis of neutrosophic soft approximation space and neighborhoods. Then, the collection

$$
\tau_{\mathrm{NSR}}(\mathfrak{Y})=\left\{\mathrm{U}, \emptyset, \underline{\operatorname{apr}}_{\mathrm{NSR}}(\mathfrak{Y}), \overline{\operatorname{apr}}_{\mathrm{NSR}}(\mathfrak{Y}), \mathrm{B}_{\mathrm{NSR}}(\mathfrak{Y})\right\}
$$

is called neutrosophic soft rough topology (NSR-topology) which guarantee the following postulates:

- U and \emptyset belongs to $\tau_{\text {NSR }}(\mathfrak{Y})$.
- Union of members of $\tau_{\text {NSR }}(\mathfrak{Y})$ belongs to $\tau_{\text {NSR }}(\mathfrak{Y})$.
- Finite Intersection of members of $\tau_{\text {NSR }}(\mathfrak{Y})$ belongs to $\tau_{\text {NSR }}(\mathfrak{Y})$.

Then $\left(U, \tau_{\text {NSR }}(\mathscr{2}), E\right)$ is said to be NSR-topological space, if $\tau_{\text {NSR }}(\mathscr{Y})$ is Neutrosophic soft rough topology.

Note that Neutrosophic soft rough topology is based on lower and upper approximations of neutrosophic soft rough set.
Example 3.2 From Example 2.5, if $\mathfrak{V}=\left\{\mathrm{g}_{2}, \mathrm{~g}_{4}\right\} \subseteq U$, we obtain $\operatorname{apr}_{\mathrm{NSR}}(\mathfrak{Y})=\left\{\mathrm{g}_{4}\right\}, \overline{\operatorname{apr}}_{\mathrm{NSR}}(\mathfrak{Y})=$ $\left\{\mathrm{g}_{1}, \mathrm{~g}_{2}, \mathrm{~g}_{4}\right\}$ and $\mathrm{B}_{\mathrm{NSR}}(\mathfrak{Y})=\left\{\mathrm{g}_{1}, \mathrm{~g}_{2}\right\}$. Then,

$$
\tau_{\mathrm{NSR}}(\mathfrak{V})=\left\{\mathrm{U}, \emptyset,\left\{\mathrm{~g}_{4}\right\},\left\{\mathrm{g}_{1}, \mathrm{~g}_{2}, \mathrm{~g}_{4}\right\},\left\{\mathrm{g}_{1}, \mathrm{~g}_{2}\right\}\right\}
$$

is a NSR-topology.
Definition 3.3 Let $\left(\mathrm{U}, \tau_{\text {NSR }}(\mathfrak{Y})\right.$, E) be an NSR-topological space. Then, the members of $\tau_{\text {NSR }}(\mathfrak{V})$ are called NSR-open sets. An NSR-set is said to be an NSR-closed set if its complement belongs to $\tau_{\text {NSR }}(\mathfrak{V})$.

Proposition 3.4 Consider ($\mathrm{U}, \tau_{\mathrm{NSR}}(\mathfrak{Y})$, E) as NSR-space over U. Then,

- U and \emptyset are NSR-closed sets.
- The intersection of any number of NSR-closed sets is an NSR-closed set over U.
- The finite union of NSR-closed sets is an NSR-closed set over U.

Proof. The proof is straightforward.
Definition 3.5 Let $\left(U, \tau_{\text {NSR }}(\mathfrak{V})\right.$, E) be an NSR-space over U and $\tau_{\text {NSR }}(\mathfrak{V})=\{U, \emptyset\}$. Then, $\tau_{\text {NSR }}$ is called NSR-indiscrete topology on U w.r.t \mathfrak{V} and corresponding space is said to be an NSRindiscrete space over U.
Definition 3.6 Let $\left(U, \tau_{N S R}(\mathfrak{V})\right.$, E) is an NSR-topological space and $A \subseteq B \subseteq U$. Then, the collection $\tau_{N S R_{A}}=\left\{B_{i} \cap A: B_{i} \in \tau_{N S R}, i \in L \subseteq N\right\}$ is called NSR-subspace topology on A. Then, $\left(A, \tau_{N S R_{A}}\right)$ is called an NSR-topological subspace of ($\mathrm{B}, \tau_{\text {NSR }}$).
Definition 3.7 Let $\left(\mathrm{U}, \tau_{\mathrm{NSR}^{\prime}}(\mathfrak{Y})\right.$, E) and ($\left.\mathrm{U}, \tau_{\mathrm{NSR}}(\mathfrak{X}), \mathrm{E}\right)$ be two NSR-topological spaces. $\tau_{\mathrm{NSR}^{\prime}}(\mathfrak{Y})$ is finer than $\tau_{\mathrm{NSR}}(\mathfrak{X})$, if $\tau_{\mathrm{NSR}^{\prime}}(\mathfrak{Y}) \supseteq \tau_{\mathrm{NSR}}(\mathfrak{X})$.
Definition 3.8 Let ($\mathrm{U}, \tau_{\mathrm{NSR}}(\mathfrak{Y})$, E) be a NSR-topological space and $\beta_{\mathrm{NSR}} \subseteq \tau_{\mathrm{NSR}}$. If we can write members of τ_{NSR} as the union of members of β_{NSR}, then $\beta_{\text {NSR }}$ is called NSR-basis for the NSRtopology $\tau_{\text {NSR }}$.
Proposition 3.9 If $\tau_{\text {NSR }}(\mathfrak{Y})$ is an NSR-topology on U w.r.t \mathfrak{Y} the the collection

$$
\beta_{\mathrm{NSR}}=\left\{\mathrm{U}, \underline{\mathrm{apr}}_{\mathrm{NSR}}(\mathfrak{Y}), \mathrm{B}_{\mathrm{NSR}}(\underline{Y})\right\}
$$

is a base for $\tau_{\mathrm{NSR}}(\mathfrak{Y})$

Theorem 3.10 Let $\left(\mathrm{U}, \tau_{\mathrm{NSR}}(\mathfrak{Y})\right.$, E) and ($\mathrm{U}, \tau_{\mathrm{NSR}^{\prime}}\left(\mathfrak{V}^{\prime}\right)$, E) be two NSR-topological spaces w.r.t \mathfrak{V} and ϑ^{\prime} respectively. Let $\beta_{\text {NSR }}$ and $\beta_{\text {NSR }}$ be NSR-bases for $\tau_{\text {NSR }}$ and $\tau_{\text {NSR }}$, respectively. If $\beta_{\text {NSR }} \subseteq \beta_{\text {NSR }}$ then τ_{NSR} is finer than τ_{NSR}, and τ_{NSR}, is weaker than τ_{NSR}.
Theorem 3.11 Let $\left(U, \tau_{N S R}(\mathfrak{V}), E\right)$ be an NSR-topological space. If $\beta_{N S R}$ is an NSR-basis for $\tau_{N S R}$. Then, the collection $\beta_{N S R_{B}}=\left\{A_{i} \cap B: A_{i} \in \beta_{N S R}, i \in I \subseteq \mathbb{N}\right\}$ is an NSR-basis for the NSR-subspace topology on B.
Proof. Consider $A_{i} \in \tau_{N S R_{B}}$. By definition of NSR-subspace topology, $C=D \cap B$, where $D \in \tau_{N S R}$. Since $D \in \tau_{N S R}$, it follows that $D=\bigcup_{A_{i} \in \beta_{N S R}} A_{i}$. Therefore,

$$
C=\left(\cup_{A_{i} \in \beta_{N S R}} A_{i}\right) \cap B=\cup_{A_{i} \in \beta_{N S R}}\left(A_{i} \cap B\right) .
$$

3.1 Main Results

We present some results of neutrosophic soft rough topology including NSR-interior, NSR-exterior, NSR-closure, NSR-frontier, NSR-neighbourhood and NSR-limit point. These are some topological properties of NSR-topology and can be used to prove various results related to NSR-topological spaces.
Definition 3.12 Let $\left(U, \tau_{N S R}(\mathfrak{Y}), E\right)$ be an NSR-topological space w.r.t \mathfrak{V}, where $T \subseteq U$ be an arbitrary subset. The NSR-interior of T is union of all NSR-open subsets of T and we denote it as $\operatorname{Int} t_{N S R}(T)$.
We verify that $\operatorname{Int}_{N S_{R}}(T)$ is the largest NSR-open set contained by T.
Theorem 3.13 Let $\left(U, \tau_{N S R}(\mathfrak{V}), E\right)$ be a NSR-topological space over U w.r.t \mathfrak{V}, S and T are NSRsets over U. Then

- $\operatorname{Int} t_{N S R}(\varnothing)=\varnothing$ and $\operatorname{Int} t_{N S R}(U)=U$,
- $\operatorname{Int}_{N S R}(S) \subseteq S$,
- S is NSR-open set $\Leftrightarrow \operatorname{Int}_{N S R}(S)=S$,
- $\operatorname{Int} t_{N S R}\left(\operatorname{Int} t_{N S R}(S)\right)=\operatorname{Int} t_{N S R}(S)$
- $S \subseteq T$ implies $\operatorname{Int} t_{N S R}(S) \subseteq \operatorname{Int} t_{N S R}(T)$,
- $\operatorname{In} t_{N S R}(S) \cup \operatorname{Int} t_{N S R}(T) \subseteq \operatorname{Int} t_{N S R}(S \cup T)$,
- $\operatorname{Int}_{N S R}(S) \cap \operatorname{Int} t_{N S R}(T)=\operatorname{Int} t_{N S R}(S \cap T)$.

Proof. (i) and (ii) are obvious.
(iii) First, suppose that $\operatorname{Int} t_{N S R}(S)=S$. Since $\operatorname{Int} t_{N S R}(S)$ is an NSR-open set, it follows that S is NSRopen set. For the converse, if S is a NSR-open set, then the largest NSR-open set that is contained in S is S itself. Thus, $\operatorname{Int}_{N S R}(S)=S$.
(iv) Since $\operatorname{Int} t_{N S R}(S)$ is an NSR-open set, by part (iii) we get $\operatorname{Int} t_{N S R}\left(\operatorname{Int} t_{N S R}(S)\right)=\operatorname{Int} t_{N S R}(S)$.
(v) Suppose that $S \subseteq T$. By (ii) $\operatorname{Int}_{N S R}(S) \subseteq S$. Then $\operatorname{Int}_{N S R}(S) \subseteq T$. Since $\operatorname{Int} t_{N S R}(S)$ is NSR-open set contained by T. So by definition of NSR-interior $\operatorname{Int} t_{N S R}(S) \subseteq \operatorname{Int} t_{N S R}(T)$.
(vi) By using (ii) $\operatorname{Int} t_{N S R}(S) \subseteq S$ and $\operatorname{Int} t_{N S R}(T) \subseteq T$. Then, $\operatorname{Int} t_{N S R}(S) \cup \operatorname{Int} t_{N S R}(T) \subseteq S \cup T$. Since $I n t_{N S R}(S) \cup \operatorname{Int} t_{N S R}(T)$ is an NSR-open, it follows that $\operatorname{Int} t_{N S R}(S) \cup \operatorname{Int} t_{N S R}(T) \subseteq \operatorname{Int} t_{N S R}(S \cup T)$.
(vii) By using (ii) $\operatorname{Int}_{N S R}(S) \subseteq S$ and $\operatorname{Int}_{N S R}(T) \subseteq T$. Then, $\operatorname{Int} t_{N S R}(S) \cap \operatorname{Int} t_{N S R}(T) \subseteq S \cap T$. Since $\operatorname{Int} t_{N S R}(S) \cap \operatorname{Int} t_{N S R}(T)$ is NSR-open, it follows that $\operatorname{Int} t_{N S R}(S) \cap \operatorname{Int} t_{N S R}(T) \subseteq \operatorname{Int} t_{N S R}(S \cap T)$. For the converse, $\quad S \cap T \subseteq S$ also $S \cap T \subseteq T$. Then, $\quad \operatorname{Int}_{N S R}(S \cap T) \subseteq \operatorname{Int}_{N S R}(S)$ and $\quad \operatorname{Int} t_{N S R}(S \cap T) \subseteq$ $\operatorname{Int} t_{N S R}(T)$. Hence $\operatorname{Int} t_{N S R}(S \cap T) \subseteq \operatorname{Int} t_{N S R}(S) \cap \operatorname{Int} t_{N S R}(T)$.

Definition 3.14 Let $\left(U, \tau_{N S R}(\mathfrak{V}), E\right)$ be an NSR-topological space w.r.t \mathfrak{V}, where $\mathfrak{V} \subseteq U$. Let $T \subseteq U$. Then, NSR-exterior of T is defined as $\operatorname{Int} t_{N S R}\left(T^{c}\right)$, where T^{c} is complement of T. NSR-exterior of T is denoted by $E x t_{N S R}(T)$.

Definition 3.15 Let $\left(U, \tau_{N S R}(\mathfrak{Y}), E\right)$ be an NSR-topological space w.r.t \mathfrak{Y}, where $\mathfrak{Y} \subseteq U$. Let $T \subseteq U$. Then, NSR-closure of T is defined to be intersection of all NSR-closed supersets of T and is denoted by $C l_{N S R}(T)$.
Example 3.16 Consider the NSR-topology given in Example 3.2, taking $T=\left\{g_{1}, g_{2}, g_{3}\right\}$, so $T^{c}=$ $\left\{g_{4}, g_{5}\right\}$. Then $\operatorname{Int} t_{N S R}(T)=\left\{g_{1}, g_{2}\right\}, E x t_{N S R(T)}=\operatorname{Int} t_{N S R}\left(T^{c}\right)=\left\{g_{4}\right\}$ and $C l_{N S R}(\mathrm{~T})=\left\{g_{1}, g_{2}, g_{3}, g_{5}\right\}$.
Theorem 3.17 Let $\left(U, \tau_{N S R}(\mathfrak{Y}), E\right)$ be a NSR-topological space over U w.r.t \mathfrak{V}, S and T are NSRsets over U. Then

- $C l_{N S R}(\varnothing)=\varnothing$ and $C l_{N S R}(U)=U$,
- $S \subseteq C l_{N S R}(S)$,
- S is NSR-closed set $\Leftrightarrow S=C l_{N S R}(S)$,
- $C l_{N S R}\left(C l_{N S R}(S)\right)=C l_{N S R}(S)$,
- $S \subseteq T$ implies $C l_{N S R}(S) \subseteq C l_{N S R}(T)$,
- $C l_{N S R}(S \cup T)=C l_{N S R}(S) \cup C l_{N S R}(T)$,
- $C l_{N S R}(S \cap \mathrm{~T}) \subseteq C l_{N S R}(S) \cap C l_{N S R}(T)$.

Proof. (i) and (ii) are straightforward.
(iii) First, consider $S=C l_{N S R}(S)$. Since $C l_{N S R}(S)$ is an NSR-closed set, so S is an NSR-closed set over U. For the converse, suppose that S be an NSR-closed set over U. Then, S is NSR-closed superset of S. So that $S=C l_{N S R}(S)$.
(iv) By definition $C l_{N S R}(S)$ is always NSR-closed set. Therefore, by part (iii) we have $C l_{N S R}\left(C l_{N S R}(S)\right)=C l_{N S R}(S)$.
(v) Let $S \subseteq T$. By (ii) $T \subseteq C l_{N S R}(T)$. Then, $S \subseteq C l_{N S R}(T)$. Since $C l_{N S R}(T)$ is a NSR-closed superset of S, it follows that $C l_{N S R}(S) \subseteq C l_{N S R}(T)$.
(vi) Since $S \subseteq S \cup T$ and $T \subseteq S \cup T$, by part (v), $C l_{N S R}(S) \subseteq C l_{N S R}(S \cup T)$ and $C l_{N S R}(T) \subseteq$ $C l_{N S R}(S \cup T)$. Hence $C l_{N S R}(S) \cup C l_{N S R}(S) \subseteq C l_{N S R}(S \cup T)$. For the converse, let $S \subseteq$ $C l_{N S R}(S)$ and $T \subseteq C l_{N S R}(T)$. Then, $S \cup T \subseteq C l_{N S R}(S) \cup C L_{N S R}(T)$. Since $C l_{N S R}(S) \cup C l_{N S R}(T)$ is a NSR-closed superset of $S \cup T$. Thus, $C l_{N S R}(S \cup T)=C l_{N S R}(S) \cup C l_{N S R}(T)$.
(vii) Since $S \cap T \subseteq S$ and $S \cap T \subseteq T$, by part(5) $C l_{N S R}(S \cap T) \subseteq C l_{N S R}(S)$ and $C l_{N S R}(S \cap T) \subseteq$ $C l_{N S R}(T)$. Thus, we obtain $C l_{N S R}(S \cap T) \subseteq C l_{N S R}(S) \cap C l_{N S R}(T)$.
Definition 3.18 Let $\left(U, \tau_{N R}(\mathfrak{Y}), E\right)$ be a NSR-topological space w.r.t \mathfrak{V}, where $\mathfrak{V} \subseteq U$. Let $T \subseteq U$. Then, NSR-frontier or NSR-boundary of T is denoted by $F_{r_{N S R}}(T)$ or $b_{N S R}(T)$ and mathematically defined as

$$
F_{r_{N S R}}(T)=C l_{N S R}(T) \cap C l_{N S R}\left(T^{c}\right) .
$$

Clearly NSR-frontier $F_{r_{N S R}}(T)$ is an NSR-closed set.
Example 3.19 Consider the NSR-topology given in Example 3.2, taking $T=\left\{g_{1}, g_{2}, g_{3}\right\}$, so $T^{c}=$ $\left\{g_{4}, g_{5}\right\}$. Then, $C l_{N S R}(T)=\left\{g_{1}, g_{2}, g_{3}, g_{5}\right\}$ and $C l_{N S R}\left(T^{c}\right)=\left\{g_{3}, g_{4}, g_{5}\right\}$.

$$
F_{r_{N S R}}(T)=C l_{N S R}(T) \cap C l_{N S R}\left(T^{c}\right)=\left\{g_{3}, g_{5}\right\}
$$

Definition 3.20 Let $\left(U, \tau_{N R}(\mathfrak{Y}), E\right)$ be an NSR-topological space. A subset X of U is said to be NSRneighborhood of $g \in U$ if there exist an NSR-open set W_{g} containing g so that

$$
g \in W_{g} \subseteq X
$$

Definition 3.21 The set of all the NSR-limit points of S is known as NSR-derived set of S and is denoted by $S_{N S R}^{d}$.

4 NSR-set in multi-criteria decision-making

In this section, we present an idea for multi-criteria decision-making method based on the neutrosophic soft rough sets $N S R$ - set.
Let $U=\left\{g_{1}, g_{2}, g_{3}, \ldots, g_{m}\right\}$ is the set of objects under observation, E be the set of criteria to analyze the objects in U. Let $\mathfrak{A}=\left\{\xi_{1}, \xi_{2}, \xi_{3}, \ldots, \xi_{n}\right\} \subseteq E$ and (Φ, \mathfrak{A}) be a neutrosophic soft set over U. Suppose that $H=\left\{P_{1}, P_{2}, \ldots, P_{k}\right\}$ be a set of experts, $\mathfrak{V}_{1}, \mathfrak{V}_{2}, \ldots, \mathfrak{Y}_{k}$ are subsets of U which indicate results of initial evaluations of experts $P_{1}, P_{2}, \ldots, P_{k}$, respectively and $\mathfrak{I}_{1}, \mathfrak{I}_{2}, \ldots \mathfrak{I}_{r} \in N S_{U}$ are real results that previously obtained for same or similar problems in different times or different places.

Definition 4.1 Let $\underline{\operatorname{apr}}_{N S R_{\mathfrak{I}_{q}}}\left(\mathfrak{V}_{j}\right), \overline{a p r}_{N S \mathbb{I}_{q}}\left(\mathfrak{Y}_{j}\right)$ be neutrosophic soft lower and upper approximations of $\mathfrak{Y}_{j}(j=1,2, \ldots, k)$ related to $\mathfrak{T}_{q}(q=1,2, \ldots, r)$. Then,

$$
\begin{align*}
& \underline{a}=\left(\begin{array}{llll}
\underline{n}_{1}^{1} & \underline{n}_{2}^{1} & \cdots & \underline{n}_{k}^{1} \\
\underline{n}_{1}^{2} & \underline{n}_{2}^{2} & \cdots & \underline{n}_{k}^{2} \\
\vdots & \vdots & \ddots & \vdots \\
\underline{n}_{1}^{r} & \underline{n}_{2}^{r} & \cdots & \underline{n}_{k}^{r}
\end{array}\right) \tag{1}\\
& \bar{a}=\left(\begin{array}{llll}
\bar{n}_{1}^{1} & \bar{n}_{2}^{1} & \cdots & \bar{n}_{k}^{1} \\
\bar{n}_{1}^{2} & \bar{n}_{2}^{2} & \cdots & \bar{n}_{k}^{2} \\
\vdots & \vdots & \ddots & \vdots \\
\bar{n}_{1}^{r} & \bar{n}_{2}^{r} & \cdots & \bar{n}_{k}^{r}
\end{array}\right) \tag{2}
\end{align*}
$$

are called neutrosophic soft lower and neutrosophic upper approximations matrices, respectively, and represented by \underline{a} and \bar{a}. Here

$$
\begin{align*}
& \underline{\eta}_{j}^{q}=\left(\underline{g}_{1 j}^{q}, \underline{2}_{2 j}^{q}, \ldots, \underline{g}_{n j}^{q}\right) \tag{3}\\
& \bar{n}_{j}^{q}=\left(\bar{g}_{1 j}^{q}, \bar{g}_{2 j}^{q}, \ldots, \bar{g}_{n j}^{q}\right) \tag{4}
\end{align*}
$$

Where

$$
\underline{g}_{i j}^{q}=\left(\begin{array}{l}
1, g_{i} \in \underline{a p r_{N S R_{\mathfrak{I}_{q}}}\left(\mathfrak{V}_{j}\right)} \\
0, g_{i} \notin \underline{\operatorname{apr}_{N S R_{\mathfrak{Z}}}}\left(\mathfrak{V}_{j}\right)
\end{array}\right.
$$

and

$$
\bar{g}_{i j}^{q}=\left(\begin{array}{l}
1, g_{i} \in \overline{\operatorname{apr}}_{N S R_{\Omega_{q}}}\left(\mathfrak{Y}_{j}\right) \\
0, g_{i} \notin \overline{a p r}_{N S R_{\mathbb{R}_{q}}}\left(\mathfrak{Y}_{j}\right)
\end{array}\right.
$$

Definition 4.2 Let \underline{n} and \bar{n} be neutrosophic soft lower and neutrosophic upper approximations matrices based on $\underline{\operatorname{apr}} \underline{N S R}_{\mathfrak{I}_{q}}\left(\mathfrak{Y}_{j}, \overline{\operatorname{apr}}_{N S R_{\mathfrak{I} q}}\left(\mathfrak{Y}_{j}\right.\right.$ for $q=1,2, \ldots r$ and $j=1,2, \ldots, k$. Neutrosophic soft lower approximation vector represented by (\underline{n}) and neutrosophic soft upper approximation vector represented by (\bar{n}) are defined by, respectively,

$$
\begin{align*}
& \underline{n}=\bigoplus_{j=1}^{k} \bigoplus_{q=1}^{r} \underline{n}_{j}^{q} \tag{5}\\
& \bar{n}=\bigoplus_{j=1}^{k} \bigoplus_{q=1}^{r} \bar{n}_{j}^{q} \tag{6}
\end{align*}
$$

Here the operation \oplus represents the vector summation.
Definition 4.3 Let \underline{n} and \bar{n} be neutrosophic soft \mathfrak{I}_{q} - lower approximation vector and neutrosophic soft $\mathfrak{I}_{q}-$ upper approximation vector, respectively. Then, vector summation $\underline{n} \oplus \bar{n}=$ ($w_{1}, w_{2}, \ldots, w_{n}$) is called decision vector.
Definition 4.4 Let $\underline{n} \oplus \bar{n}=\left(w_{1}, w_{2}, \ldots, w_{n}\right)$ be the decision vector. Then, each w_{i} is called a weighted number of $g_{i} \in U$ and g_{i} is called an optimum element of U if it weighted number is maximum of $w_{i} \forall i \in I_{n}$. In this case, if there are more then one optimum elements of U, select one of them.

Algorithm 1 for neutrosophic soft rough set:
 Input

Step-1: Take initial evaluations $\mathfrak{V}_{1}, \mathfrak{V}_{2}, \ldots, \mathfrak{Y}_{k}$ of experts $P_{1}, P_{2}, \ldots, P_{k}$.
Step-2: Construct $\mathfrak{I}_{1}, \mathfrak{T}_{2}, \ldots \mathfrak{I}_{r}$ neutrosophic soft sets using real results.
Step-3: Compute $\underline{a p r}_{N S R_{\mathfrak{Z}}}\left(\mathfrak{Y}_{j}\right)$ and $\overline{\operatorname{apr}}_{N S \mathbb{X}_{q}}\left(\mathfrak{Y}_{j}\right)$ for each $q=1,2, \ldots, r$ and $j=1,2, \ldots, k$.
Step-4: Construct neutrosophic soft lower and neutrosophic soft upper approximations matrices \underline{a} and \bar{a}.
Step-5: Compute \underline{n} and \bar{n},
Step-6: Compute $\underline{n} \oplus \bar{n}$,

Output

Step-7: Select $\max _{i \in I_{n}} w_{i}$.
The flow chart of proposed algorithm 1 is represented in Figure. 1

Start

Fig 1: Flow chart diagram of proposed algorithm 1 for NSR-set.
Example 4.5 In finance company three finance experts P_{1}, P_{2}, P_{3} want to make investment one of the clothing brand

$$
\left\{g_{1}=\text { Jor }, g_{2}=\text { Aero, } g_{3}=\text { Chan, } g_{4}=L i, g_{5}=\operatorname{Srk}\right\} .
$$

The set of parameters include the following parameters

$$
\mathfrak{U}=\left\{\xi_{1}=\text { Market Share, } \xi_{2}=\text { Acknowledgement, } \xi_{3}=\text { Uniqueness, } \xi_{4}=\right.
$$

Economical Magnification\}

Step1: $\mathfrak{V}_{1}=\left\{g_{1}, g_{2}, g_{4}\right\}, \mathfrak{V}_{2}=\left\{g_{1}, g_{3}, g_{5}\right\}, \mathfrak{V}_{3}=\left\{g_{2}, g_{4}, g_{5}\right\}$ are primary evaluations of experts P_{1}, P_{2}, P_{3}, respectively.

Step2: Neutrosophic soft sets $\mathfrak{I}_{1}, \mathfrak{I}_{2}, \mathfrak{I}_{3}$ are the actual results in individual three periods and tabular representations of these neutrosophic soft sets are given in Table 2, Table 3 and Table 4, respectively.

\mathfrak{I}_{1}	ξ_{1}	ξ_{2}	ξ_{3}	ξ_{4}
g_{1}	$(0.6,0.6,0.2)$	$(0.8,0.4 .0 .3)$	$(0.7,0.4,0.3)$	$(0.8,0.6,0.4)$
g_{2}	$(0.4,0.6,0.6)$	$(0.6,0.2,0.4)$	$(0.6,0.4,0.3)$	$(0.7,0.6,0.6)$
g_{3}	$(0.6,0.4,0.2)$	$(0.8,0.1,0.3)$	$(0.7,0.2,0.5)$	$(0.7,0.6,0.4)$
g_{4}	$(0.6,0.3,0.3)$	$(0.8,0.2,0.2)$	$(0.5,0.2,0.6)$	$(0.7,0.5,0.6)$
g_{5}	$(0.8,0.2,0.3)$	$(0.8,0.3,0.2)$	$(0.7,0.3,0.4)$	$(0.9,0.5,0.7)$

Table 2: Neutrosophic soft set \mathfrak{I}_{1}

\mathfrak{I}_{2}	ξ_{1}	ξ_{2}	ξ_{3}	ξ_{4}
g_{1}	$(0.6,0.4,0.2)$	$(0.8,0.1,0.3)$	$(0.7,0.2,0.5)$	$(0.7,0.6,0.4)$
g_{2}	$(0.4,0.6,0.6)$	$(0.6,0.2,0.4)$	$(0.6,0.4,0.3)$	$(0.7,0.6,0.6)$
g_{3}	$(0.8,0.2,0.3)$	$(0.8,0.3,0.2)$	$(0.7,0.3,0.4)$	$(0.9,0.5,0.7)$
g_{4}	$(0.6,0.3,0.3)$	$(0.8,0.2,0.2)$	$(0.5,0.2,0.6)$	$(0.7,0.5,0.6)$
g_{5}	$(0.6,0.6,0.2)$	$(0.8,0.4 .0 .3)$	$(0.7,0.4,0.3)$	$(0.8,0.6,0.4)$

Table 3: Neutrosophic soft set \mathfrak{I}_{2}

\mathfrak{I}_{3}	ξ_{1}	ξ_{2}	ξ_{3}	ξ_{4}
g_{1}	$(0.6,0.6,0.2)$	$(0.8,0.4 .0 .3)$	$(0.7,0.4,0.3)$	$(0.8,0.6,0.4)$
g_{2}	$(0.6,0.3,0.3)$	$(0.8,0.2,0.2)$	$(0.5,0.2,0.6)$	$(0.7,0.5,0.6)$
g_{3}	$(0.6,0.4,0.2)$	$(0.8,0.1,0.3)$	$(0.7,0.2,0.5)$	$(0.7,0.6,0.4)$
g_{4}	$(0.4,0.6,0.6)$	$(0.6,0.2,0.4)$	$(0.6,0.4,0.3)$	$(0.7,0.6,0.6)$
g_{5}	$(0.8,0.2,0.3)$	$(0.8,0.3,0.2)$	$(0.7,0.3,0.4)$	$(0.9,0.5,0.7)$

Table 4: Neutrosophic soft set \mathfrak{I}_{3}
The tabular representation of the neutrosophic right neighborhoods of $\mathfrak{I}_{1}, \mathfrak{I}_{2}, \mathfrak{I}_{3}$ are given in
Table5, Table 6 and Table 7 respectively.

Neighborhoods of \mathfrak{I}_{1}	
$\left.g_{1}\right]_{\mathfrak{A}}$	$\left\{g_{1}\right\}$
$\left.g_{2}\right]_{\mathfrak{A}}$	$\left\{g_{1}, g_{2}\right\}$
$\left.g_{3}\right]_{\mathfrak{A}}$	$\left\{g_{1}, g_{3}\right\}$
$\left.g_{4}\right]_{\mathfrak{A}}$	$\left\{g_{4}\right\}$
$\left.g_{5}\right]_{\mathfrak{A}}$	$\left\{g_{5}\right\}$

Table 5: Neutrosophic right neighborhoods of \mathfrak{I}_{1} w.r.t set \mathfrak{A}

Neighborhoods of \mathfrak{I}_{2}	
$\left.g_{1}\right]_{\mathfrak{A}}$	$\left\{g_{1}, g_{5}\right\}$
$\left.g_{2}\right]_{\mathfrak{A}}$	$\left\{g_{2}, g_{5}\right\}$
$\left.g_{3}\right]_{\mathfrak{A}}$	$\left\{g_{3}\right\}$
$\left.g_{4}\right]_{\mathfrak{A}}$	$\left\{g_{4}\right\}$
$\left.g_{5}\right]_{\mathfrak{A}}$	$\left\{g_{5}\right\}$

Table 6: Neutrosophic right neighborhoods of \mathfrak{I}_{2} w.r.t set \mathfrak{A}

Neighborhoods of \mathfrak{I}_{3}	
$\left.g_{1}\right]_{\mathfrak{A}}$	$\left\{g_{1}\right\}$
$\left.g_{2}\right]_{\mathfrak{A}}$	$\left\{g_{2}\right\}$
$\left.g_{3}\right]_{\mathfrak{A}}$	$\left\{g_{1}, g_{3}\right\}$
$\left.g_{4}\right]_{\mathfrak{A}}$	$\left\{g_{1}, g_{4}\right\}$
$\left.g_{5}\right]_{\mathfrak{A}}$	$\left\{g_{5}\right\}$

Table 7: Neutrosophic right neighborhoods of \mathfrak{I}_{3} w.r.t set \mathfrak{A}

Step3: Next we find $\underline{a p r_{N S R_{\mathfrak{I}}}}$ and $\overline{a p r}_{N S R_{\mathfrak{I}_{1}}}$ for each \mathfrak{V}_{j}, where $j=1,2,3$.

$$
\begin{aligned}
& \underline{\overline{a p r}}_{N S R_{\mathfrak{I}_{1}}}\left(\mathfrak{Y}_{1}\right)=\left\{g_{1}, g_{2}, g_{4}\right\}, \\
& \overline{a p r}_{N S R_{\mathfrak{I}_{1}}}\left(\mathfrak{Y}_{1}\right)=\left\{g_{1}, g_{2}, g_{3}, g_{4}\right\}, \\
& \underline{a p r}_{N S R_{\mathfrak{I}_{1}}}\left(\mathfrak{Y}_{2}\right)=\left\{g_{1}, g_{3}, g_{5}\right\}, \\
& \overline{\operatorname{apr}}_{N S R_{\mathfrak{I}_{1}}}\left(\mathfrak{Y}_{2}\right)=\left\{g_{1}, g_{2}, g_{3}, g_{5}\right\}, \\
& \overline{a p r}_{N S R_{\mathfrak{I}_{1}}}\left(\mathfrak{Y}_{3}\right)=\left\{g_{4}, g_{5}\right\}, \\
& \overline{a p r}_{N S R_{\mathfrak{I}_{1}}}\left(\mathfrak{Y}_{3}\right)=\left\{g_{1}, g_{2}, g_{3}, g_{4}, g_{5}\right\}
\end{aligned}
$$

 1,2,3.

$$
\begin{aligned}
& \operatorname{apr}_{N S R_{\mathfrak{I}_{2}}}\left(\mathfrak{Y}_{1}\right)=\left\{g_{4}\right\}, \\
& \overline{\operatorname{apr}} \\
& N S R_{\mathfrak{I}_{2}}\left(\mathfrak{Y}_{1}\right)=\left\{g_{1}, g_{2}, g_{4}, g_{5}\right\}, \\
& \operatorname{apr}_{N S \mathfrak{I}_{2}}\left(\mathfrak{Y}_{2}\right)=\left\{g_{1}, g_{3}, g_{5}\right\}, \\
& \overline{\operatorname{apr}}_{N S R_{\mathfrak{I}_{2}}}\left(\mathfrak{Y}_{2}\right)=\left\{g_{1}, g_{2}, g_{3}, g_{5}\right\}, \\
& \operatorname{apr}_{N S \mathbb{I}_{2}}\left(\mathfrak{Y}_{3}\right)=\left\{g_{4}, g_{5}\right\}, \\
& \overline{\operatorname{apr}}_{N S R_{\mathfrak{I}_{2}}}\left(\mathfrak{Y}_{3}\right)=\left\{g_{1}, g_{2}, g_{4}, g_{5}\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
& \begin{array}{l}
\operatorname{apr}_{N S R_{\mathfrak{I}_{3}}}\left(\mathfrak{Y}_{1}\right)=\left\{g_{1}, g_{2}, g_{4}\right\}, \\
\overline{\overline{a p r}}_{N S R_{\mathfrak{I}_{3}}}\left(\mathfrak{Y}_{1}\right)=\left\{g_{1}, g_{2}, g_{3}, g_{4}\right\},
\end{array} \\
& \underline{\operatorname{apr}}_{N S R_{\mathfrak{I}_{3}}}\left(\mathfrak{\eta}_{2}\right)=\left\{g_{1}, g_{3}, g_{5}\right\}, \\
& \overline{\operatorname{apr}}_{N S R_{\mathfrak{I}_{3}}}\left(\mathfrak{\eta}_{2}\right)=\left\{g_{1}, g_{3}, g_{4}, g_{5}\right\} \text {, } \\
& \begin{array}{l}
\operatorname{apr}_{N S R_{\mathfrak{I}_{3}}}\left(\mathfrak{Y}_{3}\right)=\left\{g_{2}, g_{5}\right\}, \\
\overline{\overline{a p r}}_{N S R_{\mathfrak{I}_{3}}}\left(\mathfrak{V}_{3}\right)=\left\{g_{1}, g_{2}, g_{4}, g_{5}\right\}
\end{array}
\end{aligned}
$$

Step4: Neutrosophic soft lower approximation matrix and neutrosophic soft upper approximation matrix are obtained as follows:

$$
\begin{align*}
& \underline{a}=\left(\begin{array}{ccc}
(1,1,0,1,0) & (1,0,1,0,1) & (0,0,0,1,1) \\
(0,0,0,1,0) & (1,0,1,0,1) & (0,0,0,1,1) \\
(1,1,0,1,0) & (1,0,1,0,1) & (0,1,0,0,0)
\end{array}\right) \tag{7}\\
& \bar{a}=\left(\begin{array}{lll}
(1,1,1,1,0) & (1,1,1,0,1) & (1,1,1,1,1) \\
(1,1,0,1,1) & (1,1,1,0,1) & (1,1,0,1,1) \\
(1,1,1,1,0) & (1,0,1,1,1) & (1,1,0,1,1)
\end{array}\right) \tag{8}
\end{align*}
$$

Step5: Using Eqs. 7 and 8, neutrosophic soft lower approximation vector and neutrosophic soft upper approximation vector are obtained as follows:

$$
\begin{aligned}
& \underline{n}=(5,3,3,5,5) \\
& \bar{n}=(9,8,6,7,7)
\end{aligned}
$$

Step6: Decision vector is obtained as $\underline{n} \oplus \bar{n}=(14,11,9,12,12)$.
Step7: Since $\max _{i \in I_{n}} w_{i}=w_{1}=14$, optimal clothing brand is $g_{1}=$ Jor.

5 NSR-topology in multi-criteria decision-making

In this section, we use the concept of NSR-topology in multi-criteria decision-making. The idea of core in the picking of attributes to the rough set was introduced by Thivagar in [45]. In the following definition, we develop this idea of core to the NSR-set.
Definition 5.1 Let U be the set of objects, $K=(\Phi, \mathfrak{H})$ is the neutrosophic soft set and $G=(U, K)$ is the the corresponding neutrosophic soft approximation space. Let \Re be an indiscernibility relation.
Let $\tau_{N S R}$ be an NSR-topology on U and $\beta_{N S R}$ be the basis defined for $\tau_{N S R}$. Let \mathfrak{N} be the subset of \mathfrak{A}, is said to be core of \Re if $\beta_{\mathfrak{N}} \neq \beta_{N S R-(s)}$ for each ' s ' in \mathfrak{N}. i.e. a core of \Re is the subset of attributes with the condition that if we remove any element from \mathfrak{N} it will affect the classification power of the attributes.

Algorithm 2 for neutrosophic soft rough topology:
 Input

Step-1: Consider initial universe U, set of attributes \mathfrak{A} which can be classified into division \mathbb{D} of decision attributes, \mathbb{C} of condition attributes and an indiscernibility relation \mathfrak{R} on U. Construct the neutrosophic soft set in tabular form corresponding to \mathbb{C} condition attributes and a subset \mathfrak{V} of U. The columns indicate the elements of universe, rows represent the attributes and entries of table give attribute values.

Output

Step-2: Classify set \mathfrak{Y} and find the NSR-approximation subsets $\left(\underline{\Re}_{G}(\mathfrak{Y}), \overline{\mathfrak{R}}_{G}(\mathfrak{Y})\right)$ and $B_{G}(\mathfrak{Y})$

w.r.t \mathfrak{R}.

Step-3: Define Neutrosophic Soft Rough Topology τ_{\Re} on U and find basis $\beta_{N S R}$.
Step-4: By removing an attribute ξ from \mathbb{C}, find again the NSR-approximation subsets $\left.\left(\mathfrak{R}_{G}(\mathfrak{Y}), \bar{\Re}_{G}(\mathfrak{Y})\right), B_{G}(\mathfrak{Y})\right)$ w.r.t $\mathfrak{R o n} \mathbb{C}-(\xi)$.
Step-5: Generate NSR - topology $\tau_{N S R-(\xi)}$ on U,define its basis $\beta_{N S R-(\xi)}$.
Step-6: Repeat step 4 and step 5 for each attribute in \mathbb{C}.
Step-7: The attributes for which $\beta_{N S R-(\xi)} \neq \beta_{N S R}$ gives the core (\Re).
The flow chart diagram of proposed algorithm 2 is represented as Figure 2.

Fig 2: The flow chart diagram of algorithm 2 for NSR-topology.
Example 5.2 Here we consider the problem of Crime rate in developing countries of Asia, Crime is an unlawful act punishable by a state or other authority. In other words, we can say that a crime is an act harmful not only to some individual but also to a community, society or the state. A developing country is a country with a less developed industrial base and a low Human Development Index (HDI) relative to other countries. Developing countries are facing so many issues including high crime rate. This is the fundamental reason of emerging questions in our mind, that why the crime rate is higher in developing countries?

We apply the concept of NSR-topology in Crime rate of developing countries of Asia. Consider the following information table which shows data about 5 developing countries. The rows of the table represent the objects(countries). Let $U=\left\{g_{1}=\right.$ Bangladesh, $g_{2}=$ Afghanistan, $g_{3}=$ SriLanka, $g_{4}=$ Nepal, $g_{5}=$ Pakistan $\}$ be the set of developing countries and $\mathfrak{A}=\left\{\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}\right\}$, where ξ_{1} stands for `corruption', \(\xi_{2}\) stands for `poverty ', ξ_{3} stands for `self actualization' and ξ_{4} stands for 'lack of education'. Let $K=(\Phi, \mathfrak{A})$ is the neutrosophic soft set over U shown by Table 8 ,corresponding soft approximation space $G=(U, K)$.

K	ξ_{1}	ξ_{2}	ξ_{3}	ξ_{4}	Crime Rate
g_{1}	$(0.6,0.6,0.2)$	$(0.8,0.4 .0 .3)$	$(0.7,0.4,0.3)$	$(0.8,0.6,0.4)$	High
g_{2}	$(0.4,0.6,0.6)$	$(0.6,0.2,0.4)$	$(0.6,0.4,0.3)$	$(0.7,0.6,0.6)$	Medium
g_{3}	$(0.6,0.4,0.2)$	$(0.8,0.1,0.3)$	$(0.7,0.2,0.5)$	$(0.7,0.6,0.4)$	Medium
g_{4}	$(0.6,0.3,0.3)$	$(0.8,0.2,0.2)$	$(0.5,0.2,0.6)$	$(0.7,0.5,0.6)$	High
g_{5}	$(0.8,0.2,0.3)$	$(0.8,0.3,0.2)$	$(0.7,0.3,0.4)$	$(0.9,0.5,0.7)$	High

Table 8: Neutrosophic soft set $K=(\Phi, \mathfrak{A})$
The tabular representation of neutrosophic right neighborhoods of K w.r.t set \mathfrak{A} is given Table 9 .

Neighborhoods of K	
$\left.g_{1}\right]_{\mathfrak{A}}$	$\left\{g_{1}\right\}$
$\left.g_{2}\right]_{\mathfrak{A}}$	$\left\{g_{1}, g_{2}\right\}$
$\left.g_{3}\right]_{\mathfrak{A}}$	$\left\{g_{1}, g_{3}\right\}$

$\left.g_{4}\right]_{\mathfrak{A}}$	$\left\{g_{4}\right\}$
$\left.g_{5}\right]_{\mathfrak{A}}$	$\left\{g_{5}\right\}$

Table 9: Neutrosophic right neighborhoods of K w.r.t set \mathfrak{A}
For $\mathfrak{Y}=\left\{g_{1}, g_{3}, g_{5}\right\}$ and indiscernibility relation 'Crime rate' we have $\underline{R}_{G}(\mathfrak{V})=\left\{g_{1}, g_{3}, g_{5}\right\}$, $\bar{R}_{G}(\mathfrak{Y})=\left\{g_{1}, g_{2}, g_{3}, g_{5}\right\}$ and $B_{G}(\mathfrak{Y})=\left\{g_{2}\right\}$.
So we define NSR-topology as $\tau_{N S R}(\mathfrak{Y})=\left\{U, \emptyset,\left\{g_{1}, g_{3}, g_{5}\right\},\left\{g_{1}, g_{2}, g_{3}, g_{5}\right\},\left\{\mathrm{g}_{2}\right\}\right\}$ and its basis $\beta_{N S R}=$ $\left\{U,\left\{g_{1}, g_{3}, g_{5}\right\},\left\{g_{2}\right\}\right\}$.

If we remove the attribute 'Corruption', then the tabular representation of neutrosophic right neighborhoods of K w.r.t set $\mathfrak{A}-\xi_{1}$ is given Table 10 .

Neighborhoods of K	
$\left.g_{1}\right]_{2-\xi_{1}}$	$\left\{g_{1}\right\}$
$\left.g_{2}\right]_{\mathfrak{2}-\xi_{1}}$	$\left\{g_{1}, g_{2}\right\}$
$\left.g_{3}\right]_{2-\xi_{1}}$	$\left\{g_{1}, g_{3}\right\}$
$\left.g_{4}\right]_{2-\xi_{1}}$	$\left\{g_{4}\right\}$
$\left.g_{5}\right]_{\mathfrak{2}-\xi_{1}}$	$\left\{g_{5}\right\}$

Table 10: Neutrosophic right neighborhoods of K w.r.t set $\mathfrak{A}-\xi_{1}$
we have

$$
\tau_{N S R-\xi_{1}}(\mathfrak{V})=\left\{U, \emptyset,\left\{g_{1}, g_{3}, g_{5}\right\},\left\{g_{1}, g_{2}, g_{3}, g_{5}\right\},\left\{g_{2}\right\}\right\}
$$

is a NSR-topology and its basis is

$$
\beta_{N S R}-\xi_{1}=\left\{U,\left\{g_{1}, g_{3}, g_{5}\right\},\left\{g_{2}\right\}\right\}=\beta_{N S R}
$$

If we remove the attribute 'poverty', then the tabular representation of neutrosophic right neighborhoods of K w.r.t set $\mathfrak{A}-\xi_{2}$ is given Table 11.

Neighborhoods of K	
$\left.g_{1}\right]_{\mathfrak{A}-\xi_{2}}$	$\left\{g_{1}\right\}$
$\left.g_{2}\right]_{\mathfrak{A}-\xi_{2}}$	$\left\{g_{1}, g_{2}\right\}$
$\left.g_{3}\right]_{\mathfrak{A}-\xi_{2}}$	$\left\{g_{1}, g_{3}\right\}$
$\left.g_{4}\right]_{\mathfrak{A}-\xi_{2}}$	$\left\{g_{1}, g_{3}, g_{4}\right\}$
$\left.g_{5}\right]_{\mathfrak{A}-\xi_{2}}$	$\left\{g_{5}\right\}$

Table 11: Neutrosophic right neighborhoods of K w.r.t set $\mathfrak{A}-\xi_{2}$
We have an NSR-topology and its base as follows:

$$
\begin{gathered}
\tau_{N S R-\xi_{2}}(Y)=\left\{U, \emptyset,\left\{g_{1}, g_{3}, g_{5}\right\},\left\{g_{2}, g_{4}\right\}\right\} \\
\beta_{N S R}-\xi_{2}=\left\{U,\left\{g_{1}, g_{3}, g_{5}\right\},\left\{g_{2}, g_{4}\right\}\right\} \neq \beta_{N S R}
\end{gathered}
$$

and
respectively. If we remove the attribute 'self actualization', then the tabular representation of neutrosophic right neighborhoods of K w.r.t set $\mathfrak{A}-\xi_{3}$ is given Table 12.

Neighborhoods of K	
$\left.g_{1}\right]_{\mathfrak{A}-\xi_{3}}$	$\left\{g_{1}\right\}$
$\left.g_{2}\right]_{\mathfrak{A}-\xi_{3}}$	$\left\{g_{1}, g_{2}\right\}$

$\left.g_{3}\right]_{\mathfrak{A}-\xi_{3}}$	$\left\{g_{1}, g_{3}\right\}$
$\left.g_{4}\right]_{\mathfrak{A}-\xi_{3}}$	$\left\{g_{4}\right\}$
$\left.g_{5}\right]_{\mathfrak{A}-\xi_{3}}$	$\left\{g_{5}\right\}$

Table 12: Neutrosophic right neighborhoods of K w.r.t set $\mathfrak{A}-\xi_{3}$

We have an NSR-topology and its base as follows:

$$
\tau_{N S R-\xi_{3}}(Y)=\left\{U, \emptyset,\left\{g_{1}, g_{3}, g_{5}\right\},\left\{g_{1}, g_{2}, g_{3}, g_{5}\right\},\left\{g_{2}\right\}\right\}
$$

and

$$
\beta_{N S R}-\xi_{3}=\left\{U, \emptyset,\left\{g_{1}, g_{3}, g_{5}\right\},\left\{g_{2}\right\}=\beta_{N S R}\right\}
$$

respectively. If we remove the attribute 'lack of education', then the tabular representation of neutrosophic right neighborhoods of K w.r.t set $\mathfrak{A}-\xi_{4}$ is given Table 13.

Neighborhoods of K	
$\left.g_{1}\right]_{\mathfrak{A}-\xi_{4}}$	$\left\{g_{1}\right\}$
$\left.g_{2}\right]_{\mathfrak{A}-\xi_{4}}$	$\left\{g_{1}, g_{2}\right\}$
$\left.g_{3}\right]_{\mathfrak{A}-\xi_{4}}$	$\left\{g_{1}, g_{3}\right\}$
$\left.g_{4}\right]_{\mathfrak{A}-\xi_{4}}$	$\left\{g_{4}\right\}$
$\left.g_{5}\right]_{\mathfrak{A}-\xi_{4}}$	$\left\{g_{5}\right\}$

Table 13: Neutrosophic right neighborhoods of K w.r.t set $\mathfrak{A}-\xi_{4}$
We have an NSR-topology and its base as follows:

$$
\tau_{N S R-\xi_{4}}(Y)=\left\{U, \emptyset,\left\{g_{1}, g_{3}, g_{5}\right\},\left\{g_{1}, g_{2}, g_{3}, g_{5}\right\},\left\{g_{2}\right\}\right\}
$$

and

$$
\beta_{N S R}-\xi_{4}=\left\{U, \emptyset,\left\{g_{1}, g_{3}, g_{5}\right\},\left\{g_{2}\right\}=\beta_{N S R}\right\}
$$

respectively. Thus, $\operatorname{CORE}(N S R)=\left\{\xi_{2}\right\}$, i.e., `poverty' is the deciding attributes of the Crime Rate in developing countries of Asia.
Discussion and comparitive analysis 5.3 In this section, we discuss our results obtained from both numerical examples and present a comparative analysis of proposed topological space to some existing topological spaces. Table 14 describes the comparison of both proposed algorithms based on NSR-sets and NSR-topology. The algorithm 1 is used to find the optimal decision about the set of alternatives and establish the ranking order between them. We can choose the best and worst alternative from the given input information. While algorithm 2 is used to choose the most relevant and significant attribute to which one can observe the specific characteristic of the alternatives. This is called the CORE of the problem, which is an essential part of the decision-making difficulty. Both algorithms have their own merits and can be used to solve decision-making problems in medical, artificial intelligence, business, agriculture, engineering, etc.

Proposed Algorithms	Choice values	Final Decision	Selection criteria
Algorithm 1 (NSR-sets)	$g_{1}>g_{4}>g_{5} \succ g_{2}>g_{3}$	g_{1}	Based on alternatives
Algorithm 2 (NSR-topology)	$\operatorname{CORE}(N S R)=\left\{\xi_{2}\right\}$	$\xi_{2}=$ poverty	Based on attributes

Table 14: Comparison of prooposed algorithms
Now we present a soft comparative analysis of proposed approach with some existing approaches. In Table 15, we describe the comparison and discuss about their advantages and limitations.

Set theories	Information about Indeterminacy part	Upper and lower approximations with boundary region	Parameterizations	Advantages	Limitations
Fuzzy sets [1]	No	No	No	Deal with the hesitations.	Do not collect any information about the indeterminacy of input data.
Neutrosophic sets [4,5]	Yes	No	No	Deal with the data having indeterminacy information.	Do not deal with the roughness and parameterizations.
Rough sets $[2,3]$	No	Yes	No	Deal with the roughness of input information and create upper, lower and boundary regions.	Do not give any information about the parameterizations.
Soft sets [6]	No	No	Yes	Deal with the uncertainity with parameterizations.	Do not provide information about the roughness of data.
Soft rough sets [17]	No	Yes	Yes	Deal with uncertainities and roughness of data.	Do not give information about the indeterminacy part of problem.
Rough neutrosophic sets [47]	Yes	Yes	No	Deal with the roughness having indeterminacy information.	Do not deal with the parameterizations.
Neutrosophic soft rough sets and topology (proposed)	Yes	Yes	Yes	Provide the data of indeterminacy part and remove roughness under parameterizations without any loss of information.	Effective but heavy calculations as compared to above existing theories.

Table 15: Comparitive analysis of proposed approach with some exsting theories.

6. Conclusion

Most of the issues in decision-making problems are associated with uncertain, imprecise and, multipolar information, which cannot be tackled properly through the fuzzy set. So to overcome this particular deficiency rough set was introduced by Pawlak, which deals with the vagueness of input data. This research implies the novel approach of neutrosophic soft rough set (NSR-set) with neutrosophic soft rough topology (NSR-topology). We presented various topological structures of NSR-topology named as NSR-interior, NSR-closure, NSR-exterior, NSR-neighborhood, NSR-limit point and, NSR-bases with numerous examples. We established two novel algorithms to deal with multi-criteria decision-making (MCDM) problems under NSR-data. One is based on NSR-sets and the other is based on NSR-topology with NSR-bases. This research is more efficient and flexible than the other approaches. The proposed algorithms are simple and easy to understand which can be applied easily on whatever type of alternatives and measures. Both algorithms are flexible and easily altered according to the different situations, inputs and, outputs. In the future, we will extend our work to solve the MCDM problems by using TOPSIS, AHP, VIKOR, ELECTRE family and, PROMETHEE family using different hybrid structures of fuzzy and rough sets.

References

[1] L. A. Zadeh. Fuzzy sets. Information and Control, 8 (1965) 338-353.
[2] Z. Pawlak. Rough sets. International Journal of Computer and Information Sciences, 11 (1982) 341-356.
[3] Z. Pawlak and A. Skowron. Rough sets: Some extensions. Information Sciences, 177 (2007), 2840.
[4] F. Smarandache. Neutrosophy Neutrosophic Probability, Set and Logic. American Research Press,(1998) Rehoboth, USA.
[5] F. Smarandache. A Unifying Field in Logics: Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Neutrosophic Probability and Statistics (second, third, fourth respectively fifth edition), American Research Press, 155 p., 1999, 2000, 2005, 2006.
[6] D. Molodtsov, Soft set theoty-first results, Computers and Mathematics with Applications, 37(45)(1999), 19-31.
[7] H. Wang, F. Smarandache, Y.Q. Zhang, and R. Sunderraman. Single valued neutrosophic sets. Multispace and Multistructure, 4 (2010), 410-413.
[8] F. Smarandache. Neutrosophic Overset, Neutrosophic Underset, and Neutrosophic Offset. Similarly for Neutrosophic Over-/Under-/Off- Logic, Probability, and Statistics, 168 p., Pons Editions, Bruxelles, Belgique (2016).
[9] D. Molodtsov, Soft set theoty-first results, Computers and Mathematics with Applications, 37(45)(1999), 19-31.
[10] M. I. Ali, F. Feng, X. Y. Liu, W. K. Min and M. Shabir. On some new operations in soft set theory. Computers and Mathematics with Applications, 57 (2009), 1547-1553.
[11] M. I. Ali. A note on soft sets, rough soft sets and fuzzy soft sets. Applied Soft Computing, 11 (2011), 3329-3332.
[12] H. Aktas and N. Çağman. Soft sets and soft group. Information Sciences 1(77) (2007), 2726-2735.
[13] M. Y. Bakier, A. A. Allam and SH. S. Abd-Allah. Soft rough topology. Annals of Fuzzy Mathematics and Informatics, 11(2) (2016), 4-11.
[14] N. Çağman, S. Karataş and S. Enginoglu. Soft topology. Computers and Mathematics with Applications, 62 (2011), 351-358.
[15] D. Chen. The parametrization reduction of soft sets and its applications. Computers and Mathematics with Applications, 49 (2005), 757-763.
[16] F. Feng, Changxing Li, B. Davvaz and M. I. Ali. Soft sets combined with fuzzy sets and rough sets: a tentative approach. Soft Computing, 14 (2010), 899-911.
[17] F. Feng, X. Liu, V. Leoreanu-Fotea and Y. B. Jun. Soft sets and Soft rough sets. Information Sciences, 181 (2011), 1125-137.
[18] M. R. Hashmi, M. Riaz and F. Smarandache. m-polar Neutrosophic Topology with Applications to Multi-Criteria Decision-Making in Medical Diagnosis and Clustering Analysis. International Journal of Fuzzy Systems, 22(1) (2020), 273-292.
[19] M. R. Hashmi and M. Riaz. A Novel Approach to Censuses Process by using Pythagorean mpolar Fuzzy Dombi's Aggregation Operators. Journal of Intelligent \& Fuzzy Systems, 38(2) (2020), 1977-1995. DOI: 10.3233/JIFS-190613.
[20] M. Kryskiewicz. Rough set approach to incomplete information systems. Information Sciences, 112 (1998) 39-49.
[21] F. Karaaslan and N. Çağman. Bipolar soft rough sets and their applications in decision making. Afrika Matematika. Springer, Berlin. 29 (2018), 823-839.
[22] K. Kumar, H. Garg. TOPSIS method based on the connection number of set pair analysis under interval-valued intuitionistic fuzzy set environment. Computational and Applied Mathematics, 37(2) (2018), 1319-1329.
[23] P.K. Maji, A.R. Roy and R.Biswas. An application of soft sets in a decision making problem. Computers and Mathematics with Applications, 44(8-9) (2002), 1077-1083.
[24] P.K. Maji, A.R. Roy and R.Biswas. Soft set theory. Computers and Mathematics with Applications, 45(4-5) (2003), 555-562.
[25] P.K. Maji. Neutrosophic soft set. Annals of Fuzzy Mathematics and Informatics, 5(1) (2013), 157168.
[26] K. Naeem, M. Riaz, and Deeba Afzal. Pythagorean m-polar Fuzzy Sets and TOPSIS method for the Selection of Advertisement Mode. Journal of Intelligent \& Fuzzy Systems, 37(6) (2019), 8441-8458.
[27] X. Peng, H. Garg. Algorithms for interval-valued fuzzy soft sets in emergency decision making based on WDBA and CODAS with new information measure. Computers \& Industrial Engineering, 119 (2018), 439-452.
[28] X.D. Peng, Y. Yang. Some results for Pythagorean fuzzy sets. International Journal of Intelligent Systems, 30 (2015), 1133-1160.
[29] X.D. Peng, H.Y. Yuan and Y. Yang. Pythagorean fuzzy information measures and their applications. International Journal of Intelligent Systems, 32(10) (2017), 991-1029.
[30] X.D. Peng,Y. Y. Yang, J. Song and Y. Jiang. Pythagorean Fuzzy Soft Set and Its Application. Computer Engineering, 41(7) (2015), 224-229.
[31] X.D. Peng and J. Dai. Approaches to single-valued neutrosophic MADM based on MABAC, TOPSIS and new similarity measure with score function. Neural Computing and Applications, 29(10) (2018), 939-954.
[32] E. Marei. More on neutrosophic soft rough sets and its modification. Neutrosophic Sets and Systems, 10 (2015).
[33] D. Pei and D. Miao. From soft sets to information system. Granular Computing, 2005 IEEE Inter. Conf. 2 (2005) 617-621.
[34] A. A. Quran, N. Hassan and E. Marei. A Novel Approach to Neutrosophic soft rough set under Uncertainty. Symmetry, 11(384) (2019), 1-16.
[35] M. Riaz, F. Samrandache, A. Firdous and F. Fakhar. On Soft Rough Topology with MultiAttribute Group Decision Making. Mathematics, 7(67) (2019),1-18.
[36] M. Riaz and M. R. Hashmi. Linear Diophantine fuzzy set and its applications towards multiattribute decision making problems. Journal of Intelligent \& Fuzzy Systems, 37(4) (2019), 5417-5439. DOI:10.3233/JIFS-190550.
[37] M. Riaz and M. R. Hashmi. Soft Rough Pythagorean m-Polar Fuzzy Sets and Pythagorean mPolar Fuzzy Soft Rough Sets with Application to Decision-Making. Computational and Applied Mathematics, 39(1) (2020), 1-36.
[38] M. Riaz and S. T. Tehrim. Cubic bipolar fuzzy ordered weighted geometric aggregation operators and their application using internal and external cubic bipolar fuzzy data. Computational \& Applied Mathematics, 38(2) (2019), 1-25.
[39] R. Roy and P.K. Maji. A fuzzy soft set theoretic approach to decision making problems. Journal of Computational and Applied Mathematics, 203(2) (2007), 412-418.
[40] A. S. Salama. Some Topological Properies of Rough Sets with Tools for Data Mining. International Journal of Computer Science Issues, 8(3) (2011), 588-595.
[41] M. Shabir and M. Naz. On soft topological spaces. Computers and Mathematics with Applications, 61 (2011), 1786-1799.
[42] M. L. Thivagar, C. Richard and N. R. Paul. Mathematical Innovations of a Modern Topology in Medical Events. International Journal of Information Science, 2(4) (2012), 33-36.
[43] Xueling Ma, Q. Liu and J. Zhan. A survey of decision making methods based on certain hybrid soft set models. Artificial Intelligence Review, 47 (2017), 507-530.
[44] L. Zhang and J. Zhan. Fuzzy soft β-covering based fuzzy rough sets and corresponding decision-making applications. International Journal of Machine Learning and Cybernetics, 10(6) (2018), 1487-1502.
[45] L. Zhang and J. Zhan. Novel classes of fuzzy soft β-coverings based fuzzy rough sets with applications to multi-criteria fuzzy group decision-making. Soft Computing, 23(14) (2018), 5327-5351.
[46] L. Zhang, J. Zhan and Z. S. Xu. Covering-based generalized IF rough sets with applications to multi-attribute decision-making. Information Sciences, 478 (2019), 275-302.
[47] S. Broumi, F. Smarandache and M. Dhar. Rough neutrosophic sets. Neutrosophic Sets and Systems, 30 (2014), 60-65.
[48] V. Christianto, F. Smarandache and M. Aslam. How we can extend the standard deviation notion with neutrosophic interval and quadruple neutrosophic numbers. International Journal of Neutrosophic Science, 2(2) (2020), 72-76.
[49] E. O. Adeleke, A. A. A. Agboola and F. Smarandache. Refined neutrosophic rings I. International Journal of Neutrosophic Science, 2(2) (2020), 77-81.
[50] E. O. Adeleke, A. A. A. Agboola and F. Smarandache. Refined neutrosophic rings Ii. International Journal of Neutrosophic Science, 2(2) (2020), 89-94.
[51] M. Parimala, M. Karthika, F. Smarandache and S. Broumi. On $\alpha \omega$-closed sets and its connectedness in terms of neutrosophic topological spaces. International Journal of Neutrosophic Science, 2(2) (2020), 82-88.
[52] M. A. Ibrahim, A. A. A. Agboola, E. O. Adeleke and S. A. Akinleye. Introduction to neutrosophic subtraction algebra and neutrosophic subraction semigroup. International Journal of Neutrosophic Science, 2(1) (2020), 47-62.

However, crisp graphs do not represent any system because the world is now full of imprecise data. The idea of fuzziness was used first to define the fuzzy graph [2] by Kaufmann (1973).

Fuzzy graph [3] theory was developed by Rosenfeld (1975). In the same time, Yeh and Bang (1975) introduced various connectedness concepts in fuzzy graphs [4]. Also, μ-length of a path and μ-distance in a fuzzy graph [3] was introduced by Rosenfeld (1975). Hence Bhattacharya (1987) introduced the idea of eccentricity and centre in the fuzzy graph [5] using μ-distance. Also, the properties of μ-distance [6] were developed by Sunitha and Vijayakumar (1998). Bhutani and Rosenfeld (2003) introduced the concepts of g-distance in fuzzy graphs [7,8] and eccentricity, centre etc. [9] were also developed. There were further studies on g-distance [10] by Linda and Sunitha (2012).

Day to day, there were developments on fuzzy graphs. Akram (2011) introduced bipolar fuzzy graphs [11] and the interval-valued fuzzy graph [12] were introduced by Akram and Dudek (2011). Samanta and Pal $(2013,2015)$ introduced fuzzy k-competition graphs, p-competition graphs [13] and also introduced fuzzy planar graph [14]. Tom and Sunitha (2015) introduced a new definition of the length of a path and strong sum distance in fuzzy graphs [15]. There are many research works on fuzzy graphs. But in all these fuzzy graphs, edge membership value is less than its vertex membership values. To remove this limitation, Samanta and Sarkar (2016) introduced a generalized fuzzy graph [16].

As a generalization of fuzzy set and intuitionistic set theory, Smarandache (1998) introduced the concepts of neutrosophic set [17] that consist of a degree of truth membership, falsity membership and indeterminacy membership. In reality, every uncertainty has some possibility, some risk and some neutral factors. Neutrosophic graphs include all three notions properly. Thus any uncertainty/ ambiguity of networks can be represented by neutrosophic graphs. Broumi et al. (2016) introduced the notion of a single-valued neutrosophic graph [18] as a generalization of fuzzy graphs. After that, there are several research works on neutrosophic graphs [19,20]. Akram and Siddique (2017) introduced the neutrosophic competition graphs [21]. Hence Das et al. (2020) proposed generalized neutrosophic competition graphs [22] with applications to economic competitions among some countries.

Abdel-Basset (2019) utilized the neutrosophic theory to solve the transition difficulties of IoT-based enterprises [23]. Also, there are many real-life applications including evaluation of the green supply chain management practices [24], evaluation Hospital medical care systems based on pathogenic sets [25], decision-making approach with quality function deployment for selecting supply chain sustainability metrics [26], intelligent medical decision support model based on soft computing and IoT [27]. Chakraborty (2020) introduced pentagonal neutrosophic number in shortest path problem [28] and a new score function of the pentagonal neutrosophic number and its application in networking problem [29]. Das and Edalatpanah (2020) proposed a new ranking function of the triangular neutrosophic number and its use in integer programming [30]. The remaining study can be found in [31-40].

The rest of the paper is organized as follows. In Section 2, we discuss the contribution of the study. In section 3, we study some preliminaries related to graph theory. In Section 4, we introduce the sum distance in a neutrosophic graph with some properties. In Section 5, we introduce eccentricity, radius
and diameter in a neutrosophic graph with properties. In Section 6, we discuss an application to a travelling salesman problem. In section 7, we conclude the study with future directions.

The gist of contributions of authors (Table 1) are arranged below.

Authors	Year	Contributions
Rosenfeld	1975	Introduce $\mu-$ length of a path and $\mu-$ distancein a fuzzy graph.
Bhattacharya	1987	Introduce eccentricity and centre in the fuzzy graph.
Bhutani and Rosenfeld	2003	$g-$ distance in fuzzy graphs and developed eccentricity, centre etc.
Linda and Sunitha	2011	Studied on $g-$ distance in fuzzy graphs.
Tom and Sunitha	2015	Introduce length of a path and strong sum distance in fuzzy graphs.
Das et al.	This	Introduce sum distance in neutrosophic graph and eccentricity, radius etc. are studied. An application is illustrated.

Table 1. Contributions of authors

2. Major contributions of the study

The neutrosophic graph is a generalization of the fuzzy graph. The contributions of the study are below.

- This study introduces the concepts of the weight of edges of a neutrosophic graph and weighted sum distance in neutrosophic graph.
- Also the eccentricity, diameter and radius are defined with some properties.
- At last, an application of sum distance in the neutrosophic graph to a travelling salesman problem is illustrated.

3. Preliminaries

Definition 1. A graph is an ordered pair (V, E) such that V is the set of vertices and $E \subseteq V \times V$ is the set of edges between vertices. A path of length n is a sequence $v_{0} e_{1} v_{1} e_{2} \ldots \ldots . e_{n} v_{n}$ where $v_{0}, v_{1}, \ldots \ldots, v_{n}$ are distinct vertices and $e_{1}, e_{2}, \ldots, e_{n}$ are distinct edges. The distance between the vertices u and v is the minimum length of the path between u and v. The eccentricity of a vertex is the maximum distance to any vertex in the graph. The radius of a graph is the minimum eccentricities of all vertices, and the diameter of a graph is the maximum eccentricities of vertices.

Definition 2.[3] A fuzzy graph G is a triplet (V, σ, μ) in which V is the set of vertices, $\sigma: V \rightarrow[0,1]$ and $\mu: V \times V \rightarrow[0,1]$ such that $\mu(x, y) \leq \sigma(x) \wedge \sigma(y)$ where $\sigma(x)$ represents the membership value of x and $\mu(x, y)$ represents the membership value of edge (x, y).

Definition 3.[15] Length $L(P)$ of a path $P: v_{0} e_{1} v_{1} e_{2} \ldots \ldots . e_{n} v_{n}$ in a connected fuzzy graph $G:(V, \sigma, \mu)$ is given by $L(P)=\sum_{i=1}^{n} \mu\left(e_{i}\right)$ where $\mu\left(e_{i}\right)$ represents membership values of edges e_{i}.

Definition 4.[15] The strong sum distance between vertices u and v is the minimum length of all paths between vertices u and v.

Figure 1. Example of a fuzzy graph
Example 1. The fuzzy graph (Fig.1) has four vertices with five edges. There are three paths from vertex v_{1} to vertex v_{4}. The paths are $P_{1}: v_{1}-v_{2}-v_{3}-v_{4}, P_{2}: v_{1}-v_{2}-v_{4}, P_{3}: v_{1}-v_{3}-v_{4}$. Then $L\left(P_{1}\right)=1.7, L\left(P_{2}\right)=1.2, L\left(P_{3}\right)=1.1$ and the strong sum distance between vertices v_{1} and v_{4} is 1.1.

Definition 5.[18] A graph $G=(\mathrm{V}, E)$ where $E \subseteq V \times V$ is said to be neutrosophic graph if
i) there exist functions $\rho_{T}: V \rightarrow[0,1], \rho_{F}: V \rightarrow[0,1]$ and $\rho_{I}: V \rightarrow[0,1]$ such that

$$
0 \leq \rho_{T}\left(v_{i}\right)+\rho_{F}\left(v_{i}\right)+\rho_{I}\left(v_{i}\right) \leq 3 \text { for all } v_{i} \in V(i=1,2,3, \ldots, n)
$$

where $\rho_{T}\left(v_{i}\right), \rho_{F}\left(v_{i}\right), \rho_{I}\left(v_{i}\right)$ denote the degree of true membership, degree of falsity membership and degree of indeterminacy membership of the vertex $v_{i} \in V$ respectively.
ii) there exist functions $\mu_{T}: E \rightarrow[0,1], \mu_{F}: E \rightarrow[0,1]$ and $\mu_{I}: E \rightarrow[0,1]$ such that

$$
\begin{gathered}
\mu_{T}\left(v_{i}, v_{j}\right) \leq \min \left[\rho_{T}\left(v_{i}\right), \rho_{T}\left(v_{j}\right)\right] \\
\mu_{F}\left(v_{i}, v_{j}\right) \geq \max \left[\rho_{F}\left(v_{i}\right), \rho_{F}\left(v_{j}\right)\right] \\
\mu_{I}\left(v_{i}, v_{j}\right) \geq \max \left[\rho_{I}\left(v_{i}\right), \rho_{I}\left(v_{j}\right)\right] \\
\text { and } 0 \leq \mu_{T}\left(v_{i}, v_{j}\right)+\mu_{F}\left(v_{i}, v_{j}\right)+\mu_{I}\left(v_{i}, v_{j}\right) \leq 3 \text { for all }\left(v_{i}, v_{j}\right) \in E
\end{gathered}
$$

where $\mu_{T}\left(v_{i}, v_{j}\right), \mu_{F}\left(v_{i}, v_{j}\right), \mu_{I}\left(v_{i}, v_{j}\right)$ denote the degree of true membership, degree of falsity membership and degree of indeterminacy membership of the edge $\left(v_{i}, v_{j}\right) \in E$ respectively.

Figure 2. A neutrosophic graph

4. Weighted sum distance in the neutrosophic graph

In the neutrosophic graph, membership values of edges are in neutrosophic nature. So we cannot compare among edges in a neutrosophic graph. To overcome it, we define weight function that maps from the membership value of edges to a crisp value lies between 0 and 1.

Definition 6. Consider a function $\omega:[0,1] \times[0,1] \times[0,1] \rightarrow[0,1]$ defined by

$$
\omega_{i j}(t, i, f)=w_{1} t(1-f)+w_{2} i \text { where } t, i, f, w_{1}, w_{2} \text { are the numbers } \in[0,1] .
$$

The weight of an edge $\left(v_{i}, v_{j}\right)$ in a neutrosophic graph is a number between 0 and 1 which is obtained from the image of the function ω for corresponding membership value $\left(T_{E}\left(v_{i}, v_{j}\right), F_{E}\left(v_{i}, v_{j}\right), I_{E}\left(v_{i}, v_{j}\right)\right)$ of the edge and it is denoted by $\omega_{i j}$.

Note: This function indicates the overall impression of true, falsity and indeterminacy values. Suppose, in one network, generally predictions are always true of some facts. Then w_{1} must be higher value and close to 1 . Similarly for the other cases.

Example 2. Weight ω_{23} of edge $\left(v_{2}, v_{3}\right)$ in the neutrosophic graph (Fig.2) 0.38 where $w_{1}=\frac{2}{3}$ and $w_{2}=\frac{1}{3}$.

Definition 7. Let $P: u_{0}-u_{1}-u_{2}-\cdots \ldots \ldots-u_{n}$ be any path in a neutrosophic graph $G=(\mathrm{V}, E)$. Then the length of the path p is the sum of the weights of the edges of the path P in $G=(\mathrm{V}, E)$.

$$
L_{N}(p)=\sum_{\substack{0 \leq i<n \\ i<j}} \omega_{i j}
$$

where $\omega_{i j}$ is the weight of edge between vertices u_{i} and u_{j}.
Example 3. Length of the path $v_{1}-v_{4}-v_{6}-v_{7}$ in the neutrosophic graph (Fig.2) is 0.8 where $w_{1}=\frac{2}{3}$ and $w_{2}=\frac{1}{3}$.

Definition 8. Let $G=(\mathrm{V}, E)$ be a neutrosophic graph and P be the collection of all paths between two nodes u and v i.e. $\mathrm{P}=\left\{p_{i}, i=1,2,3, \ldots \ldots, n\right\}$. Then the weighted distance between the nodes u and v is denoted by $d_{N}(u, v)$ and is defined by

$$
d_{N}(u, v)=\min \left\{L_{N}\left(p_{i}\right): p_{i} \in P, i=1,2,3, \ldots \ldots, n\right\}
$$

where $L_{N}\left(p_{i}\right)$ is the length of the path p_{i}.
Example 4. Sum distance between the nodes v_{1} and v_{7} in the neutrosophic graph (Fig.2) is 0.55 where $w_{1}=\frac{2}{3}$ and $w_{2}=\frac{1}{3}$. .

Theorem 1. Let $G=(\mathrm{V}, E)$ be a neutrosophic graph and $d_{N}(u, v)$ be weighted sum distance between any two nodes u and v. Then $\forall u, v, w \in V$
i) $\quad d_{N}(u, v) \geq 0$
ii) $\quad d_{N}(u, v)=0$ if and only if $u=v$
iii) $\quad d_{N}(u, v)=d_{N}(v, u)$
iv) $\quad d_{N}(u, v) \leq d_{N}(u, w)+d_{N}(w, v)$.

Proof. (i) It clears from the definition that $d_{N}(u, v) \geq 0$.
(ii) It clears from the definition that $d_{N}(u, v)=0$ if and only if $u=v$.
(iii) $d_{N}(u, v)$ denotes the strong sum distance from u to v. Then there exists a path whose length is minimum among all the path between u to v. Hence the length should be the same from v to u. So $d_{N}(u, v)=d_{N}(v, u)$.
(iv) Let p be a path $u-w$ such that $L_{N}(p)=d_{N}(u, w)$ and q be a path $w-v$ such that $L_{N}(q)=$ $d_{N}(w, v)$. Then $u-v$ is a walk and it is a strong path whose length is at most $d_{N}(u, w)+d_{N}(w, v)$. Thus $d_{N}(u, v) \leq d_{N}(u, w)+d_{N}(w, v)$.

5. Eccentricity, Radius and Diameter

The parameters eccentricity, radius and diameter are crucial in graph theory. We studied these important parameters in neutrosophic graph considering the concepts of sum distance. The relations among radius, diameters, eccentricity and distance are studied as follows.

Definition 9. The eccentricity $e_{N}(u)$ of a node, u is the distance from u to the furthest node in the neutrosophic graph G. Thus

$$
e_{N}(u)=\max \left\{d_{N}(u, v): \forall v \in V\right\}
$$

Example 5. Consider a neutrosophic graph (Fig.3). The eccentricity $e_{N}\left(v_{1}\right)$ of the vertex v_{1} is calculated by the following:

$$
\begin{aligned}
e_{N}\left(v_{1}\right) & =\max \left\{d_{N}\left(v_{1}, v_{2}\right), d_{N}\left(v_{1}, v_{3}\right), d_{N}\left(v_{1}, v_{4}\right)\right\} \\
& =\max \{0.33,0.41,0.87\}=0.87
\end{aligned}
$$

Fig. 3. An example of a neutrosophic graph

Theorem 2. Let $G=(\mathrm{V}, E)$ be a connected neutrosophic graph and u, v be any two nodes of G. Then $\left|e_{N}(u)-e_{N}(v)\right| \leq d_{N}(u, v)$.

Proof. Let $u, v \in G$ be two nodes such that $e_{N}(u) \geq e_{N}(v)$ and $x \in G$ be anode such that $e_{N}(u)=$ $d_{N}(u, x)$. Then $d_{N}(u, x) \leq d_{N}(u, v)+d_{N}(v, x)$, by theorem 3.7 (iv). Also $d_{N}(v, x) \leq e_{N}(v)$. Thus $e_{N}(u)=d_{N}(u, x) \leq d_{N}(u, v)+e_{N}(v)$, this implies $0 \leq e_{N}(u)-e_{N}(v) \leq d_{N}(u, v)$. Similarly, if we take $e_{N}(u) \leq e_{N}(v)$, we will get $-d_{N}(u, v) \leq e_{N}(u)-e_{N}(v)$. Thus $\left|e_{N}(u)-e_{N}(v)\right| \leq d_{N}(u, v)$.

Definition 10. The radius $r_{N}(G)$ of a neutrosophic graph, G is the minimum among all eccentricity of nodes. Thus

$$
r_{N}(G)=\min \left\{e_{N}(u): \forall u \in G\right\}
$$

Example 6. Consider the neutrosophic graph (Fig. 3). The radius $r_{N}(G)$ of the graph G is calculated by the following:

$$
\begin{aligned}
r_{N}(G) & =\min \left\{e_{N}\left(v_{1}\right), e_{N}\left(v_{2}\right), e_{N}\left(v_{3}\right), e_{N}\left(v_{4}\right)\right\} \\
& =\min \{0.87,0.83,0.46,0.87\}=0.46
\end{aligned}
$$

Definition 11. The diameter $d_{N}(G)$ of a neutrosophic graph, G is the maximum among all eccentricity of nodes. Thus

$$
d_{N}(G)=\max \left\{e_{N}(u): \forall u \in G\right\} .
$$

Example 7. Consider the neutrosophic graph (Fig.3). The diameter $d_{N}(G)$ of graph G is calculated by the following:

$$
\begin{gathered}
d_{N}(G)=\max \left\{e_{N}\left(v_{1}\right), e_{N}\left(v_{2}\right), e_{N}\left(v_{3}\right), e_{N}\left(v_{4}\right)\right\} \\
=\max \{0.87,0.83,0.46,0.87\}=0.87
\end{gathered}
$$

Definition 12. A node in a neutrosophic graph is called a central node if its eccentricity is equal to the radius of the graph. Thus for a central node u,

$$
e_{N}(u)=r_{N}(G)
$$

Example 8. Consider the neutrosophic graph (Fig. 3). The node v_{3} is a central node, since
the eccentricity $e_{N}\left(v_{3}\right)=$ the radius $r_{N}(G)$

Definition 13. A node in a neutrosophic graph is called a peripheral node if its eccentricity is equal to the diameter of the graph. Thus for a peripheral node u,

$$
e_{N}(u)=d_{N}(G) .
$$

Example 9. Consider the neutrosophic graph (Fig. 3). The nodes v_{1} and v_{4} are peripheral nodes, since the eccentricity $e_{N}\left(v_{1}\right)=$ the diameter $d_{N}(G)=$ the eccentricity $e_{N}\left(v_{4}\right)$.

Theorem 3. Let $G=(\mathrm{V}, E)$ be a connected neutrosophic graph with $r_{N}(G)$ and $d_{N}(G)$ be the radius and diameter respectively, then $r_{N}(G) \leq d_{N}(G) \leq 2 r_{N}(G)$.

Proof. From the definition, it follows that $r_{N}(G) \leq d_{N}(G)$. Let $u, v, w \in V$ such that u be central node i.e. $e_{N}(u)=r_{N}(G)$ and v, w be peripheral node i.e. $e_{N}(v)=e_{N}(w)=d_{N}(G)$. Now $d_{N}(v, w) \leq d_{N}(v, u)+$ $d_{N}(u, w)$, by theorem (iv). This implies $d_{N}(G) \leq r_{N}(G)+r_{N}(G)=2 r_{N}(G)$. Thus $d_{N}(G) \leq 2 r_{N}(G)$. Therefore, $r_{N}(G) \leq d_{N}(G) \leq 2 r_{N}(G)$.

6. Application to travelling salesman problem

Suppose there are few places in a city and roads connect the places. Hence the places and roads together form a network. But the problem is to find a way that a salesman can visit all the planes once with the lowest travelling cost. Now the travelling cost is directly proportional to the road distance travel by salesman. But all the roads are not in the same smooth conditions to measure road distance in practical. So the real travelling distance with cost may be effected the bad road, non-pucca roads, water path etc. Thus to calculate the path distance, it is generally ignored the current condition of the paths. The true value indicates the expected distance on good road. The falcity indicates the current false parameter like general traffic on the routes, muddied on road. Indeterminacy includes delay due to road construction, political movement and any other factors like water path. Therefore Travelling salesman problem should be presented by neutrosophic environment. Hence the travelling distance between the places should be taken as neutrosophic value.

6.1. Steps to find the sum distance of the travelling salesman problem.

To find the minimum travelling cost in travelling salesman problem in the neutrosophic environment, all the necessary steps are given below as an algorithm.

Step-1: Input all edge membership values between the places.
Step-2: Evaluate the weight of edges.
Step-3: Find all the Hamiltonian cycles between the requird places.
Step-4: Evaluate length of the said cycles.
Step-5: Find the minimum length among the cycles.

6.2. Numerical example

Suppose there are four places and six roads are connecting the places in a city. A salesman wants to visit all the places once and returning back to the starting place. The problem is to find a cycle with minimum cost of travelling.

The edge membership values (Table 2) between the places are given in the figure 4 where the membership value $\left(0.5,0.3,0.2\right.$) between two places P_{1} and P_{2} represent that distance of good road between P_{1} and P_{2} is 0.5 , distance of bad road between P_{1} and P_{2} is 0.3 and distance of nonconstructed road between P_{1} and P_{2} is 0.2 and similar for the other values.

Places	Distance between places
$P_{1}-P_{2}$	$(0.5,0.3,0.2)$
$P_{1}-P_{3}$	$(0.4,0.6,0.4)$
$P_{1}-P_{4}$	$(0.8,0.3,0.2)$
$P_{4}-P_{2}$	$(0.5,0.3,0.6)$
$P_{3}-P_{2}$	$(0.6,0.2,0.3)$
$P_{4}-P_{3}$	$(0.7,0.2,0.4)$

Table 2. Distace between two places

Figure 4: A graph among four cities.

The weight $\omega_{i j}$ between the places P_{i} and P_{j} are given below:

$$
\begin{array}{cc}
\omega_{12}\left(P_{1}, P_{2}\right)=0.3, & \omega_{13}\left(P_{1}, P_{3}\right)=0.24 \\
\omega_{14}\left(P_{1}, P_{4}\right)=0.44, & \omega_{23}\left(P_{2}, P_{3}\right)=0.42 \\
\omega_{24}\left(P_{2}, P_{4}\right)=0.43, & \omega_{34}\left(P_{3}, P_{4}\right)=0.51
\end{array}
$$

There are four possible cycles to visit all the places once from starting point to that point. These cycles are:

$$
\begin{aligned}
& C_{1}: v_{1}-v_{2}-v_{3}-v_{4}-v_{1} \\
& C_{2}: v_{1}-v_{2}-v_{4}-v_{3}-v_{1} \\
& C_{3}: v_{1}-v_{3}-v_{2}-v_{4}-v_{1}
\end{aligned}
$$

$$
C_{4}: v_{1}-v_{3}-v_{4}-v_{2}-v_{1}
$$

The length $L_{N}\left(C_{i}\right)$ travelled by the salesman for the above cycles C_{i} are:

$$
L_{N}\left(C_{1}\right)=1.67, L_{N}\left(C_{2}\right)=1.48, L_{N}\left(C_{3}\right)=1.53, L_{N}\left(C_{4}\right)=1.48
$$

Since the value 1.48 is minimum length for the cycles C_{2} and C_{4}, hence these cycles give the minimum travelling cost to the salesman.

7. Conclusions

In this article, sum distance, eccentricity, radius etc. in a neutrosophic graph has been developed. Some definitions, examples and theorems give a clear idea about the proposed study. A neutrosophic graph is recently a very important topic. There are many scopes to research on that topic. One can develop this study to the generalized neutrosophic graph. The real application inthe travelling salesman problem has been illustrated with a numerical example. This idea also gives us to develop future research in neutrosophic graphs.

Funding: This research received no external funding.
Conflicts of Interest: The authors declare no conflict of interest.

References

1. Das K., Mahapatra R., Samanta S. and Pal A, Influential Nodes in Social Networks: Centrality Measures, IGI Global, 15, 2020.
2. Kauffman A., Introduction a la Theorie des Sous-emsemblesFlous, Paris: Masson et CieEditeurs, 1973.
3. Rosenfeld A., Fuzzy graphs, Fuzzy Sets and their Applications (L.A.Zadeh, K.S.Fu, M.Shimura, Eds.), Academic Press, New York, 77-95, 1975.
4. Yeh R. T. and Bang S. Y., Fuzzy relations, fuzzy graphs and their application to clustering analysis. In: Zadeh LA, Fu KS, Shimura M (eds). Fuzzy sets and their Application to Cognitive and Decision Processes. Academic Press, New York, 125-149, 1975.
5. Bhattacharya P., Some remarks on fuzzy graphs, Pattern Recognit Lett 6:297-302, 1987.
6. Sunitha M. S. and Vijayakumar A., Some Metric Aspects Of Fuzzy Graphs, In: Proceedings Of The Conference on Graph Connections. CochinUniversity of Science and Technology, Cochin, 111-114, 1998.
7. Bhutani K. R. and Rosenfeld A., Strong arcs in fuzzy graphs, Information Sciences, 152, 319-322, 2003.
8. Bhutani K. R. and Rosenfeld A., Fuzzy end nodes in fuzzy graphs, Information Sciences, 152, 323-326, 2003.
9. Bhutani K. R., Rosenfeld A., Geodesics in fuzzy graphs, Electron Notes Discrete Math, 15, 51-54, 2003.
10. Linda J. P., Sunitha M. S., On g-eccentric nodes g-boundary nodes andg-interior nodes of a fuzzy graph, Int Jr Math Sci Appl, 2, 697-707, 2012.
11. Akram M., Bipolar fuzzy graphs. Information Sciences, 181, 5548-5564, 2011.
12. Akram M. and Dudek W. A., Interval-valued fuzzy graphs, Computer and Mathematics with Applications, 61, 289-299, 2011.
13. Samanta S. and Pal M., Fuzzy k-competition graphs and p-competition fuzzy graphs, Fuzzy Information and Engineering, 5, 191-204, 2013.
14. Samanta S. and Pal M., Fuzzy planar graphs, IEEE Transactions on Fuzzy Systems, 23(6) , 19361942, 2015.
15. Tom M. and Sunitha M. S., Strong sum distance in fuzzy graphs, SpringerPlus, 4: 214, 2015.
16. Samanta S. and Sarkar B., Representation of competitions by generalized fuzzy graphs, International Journal of Computational Intelligence System, 11, 1005-1015, 2018.
17. Smarandache F., Neutrosophyneutrosophic probability, Set and Logic, Amer Res Press, Rehoboth, USA, 1998.
18. Broumi S., Talea M., Bakali A. and Smarandache F., Single valued neutrosophic graphs, Journal of New Theory, 10, 86-101, 2016.
19. Akram M. and Shahzadi G., Operations on single-valued neutrosophic graphs, Journal of Uncertain Systems,11(1), 1-26, 2017.
20. Broumi S., Bakali A., Talea M., Smarandache F. and Hassan A., Generalized single-valued neutrosophic graphs of first type, Acta Electrotechica, 59, 23-31, 2018.
21. Akram M. and Siddique S., Neutrosophic competition graphs with applications, Journal Intelligence and Applications, 33, 921-935, 2017.
22. Das K., Samanta S. and De K., Generalized Neutrosophic Competition Graphs, Neutrosophic Sets and Systems, 31, 156-171, 2020.
23. Abdel-Basset M., Nabeeh N. A., El-Ghareeb H. A. and Aboelfetouh, A., Utilising neutrosophic theory to solve transition difficulties of IoT-based enterprises. Enterprise Information Systems, 1-21, 2019.
24. Abdel-Baset M., Chang V. and Gamal A., Evaluation of the green supply chain management practices: A novel neutrosophic approach. Computers in Industry, 108, 210-220, 2019.
25. Abdel-Basset M., El-hoseny M., Gamal A. and Smarandache F., A novel model for evaluation Hospital medical care systems based on plithogenic sets. Artificial intelligence in medicine, 100, 101710, 2019.
26. Abdel-Basset M., Mohamed R., Zaied A. E. N. H. and Smarandache F., A hybrid plithogenic decision-making approach with quality function deployment for selecting supply chain sustainability metrics. Symmetry, 11(7), 903, 2019.
27. Abdel-Basset M., Manogaran G., Gamal A. and Chang V., A Novel Intelligent Medical Decision Support Model Based on Soft Computing and IoT. IEEE Internet of Things Journal, 2019.
28. Chakraborty A., Application of Pentagonal Neutrosophic Number in Shortest Path Problem, International Journal of Neutrosophic Science, 3(1), 21-28, 2020.
29. Chakraborty A., A New Score Function of Pentagonal Neutrosophic Number and its Application in Networking Problem, International Journal of Neutrosophic Science, 1(1), 40-51, 2020.
30. Das S. K. and Edalatpanah S. A., A new ranking function of triangular neutrosophic number and its application in integer programming, International Journal of Neutrosophic Science, 4(2), 82-92, 2020.
31. Khan S. K., Farasat M., Naseem U. and Ali F., Performance Evaluation of Next-Generation Wireless (5G) UAV Relay, Wireless Personal Communications, Wireless Personal Communications, 113,145-160, 2020.
32. Khan S. K., Farasat M., Naseem U. and Ali F., Link-level Performance Modelling for NextGeneration UAV Relay with Millimetre-Wave Simultaneously in Access and Backhaul, Indian Journal of Science and Technology, 12(39), 1-9, 2019.
33. Naseem U. and Musial K., Dice: Deep intelligent contextual embedding for Twitter sentiment analysis, 2019 International Conference on Document Analysis and Recognition (ICDAR), 953 958, 2019.
34. Naseem U., Khan S. K., Razzak I. and Hameed, I. A, Australasian Joint Conference on Artificial Intelligence, 381-392, 2019.
35. Naseem U., Razzak I. and Hameed I. A., Deep Context-Aware Embedding for Abusive and Hate Speech detection on Twitter, Australian Journal of Intelligent Information Processing Systems,15(4), 69-76, 2020.
36. Naseem U., Razzak I. and Musial K. and Imran M., Transformer based Deep Intelligent Contextual Embedding for Twitter Sentiment Analysis, Future Generation Computer Systems,113, 58-69, 2020.
37. Naseem U., Khan, S. K., Farasat M. and Ali F., Abusive Language Detection: A Comprehensive Review, Indian Journal of Science and Technology, 12(45), 1-13, 2019.
38. Naseem U., Khan, S. K., Razzak I., Razzak, I. and Hameed, I. A., Hybrid words representation for airlines sentiment analysis, Australasian Joint Conference on Artificial Intelligence, 381-392, 2019.
39. Naseem U., Hybrid Words Representation for the classification of low quality text, OPUS, 2020.
40. Khan, S. K., Performance evaluation of next generation wireless UAV relay with millimeterwave in access and backhaul, Semantic Scholar, 2019.

Received: Apr 23, 2020. Accepted: July 13, 2020

Exploration of the Factors Causing Autoimmune Diseases using

Fuzzy Cognitive Maps with Concentric Neutrosophic

Hypergraphic Approach

Nivetha Martin ${ }^{1}$, Florentine Smarandache ${ }^{2}$, I.Pradeepa ${ }^{3}$, N.Ramila Gandhi ${ }^{4}$, P.Pandiammal ${ }^{5}$
${ }^{1,3}$ Department of Mathematics, Arul Anandar College(Autonomous), Karumathur, India, nivetha.martin710@gmail.com
${ }^{2}$ Department of Mathematics, University of New Mexico, USA, smarand@unm.edu
${ }^{4}$ Department of Mathematics, PSNA CET,Dindigul, India,satrami@gmail.com
${ }^{5}$ Department of Mathematics, GTN Arts College (Autonomous), Dindigul, India,pandiammal1981@gmail.com
*Correspondence: nivetha.martin710@gmail.com

Abstract

Neutrosophic sets are comprehensively used in decision making environment. The manifestation of neutrosophic sets in concentric hypergraphs is proposed in this research work. The intention of developing a decision making model using the combination of Fuzzy Cognitive Maps and concentric neutrosophic hypergraph is to rank the core factors of decision making problem and find the inter relational impacts. This proposed model is validated with the exploration of the causative factors of autoimmune diseases. The proposed model is highly compatible as it assists in determining the core factors and their inter association. This model will certainly benefit the decision maker at all managerial levels to design optimal decisions.

Keywords: Autoimmune disease, fuzzy cognitive maps, neutrosophic hypergraphs, optimal decision making

1. Introduction

Westernization the cause of modernization has unlocked the portals of cultural, behavioural and environmental changes of the people which greatly influence the biological system of human and this also lays the core reason for the outbreak of novel diseases. Presently the people of the world are characterized by multicultural and multi technological adoption. The integration and the association between people of varied culture have brought diverse implications on the external and internal environment of the human. Not just the social interactions contribute to such modifications; also the technological advancement and the work space of an individual cause a varied range of changes in the mankind. The tendency of manhood repelling from indigenous practices is the gateway for several health woes. The health system of the human is getting affected by several factors and especially the vulnerable target group is the women. In recent days, the people are chained by diseases of various kinds, even the economy of the nation face huge falls due to the effect of epidemic diseases, amidst such miserable situations, the immunity of the human is the only armed force against these viruses, but if the immune system fails to be defensive in nature and if it joins hand with the external invaders the entire human health system collapses and it ends in fatality. This is the characterization of auto immune diseases and the women are greatly affected by these diseases. It is highly a dreadful circumstance to tackle the consequences of these selfdestructing diseases. The autoimmune diseases predominantly affecting the women are Rheumatoid Arthritis, Multiple Sclerosis, Systemic lupus Erythematosus, Grave's disease, Hashimoto's thyroiditis and Myasthenia gravis. Presently the rate of occurrences of such diseases is at its pinnacle and the medical experts are investigating the ways and means of its mitigation. [1]

Generally the women are highly susceptible to these autoimmune diseases as the immune system gets weakened during pre and post pregnancy stages. This scenario has gained the medical concerns and medical researchers are on their study, to render support to it, this paper aims to underlie the core factors contributing to autoimmune diseases in women and to find the inter association between the core factors. Optimal decisions can be made by applying scientific methods in the process of decision making process. The entire scenario of decision making must be modeled based on decisive factors of the study. One of the realistic tools of decision making is fuzzy cognitive maps (FCM), introduced by Kosko [2], later several academicians extended this FCM tool based on the requirements. FCM is a directed graph representing the casual relationship between factors considered for study. The nodes and the edges of the graph represent the study factors and their association. The weights $[-1,1]$ represent the nature of the association. The integration of FCM with other graphic structures was initiated by Nivetha and Pradeepa [3]. The hypergraphic and fuzzy hypergraphic approaches with FCM unlocked the construction of concentric fuzzy hypergraphs and its integration with FCM [4,5]. This field of integrated FCM with fuzzy hypergraphs has made the researchers explore by introducing various types of concentric fuzzy hypergraphs.

In this research work, a fuzzy cognitive map with concentric neutrosophic hypergraphic approach is introduced. The notion of neutrosophic fuzzy sets and neutrosophic logic was first coined by Smarandache [6] and presently many researchers are highly interested to carry out their research in this field, the concepts of neutrosophic is applied in almost all types of decision making tools. Neutrosophic sets, play significant role in making decisions in uncertain environment as it provides space for the pragmatic representation of the expert's opinion. Abdel Basset et al [7]developed a decision making model for evaluating the framework for smart disaster response system in an uncertain environment, neutrosophic sets are used for uncertainty assessments of linear time-cost tradeoffs [8]; resource levelling problem[9] in construction project was modeled under neutrosophic environment. The concept of neutrosophic sets was extended to bipolar neutrosophic representation [10] and it is used in multi criteria decision making framework for professional selection. Das et al [11] developed neutrosophic fuzzy matrices and algebraic operation that had some utility in decision making. Plithogenic sets, the extension of neutrosophic sets are used in solving supply chain problem with the development of a novel plithogenic model [12]. Such massive applications of neutrosophic sets in decision making and its robust nature triggered the idea of integrating neutrosophic sets to concentric hypergraphs. To the best of our knowledge, the integration of neutrosophic concentric fuzzy hypergraphs with FCM has not been instituted and so this is a new arena of research towards optimal decision making.

Fuzzy Cognitive Maps are more useful in determining the association between study factors, if the number of study factors is less, FCM's are highly compatible, but if the number of factors is more, then comparative analysis between the factors is difficult and tedious, to resolve such crisis, the core factors of the problem are to be decided and then the inter association between the core factors can be determined easily. To find the core factors, the intervention of various experts is mandatory, based on which the factors can be ranked and the core factors are decided based on the rank positions of the factors. This eases the process of making decisions as it helps in filtering the non- core factors. Generally in medicinal environment, the medical experts analyze the factors contributing to diseases, initially the causative factors taken for study will be more in number, but the factors have to drop at each stage of their research to find the prime causative factors. In the process of factor filtration, the expert's opinions play a vital role. The role of each causative factor of a disease cannot be certainly express but representation using neutrosophic sets makes it possible and more meaningful. Thus the integration of FCM with concentric neutrosophic hypergraph will help to tackle the difficulties in handling large number of study factors.

The paper is structured as follows: section 2consists of the methodology in which the algorithm of finding optimal decision is presented; section 3 comprises of the adaptation of the proposed model to the decision making problem; section 4 discusses the results and the last section summarizes the research work.

2. Methodology and its application

The steps in making optimal decisions is presented as an algorithm as follows,
Step 1: The expert's opinion of the study factors are represented by concentric fuzzy hypergraphs with neutrosophic fuzzy sets representations of the envelope.
Step 2: The score values of the neutrosophic fuzzy sets are determined.
Step 3: The factors are ranked based on the score values.
Step 4: The core factors are determined based on the ranking positions.
Step5: The inter association between the core factors is obtained based on the conventional FCM procedure.

The case histories of patients belonging to women gender suffering from autoimmune diseases are taken as the source of data collection and the factors contributing to the occurrence of auto immune disease in women [13] are presented below based on the medical expert's opinion and data obtained from questionnaire.

F1. Excess presence of VGLL3 (Vestigial Like Family Member 3) in skin cells
F2. Changes in the gene system
F3. Exposure to ultraviolet radiation from sunlight
F4. Acquaintance with organic mercury
F5. Alteration in food habits
F6. Gene-Environment interface
F7. Fluctuations in sex hormones
F8. Modifications in Nutritional diet
F9. Post pregnancy impacts
F10. Genetic vulnerability
F11. Genetic differences in immunity

Fig.3.1.Concentric Neutrosophic Fuzzy Hypergraphic representation

The concentric neutrosophic fuzzy hyper envelopes with neutrosophic representations of the expert's opinion are presented below in Table 3.1.

Table 3.1 Representations of Expert's opinion

Experts	F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	F11
E1	$(0.3,0.2$,	$(0.5,0.2$,	$(0.4,0.1$,	$(0.3,0.4$,	$(0.8,0.1$,	$(0.7,0.2$,	$(0.7,0.3$,	$(0.7,0.2$,	$(0.3,0.2$,	$(0.5,0.2$,	$(0.5,0.2$,
	$0.8)$	$0.3)$	$0.5)$	$0.6)$	$0.2)$	$0.3)$	$0.4)$	$0.3)$	$0.8)$	$0.3)$	$0.3)$
E2	$(0.2,0.2$,	$(0.4,0.3$,	$(0.5,0.2$,	$(0.2,0.2$,	$(0.7,0.2$,	$(0.6,0.2$,	$(0.7,0.5$,	$(0.6,0.2$,	$(0.4,0.3$,	$(0.6,0.2$,	$(0.8,0.3$,
	$0.9)$	$0.5)$	$0.3)$	$0.9)$	$0.3)$	$0.3)$	$0.4)$	$0.3)$	$0.5)$	$0.3)$	$0.2)$
E3	$(0.3,0.4$,	$(0.3,0.5$,	$(0.4,0.3$,	$(0.3,0.2$,	$(0.8,0.3$,	$(0.9,0.2$,	$(0.9,0.1$,	$(0.6,0.2$,	$(0.3,0.5$,	$(0.7,0.3$,	$(0.6,0.2$,
	$0.6)$	$0.6)$	$0.5)$	$0.8)$	$0.2)$	$0.3)$	$0.3)$	$0.3)$	$0.6)$	$0.4)$	$0.3)$
E4	$(0.5,0.2$,	$(0.2,0.2$,	$(0.5,0.2$,	$(0.4,0.4$,	$(0.7,0.1$,	$(0.7,0.3$,	$(0.6,0.2$,	$(0.7,0.1$,	$(0.2,0.2$,	$(0.6,0.2$,	$(0.4,0.3$,
	$0.3)$	$0.9)$	$0.3)$	$0.6)$	$0.2)$	$0.4)$	$0.3)$	$0.2)$	$0.9)$	$0.3)$	$0.5)$
E5	$(0.2,0.5$	$(0.3,0.2$,	$(0.6,0.2$,	$(0.5,0.2$,	$(0.6,0.2$,	$(0.8,0.1$,	$(0.6,0.2$,	$(0.9,0.2$,	$(0.4,0.4$,	$(0.5,0.2$,	$(0.7,0.3$,
	$, 0.6)$	$0.8)$	$0.3)$	$0.3)$	$0.3)$	$0.2)$	$0.3)$	$0.3)$	$0.6)$	$0.3)$	$0.4)$

The score values of the factors are presented in Table 3.2 and it is represented graphically in Fig.3.2
Table 3.2 Score values of the Factors

F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	F11
0.571	0.571	0.546	0.538	0.667	0.783	0.756	0.573	0.445	0.636	0.667
7	7	8	9	5	1	2	6	10	3	4

Based on the scores, the following factors are considered as the core factors and their inter association is expressed as linguistic variables, which then later quantified by heptagonal fuzzy numbers.
HP1. Alteration in food habits
HP2. Gene-Environment interface

HP3. Fluctuations in sex hormones
HP4. Genetic vulnerability
HP5. Genetic differences in immunity
The connection matric between the factors, based on the expert's opinion
HP1
HP2
HP3
HP4
HP5 $\left[\begin{array}{lllll}\text { HP2 } & \text { HP3 } & \text { HP4 } & \text { HP5 } \\ 0 & M & H & L & L \\ L & 0 & M & H & H \\ L & M & 0 & M & L \\ L & M & H & 0 & M \\ \text { L } & M & H & 0\end{array}\right]$

The modified matrix based on the values of quantification in Table 3.3

Linguistic Variable	Heptagonal Weight	Membership value
Low	$(0,0.1,0.2,0.3,0.35,0.4,0.45)$	$\mathbf{0 . 2 6}$
Medium	$(0.4,0.45,0.5,0.55,0.6,0.65,0.7)$	$\mathbf{0 . 5 5}$
High	$(0.65,0.7,0.8,0.9,1,1,1)$	$\mathbf{0 . 8 6}$
HP1	HP1	HP2
HP1	0	0.55
HP2	0.26	0
HP3	0.26	0.55
HP4	0.26	0.55
HP5	0.26	0.55
		0.86

The interrelationship between the factors is determined by the similar application of FCM methodology [9-10] and it is presented graphically in Fig 3.2

Fig.3.2 FCM representation of the inter association of the core factors

4. Results and Discussion

Fig. 3.2 clearly states the factor, fluctuations in sex hormone is the core causative factor of auto immune diseases. The findings of this research will certainly assist the medical experts to ascertain the causes of the auto immune disease in women and give treatment in accordance to it. Hormonal imbalance is quite common in the life of the women as they undergo various stages of puberty, maternity, menopause, but still proper medications has to be given to avoid the risks of such fatal diseases. The representation of the imprecise data in the form neutrosophic sets is the pragmatic reflection of the expert's opinion, as the factors contributing to the diseases are quite uncertain. The degree of truth values, indeterminacy and false values are indeed very essential in making optimal decisions.

5. Conclusion

The proposed decision making tool with the integration of FCM and concentric neutrosophic fuzzy hypergraphs is a highly feasible tool to obtain optimal decisions. The difficulty in handling several factors in FCM is reduced and this integrated approach facilitate the determination of inter association between the factors. This method of decision making can be extended to other kinds of concentric fuzzy hypergraphs with various representations. Plithogenic sets representation is the future extension of this proposed research work.

References

1. Shashi Pratab Singh., Pranay Wal1., Ankita Wal1., Vikas Srivastava., , Ratnakar Tiwari., , Radha Dutt Sharma., Understanding autoimmune disease: an update review, IJPTB. 2016,3,51-65.
2. Kosko B.Fuzzy Cognitive Maps, International Journal of Man-Machine Studies,1986, 24 65-75.
3. Nivetha Martin, Pradeepa.I., Pandiammal.P., Evolution of Concentric Fuzzy Hypergraph for Inclusive Decision Making, International Journal of Engineering and Advanced Technology,2019, 8, 358-362.
4. Nivetha Martin., Pradeepa.I.,Pandiammal.P., Student's Low Academic Performance Appraisal Model with Hypergraphic Approach in Fuzzy Cognitive Maps, Journal of Information and Computational Science,2019, 9,661-671.
5. Pradeepa.I., Nivetha Martin, Pandiammal.P., Prioritizing the obstacles in building swipe and touch classroom environment using blended method, Journal of Interdisciplinary Cycle Research, 2019, 9, 383-392.
6. Smarandache,F.,Neutrosophic set, a generalization of the Intuitionistic Fuzzy Sets, International Journal of Pure and Applied Mathematics, 2005,24, 287-297.
7. Abdel-Basset, M., Mohamed, R., Elhoseny, M., \& Chang, V.,Evaluation framework for smart disaster response systems in uncertainty environment. Mechanical Systems and Signal Processing, 2020, 145, 106941.
8. Abdel-Basset, M., Ali, M., \& Atef, A., Uncertainty assessments of linear time-cost tradeoffs using neutrosophic set. Computers \& Industrial Engineering,2020, 141, 106286.
9. Abdel-Basset, M., Ali, M., \& Atef, A., Resource levelling problem in construction projects under neutrosophic environment. The Journal of Supercomputing, 2020,76(2), 964-988.
10. Abdel-Basset, M., Gamal, A., Son, L. H., \& Smarandache, F.,A Bipolar Neutrosophic Multi Criteria Decision Making Framework for Professional Selection. Applied Sciences,2020, 10(4), 1202.
11. R. Das, F. Smarandache and B.C. Tripathy, Neutrosophic fuzzy matrices and some algebraic operation, Neutrosophic Sets and Systems, 2020,32,401-409.
12. Abdel-Basset, M., Mohamed, R., Zaied, A. E. N. H., Gamal, A., \& Smarandache, F.,Solving the supply chain problem using the best-worst method based on a novel Plithogenic model. In Optimization Theory Based on Neutrosophic and Plithogenic Sets,2020, (pp. 1-19). Academic Press.
13. Autoimmune Disease. Available at http://www.nlm.nih.gov/medlineplus/ autoimmunediseases.html (April 2016).

Received: Apr 24, 2020. Accepted: July 14, 2020

Neutrosophy Logic and its Classification: An Overview

Aiman Muzaffar ${ }^{1}$, Md Tabrez Nafis ${ }^{2}$ and Shahab Saquib Sohail ${ }^{3},{ }^{*}$
${ }^{1,2,3}$ Department of Computer Science and Engineering, SEST, Jamia Hamdard, New Delhi, India.
1aimanmuzaffar14@gmail.com ,2tabrez.nafis@gmail.com
*Correspondence: shahabssohail@jamiahamdard.ac.in

Abstract

Over the past few years, neutrosophy has gained an exponential growth and has attracted a good number of researchers especially those who focus on soft computing based uncertainty computation. This paper presents the various techniques in neutrosophy. The various techniques are discussed lucidly which help a naïve researcher in this field to understand the on-going researches and establish a strong base. We have summarized the previous work carried out in the field of neutrosophic logic, set, measure, and also classification techniques in neutrosophy and the relevant research work has been discussed. Further, various applications in the field of neutrosophy are elaborated. The major contributions of the existing research in neutrosophy is reviewed and presented from different perspectives. The development of newer algorithms for solving the problems of neutrosophy will provide impetus to the existing research in this field.

Keywords: Neutrosophy, indeterminacy, neutrosophic logic

1. Introduction

Neutrosophy, having emerged as a generalization to fuzzy logic is being used in the research area in a number of fields like logics, set theory and others. Florentin Smarandache, in 1980, introduced this new field of philosophy which deals with the uncertainties and indeterminacy in the data. He defines neutrosophy as the science which deals with neutralities. This field takes into consideration the dawn, kind and scope of such neutralities and how they interact with various ideational spectra. The fundamentals of the study of the logic of neutrosophy, probability in neutrosophy, sets in neutrosophy and the statistics is given by neutrosophy. Various researchers have incorporated the idea of Neutrosophic Logic (NL), Neutrosophic Cognitive Maps (NCM) and other technologies in areas such as Information system application, IT, Decision Support System Application, Physics, Healthcare, Social Sciences etc. In 2019, F. Smarandache, introduced the concept of Neutrosociology[1], which is the amalgamation of sociology and neutrosophic methods. In [3], an improved method using clustering using k-means was incorporated for performing image segmentation using neutrosophic logic. In [4], the authors presented a way of correcting the uncertainties that arise in discursive analysis by applying Neutrosophy Theory in relation with sentiment analysis. In [5], the authors gave a framework to see how mental models could be analyzed using neutrosophic logic. In [6], [9], [10], [11], [15], [16] and [17], Neutrosophy was used to deal with the uncertainties and indeterminacy in situation analysis. In [25], the evaluation of the smart disaster response systems in times of ambiguity has been done using a framework. The
degrees of contradiction in the evaluation criteria have been addressed with the help of plithogenic set theory which checks the uncertainty environment. In [26], to tackle time scheduling in projects, a framework has been given to minimize the cost of projects in environments which are ambiguous. Neutrosophic theory has been used to consider the dynamic features of all parameters. In [29], a resource levelling model to minimize the costs of daily resource fluctuations is given, using neutrosophic set, with the aim of tackling the issues of uncertainty in the problems of the real world. In [30], the authors have given a framework for professional selection by making use of neutrosophic multi-criteria decision making, in an attempt to check the vagueness and ambiguity in the selection process. In [31], a case study of Thailand's sugar industry has been done to validate the model proposed, using the plithogenic decision making perspective for evaluating supply chain sustainability. In this paper, we have reviewed the neutrosophic technologies that have been incorporated in various researches all over the world. The figure 1 depicts the workflow.

Figure 1. Block diagram for the process of the research carried out in the manuscript

2. Background Study

Florentin Smarandache [2019] in his book, Introduction to Neutrosophic Sociology (Neutrosociology) discussed Sociological Forecasting, Neutrosophic Social norms and situations which cannot be solved in the classical way. He discussed neutrosophic Grand Theories to find abstract ideas about concrete facts in large social groups. He has also discussed Neutrosophic Big Data, IoT and Neutrosophic Microsociology in this book. [1]

Aasim Zafar, Mohd Anas Wajid [2019] used the concept of neutrosophy to study the reasons of criminal behavior in Nigeria. They found that out of various factor taken by the researchers, some were excluded because they were found to be indeterminate. To show how such factors did actually contribute to the criminal behavior, they modelled the situation mathematically using FCM's and NCM's, where the former stands for Fuzzy cognitive Maps and the latter stands for Neutrosophic

Cognitive Maps. They further conclude how NCM is more effective than FCM in dealing with uncertainties and indeterminacy in situation analysis. They further concluded that if the indeterminate factors were taken, it could improve the efficiency and accuracy of the mathematical models using the concept of Neutrosophic Cognitive Maps. [6]

V Christiano, F Smarandache [2019] reviewed the seven applications of Neutrosophic Logic. They have used logical analysis based on Neutrosophic Logic. They further suggest that NL theory could be applied in Psychology pertaining to different cultures, forming theories in the field of economics, resolution of conflicts, philosophy of science and other fields like applied mathematics, economics and physics. [7]

Nancy El-Hefenawy, et al. [2016] reviewed the application of Neutrosophic Sets. They suggest that there exist a number of application in fields such as in decision making systems, IT, various information systems. This paper presented some important areas of neutrosophic sets, logic in neutrosophy, neutrosophy related measures and a neutrosophic set of a single value (SVNS). They further suggest that these could produce a new algorithm for tackling any neutrosophic problem. These can help also to solve any fuzzy problem using neutrosophic algorithm. [8]

S Pramanik, S Chackrabarti [2013], studied the issues which were faced by the construction workers in West Bengal and used the technique- neutrosophic cognitive maps in order to find the solutions for it. They discussed the major problems faced by the workers and based on the opinions of the experts and after considering the indeterminacy factor, they formulated the NCM. [9]

Anne-Laure Jousselme, et al. [2003], proposed a discussion on how uncertainty plays a role in situation analysis. They gave an overall understanding of the principal typologies of uncertainty which were found in the literature of the recent times. They discuss that besides richness and ambiguity of the language which is natural is the reason for varied uncertainty conceptions, it is also a result of the not-so-simple physical nature of the information. They further define some concepts to better understand uncertainty and the benefits that are sought. [10]

Vasantha K, W. B.; Smarandache, Florentin [2004], used NCM to study and analyze the social aspects of laborers who had migrated from different place and were suffering from HIV/AIDS in the rural areas of Tamil Nadu. They made use of the Relational Maps in neutrosophy (NRM) and defined some new neutrosophic tools which they adopted in the study and analysis of this issue. They further gave a sketch of some sixty laborers who were infected with HIV/AIDS. [11]

K Pérez-Teruel, M Leyva-Vázquez [2014], gave a structure with the help of which they analyzed the mental models and did their elicitation using neutrosophic logic. To show the applicability of the project, they showed an illustrative example. They discuss a framework for the processing of indeterminacy and uncertainty in mental models. [12]

Mustafa Mamat et al. [2012], used an approach based on fuzzy linear programming for the planning of a balanced diet. They discussed the causes of disease-related lifestyle and eating disorders which are critical issues in the world. They calculated the nutrient amount in food to be taken by the Fuzzy Linear Programming Approach and considered it to estimate the nutritional requirements for an individual on a daily basis. They further suggest that this planning could help in preventing the eating disorders and certain disease-related lifestyle. [13].

Igor Bagány and Márta Takács [2017] discussed the correlations in a number of factors involved in education system in a way that the functionality could be modelled. They do so to examine the education system in an effective manner. They further employed the fuzzy cognitive map (FCM)
technology, because it helps in determination of qualitative description of the given parameters and relationships [14].

S No.	Author and Year	Primary Contribution	References
1.	Florentin Smarandache (2019)	- Sociological Forecasting, Neutrosophic Social norms Neutrosophic Grand Theories - Neutrosophic Big Data, IoT and Neutrosophic Microsociology.	[1]
2.	Victor Christiano and F Smarandache (2019)	Applications of neutrosophy in : - Psychology with respect to cultures - Forming theories in economics Resolving conflicts.	[7]
3.	Nancy El-Hefenawy et al. (2016)	© Decision support system, IT, information system - Some important notions pertaining to Neutrosophy.	[8]
4.	Aasim Zafar and Mohd Anas Wajid (2019)	- NCM to model the criminal behavior in Nigeria. - Indeterminate factors, if considered improve the accuracy and efficiency of the model.	[6]
5.	Surapati Pramanik and Sourendranath Chackrabarti (2013)	อ NCM for the issues related to laborers in West Bengal.	[9]
6.	Anne-Laure Jousselme (2003)	(0) Role of uncertainty in situation analysis	[10]
7.	Vasantha K, W. B. and Smarandache, F (2004)	© Analyzing the social aspects, using NCM, of those laborers who had migrated and suffer from HIV-AIDS.	[11]
8.	KPTeruel and ML Vázquez (2014)	- A framework for the analysis of mental models based on NL (neutrosophic logic).	[12]
9.	M Mamat et al. (2012)	© An approach incorporating FLP for a balanced diet planning.	[13]
10.	Igor Bagány and Márta Takács (2017)	© FCM for finding correlations in a number of factors involved in education system in a way that the functionality could be modelled.	[14]
11.	Shuqi Xue et al. (2014)	- The information processing model which focuses on the behavior of the human brain, with respect to cognition.	[15]
12.	Dr.M.Albert William et al. (2013)	(0) NCM for analyzing the risk factors for Breast Cancer	[16]
13.	K Mondal and	® NCM for analyzing the issues faced by Hijra	[17]
	S Pramanik	community in West Bengal.	

- Smart disaster response systems in uncertainty environments
- Plithogenic Decision Making approach (Supply Chain

Sustainability)
[26],

- Bipolar Neutrosophic Multi-Criteria Decision Making [30], Framework (Professional Selection)
- Neutrosophic Set for assessing uncertainty of linear timecost tradeoffs

14. (2020)

- Resource levelling model based on neutrosophic set

Shuqi Xue et al. [2014], described the information processing model which is based on the behavior of the human brain, with respect to cognition. They proposed that the two methods of modelling a situation cognitively are representing and reasoning about situation analysis with the help of Ontology and the use of FCM, in order to formulate a Situation analysis framework. The presented approach of FCM is for a systematic analysis of the Situation Analysis theory; it provides an understanding of how the working of its elements. [15]

Dr.M.Albert William et al. [2013] analyzed the risk factors for breast cancer using NCMs. Based on the expert's opinion, they had chosen certain factors as the main nodes for obtaining a neutrosophic directed graph. They had analyzed the risk factors and their solutions and discussed how certain factors are crucial for the development of the disease [16]. However few softcomputing approaches have been used in [27, 28] K Mondal and S Pramanik [2014] have studied the situation of the hijra community in West Bengal and addressed their issues using NCMs. On the basis of the experts' opinion as well as the idea of indeterminacy, they have formulated the NCM [17].

3. Classification of Neutrosophic Techniques:

Various researchers have studied the concept of neutrosophy and applied various techniques to address different problems of indeterminacy. Some techniques are given below:
a) Neutrosophic Cognitive Maps
b) Neutrosophic Logic
c) Neutrosophic Set
d) Neutrosophic Measure
e) Single Valued Neutrosophic Set

3.1. Neutrosophic Cognitive Maps (NCM):

Florentin Smarandache introduced the idea of NCM. They are considered to be an addendum of the Fuzzy Cognitive Maps with the difference being in the fact that, the values of indeterminacy are included. Various real life situations contain the factor of indeterminacy which cannot be modeled using existing methods. To show how indeterminacy affects the situation under consideration, NCMs have proven to be an important tool.

Definition:

It is a directed graph which has concepts (as in, any policy/event) and causalities where the former is for nodes and the latter is for the edges. It is a representation of a relationship between concepts. A simple NCM can be defined as those which have edge weights or causalities from the set $\{-1,0,1, I\}$.

Let the two nodes of the NCM be denoted by Ai and Aj . The effect of one node on the other is represented with the help of a directed edge from Ai to Aj , which is called connections. The weightage is assigned to each edge with a number in the set $\{-1,1,0, I\}$. We assume that eij is the weight assigned to the directed edge Ai Aj , eij belongs to $\{-1,0,1, \mathrm{I}\}$. The following table II shows the value of eij and the effect it has on the corresponding edges:

Table II: Value of eij and its effect on corresponding edges

Value ot eq	Effect of Ac on A_{1}
$\mathrm{e}_{\mathrm{j}}^{2}=0$	No effect.
$c_{3}=1$	Increase (or decrease) in As causes increase (or decterise) in A.
$c_{1}=-1$	Increase (or decrease) in. Al causes decrease (or increase) in A.
$c_{y}=1$	The effect of $\mathrm{A}_{\text {i }}$ on A_{1} is indeterminate.

Many researchers have incorporated the concept of NCMs in their work. NCMs are an effective way to deal with uncertainties and indeterminacy in Situation Analysis. They have shown how indeterminate factors if taken into consideration could enhance the efficiency and accuracy of the mathematical models using the concept of Neutrosophic Cognitive Maps.

Dr. M. Albert William et al. (2013) have analyzed the risk factors of Breast Cancer and their solutions with the help of Neutrosophic cognitive maps (NCMs). They have taken some twelve factors as the main nodes for their study. With the help of corresponding adjacency matrix related to the neutrosophic directed graph, they model the situation with the help of certain mathematical calculations.

Dr A. Kalaichelvi and L. Gomathy (2011) have analyzed the issues that the girl students had to face who got married while studying, with the help of Neutrosophic Cognitive Maps (NCM's). they collected the data from some hundred students in different courses in various colleges in Tamil Nadu, India. They identified certain factors on the basis of the generated opinions by those who were considered. In this way, they assessed what the effect of one factor would be on the other.

Surapati Pramanik et al. studied the issues faced by the laborers in the construction industry in West Bengal on the basis of NCM's. They identified some major problems and on the basis of the opinion of the expert and the factor of indeterminacy, they formulated the NCM. Then, they studied how the state vectors would affect the two matrices i.e; the connection matrix and neutrosophic adjacency matrix.

Aasim Zafar and M Anas Wajid studied the various factors which led to criminal behavior in Nigeria. They analyzed the situation of crime there and found out that the prominent researchers who had been monitoring the situation there cited certain causes like family breakdown,
corruption, poverty etc as the reasons for criminal behavior. However, they do not take into account factors like inadequate equipment, NGOs, underemployment because these are considered to be indeterminate factors. They used NCMs to shows that these indeterminate factors were actually related to the crime in Nigeria. They further conclude that the accuracy and efficiency of mathematical models can be enhanced using NCMs if indeterminate factors are taken into consideration.

3.2. Neutrosophic Logic (NL):

It is also called Smarandache logic. The fuzzy logic is generalized on the basis of Neutrosophy and it gives rise to something called Neutrosophic logic. It says that a proposition could be take three values: true (t), false (f) and indeterminate (I) and each of these are the values from the range of [T, I, F]. There is an introduction of a certain idea of 'indeterminacy' because of the parameters which are not expected and therefore, concealed in some statements. NL is the analysis of the partition in a triad. It includes the membership degrees of truthfulness T, falsity F and indeterminacy I. Figure 2 illustrates the following.

Figure 2. Neutrosophic logic and its relationship with intuitionistic logic

Florentin Smarandache in 2003 has written a paper to give an understanding of the Neutrosophic Logic (NL). He has also pointed out the differences between the Intuitionistic Fuzzy set and the neutrosophic set. [20]

Karina Pérez-Teruel and Maikel Leyva-Vázquez have analyzed the mental models and did their elicitation using NL. To show the applicability of the project, they showed an illustrative example. They discuss a model for the understanding the effect of indeterminacy and uncertainty in such models. [5]

Florentin Smarandache and Luige Vlâdâreanu in 2011, have introduced the concept of NL and set operators. They have described the dynamics of a robot mathematically and how neutrosophic science is applicable to robotics [8].

3.3. Neutrosophic Set (NS):

Neutrosophic set is defined as the area of neutrosophy that is associated with the study of the dawn, scope and type of neutralities, and how they interact with various analytical spectra. [8]

Smarandache defined neutrosophic set as: Let the space of points be denoted by (Y). Let the general element in (Y) be denoted by (y). A NS (B) in (Y) has three membership functions (MF): truth MF -T B (y), an indeterminacy MF-I B(y) and a falsity MF- F B (y). The functions TB (y), IB(y), and FB(y) are real subsets of $[0-, 1+]$ (they could be real standard or nonstandard).

That is:

$$
\mathrm{T}_{\mathrm{B}}(\mathrm{y}): \mathrm{Y} \rightarrow[0-, 1+], \mathrm{I}_{\mathrm{B}}(\mathrm{y}): \mathrm{Y} \rightarrow[0-, 1+] \text { and } \mathrm{FB}(\mathrm{y}): \mathrm{Y} \rightarrow[0-1+]
$$

There is no limiting condition on the sum of $T B(y), I B(y)$ and $F B(y)$, so $0-\leq \sup T B(y)+\sup$ I B $(\mathrm{y})+\sup \mathrm{FB}(\mathrm{y}) \leq 3+$.

Neutrosophic Sets have been used in various research works. Some examples are: F. Smarandache, in [7] wrote about the Schrödinger's Cat Theory. He said that at one moment, the photon's quantum state could be in more than one place. It meant that one particular element might or might not belong to a set or a place at one time. It also refers to the fact that an element (a quantum state) has a possibility of belonging to two contrasting sets (or places) at one time.

In [26], to tackle time scheduling in projects, a framework has been given to minimize the cost of projects in environments which are ambiguous. Neutrosophic set theory has been used to consider the dynamic features of all parameters.

In K. Atanassov, Fuzzy Sets and Systems (2005), neutrosophic sets could also be used to relate an image with information that is not certain, using a new tool; the information could have been applied to some technique wherein the processing of images takes place. The examples are in the field of image segmentation, thresholding and removing the noise. Neutrosophic sets find their real life example in terms of philosophical application. They could also be used to calculate the truthvalue in some theories of philosophy of Zen doctrine.

3.4. Neutrosophic Measure (NM):

The classical measure is generalized for such a case where the space has some factor of uncertainty or indeterminacy. The imprecise probabilities and the classical ones are generalized with the help of neutrosophic probability. There are a number of rules of the classical probability that are defined in the way that they are in unison with those of neutrosophy [8].

Let an item be defined as $\langle\mathrm{B}\rangle$. $\langle\mathrm{B}\rangle$ could be any thought, feature, hypothesis, concept etc. Let <anti $B>$ be the inverse of $\langle B>$; while $<$ neut $B>$ be none of the two: $\langle B>$ and <anti $B>$, having some sense of neutrality (or indeterminacy) in relation to $\langle B\rangle$. For example, if $\langle B\rangle=$ rain, then <anti $B\rangle=$ no rain, while <neut $\mathrm{B}>=$ no idea. Let $<\mathrm{B}>$ represent the truth value of a notion, then <anti $\mathrm{B}>$ represents its falsehood, while <neut $\mathrm{B}>$ represents its degree of indeterminacy.
If $\langle B\rangle=$ it will rain tomorrow, <anti $B>=$ it will not rain tomorrow, while <neut $B>=$ not knowing if it will rain or not/cloudy/humid day. We think of the measure to be null $\{\mathrm{m}($ anti $B)=0\}$ when the case does not prevail. When <neut $B>$ does not prevail, the measure is written as null $\{\mathrm{m}($ neut $)=$ $0\}$ [8].

3.5. Single Valued Neutrosophic Sets (SVNS) :

It is the instance of a NS which gives an additional possibility for the representation of uncertainty or indeterminacy, imprecision, incompleteness or inconsistency in some details which is present in the real world. The use of information that is not determinate and consistent could be suitably used in applications which include scientific and engineering domains. [9][10]

Let X define the space of points (objects). Let the collective elements in X be denoted by x (Wang et al., 2010). A Single Valued Neutrosophic Set, A in X is described by three membership functions (MF): truth MF TA(x), falsity MF FA(x) and an indeterminacy MF IA(x).

For every point x in X, the three M^{\prime} s: $T A(x), \operatorname{IA}(x), F A(x)$ belong to the interval $[0,1]$.
SVNS, when continuous is written mathematically as [9,10]:

$$
A=\int_{X} \frac{\left\langle T_{A}(x), I_{A}(x), F_{A}(x)\right\rangle}{x}, \quad x \in X
$$

SVNS, when discrete is written mathematically as:

$$
A=\sum_{i=1}^{n} \frac{\left\langle T_{A}\left(x_{i}\right), I_{A}\left(x_{i}\right), F_{A}\left(x_{i}\right)\right\rangle}{x_{i}}, \quad x_{i} \in X
$$

Jun Ye, in [25], has presented the correlation and correlation coefficient of SVNSs, based on the extension of the connection of intuitionistic fuzzy sets (IFS's). Further, the use of correlation coefficient or similarity measure in cosine (both weighted) is suggested for the decision-making method. The options are evaluated on the basis of the criteria with the help of the membership degrees of truth, falsehood and indeterminacy under the SVNS environment.

M Abdel-Basset et al. in their paper, have analyzed the role of SVNS's and rough sets in smart city. They have proposed a framework for dealing with information that is incomplete and imperfect with the help of theories of SVNS and rough set. This combination of these two sets will take into account
all aspects of uncertainty, imprecision of data and information and make lives of the citizens of the smart cities better with the introduction of services and decisions. They have focused mainly on making a framework of all kinds of imperfection that could possibly happen in smart cities [24].

4. Application Areas of Neutrosophy:

1. Cultural Psychology
2. Socio-economic theorizing
3. Information System Application
4. Decision Support Systems
5. IT Application
6. Healthcare and related areas
7. Situation Analysis
8. Sociological Forecasting
9. Supply chain Sustainability
10. Project Management

- In cultural psychology, NL theory can be used to reconcile the issues in socio-economic theorizing (collectivism vs individualism).
- In socio-economic theorizing, the conflicts arising out of human tensions could be reconciled, as in the conflicts between the two different perspectives i.e.; fermions and bosons, capitalism and socialism.
- In the deep problem of philosophy of science, NL theory can be implemented wherein it suggests that whenever there are two sides which oppose each other, a choice is always there to find the part that is neutral, so that the two opposite sides could be reconciled.
- In the field of cosmology, the NL analyses the underlying cause of changes of neutralities and opposites. It concludes that there is a possibility that there had been some start, in addition to some lasting background also, which they could be the 'primordial fluid'.
- In American football game, an attempt to score a goal involves an infinite sort of events that could happen. So, there is a possibility that NL could be expanded some states which could be more than three.
- In gravitation, this perspective could help find a middle-course between the two kinds of forces (pull and push), by keeping in view the fact that both the forces are in action. [11]

So, many fields of science are being improved with the help of the theory of neutrosophic logic. This theory is applicable in different research areas as well- in applied mathematics, social sciences, economics, and physics.

More Applications:

- In Information System Application (Neutrosophic Database, Analysis of the social
networks, systems which deal with e-learning, in finding the middle course in the information of financial markets).
- In Information Technology Application (Neutrosophic Security, NCM's for Situation
Analysis, In Robotics).
- Decision Support System (in markets related to finances, management of risks, expert systems related to neutrosophy, linguistic variables in neutrosophy).

In short, it has applications in any field related to science or even human-centered, where inconsistency, incompleteness, indeterminacy is present. In general terms, where <neut A> (i.e; sense of neutrality in relation to item $<\mathrm{A}>$) occurs [11].

5. Conclusion and Future work:

Neutrosophy is an important field of research nowadays as it deals with uncertainties which cannot be taken into consideration using conventional modeling methods. There is indeterminacy in almost all aspects of this world; neutrosophy is doing its bit to make sense of the unknown. This paper presents a review of the technologies used in neutrosophy and the researches which have incorporated these concepts as well. Various applications of neutrosophy in many fields such as information system, information technology, decision support system and others are given. The future work holds the potential to develop newer algorithms for solving any problem of neutrosophy, which can also help in solving any fuzzy problems. The algorithms in the multi-criteria decision making problems which are based on neutrosophic theory are being used to solve practical applications in other areas such as medical diagnosis, financial market information, robotics, security, information fusion system, expert system and bioinformatics.

Conflicts of Interest: "The authors declare no conflict of interest."

References

1. Smarandache, Florentin, Introduction to Neutrosophic Sociology (Neutrosociology) (January 17, 2019). Infinite Study (2019), ISBN: 978-1-59973-605-1.
2. Smarandache, F. (2001). A Unifying Field in Logics: Neutrosophic Logic, Preface by Charles Le, American Research Press, Rehoboth, 1999, 2000. Second edition of the Proceedings of the First International Conference on Neutrosophy, Neutrosophic Logic, Neutrosophic Set, Neutrosophic Probability and Statistics. University of New Mexico, Gallup.
3. Qureshi, Mohammad \& Vasim Ahamad, Mohd. (2018). An Improved Method for Image Segmentation Using K-Means Clustering with Neutrosophic Logic. Procedia Computer Science. 132. 534-540. 10.1016/j.procs.2018.05.006.
4. Smarandache, Florentin \& Teodorescu, Mirela \& Gîfu, Daniela. (2017). Neutrosophy, a Sentiment Analysis Model.
5. Perez-Teruel, Karina and Maikel Leyva-Vazquez. "Neutrosophic Logic for Mental Model Elicitation and Analysis." Neutrosophic Sets and Systems 2, 1 (2014).
6. Bagány I. and Takács M. (2017). Soft-computing methods applied in parameter analysis of educational models. IEEE 15th International Symposium on Intelligent Systems and Informatics (SISY), Subotica, Serbia (pp. 000231-000236. doi: 10.1109/SISY.2017.8080559).
7. F. Smarandache, An Introduction to Neutrosophic Probability Applied in Quantum Physics, Ph.D. (1991).
8. F. Smarandache, Introduction to Neutrosophic Measure, Neutrosophic Integral, and Neutrosophic Probability.
9. V. Kandasamy, W. B., and F. Smarandache, Fuzzy Cognitive Maps and Neutrosophic Cognitive Maps, Xiquan Publishers, Phoenix (2003).
10. Nancy El-Hefenawy et al., A Review on the Applications of Neutrosophic Sets, Journal of Computational and Theoretical Nanoscience Vol. 13, 936-944, 2016.
11. Christianto, Victor \& Smarandache, Florentin. (2019). A Review of Seven Applications of Neutrosophic Logic: In Cultural Psychology, Economics Theorizing, Conflict Resolution, Philosophy of Science, etc. J. 2. 10.3390/j2020010.
12. Pramanik, Surapati \& Chakrabarti, Sourendranath. (2013). A Study on Problems of Construction Workers in West Bengal Based on Neutrosophic Cognitive Maps, Journal of Innovative Research in Science, Engineering and Technology. 2. 6387-6394.
13. W.B.Vasantha Kandasamy, and F. Smarandache. Analysis of Social aspects of Migrant laborers living with HIV/AIDS using Fuzzy Theory and Neutrosophic Cognitive Maps, Xiquan, Phoenix, 2004.
14. Zafar, Aasim and Mohd Anas. "Neutrosophic Cognitive Maps for Situation Analysis." Neutrosophic Sets and Systems 29, 1 (2020).
15. Mamat, Mustafa \& Zulkifli, Nor \& Deraman, Siti \& Maizura, Noor \& Noor, Mohamad. (2012). Fuzzy Linear Programming Approach in Balance Diet Planning for Eating Disorder and Disease-related Lifestyle. Applied Mathematical Sciences (Ruse).
16. Jousselme, Anne-Laure \& Maupin, Patrick \& Bossé, Éloi. (2003). Uncertainty in a situation analysis perspective. Proceedings of the 6th International Conference on Information Fusion, FUSION 2003. 2. 1207-1214. 10.1109/ICIF.2003.177375.
17. G. Jiang, Z. Tian and T. Jiang. 2014. Using Fuzzy Cognitive Maps to Analyze the Information Processing Model of Situation Awareness. Sixth International Conference on Intelligent HumanMachine Systems and Cybernetics, Hangzhou, 2014, pp. 245-248.
18. Dr.M.Albert William, Dr.A.Victor Devadoss, J.Janet Sheeba. 2013. International Journal of Scientific \& Engineering Research Volume 4, Issue 2, February-2013 ISSN 2229-5518.
19. Kalaichelvi, L \& Loganathan, Gomathy. (2011). Application of Neutrosophic Cognitive Maps in the Analysis of the problems faced by girl students who got married during the period of study, Int. J. of Mathematical Sciences and Applications, Vol. 1, No. 3, September 2011.
20. Grzegorzewski, Przemyslaw \& Mrówka, Edyta. (2005). Some notes on (Atanassov's) intuitionistic fuzzy sets. Fuzzy Sets and Systems. 156. 492-495. 10.1016/j.fss.2005.06.002.
21. Smarandache, F., First International Conference on Neutrosophy, Neutrosophic Logic, Set, Probability and Statistics December 1-3, 2001
22. Smarandache, Florentin. (2004). Neutrosophic Set - A Generalization of the Intuitionistic Fuzzy Set. International Journal of Pure and Applied Mathematics. 24.
23. Pramanik, Surapati \& Roy, Rumi \& Roy, Tapan \& Smarandache, Florentin. (2017). Multi criteria decision making using correlation coefficient under rough neutrosophic environment. Neutrosophic Sets and Systems. 17. 10.5281/zenodo. 1012237.
24. Abdel-Basset, Mohamed \& Mohamed, Mai. (2018). The Role of Single Valued Neutrosophic Sets and Rough Sets in Smart City: Imperfect and Incomplete Information Systems. Measurement. 124. 10.1016/j.measurement.2018.04.001.
25. Abdel-Basset, Mohamed \& Elhoseny, Mohamed \& Chang, Victor. (2020). Evaluation framework for smart disaster response systems in uncertainty environment. Mechanical Systems and Signal Processing. 145. 106941. 10.1016/j.ymssp.2020.106941.
26. Abdel-Basset, Mohamed \& Ali, Mumtaz \& Atef, Asmaa. (2020). Uncertainty Assessments of Linear Time-Cost Tradeoffs using Neutrosophic Set. Computers \& Industrial Engineering. 141. 106286. 10.1016/j.cie.2020.106286.
27. S.S. Sohail, J. Siddiqui, and R. Ali, 2018. Feature-Based Opinion Mining Approach (FOMA) for Improved Book Recommendation. Arabian Journal for Science and Engineering, 43(12), pp.80298048.
28. S.S. Sohail, J. Siddiqui, and R. Ali, 2018. An OWA-based ranking approach for university books recommendation. International Journal of Intelligent Systems, 33(2), pp.396-416.
29. Abdel-Basset, M., Ali, M. \& Atef, A. Resource levelling problem in construction projects under neutrosophic environment. J Supercomput 76, 964-988 (2020). https://doi.org/10.1007/s11227-019-03055-6
30. Abdel-Basset, M.; Gamal, A.; Son, L.H.; Smarandache, F. A Bipolar Neutrosophic Multi Criteria Decision Making Framework for Professional Selection. Appl. Sci. 2020, 10, 1202.
31. Abdel-Basset, M., Mohamed, R., Zaied, A. E. N. H., Gamal, A., \& Smarandache, F. (2020). Solving the supply chain problem using the best-worst method based on a novel Plithogenic model. In Optimization Theory Based on Neutrosophic and Plithogenic Sets (pp. 1-19). Academic Press.
32. Ye, Jun. (2013). Multicriteria decision-making method using the correlation coefficient under singlevalue neutrosophic environment. International Journal of General Systems. 42. 10.1080/03081079.2012.761609.

Received: Apr 25, 2020. Accepted: July 16, 2020

MADM Using m-Generalized q-Neutrosophic Sets

Abhijit Saha ${ }^{1 *}$, Florentin Smarandache ${ }^{2}$, Jhulaneswar Baidya ${ }^{3}$ and Debjit Dutta ${ }^{4}$
${ }^{1}$ Faculty of Mathematics, Techno College of Engineering Agartala, , Tripura, India, Pin-799004; Email: abhijit84.math@gmail.com
${ }^{2}$ Faculty of Maths \& Science Div. ,University of New Mexico, Gallup, New Mexico 87301, USA; Email: fsmarandache@gmail.com
${ }^{3}$ Research Scholar, Dept. of Basic and Applied Sciences, NIT Arunachal Pradesh, Pin-791112, India; Email: baidyajhulan@gmail.com
${ }^{4}$ Faculty of Basic and Applied Sciences, NIT Arunachal Pradesh, Arunachal Pradesh-791112, India; Email: debjitdutta.math@gmail.com

*Correspondence: abhijit84.math@gmail.com

Abstract

Although the single valued neutrosophic sets (SVNSs) are effective tool to express uncertain information and are superior to the fuzzy sets, intuitionistic fuzzy sets, Pythagorean fuzzy sets and q-rung orthopair fuzzy sets, there is not yet reported an operation which can provide desirable generality and flexibility under single valued neutrosophic environment, although many operations have been developed earlier to meet above such eventualities. So, the primary aim of this paper is to propose the concept of m-generalized q-neutrosophic sets ($m G q N S s$) as a further generalization of fuzzy sets, intuitionistic fuzzy sets, Pythagorean fuzzy sets and q-rung orthopair fuzzy sets, single valued neutrosophic sets, n-hyperspherical neutrosophic sets and single valued spherical neutrosophic sets. Under the m-generalized q-neutrosophic environment, we develop some new operational laws and study their properties. Using these operations, we define m-generalized q-neutrosophic weighted aggregation operators. The distinguished features of these proposed weighted aggregation operators are studied in detail. Furthermore, based on these proposed operators, a MADM (multi-attribute decision making) approach is developed. Finally, an illustrative example is provided to show the feasibility and effectiveness of the proposed approach.

Keywords: Single valued neutrosophic set, m-generalized q-neutrosophic set, m-generalized q-neutrosophic weighted averaging aggregation operator $(m G q N W A A)$, m-generalized q-neutrosophic weighted geometric aggregation operator ($m G q N W G A$), score value, decision making.

1. Introduction

Multi-attribute decision making (MADM) is basically a process of selecting an optimal alternative from a set of chosen ones. In our daily life, we come across various types of multi-attribute decision making problems. Therefore, all of us need to learn the techniques to make decisions. The area of decision making problems has attracted the interest of many researchers. Many authors have worked in this field by utilizing various approaches. All the traditional decision making processes involve crisp data set but in many real life problems, data may not be in crisp form always. Fuzzy set theory is one such extremely useful tool that helps us to deal with non-crisp data. In 1965, Lotfi A. Zadeh [1] first published the famous research paper on fuzzy sets that originated due to mainly the inclusion of vague human assessments in computing problems and it can deal with uncertainty, vagueness, partially trueness, impreciseness, Sharpless boundaries etc. Basically, the theory of fuzzy set is founded on the concept of relative graded membership which deals with the partial belongings of an element in a set in order to process inexact information. Later on, fuzzy sets have been generalized to intuitionistic fuzzy sets [2] by adding a non-membership function by Atanassov in 1986 in order to deal with problems that possess incomplete information. In the context of fuzzy sets or intuitionistic fuzzy sets, it is known that the membership (or non-membership) value of an element in a set admits a unique value in the closed interval [0,1$]$. However, the application range of intuitionistic fuzzy set is narrow because it has the constraint that sum of membership degree
and non-membership degree of an element is not greater than one. But, in complex decision-making problems, decision makers/experts may choose the preferences in such a way that the above condition gets violated. For instance, if an expert gives his preference with membership degree 0.8 and non-membership degree 0.7 , then clearly their sum is 1.5 , which is greater than 1 . Therefore, this situation can't be not properly handled by the intuitionistic fuzzy sets. To solve this problem, Yager [3, 4] introduced the nonstandard fuzzy set named as Pythagorean fuzzy sets with membership degree ζ and non-membership degree ϑ with the condition $\zeta^{2}+\vartheta^{2} \leq 1$. Obviously, the Pythagorean fuzzy sets accommodate more uncertainties than the intuitionistic fuzzy sets. Yager [5] defined q-rung orthopair fuzzy sets (q-ROFSs) by enlarging the scope of Pythagorean fuzzy sets. The q-rung orthopair fuzzy sets allows the result of the q th power of the membership grade plus the q th power of the non-membership grade to be limited in interval $[0,1]$. If $q=1$, the q-rung orthopair fuzzy set transforms into the intuitionistic fuzzy set; if $q=2$, the q-rung orthopair fuzzy set transforms into the Pythagorean fuzzy set, which means that the q-rung orthopair fuzzy sets are extensions of intuitionistic fuzzy sets and Pythagorean fuzzy sets.

In 1999, Smarandache [6] introduced the notion neutrsophic set as a generalization of the classical set, fuzzy set, intuitionistic fuzzy set, Pythagorean fuzzy set and q-rung orthopair fuzzy set. The characterization of this neutrosophic set is explicitly done by truth-membership function, indeterminacy membership function and falsity membership function. The concept of single valued neutrosophic set was developed by Wang et al. [7] as an extension of fuzzy sets, Pythagorean fuzzy sets, q-rung orthopair fuzzy sets, intuitionistic fuzzy sets, single valued spherical neutrosophic sets [8], n-hyperspherical neutrosophic sets [8]. The possible applications of neutrosophic sets and single valued neutrosophic sets on image segmentation have been studied in Gou and Cheng [9], Gou and Sensur [10]. Also, we find their probable infliction on clustering analysis in Karaaslan [11] and on medical diagnosis problems in Ansari et al. [12] respectively. Furthermore, the subject of the neutrosophic set theory has been practiced in Wang et al. [13], Gou et al. [14], Ye [15], Sun et al. [16], Ye [17-19] and Abdel Basset et al. [20, 21]. Some recent studies on this area can be found in [22-37].

The growing capacity of decision complexity induces the real-life decision-making problems that indulge both generality and flexibility of the operations used. Some of the basic operations of single valued spherical neutrosophic sets fail to generalize the basic operations of fuzzy sets, intuitionistic fuzzy sets, Pythagorean fuzzy sets and q-rung orthopair fuzzy sets. Getting inspired and provoked with this fact, in this paper, we have tried to propose a new concept called " m-generalized q-neutrosophic sets ($m G q N S s$)" and develop some aggregation operators in m-generalized q-neutrosophic environment to deal with $M A D M$ problems. The aims in this article are pursued below:
(1) To propose the concept of m-generalized q-neutrosophic sets ($m G q N S s$) as a further generalization of fuzzy sets, Pythagorean fuzzy sets, q-rung orthopair fuzzy sets, intuitionistic fuzzy sets, single valued neutrosophic sets, n-hyperspherical neutrosophic sets and single valued spherical neutrosophic sets.
(2) To define few operations between the m-generalized q-neutrosophic numbers.
(3) To develop the weighted aggregation operators such as m-generalized q-neutrosophic weighted averaging aggregation operator ($m G q N W A A$) and m-generalized q-neutrosophic weighted geometric aggregation operator ($m G q N W G A$) and study their properties.
(4) To propose a multi-attribute decision making method based on the m-generalized q-neutrosophic weighted aggregation operators.

To do so, the rest of the article is arranged as follows:
In section 2, we review some basic concepts. In Section 3, we first define m-generalized q-neutrosophic sets ($m G q N S s$) and m-generalized q-neutrosophic numbers ($m G q N N s$) and then propose few operations between the mGqNNs. Furthermore, we introduce the score of a $m G q N N$ to ranking the $m G q N N s$. In section 4, we propose two types of m-generalized q -neutrosophic weighted aggregation operators to aggregate the m-generalized q-neutrosophic information. In section 5, based on the m-generalized q-neutrosophic weighted aggregation operators and score of $m G q N N s$, we develop a multi attribute decision making approach, in which the evaluation values of alternatives on the attribute are represented in terms of $m G q N N s$ and the alternatives are ranked according to the values of the score of $m G q N N s$ to select the best (most desirable) one. Also, we present a practical example to demonstrate the application and effectiveness of the proposed method. In final section, we present the conclusion of the study.

2. Preliminaries:

In this section, first we recall some basic notions that are relevant to our study.
2.1 Definition: [7] A single-valued neutrosophic set ς on the universe set U is given by

$$
\varsigma=\{<x, \xi(x), \vartheta(x), \eta(x)>: x \in U\}
$$

where the functions $\xi, \vartheta, \eta: U \rightarrow[0,1]$ satisfy the condition $0 \leq \xi(x)+\vartheta(x)+\eta(x) \leq 3$ for every $x \in U$. The functions $\xi(x), \vartheta(x), \eta(x)$ define the degree of truth-membership, indeterminacy-membership and falsity-membership, respectively of $x \in U$.
2.2 Definition: [7] Suppose ς and ς^{\prime} be two single-valued neutrosophic sets on U and are given by $\varsigma=\{<x, \xi(x), \vartheta(x), \eta(x)>: x \in U\}$ and $\varsigma^{\prime}=\left\{<x, \xi^{\prime}(x), \vartheta^{\prime}(x), \eta^{\prime}(x)>: x \in U\right\}$. Then
(i) $\varsigma \subseteq \varsigma^{\prime}$ if and onlyif $\xi(x) \leq \xi^{\prime}(x), \vartheta(x) \geq \vartheta^{\prime}(x), \eta(x) \geq \eta^{\prime}(x) \forall x \in U$.
(ii) $\varsigma^{c}=\{<x, \eta(x), 1-\vartheta(x), \xi(x)>: x \in U\}$
(iii) $\varsigma \cup \varsigma^{\prime}=\left\{<x, \max \left(\xi(x), \xi^{\prime}(x)\right), \min \left(\vartheta(x), \vartheta^{\prime}(x)\right), \min \left(\eta(x), \eta^{\prime}(x)\right)>: x \in U\right\}$.
(iv) $\varsigma \cap \varsigma^{\prime}=\left\{<x, \min \left(\xi(x), \xi^{\prime}(x)\right), \max \left(\vartheta(x), \vartheta^{\prime}(x)\right), \max \left(\eta(x), \eta^{\prime}(x)\right)>: x \in U\right\}$.

3. m-GENERALIZED q-NEUTROSOPHIC SETS:

In this section first we define a m-generalized q-neutrosophic set as a further generalization of fuzzy set, Pythagorean fuzzy set, q-rung orthopair fuzzy set, intuitionistic fuzzy set, single valued neutrosophic set, single valued n-hyperspherical neutrosophic set and single valued spherical neutrosophic set. Then we present few operations between the m-generalized q-neutrosophic numbers.
3.1 Definition: Suppose U is a universe set and $x \in U$. A m-generalized q-neutrosophic set $(m G q N s)$ in U is described as:

$$
\psi=\{<x, \xi(x), \vartheta(x), \eta(x)>: x \in U\}
$$

where $\xi, \vartheta, \eta: U \rightarrow[0, r](0<r \leq 1) \quad$ are functions such that $0 \leq \xi(x), \vartheta(x), \eta(x) \leq 1$ and $0 \leq(\xi(x))^{\frac{q m}{3}}+(\vartheta(x))^{\frac{q m}{3}}+(\eta(x))^{\frac{q m}{3}} \leq \frac{3}{m} \quad(m, q \geq 1)$

Here $\xi(x), \vartheta(x), \eta(x)$ represent m-generalized truth membership, m-generalized indeterminacy membership and m-generalized falsity membership respectively of $x \in U$. The triplet $\psi=<\xi, \vartheta, \eta>$ is termed as m-generalized q-neutrosophic number ($m G q N N$ for short).
In particular,
(i) when $m=r=1$ and $q=3, \psi$ reduces to a single valued neutrosophic set [7].
(ii) when $m=3, r=q=1$ and $\eta(x)=0 \forall x \in U, \psi$ reduces to an intuitionistic fuzzy set [2].
(iii) when $m=3, r=q=1$ and $\eta(x)=\vartheta(x)=0 \forall x \in U, \psi$ reduces to a fuzzy set [1].
(iv) when $m=3, r=1$ and $\eta(x)=0 \forall x \in U, \psi$ reduces to a q-Rung orthopair fuzzy set [5].
(v) when $m=3, r=1, q=2$ and $\eta(x)=0 \forall x \in U, \psi$ reduces to a Pythagorean fuzzy set [3, 4].
(vi) For $r=\sqrt[n]{3}, m=1$ and $q=3 n(n \geq 1), \psi$ reduces to a single valued n-hyperspherical neutrosophic set [8].
(vii) For $r=\sqrt{3}, m=1$ and $q=6, \psi$ reduces to a single valued spherical neutrosophic set [8].

Next we define few operations between m-generalized q-neutrosophic numbers.
3.2 Definition: Suppose $\psi_{1}=<\xi_{1}, \vartheta_{1}, \eta_{1}>$ and $\psi_{2}=<\xi_{2}, \vartheta_{2}, \eta_{2}>$ be two m-generalized q-neutrosophic numbers defined on U and λ be any real number >0. We define

[^25](i) $\psi_{1} \oplus \psi_{2}=\left\langle\left(\frac{3}{m}-\left(\frac{3}{m}-\xi_{1}^{\frac{q m}{3}}\right)\left(\frac{3}{m}-\xi_{2}^{\frac{q m}{3}}\right)\right)^{\frac{3}{q m}}, \vartheta_{1} \vartheta_{2}, \eta_{1} \eta_{2}\right\rangle$
(ii) $\psi_{1} \otimes \psi_{2}=\left\langle\xi_{1} \xi_{2},\left(\frac{3}{m}-\left(\frac{3}{m}-\vartheta_{1}^{\frac{q m}{3}}\right)\left(\frac{3}{m}-\vartheta_{2}^{\frac{q m}{3}}\right)\right)^{\frac{3}{q m}},\left(\frac{3}{m}-\left(\frac{3}{m}-\eta_{1}^{\frac{q m}{3}}\right)\left(\frac{3}{m}-\eta_{2}^{\frac{q m}{3}}\right)\right)^{\frac{3}{q m}}\right\rangle$
(iii) $\lambda * \psi_{1}=\left\langle\left(\frac{3}{m}-\left(\frac{3}{m}-\xi_{1}^{\frac{q m}{3}}\right)^{\lambda}\right)^{\frac{3}{q m}}, \vartheta_{1}^{\lambda}, \eta_{1}^{\lambda}\right\rangle$
(iv) $\lambda \circ \psi_{1}=\left\langle\xi_{1}^{\lambda},\left(\frac{3}{m}-\left(\frac{3}{m}-\vartheta_{1}^{\frac{q m}{3}}\right)^{\lambda}\right)^{\frac{3}{q m}},\left(\frac{3}{m}-\left(\frac{3}{m}-\eta_{1}^{\frac{q m}{3}}\right)^{\lambda}\right)^{\frac{3}{q m}}\right\rangle$
3.3 Theorem: Suppose $\psi_{1}=<\xi_{1}, \vartheta_{1}, \eta_{1}>$ and $\psi_{2}=<\xi_{2}, \vartheta_{2}, \eta_{2}>$ be two m-generalized q-neutrosophic numbers defined on U and $\lambda, \lambda_{1}, \lambda_{2}$ be any three real numbers >0. Then
(i) $\psi_{1} \oplus \psi_{2}=\psi_{2} \oplus \psi_{1}$
(ii) $\psi_{1} \otimes \psi_{2}=\psi_{2} \otimes \psi_{1}$
(iii) $\lambda *\left(\psi_{1} \oplus \psi_{2}\right)=\left(\lambda * \psi_{1}\right) \oplus\left(\lambda * \psi_{2}\right)$
(iv) $\lambda \circ\left(\psi_{1} \otimes \psi_{2}\right)=\left(\lambda \circ \psi_{1}\right) \otimes\left(\lambda \circ \psi_{2}\right)$
(v) $\left(\lambda_{1}+\lambda_{2}\right) * \psi_{1}=\left(\lambda_{1} * \psi_{1}\right) \oplus\left(\lambda_{2} * \psi_{1}\right)$
(vi) $\left(\lambda_{1}+\lambda_{2}\right) \circ \psi_{1}=\left(\lambda_{1} \circ \psi_{1}\right) \otimes\left(\lambda_{2} \circ \psi_{1}\right)$

Proof: (i), (ii) are straight forward.
(iii) We have, $\psi_{1} \oplus \psi_{2}=\left\langle\left(\frac{3}{m}-\left(\frac{3}{m}-\xi_{1}^{\frac{q m}{3}}\right)\left(\frac{3}{m}-\xi_{2}^{\frac{q m}{3}}\right)\right)^{\frac{3}{q m}}, \vartheta_{1} \vartheta_{2}, \eta_{1} \eta_{2}\right\rangle$.
$\therefore \lambda *\left(\psi_{1} \oplus \psi_{2}\right)$
$=\left\langle\left(\frac{3}{m}-\left(\frac{3}{m}-\left(\frac{3}{m}-\left(\frac{3}{m}-\xi_{1}^{\frac{q m}{3}}\right)\left(\frac{3}{m}-\xi_{2}^{\frac{q m}{3}}\right)\right)\right)^{\lambda}\right)^{\frac{3}{q m}},\left(\vartheta_{1} \vartheta_{2}\right)^{\lambda},\left(\eta_{1} \eta_{2}\right)^{\lambda}\right\rangle$
$=\left\langle\left(\frac{3}{m}-\left(\frac{3}{m}-\xi_{1}^{\frac{q m}{3}}\right)^{\lambda}\left(\frac{3}{m}-\xi_{2}^{\frac{q m}{3}}\right)^{\lambda}\right)^{\frac{3}{q m}}, \vartheta_{1}{ }^{\lambda} \vartheta_{2}{ }^{\lambda}, \eta_{1}{ }^{\lambda} \eta_{2}{ }^{\lambda}\right\rangle$
On the other hand, we have,

$$
\begin{aligned}
& \left(\lambda * \psi_{1}\right) \oplus\left(\lambda * \psi_{2}\right) \\
& =\left\langle\left(\frac{3}{m}-\left(\frac{3}{m}-\xi_{1}^{\frac{q m}{3}}\right)^{\lambda}\right)^{\frac{3}{q m}}, \vartheta_{1}^{\lambda}, \eta_{1}^{\lambda}\right) \oplus\left\langle\left(\frac{3}{m}-\left(\frac{3}{m}-\xi_{2}^{\frac{q m}{3}}\right)^{\lambda}\right)^{\frac{3}{q m}}, \vartheta_{2}^{\lambda}, \eta_{2}^{\lambda}\right\rangle \\
& \left.\left.=\left\langle\left(\frac{3}{m}-\left(\frac{3}{m}-\left(\frac{3}{m}-\left(\frac{3}{m}-\xi_{1}{ }^{\frac{q m}{3}}\right)^{\lambda}\right)\right)\right)\left(\frac{3}{m}-\left(\frac{3}{m}-\left(\frac{3}{m}-\xi_{2}^{\frac{q m}{3}}\right)^{\lambda}\right)\right)\right)\right)^{\frac{3}{q m}}, \vartheta_{1}^{\lambda} \vartheta_{2}^{\lambda}, \eta_{1}^{\lambda} \eta_{2}^{\lambda}\right\rangle \\
& =\left\langle\left(\frac{3}{m}-\left(\frac{3}{m}-\xi_{1}^{\frac{q m}{3}}\right)^{\lambda}\left(\frac{3}{m}-\xi_{2}^{\frac{q m}{3}}\right)^{\lambda}\right)^{\frac{3}{q m}}, \vartheta_{1}^{\lambda} \vartheta_{2}^{\lambda}, \eta_{1}^{\lambda} \eta_{2}^{\lambda}\right\rangle
\end{aligned}
$$

Thus, we get, $\lambda *\left(\psi_{1} \oplus \psi_{2}\right)=\left(\lambda * \psi_{1}\right) \oplus\left(\lambda * \psi_{2}\right)$.
(iv) Similar to (iii)
(v) We have,

$$
\left(\lambda_{1}+\lambda_{2}\right) * \psi_{1}=\left\langle\left(\frac{3}{m}-\left(\frac{3}{m}-\xi_{1}^{\frac{q m}{3}}\right)^{\lambda_{1}+\lambda_{2}}\right)^{\frac{3}{q m}}, \vartheta_{1}^{\lambda_{1}+\lambda_{2}}, \eta_{1}^{\lambda_{1}+\lambda_{2}}\right\rangle
$$

On the other hand,

$$
\begin{aligned}
& \left(\lambda_{1} * \psi_{1}\right) \oplus\left(\lambda_{2} * \psi_{1}\right) \\
& =\left\langle\left(\frac{3}{m}-\left(\frac{3}{m}-\xi_{1}^{\frac{q m}{3}}\right)^{\lambda_{1}}\right)^{\frac{3}{q m}}, \vartheta_{1}^{\lambda_{1}}, \eta_{1}^{\lambda_{1}}\right\rangle \oplus\left\langle\left(\frac{3}{m}-\left(\frac{3}{m}-\xi_{1}^{\frac{q m}{3}}\right)^{\lambda_{2}}\right)^{\frac{3}{q m}}, \vartheta_{1}^{\lambda_{2}}, \eta_{1}^{\lambda_{2}}\right\rangle \\
& =\left\langle\left(\frac{3}{m}-\left(\frac{3}{m}-\left(\frac{3}{m}-\left(\frac{3}{m}-\xi_{1}^{\frac{q m}{3}}\right)^{\lambda_{1}}\right)\right)\left(\frac{3}{m}-\left(\frac{3}{m}-\left(\frac{3}{m}-\xi_{1}^{\frac{q m}{3}}\right)^{\lambda_{2}}\right)\right)\right)^{\frac{3}{q m}}, \vartheta_{1}^{\lambda_{1}} \vartheta_{1}^{\lambda_{2}}, \eta_{1}^{\lambda_{1}} \eta_{1}^{\lambda_{2}}\right\rangle \\
& =\left\langle\left(\frac{3}{m}-\left(\frac{3}{m}-\xi_{1}^{\frac{q m}{3}}\right)^{\lambda_{1}+\lambda_{2}}\right)\right. \\
& \left\langle\left(\vartheta_{1}^{\lambda_{1}+\lambda_{2}}, \eta_{1}^{\lambda_{1}+\lambda_{2}}\right\rangle\right.
\end{aligned}
$$

Thus we get, $\left(\lambda_{1}+\lambda_{2}\right) * \psi_{1}=\left(\lambda_{1} * \psi_{1}\right) \oplus\left(\lambda_{2} * \psi_{1}\right)$.
(vi) Similar to (v).
3.4 Definition: The score of the $m G q N N \quad \psi=<\xi, \vartheta, \eta>$ is defined as: $\quad S(\psi)=\frac{2+\xi-\vartheta-\eta}{3}$.

The ranking method for ranking the $m G q N N s$ is given below:
If $\psi=<\xi, \vartheta, \eta>$ and $\psi^{\prime}=<\xi^{\prime}, \vartheta^{\prime}, \eta^{\prime}>$ be two $m G q N N s$, then
(I) if $S(\psi)>S\left(\psi^{\prime}\right)$, then $\psi>\psi^{\prime}$
(II) if $S(\psi)=S\left(\psi^{\prime}\right)$, then $\psi=\psi^{\prime}$

4. \boldsymbol{m}-GENERALIZED \boldsymbol{q}-NEUTROSOPHIC WEIGHTED AGGREGATION OPERATORS:

In this section first we define m-generalized q-neutrosophic weighted averaging aggregation operator ($m G q N W A A$) and m-generalized q-neutrosophic weighted geometric aggregation operator ($m G q N W G A$) and study their basic properties.
4.1 Definition: Suppose $\psi_{k}=<\xi_{k}, \vartheta_{k}, \eta_{k}>(k=1,2,3, \ldots \ldots, n)$ be a collection of $m G q N N s$ defined on the universe set U. Then a m-generalized q-neutrosophic weighted averaging aggregation operator ($m G q N W A A$ for short) is given as $m G q N W A A: \Theta^{n} \rightarrow \Theta$ and is defined as:

$$
m G q N W A A\left(\psi_{1}, \psi_{2}, \psi_{3}, \ldots \ldots ., \psi_{n}\right)=\left(w_{1} * \psi_{1}\right) \oplus\left(w_{2} * \psi_{2}\right) \oplus\left(w_{3} * \psi_{3}\right) \oplus \ldots \ldots \ldots \oplus\left(w_{n} * \psi_{n}\right)
$$

where Θ is the collection of all $m G q N N s$ defined on the universe set $U, w=\left(w_{1}, w_{2}, w_{3}, \ldots \ldots, w_{n}\right)^{T}$ is the weight vector of $\left(\psi_{1}, \psi_{2}, \psi_{3}, \ldots \ldots ., \psi_{n}\right)$ such that $w_{k} \geq 0(k=1,2,3, \ldots, n)$ and $\sum_{k=1}^{n} w_{k}=1$.

On the basis of the operational rules of the $m G q N N s$, we can get the aggregation result as described as Theorem 4.2.
4.2 Theorem: Suppose $\psi_{k}=<\xi_{k}, \vartheta_{k}, \eta_{k}>(k=1,2,3, \ldots \ldots, n)$ be a collection of $m G q N N s$ defined on the universe set U and $w=\left(w_{1}, w_{2}, w_{3}, \ldots \ldots, w_{n}\right)^{T}$ is the weight vector of $\left(\psi_{1}, \psi_{2}, \psi_{3}, \ldots \ldots ., \psi_{n}\right)$ such that
$w_{k} \geq 0(k=1,2,3, \ldots ., n)$ and $\sum_{k=1}^{n} w_{k}=1$. Then $\operatorname{mGqNWAA}\left(\psi_{1}, \psi_{2}, \psi_{3}, \ldots \ldots \ldots, \psi_{n}\right)$ is also a $m G q N N$. Moreover, we have,

$$
m G q N W A A\left(\psi_{1}, \psi_{2}, \psi_{3}, \ldots \ldots, ., \psi_{n}\right)=\left\langle\left(\frac{3}{m}-\prod_{k=1}^{n}\left(\frac{3}{m}-\xi_{k}^{\frac{q m}{3}}\right)^{w_{k}}\right)^{\frac{3}{q m}}, \prod_{k=1}^{n} \vartheta_{k}^{w_{k}}, \prod_{k=1}^{n} \eta_{k}^{w_{k}}\right\rangle
$$

Proof:

The first part of the theorem can be proved easily. To show the rest part, let us use the method of mathematical induction on n.
Step-1: For $n=1$, the proof is straight forward. So first take $n=2$.
Then,

$$
\begin{aligned}
& m G q N W A A\left(\psi_{1}, \psi_{2}\right) \\
& =\left(w_{1} * \psi_{1}\right) \oplus\left(w_{2} * \psi_{2}\right) \\
& =\left\langle\left(\frac{3}{m}-\left(\frac{3}{m}-\xi_{1}^{\frac{q m}{3}}\right)^{w_{1}}\right)^{\frac{3}{q m}}, \vartheta_{1}{ }^{w_{1}}, \eta_{1}{ }^{w_{1}}\right\rangle \oplus\left\langle\left(\frac{3}{m}-\left(\frac{3}{m}-\xi_{2}^{\frac{q m}{3}}\right)^{\lambda_{2}}\right)^{\frac{3}{q m}}, \vartheta_{1}^{w_{2}}, \eta_{1}{ }^{w_{2}}\right\rangle \\
& \left.=\left\langle\left(\frac{3}{m}-\left(\frac{3}{m}-\left(\frac{3}{m}-\left(\frac{3}{m}-\xi_{1}^{\frac{q m}{3}}\right)^{w_{1}}\right)\right)\left(\frac{3}{m}-\left(\frac{3}{m}-\left(\frac{3}{m}-\xi_{2}^{\frac{q m}{3}}\right)^{w_{2}}\right)\right)\right)\right)^{\frac{3}{q m}}, \vartheta_{1}^{w_{1}} \vartheta_{1}^{w_{2}}, \eta_{1}^{w_{1}} \eta_{1}^{w_{2}}\right\rangle \\
& =\left\langle\left(\frac{3}{m}-\left(\frac{3}{m}-\xi_{1}^{\frac{q m}{3}}\right)^{w_{1}}\left(\frac{3}{m}-\xi_{2}^{\frac{q m}{3}}\right)^{w_{2}}\right)^{\frac{3}{q m}}, \vartheta_{1}^{w_{1}} \vartheta_{1}^{w_{2}}, \eta_{1}^{w_{1}} \eta_{1}^{w_{2}}\right\rangle \\
& =\left\langle\left(\frac{3}{m}-\prod_{k=1}^{2}\left(\frac{3}{m}-\xi_{k}^{\frac{q m}{3}}\right)^{w_{k}}\right)^{\frac{3}{q m}}, \prod_{k=1}^{2} v_{k}^{w_{k}}, \prod_{k=1}^{2} \eta_{k}^{w_{k}}\right\rangle .
\end{aligned}
$$

Thus the result is true for $n=2$.
Step-2: Suppose that the result is true for $n=p$ i.e;

$$
m G q N W A A\left(\psi_{1}, \psi_{2}, \psi_{3}, \ldots \ldots, \psi_{p}\right)=\left\langle\left(\frac{3}{m}-\prod_{k=1}^{p}\left(\frac{3}{m}-\xi_{k}^{\frac{q m}{3}}\right)^{w_{k}}\right)^{\frac{3}{q m}}, \prod_{k=1}^{p} \vartheta_{k}^{w_{k}}, \prod_{k=1}^{p} \eta_{k}^{w_{k}}\right\rangle
$$

Step-3: Take $n=p+1$.Then we have,

$$
\begin{aligned}
& m G q N W A A\left(\psi_{1}, \psi_{2}, \psi_{3}, \ldots \ldots . ., \psi_{p+1}\right) \\
& =\left(\left(w_{1} * \psi_{1}\right) \oplus\left(w_{2} * \psi_{2}\right) \oplus\left(w_{3} * \psi_{3}\right) \oplus \ldots \ldots \ldots \oplus\left(w_{p} * \psi_{p}\right)\right) \oplus\left(w_{p+1} * \psi_{p+1}\right) \\
& =\left\langle\left(\frac{3}{m}-\prod_{k=1}^{p}\left(\frac{3}{m}-\xi_{k}^{\frac{q m}{3}}\right)^{w_{k}}\right)^{\frac{3}{q m}}, \prod_{k=1}^{p} \vartheta_{k}^{w_{k}}, \prod_{k=1}^{p} \eta_{k}^{w_{k}}\right\rangle \\
& \oplus\left\langle\left(\frac{3}{m}-\left(\frac{3}{m}-\xi_{p+1}^{\frac{q m}{3}}\right)^{w_{p+1}}\right)^{\frac{3}{q m}}, \vartheta_{p+1}{ }^{w_{p+1}}, \eta_{p+1}{ }^{w_{p+1}}\right\rangle \\
& =\left\langle\left(\frac{3}{m}-\left(\frac{3}{m}-\left(\frac{3}{m}-\prod_{k=1}^{p}\left(\frac{3}{m}-\xi_{k}^{\frac{q m}{3}}\right)^{w_{k}}\right)\right)\left(\left(\frac{3}{m}-\left(\frac{3}{m}-\left(\frac{3}{m}-\xi_{p+1}^{\frac{q m}{3}}\right)^{w_{p+1}}\right)\right)\right)\right)^{\frac{3}{q m}},\right. \\
& \left.\vartheta_{p+1}{ }^{w_{p+1}} \prod_{k=1}^{p} \vartheta_{k}^{w_{k}}, \eta_{p+1}{ }^{w_{p+1}} \prod_{k=1}^{p} \eta_{k}{ }^{w_{k}}\right\rangle \\
& =\left\langle\left(\frac{3}{m}-\prod_{k=1}^{p}\left(\frac{3}{m}-\xi_{k}^{\frac{q m}{3}}\right)^{w_{k}} \times\left(\frac{3}{m}-\xi_{p+1}^{\frac{q m}{3}}\right)^{w_{p+1}}\right)^{\frac{3}{q m}}, \vartheta_{p+1}^{w_{p+1}} \prod_{k=1}^{p} \vartheta_{k}^{w_{k}}, \eta_{p+1}^{w_{p+1}} \prod_{k=1}^{p} \eta_{k}^{w_{k}}\right\rangle \\
& =\left\langle\left(\frac{3}{m}-\prod_{k=1}^{p+1}\left(\frac{3}{m}-\xi_{k}^{\frac{q m}{3}}\right)^{w_{k}}\right)^{\frac{3}{q m}}, \prod_{k=1}^{p+1} \vartheta_{k}^{w_{k}}, \prod_{k=1}^{p+1} \eta_{k}^{w_{k}}\right\rangle
\end{aligned}
$$

Thus the result is true for $n=p+1$ also. Hence, by the method of induction, the result is true for all n.

Let us explore some more results related to $m G q N W A A$ operator in the form of theorems 4.3-4.6.
4.3 Theorem: Suppose $\psi_{k}=<\xi_{k}, \vartheta_{k}, \eta_{k}>(k=1,2,3, \ldots \ldots, n)$ be a collection of m-Gq-NNs defined on the universe set U and $w=\left(w_{1}, w_{2}, w_{3}, \ldots \ldots, w_{n}\right)^{T}$ is the weight vector of $\left(\psi_{1}, \psi_{2}, \psi_{3}, \ldots \ldots ., \psi_{n}\right)$ such that $w_{k} \geq 0(k=1,2,3, \ldots, n)$ and $\sum_{k=1}^{n} w_{k}=1$. Then for $\psi_{0}=<\xi_{0}, \vartheta_{0}, \eta_{0}>\in \Theta$ (where Θ is the collection of all $m G q N N s$ defined on the universe set U), we have $m G q N W A A\left(\psi_{0} \oplus \psi_{1}, \psi_{0} \oplus \psi_{2}, \psi_{0} \oplus \psi_{3}, \ldots \ldots ., \psi_{0} \oplus \psi_{n}\right)=\psi_{0} \oplus m G q N W A A\left(\psi_{1}, \psi_{2}, \psi_{3}, \ldots \ldots ., \psi_{n}\right)$

Proof:

$$
\begin{aligned}
& \psi_{0} \oplus \psi_{k}=\left\langle\left(\frac{3}{m}-\left(\frac{3}{m}-\xi_{0}^{\frac{q m}{3}}\right)\left(\frac{3}{m}-\xi_{k}^{\frac{q m}{3}}\right)\right)^{\frac{3}{q m}}, \vartheta_{0} \vartheta_{k}, \eta_{0} \eta_{k}\right\rangle(k=1,2,3, \ldots \ldots \ldots, n) \\
& \therefore m G q N W A A\left(\psi_{0} \oplus \psi_{1}, \psi_{0} \oplus \psi_{2}, \psi_{0} \oplus \psi_{3}, \ldots \ldots . ., \psi_{0} \oplus \psi_{n}\right) \\
& =\left\langle\left(\frac{3}{m}-\prod_{k=1}^{n}\left(\frac{3}{m}-\left(\frac{3}{m}-\left(\frac{3}{m}-\xi_{0}^{\frac{q m}{3}}\right)\left(\frac{3}{m}-\xi_{k}^{\frac{q m}{3}}\right)\right)\right)^{w_{k}}\right)^{\frac{3}{q m}}, \prod_{k=1}^{n}\left(\vartheta_{0} \vartheta_{k}\right)^{w_{k}}, \prod_{k=1}^{n}\left(\eta_{0} \eta_{k}\right)^{w_{k}}\right\rangle \\
& =\left\langle\left(\frac{3}{m}-\left(\frac{3}{m}-\xi_{0}^{\frac{q m}{3}}\right)^{\sum_{k=1}^{n} w_{k}} \prod_{k=1}^{n}\left(\frac{3}{m}-\xi_{k}^{\frac{q m}{3}}\right)^{w_{k}}\right)^{\frac{3}{q m}}, \vartheta_{0} \sum_{k=1}^{n} w_{k} \prod_{k=1}^{n} \vartheta_{k}^{w_{k}}, \eta_{0} \sum_{k=1}^{n} w_{k} \prod_{k=1}^{n} \eta_{k}^{w_{k}}\right\rangle \\
& =\left\langle\left(\frac{3}{m}-\left(\frac{3}{m}-\xi_{0}^{\frac{q m}{3}}\right) \prod_{k=1}^{n}\left(\frac{3}{m}-\xi_{k}^{\frac{q m}{3}}\right)^{w_{k}}\right)^{\frac{3}{q m}}, \vartheta_{0} \prod_{k=1}^{n} \vartheta_{k}^{w_{k}}, \eta_{0} \prod_{k=1}^{n} \eta_{k}^{w_{k}}\right\rangle
\end{aligned}
$$

On the other hand, $\psi_{0} \oplus m \operatorname{GqNWAA}\left(\psi_{1}, \psi_{2}, \psi_{3}, \ldots \ldots . ., \psi_{n}\right)$
$=<\xi_{0}, \vartheta_{0}, \eta_{0}>\oplus\left\langle\left(\frac{3}{m}-\prod_{k=1}^{n}\left(\frac{3}{m}-\xi_{1}^{\frac{q m}{3}}\right)^{w_{k}}\right)^{\frac{3}{q m}}, \prod_{k=1}^{n} \vartheta_{k}^{w_{k}}, \prod_{k=1}^{n} \eta_{k}{ }^{w_{k}}\right\rangle$
$\left.=\left\langle\left(\frac{3}{m}-\left(\frac{3}{m}-\xi_{0}^{\frac{q m}{3}}\right) \prod_{k=1}^{n}\left(\frac{3}{m}-\left(\frac{3}{m}-\prod_{k=1}^{n}\left(\frac{3}{m}-\xi_{1}^{\frac{q m}{3}}\right)^{w_{k}}\right)\right)\right)\right)^{\frac{3}{q m}}, \vartheta_{0} \prod_{k=1}^{n} \vartheta_{k}^{w_{k}}, \eta_{0} \prod_{k=1}^{n} \eta_{k}{ }_{k}\right\rangle$
$=\left\langle\left(\frac{3}{m}-\left(\frac{3}{m}-\xi_{0}^{\frac{q m}{3}}\right) \prod_{k=1}^{n}\left(\frac{3}{m}-\xi_{k}^{\frac{q m}{3}}\right)^{w_{k}}\right)^{\frac{3}{q m}}, \vartheta_{0} \prod_{k=1}^{n} v_{k} w_{k}, \eta_{0} \prod_{k=1}^{n} \eta_{k}{ }_{k}\right\rangle$
Hence,
$m G q N W A A\left(\psi_{0} \oplus \psi_{1}, \psi_{0} \oplus \psi_{2}, \psi_{0} \oplus \psi_{3}, \ldots \ldots . ., \psi_{0} \oplus \psi_{n}\right)=\psi_{0} \oplus m G q N W A A\left(\psi_{1}, \psi_{2}, \psi_{3}, \ldots \ldots . ., \psi_{n}\right)$
4.4 Theorem: (Idempotency) Suppose $\psi_{k}=<\xi_{k}, \vartheta_{k}, \eta_{k}>(k=1,2,3, \ldots \ldots ., n)$ be a collection of $\mathrm{m}-\mathrm{Gq}-\mathrm{NNs}$ defined on the universe set U and $w=\left(w_{1}, w_{2}, w_{3}, \ldots \ldots ., w_{n}\right)^{T}$ is the weight vector of
$\left(\psi_{1}, \psi_{2}, \psi_{3}, \ldots \ldots, \psi_{n}\right) \quad$ such \quad that $\quad w_{k} \geq 0(k=1,2,3, \ldots, n) \quad$ and $\quad \sum_{k=1}^{n} w_{k}=1 \quad$ If $\psi_{0}=<\xi_{0}, \vartheta_{0}, \eta_{0}>\in \Theta$ (where Θ is the collection of all $m G q N N s$ defined on the universe set U) such that $\psi_{k}=\psi_{0} \forall k=1,2,3, \ldots \ldots, n$, then we have $m G q N W A A\left(\psi_{1}, \psi_{2}, \psi_{3}, \ldots \ldots ., \psi_{n}\right)=\psi_{0}$.

Proof: We have, $m G q N W A A\left(\psi_{1}, \psi_{2}, \psi_{3}, \ldots \ldots . ., \psi_{n}\right)$
$=\left\langle\left(\frac{3}{m}-\prod_{k=1}^{n}\left(\frac{3}{m}-\xi_{k}^{\frac{q m}{3}}\right)^{w_{k}}\right)^{\frac{3}{q m}}, \prod_{k=1}^{n} \vartheta_{k}{ }^{w_{k}}, \prod_{k=1}^{n} \eta_{k}{ }^{w_{k}}\right\rangle$
$=\left\langle\left(\frac{3}{m}-\prod_{k=1}^{n}\left(\frac{3}{m}-\xi_{0}^{\frac{q m}{3}}\right)^{w_{k}}\right)^{\frac{3}{q m}}, \prod_{k=1}^{n} \vartheta_{0}{ }^{w_{k}}, \prod_{k=1}^{n} \eta_{0}{ }^{w_{k}}\right\rangle$
$=\left\langle\left(\frac{3}{m}-\left(\frac{3}{m}-\xi_{0}^{\frac{q m}{3}}\right)^{\sum_{k=1}^{n} w_{k}}\right)^{\frac{3}{q m}}, \vartheta_{0} \sum_{k=1}^{n} w_{k}, \prod_{k=1}^{n} \eta_{0} \sum_{k=1}^{n} w_{k}\right\rangle$
$=\left\langle\left(\frac{3}{m}-\left(\frac{3}{m}-\xi_{0}^{\frac{q m}{3}}\right)\right)^{\frac{3}{q m}}, \vartheta_{0}, \eta_{0}\right\rangle=<\xi_{0}, \vartheta_{0}, \eta_{0}>=\psi_{0}$
4.5 Theorem: (Monotonocity) Suppose $\psi_{k}=<\xi_{k}, \vartheta_{k}, \eta_{k}>$ and $\psi_{k}^{\prime}=<\xi_{k}^{\prime}, \vartheta_{k}^{\prime}, \eta_{k}^{\prime}>$ $(k=1,2,3, \ldots \ldots, n)$ be two collections of $m G q N N s$ defined on the universe set U and $w=\left(w_{1}, w_{2}, w_{3}, \ldots \ldots, w_{n}\right)^{T}$ is the weight vector of $\left(\psi_{1}, \psi_{2}, \psi_{3}, \ldots \ldots ., \psi_{n}\right)$ as well as $\left(\psi_{1}^{\prime}, \psi_{2}^{\prime}, \psi_{3}^{\prime}, \ldots \ldots, \psi_{n}^{\prime}\right) \quad$ such \quad that $\quad w_{k} \geq 0(k=1,2,3, \ldots, n) \quad$ and $\quad \sum_{k=1}^{n} w_{k}=1 \quad$ If $\xi_{k} \geq \xi_{k}^{\prime}, \vartheta_{k} \leq \vartheta_{k}^{\prime}, \eta_{k} \leq \eta_{k}^{\prime}>(k=1,2,3, \ldots \ldots, n) \quad, \quad$ then $\quad m G q N W A A\left(\psi_{1}, \psi_{2}, \psi_{3}, \ldots \ldots ., \psi_{n}\right) \geq$ $m G q N W A A\left(\psi_{1}^{\prime}, \psi_{2}^{\prime}, \psi_{3}^{\prime}, \ldots \ldots ., \psi_{n}^{\prime}\right)$.
Proof: Since $\xi_{k} \geq \xi_{k}^{\prime}, \vartheta_{k} \leq \vartheta_{k}^{\prime}, \eta_{k} \leq \eta_{k}^{\prime}>$ for all k,
so $\prod_{k=1}^{n}\left(\frac{3}{m}-\xi_{k}^{\frac{q m}{3}}\right)^{w_{k}} \leq \prod_{k=1}^{n}\left(\frac{3}{m}-\xi_{k}^{\prime \frac{q m}{3}}\right)^{w_{k}}, \prod_{k=1}^{n} \vartheta_{k}^{w_{k}} \leq \prod_{k=1}^{n} \vartheta_{k}^{\prime w_{k}}, \prod_{k=1}^{n} \eta_{k}{ }^{w_{k}} \leq \prod_{k=1}^{n} \eta_{k}^{\prime w_{k}}$

$$
\begin{aligned}
\Rightarrow & \left(\frac{3}{m}-\prod_{k=1}^{n}\left(\frac{3}{m}-\xi_{k}^{\frac{q m}{3}}\right)^{w_{k}}\right)^{\frac{3}{q m}} \geq\left(\frac{3}{m}-\prod_{k=1}^{n}\left(\frac{3}{m}-\xi_{k}^{\prime \frac{q m}{3}}\right)^{w_{k}}\right)^{\frac{3}{q m}}, \prod_{k=1}^{n} \vartheta_{k}^{w_{k}} \leq \prod_{k=1}^{n} \vartheta_{k}^{\prime w_{k}}, \\
& \prod_{k=1}^{n} \eta_{k}^{w_{k}} \leq \prod_{k=1}^{n} \eta_{k}^{\prime w_{k}} \\
\Rightarrow & \left(\frac{3}{m}-\prod_{k=1}^{n}\left(\frac{3}{m}-\xi_{k}^{\frac{q m}{3}}\right)^{w_{k}}\right)^{\frac{3}{q m}}-\left(\frac{3}{m}-\prod_{k=1}^{n}\left(\frac{3}{m}-\xi_{k}^{\prime \frac{q m}{3}}\right)^{w_{k}}\right)^{\frac{3}{q m}}-\left(\prod_{k=1}^{n} \vartheta_{k}^{w_{k}}-\prod_{k=1}^{n} \vartheta_{k}^{\prime w_{k}}\right) \\
& -\left(\prod_{k=1}^{n} \eta_{k}^{w_{k}}-\prod_{k=1}^{n} \eta_{k}^{\prime w_{k}}\right) \geq 0 \\
\Rightarrow & 2+\left(\frac{3}{m}-\prod_{k=1}^{n}\left(\frac{3}{m}-\xi_{k}^{\frac{q m}{3}}\right)^{w_{k}}\right)^{\frac{3}{q m}}-\prod_{k=1}^{n} \vartheta_{k}^{w_{k}}-\prod_{k=1}^{n} \eta_{k}^{w_{k}} \\
& -\frac{2+\left(\frac{3}{m}-\prod_{k=1}^{n}\left(\frac{3}{m}-\xi_{k}^{\prime} \frac{q m}{3}\right)^{w_{k}}\left(\frac{3}{q m}\right.\right.}{}-\prod_{k=1}^{n} \vartheta_{k}^{\prime w_{k}}-\prod_{k=1}^{n} \eta_{k}^{\prime w_{k}} \\
\Rightarrow & S\left(m G q N W A A\left(\psi_{1}, \psi_{2}, \psi_{3}, \ldots . . ., \psi_{n}\right)\right) \geq S\left(m G q N W A A\left(\psi_{1}^{\prime}, \psi_{2}^{\prime}, \psi_{3}^{\prime}, \ldots, \psi_{n}^{\prime}\right)\right)
\end{aligned}
$$

Hence by definition of score value and ranking method, we have, $m \operatorname{GqNWAA}\left(\psi_{1}, \psi_{2}, \psi_{3}, \ldots \ldots ., \psi_{n}\right) \geq$ $m G q N W A A\left(\psi_{1}^{\prime}, \psi_{2}^{\prime}, \psi_{3}^{\prime}, \ldots \ldots ., \psi_{n}^{\prime}\right)$.
4.6 Theorem: (Boundedness) Suppose $\psi_{k}=<\xi_{k}, \vartheta_{k}, \eta_{k}>(k=1,2,3, \ldots \ldots, n)$ be a collection of $m G q N N s$ defined on the universe set U and $w=\left(w_{1}, w_{2}, w_{3}, \ldots \ldots, w_{n}\right)^{T}$ is the weight vector of $\left(\psi_{1}, \psi_{2}, \psi_{3}, \ldots \ldots ., \psi_{n}\right)$ such that $w_{k} \geq 0(k=1,2,3, \ldots, n)$ and $\sum_{k=1}^{n} w_{k}=1$. Let us define two $m G q N N s$ by: $\psi^{-}=<\min _{1 \leq k \leq n} \xi_{k}, \max _{1 \leq k \leq n} \vartheta_{k}, \max _{1 \leq k \leq n} \eta_{k}>, \psi^{+}=<\max _{1 \leq k \leq n} \xi_{k}, \min _{1 \leq k \leq n} \vartheta_{k}, \min _{1 \leq k \leq n} \eta_{k}>$
Then, $\psi^{-} \leq m G q N W A A\left(\psi_{1}, \psi_{2}, \psi_{3}, \ldots \ldots ., \psi_{n}\right) \leq \psi^{+}$.
Proof: Suppose $m G q N W A A\left(\psi_{1}, \psi_{2}, \psi_{3}, \ldots \ldots ., \psi_{n}\right)=<\xi, \vartheta, \eta>$.
Then we have, $\frac{3}{m}-\max _{1 \leq k \leq n} \xi_{k}^{\frac{q m}{3}} \leq \frac{3}{m}-\xi_{k}^{\frac{q m}{3}} \leq \frac{3}{m}-\min _{1 \leq k \leq n} \xi_{k}^{\frac{q m}{3}}$
$\Rightarrow\left(\frac{3}{m}-\max _{1 \leq k \leq n} \xi_{k}^{\frac{q m}{3}}\right)^{w_{k}} \leq\left(\frac{3}{m}-\xi_{k}^{\frac{q m}{3}}\right)^{w_{k}} \leq\left(\frac{3}{m}-\min _{1 \leq k \leq n} \xi_{k}^{\frac{q m}{3}}\right)^{w_{k}}$

Abhijit Saha, Florentin Smarandache, Jhulaneswar Baidya and Debjit Dutta, MADM USING m-GENERALIZED q-NEUTROSOPHIC SETS

$$
\begin{aligned}
& \Rightarrow\left(\frac{3}{m}-\prod_{k=1}^{n}\left(\frac{3}{m}-\min _{1 \leq k \leq n} \xi_{k}^{\frac{q m}{3}}\right)^{w_{k}}\right)^{\frac{3}{q m}} \leq\left(\frac{3}{m}-\prod_{k=1}^{n}\left(\frac{3}{m}-\xi_{k}^{\frac{q m}{3}}\right)^{w_{k}}\right)^{\frac{3}{q m}} \leq\left(\frac{3}{m}-\prod_{k=1}^{n}\left(\frac{3}{m}-\max _{1 \leq k \leq n} \xi_{k}^{\frac{q m}{3}}\right)^{w_{k}}\right)^{\frac{3}{q m}} \\
& \Rightarrow\left(\frac{3}{m}-\left(\frac{3}{m}-\min _{1 \leq k \leq n} \xi_{k}^{\frac{q m}{3}}\right)^{\sum_{k=1}^{n} w_{k}}\right)^{\frac{3}{q m}} \leq \xi \leq\left(\frac{3}{m}-\left(\frac{3}{m}-\max _{1 \leq k \leq n} \xi_{k}^{\frac{q m}{3}}\right)^{\sum_{k=1}^{n} w_{k}}\right)^{\frac{3}{q m}} \\
& \Rightarrow \min _{1 \leq k \leq n} \xi_{k} \leq \xi \leq \max _{1 \leq k \leq n} \xi_{k} \\
& \text { Again, } \prod_{k=1}^{n}\left(\min _{1 \leq k \leq n} \vartheta_{k}\right)^{w_{k}} \leq \prod_{k=1}^{n} \vartheta_{k} w_{k} \leq \prod_{k=1}^{n}\left(\max _{1 \leq k \leq n} \vartheta_{k}\right)^{w_{k}} \\
& \Rightarrow\left(\min _{1 \leq k \leq n} \vartheta_{k}\right)^{\sum_{k=1}^{n} w_{k}} \leq \prod_{k=1}^{n} \vartheta_{k} w_{k} \leq\left(\max _{1 \leq k \leq n} \vartheta_{k}\right)^{\sum_{k=1}^{n} w_{k}} \Rightarrow \min _{1 \leq k \leq n} \vartheta_{k} \leq \vartheta \leq \max _{1 \leq k \leq n} \vartheta_{k}
\end{aligned}
$$

Similarly, we can get, $\min _{1 \leq k \leq n} \eta_{k} \leq \eta \leq \max _{1 \leq k \leq n} \eta_{k}$.
Hence $\min _{1 \leq k \leq n} \xi_{k}-\max _{1 \leq k \leq n} \vartheta_{k}-\max _{1 \leq k \leq n} \eta_{k} \leq \xi-\vartheta-\eta \leq \max _{1 \leq k \leq n} \xi_{k}-\min _{1 \leq k \leq n} \vartheta_{k}-\min _{1 \leq k \leq n} \eta_{k}$
$\Rightarrow \frac{2+\min _{1 \leq k \leq n} \xi_{k}-\max _{1 \leq k \leq n} \vartheta_{k}-\max _{1 \leq k \leq n} \eta_{k}}{3} \leq \frac{2+\xi-\vartheta-\eta}{3} \leq \frac{2+\max _{1 \leq k \leq n} \xi_{k}-\min _{1 \leq k \leq n} \vartheta_{k}-\min _{1 \leq k \leq n} \eta_{k}}{3}$
$\Rightarrow S\left(\psi^{-}\right) \leq S\left(m G q N W A A\left(\psi_{1}, \psi_{2}, \psi_{3}, \ldots \ldots . ., \psi_{n}\right)\right) \leq S\left(\psi^{+}\right)$
Therefore by definition of score value and ranking method, we have, $\psi^{-} \leq m G q N W A A\left(\psi_{1}, \psi_{2}, \psi_{3}, \ldots \ldots ., \psi_{n}\right) \leq \psi^{+}$.
4.7 Definition: Suppose $\psi_{k}=<\xi_{k}, \vartheta_{k}, \eta_{k}>(k=1,2,3, \ldots \ldots, n)$ be a collection of $m G q N N s$ defined on the universe set U. Then a m-generalized q-neutrosophic weighted geometric aggregation operator ($m G q N W G A$ for short) is given as $m G q N W G A: \Theta^{n} \rightarrow \Theta$ and is defined as:

$$
m G q N W G A\left(\psi_{1}, \psi_{2}, \psi_{3}, \ldots \ldots ., \psi_{n}\right)=\left(w_{1} \circ \psi_{1}\right) \otimes\left(w_{2} \circ \psi_{2}\right) \otimes\left(w_{3} \circ \psi_{3}\right) \otimes \ldots \ldots . \otimes\left(w_{n} \circ \psi_{n}\right)
$$

where Θ is the collection of all $m G q N N s$ defined on the universe set $U, w=\left(w_{1}, w_{2}, w_{3}, \ldots \ldots, w_{n}\right)^{T}$ is the weight vector of $\left(\psi_{1}, \psi_{2}, \psi_{3}, \ldots \ldots ., \psi_{n}\right)$ such that $w_{k} \geq 0(k=1,2,3, \ldots, n)$ and $\sum_{k=1}^{n} w_{k}=1$.

On the basis of the operational rules of the $m G q N N s$, we can get the aggregation result as described as Theorem 4.2.
4.8 Theorem: Suppose $\psi_{k}=<\xi_{k}, \vartheta_{k}, \eta_{k}>(k=1,2,3, \ldots \ldots, n)$ be a collection of $m G q N N s$ defined on the universe set U and $w=\left(w_{1}, w_{2}, w_{3}, \ldots \ldots, w_{n}\right)^{T}$ is the weight vector of $\left(\psi_{1}, \psi_{2}, \psi_{3}, \ldots \ldots ., \psi_{n}\right)$ such that $w_{k} \geq 0(k=1,2,3, \ldots, n)$ and $\sum_{k=1}^{n} w_{k}=1$. Then $m G q N W G A\left(\psi_{1}, \psi_{2}, \psi_{3}, \ldots \ldots ., \psi_{n}\right)$ is also a $m G q N N$. Moreover, we have, $m G q N W G A\left(\psi_{1}, \psi_{2}, \psi_{3}, \ldots \ldots . ., \psi_{n}\right)$
$=\left\langle\prod_{k=1}^{n} \xi_{k}^{w_{k}},\left(\frac{3}{m}-\prod_{k=1}^{n}\left(\frac{3}{m}-\vartheta_{k}^{\frac{q m}{3}}\right)^{w_{k}}\right)^{\frac{3}{q m}},\left(\frac{3}{m}-\prod_{k=1}^{n}\left(\frac{3}{m}-\eta_{k}^{\frac{q m}{3}}\right)^{w_{k}}\right)^{\frac{3}{q m}}\right\rangle$.
Proof: Similar to theorem 4.2.
4.9 Theorem: Suppose $\psi_{k}=<\xi_{k}, \vartheta_{k}, \eta_{k}>(k=1,2,3, \ldots \ldots, n)$ be a collection of $m G q N N s$ defined on the universe set U and $w=\left(w_{1}, w_{2}, w_{3}, \ldots \ldots, w_{n}\right)^{T}$ is the weight vector of $\left(\psi_{1}, \psi_{2}, \psi_{3}, \ldots \ldots ., \psi_{n}\right)$ such that $w_{k} \geq 0(k=1,2,3, \ldots ., n)$ and $\sum_{k=1}^{n} w_{k}=1$. Then for $\psi_{0}=<\xi_{0}, \vartheta_{0}, \eta_{0}>\in \Theta$ (where Θ is the collection of all $m G q N N s$ defined on the universe set U), we have $m G q N W G A\left(\psi_{0} \otimes \psi_{1}, \psi_{0} \otimes \psi_{2}, \psi_{0} \otimes \psi_{3}, \ldots \ldots \ldots, \psi_{0} \otimes \psi_{n}\right)=\psi_{0} \otimes m G q N W G A\left(\psi_{1}, \psi_{2}, \psi_{3}, \ldots \ldots \ldots, \psi_{n}\right)$.

Proof: Similar to theorem 4.3.
4.10 Theorem: (Idempotency) Suppose $\psi_{k}=<\xi_{k}, \vartheta_{k}, \eta_{k}>(k=1,2,3, \ldots \ldots, n)$ be a collection of $m G q N N s$ defined on the universe set U and $w=\left(w_{1}, w_{2}, w_{3}, \ldots \ldots, w_{n}\right)^{T}$ is the weight vector of $\left(\psi_{1}, \psi_{2}, \psi_{3}, \ldots \ldots, \psi_{n}\right) \quad$ such \quad that $\quad w_{k} \geq 0(k=1,2,3, \ldots, n) \quad$ and $\quad \sum_{k=1}^{n} w_{k}=1 \quad$ If $\psi_{0}=<\xi_{0}, \vartheta_{0}, \eta_{0}>\in \Theta$ (where Θ is the collection of all $m G q N N s$ defined on the universe set U) such that $\psi_{k}=\psi_{0} \forall k=1,2,3, \ldots \ldots, n$, then we have $m G q N W G A\left(\psi_{1}, \psi_{2}, \psi_{3}, \ldots \ldots ., \psi_{n}\right)=\psi_{0}$.
Proof: Similar to theorem 4.4.
4.11 Theorem: (Monotonocity) Suppose $\psi_{k}=<\xi_{k}, \vartheta_{k}, \eta_{k}>$ and $\psi_{k}^{\prime}=<\xi_{k}^{\prime}, \vartheta_{k}^{\prime}, \eta_{k}^{\prime}>$ $(k=1,2,3, \ldots \ldots, n)$ be two collections of $m G q N N s$ defined on the universe set U and $w=\left(w_{1}, w_{2}, w_{3}, \ldots \ldots, w_{n}\right)^{T}$ is the weight vector of $\left(\psi_{1}, \psi_{2}, \psi_{3}, \ldots \ldots . \psi_{n}\right)$ as well as $\left(\psi_{1}^{\prime}, \psi_{2}^{\prime}, \psi_{3}^{\prime}, \ldots \ldots, \psi_{n}^{\prime}\right) \quad$ such \quad that $\quad w_{k} \geq 0(k=1,2,3, \ldots, n) \quad$ and $\quad \sum_{k=1}^{n} w_{k}=1 \quad$. If $\xi_{k} \geq \xi_{k}^{\prime}, \vartheta_{k} \leq \vartheta_{k}^{\prime}, \eta_{k} \leq \eta_{k}^{\prime}>(k=1,2,3, \ldots \ldots, n) \quad, \quad$ then $\quad m G q N W G A\left(\psi_{1}, \psi_{2}, \psi_{3}, \ldots \ldots ., \psi_{n}\right) \geq$ $m G q N W G A\left(\psi_{1}^{\prime}, \psi_{2}^{\prime}, \psi_{3}^{\prime}, \ldots \ldots ., \psi_{n}^{\prime}\right)$.
Proof: Similar to theorem 4.5.
4.12 Theorem: (Boundedness) Suppose $\psi_{k}=<\xi_{k}, \vartheta_{k}, \eta_{k}>(k=1,2,3, \ldots \ldots, n)$ be a collection of $m G q N N s$ defined on the universe set U and $w=\left(w_{1}, w_{2}, w_{3}, \ldots \ldots, w_{n}\right)^{T}$ is the weight vector of $\left(\psi_{1}, \psi_{2}, \psi_{3}, \ldots \ldots, \psi_{n}\right)$ such that $w_{k} \geq 0(k=1,2,3, \ldots, n)$ and $\sum_{k=1}^{n} w_{k}=1$. Let us define two $m G q N N s$ by: $\psi^{-}=<\min _{1 \leq k \leq n} \xi_{k}, \max _{1 \leq k \leq n} \vartheta_{k}, \max _{1 \leq k \leq n} \eta_{k}>, \psi^{+}=<\max _{1 \leq k \leq n} \xi_{k}, \min _{1 \leq k \leq n} \vartheta_{k}, \min _{1 \leq k \leq n} \eta_{k}>$
Then $\psi^{-} \leq m G q N W G A\left(\psi_{1}, \psi_{2}, \psi_{3}, \ldots \ldots ., \psi_{n}\right) \leq \psi^{+}$.

Proof: Similar to theorem 4.6.

5. MULTI ATTRIBUTE DECISION MAKING:

Consider a multi-attribute decision making problem which consists of m different alternatives A_{1}, A_{2}, \qquad A_{l} which are evaluated under the set of n different attributes $C_{1}, C_{2}, \ldots \ldots, C_{n}$. Assume that an expert evaluates the given alternatives $A_{i}(i=1,2, \ldots, l)$ under the attribute $C_{j}(j=1,2, \ldots, n)$ and the evaluation result is presented by the form of m-generalized q-neutrosophic numbers $\zeta_{i j}=\left\langle\xi_{i j}, \vartheta_{i j}, \delta_{i j}\right\rangle$ such that $0 \leq \xi_{i j}, \vartheta_{i j}, \delta_{i j} \leq 1$ and $0 \leq\left(\xi_{i j}\right)^{\frac{q m}{3}}+\left(\vartheta_{i j}\right)^{\frac{q m}{3}}+\left(\delta_{i j}\right)^{\frac{q m}{3}} \leq \frac{3}{m} \quad$ where $\quad i=1,2, \ldots, l ; j=1,2, \ldots, n . \quad$ Further assume that $w_{j}(j=1,2, \ldots, n)$ is the weight of the attribute such C_{j} such that $w_{j}>0(j=1,2, \ldots, n)$ and $\sum_{j=1}^{n} w_{j}=1$. Then to determine the most desirable alternative (s), the proposed operators are utilized to develop a multi-attribute decision making with m-generalized q-neutrosophic information, which involves the following steps:
$\underline{\text { Step-1 }}$ Arrange the rating values of the expert in the form of decision matrix $\tilde{D}=\left(\zeta_{i j}\right)_{l \times n}=\left(\left\langle\xi_{i j}, \vartheta_{i j}, \delta_{i j}\right\rangle\right)_{l \times n}$.
Step-2: Construct aggregated m-generalized q-neutrosophic decision matrix. In order to do that, the proposed operators can be utilized as follows:
Let $\tilde{R}=\left(\tilde{R}_{i}\right)_{l \times 1}$ be the aggregated m-generalized q-neutrosophic decision matrix, where

$$
\begin{aligned}
& \tilde{R}_{i}=m G q N W A A\left(\zeta_{i 1}, \zeta_{i 2}, \ldots \ldots, \zeta_{i n}\right)=\left(w_{1} * \zeta_{i 1}\right) \oplus\left(w_{2} * \zeta_{i 2}\right) \oplus \ldots \ldots \ldots \oplus\left(w_{n} * \zeta_{i n}\right) \\
& \text { OR } \\
& \tilde{R}_{i}=m G q N W G A\left(\zeta_{i 1}, \zeta_{i 2}, \ldots ., \zeta_{i n}\right)=\left(w_{1} \circ \zeta_{i 1}\right) \otimes\left(w_{2} \circ \zeta_{i 2}\right) \otimes \ldots \ldots \ldots \otimes\left(w_{n} \circ \zeta_{i n}\right)
\end{aligned}
$$

Step-3: Calculate the score values $S\left(\tilde{R}_{i}\right)(i=1,2, \ldots, l)$ of m-generalized q-neutrosophic numbers $\tilde{R}_{i}(i=1,2, \ldots, m)$.

Step-4: Rank all the alternatives $A_{i}(i=1,2, \ldots, l)$ and hence select the most desirable alternative(s).

- CASE STUDY:

We consider a multi attribute decision making problem adapted from $[\mathbf{1 5}, \mathbf{1 7}, \mathbf{1 8}, \mathbf{1 9]}$ to demonstrate the application of the proposed decision making method.
"Suppose there is an investment company that wants to invest a sum of money in the best option available. There is a panel with four possible alternatives in which to invest the money: (i) A_{1} is a car company, (ii) A_{2} is a food company, (iii) A_{3} is a computer company and (iv) A_{4} is an arms company. The investment company must take a decision according to the following attributes:
(1) C_{1} is the risk,
(2) C_{2} is the growth and
(3) C_{3} is the environmental impact.

The attribute weight vector is given as: $w=(0.35,0.25,0.40)^{\mathrm{T}}$. The four alternatives $A_{i}(i=1,2,3,4)$ are to be evaluated using the m-generalized q-neutrosophic information by some decision makers or experts under the attributes $C_{j}(j=1,2,3)$ ".

Step-1: The rating values of the expert(s) are given in the form of the following decision matrix \tilde{D} :

	c_{1}	c_{2}	c_{3}
A_{1}	$<0.3,0.1,0.4>$	$<0.5,0.3,0.4>$	$<0.3,0.2,0.6>$
A_{2}	$<0.8,0.2,0.3>$	$<0.7,0.1,0.3>$	$<0.7,0.20 .2>$
A_{3}	$<0.5,0.4,0.3>$	$<0.6,0.3,0.4>$	$<0.5,0.1,0.3>$
A_{4}	$<0.6,0.1,0.2>$	$<0.7,0.1,0.2>$	$<0.3,0.2,0.3>$

Step-2: Using the operator $m G q N W A A$, we construct the aggregated m-generalized q-neutrosophic decision matrix \tilde{R} given below (taking $m=3$ and $q=3$):

A_{1}	$<0.374405104,0.173657007,0.470431609>$
A_{2}	$<0.741650663,0.168179283,0.2550849>$
A_{3}	$<0.529784239,0.213796854,0.322237098>$
A_{4}	$<0.56691263,0.131950791,0.235215805>$

Step-3: The score values of the alternatives are calculated as:

$$
\mathrm{S}\left(A_{1}\right)=0.5767, \mathrm{~S}\left(A_{2}\right)=0.7727, \mathrm{~S}\left(A_{3}\right)=0.6645, \mathrm{~S}\left(A_{4}\right)=0.7332
$$

Step-4: The ranking order of the alternatives are: $A_{2}>A_{4}>A_{3}>A_{1}$ which coincides with the ranking order determined by Jun Ye $[\mathbf{1 5}, \mathbf{1 7}, \mathbf{1 8}, \mathbf{1 9}]$ and hence the most desirable alternative is A_{2}.

Now if we want to utilize the $m G q N W G A$ operator instead of $m G q N W A A$ operator, then the steps for solving the multi attribute decision making problem are as follows:
Step-1: The rating values of the expert(s) are given in the form of the following decision matrix \tilde{D} :

	c_{1}	c_{2}	c_{3}
A_{1}	$<0.3,0.1,0.4>$	$<0.5,0.3,0.4>$	$<0.3,0.2,0.6>$
A_{2}	$<0.8,0.2,0.3>$	$<0.7,0.1,0.3>$	$<0.7,0.20 .2>$
A_{3}	$<0.5,0.4,0.3>$	$<0.6,0.3,0.4>$	$<0.5,0.1,0.3>$
A_{4}	$<0.6,0.1,0.2>$	$<0.7,0.1,0.2>$	$<0.3,0.2,0.3>$

Step-2: Using the operator $m G q N W G A$, we construct the aggregated m-generalized q-neutrosophic decision matrix \tilde{R} given below (taking $m=3$ and $q=3$):

A_{1}	$<0.34086581,0.2179417,0.504033104>$
A_{2}	$<0.73349173,0.184246871,0.268903022>$
A_{3}	$<0.52331757,0.310497774,0.331365356>$
A_{4}	$<0.472580665,0.156129905,0.250101937>$

Step-3: The score values of the alternatives are calculated as:

$$
\mathrm{S}\left(A_{1}\right)=0.5396, \mathrm{~S}\left(A_{2}\right)=0.7601, \mathrm{~S}\left(A_{3}\right)=0.6271, \mathrm{~S}\left(A_{4}\right)=0.6887
$$

Step-4: The ranking order of the alternatives are: $A_{2}>A_{4}>A_{3}>A_{1}$ which also coincides with the ranking order determined by Jun Ye $[\mathbf{1 5}, \mathbf{1 7}, \mathbf{1 8}, \mathbf{1 9}]$ and hence the most desirable alternative is still A_{2}.

6. CONCLUSIONS:

In this paper, the notion of m-generalized q - neutrosophic sets is proposed and the basic properties of m-generalized q - neutrosophic numbers ($m G q N N s$ for short) are presented. Also, various types of operations between the $m G q N N s$ are discussed. Then, two types of m-generalized q - neutrosophic weighted aggregation operators are proposed to aggregate the m-generalized q - neutrosophic information. Furthermore, score of a $m G q N N$ is proposed to ranking the $m G q N N s$. Utilizing the m-generalized q - neutrosophic weighted aggregation operators and score of $a m G q N N$, a multi attribute decision making method is developed, in which the evaluation values of alternatives on the attribute are represented in terms of $m G q N N s$ and the alternatives are ranked according to the values of the score of $m G q N N s$ to select the most desirable one. Finally, a practical example for investment decision making is presented to demonstrate the application and effectiveness of the proposed method. The advantage of the proposed method is that it is more suitable for solving multi attribute decision making problems because m-generalized q-neutrosophic sets ($m G q N S$ s) are extensions of fuzzy sets, Pythagorean fuzzy sets, q-rung orthopair fuzzy sets, intuitionistic fuzzy sets, single valued neutrosophic sets, n-hyperspherical neutrosophic sets and single valued spherical neutrosophic sets.

FUNDING: This research received no external funding.
ACKNOWLEDGEMENTS: Nil.
CONFLICTS OF INTEREST: The authors declare no conflict of interest.

References:

[01] Zadeh, L.A. Fuzzy Sets. Information and Control 1965, 8, 338-353.
[02] Atanassov, K.T. Intuitionistic fuzzy sets. Fuzzy Sets and Systems 1986, 20 , 87-96.
[03] Yager, R.R. Pythagorean fuzzy subsets. Proceedings of joint IFSA World Congress and NAFIPS Annual meeting, 24-2 ${ }^{\text {th }}$ June, 2013.
[04] Yager, R.R. Pythagorean membership grades in multi-criteria decision making. IEEE Transactions on Fuzzy Systems 2013, 22, 958-965.
[05] Yager, R.R. Generalized orthopair fuzzy sets. IEEE Transactions on Fuzzy Systems 2016.
[06] Smarandache, F. A Unifying Field in Logics. Neutrosophy: Neutrosophicprobability, set and logic.American Research Press, Rehoboth, 1999.
[07] Wang, H.; Smarandache, F.; Zhang ,Y.Q.; Sunderraman, R. Single valued neutrosophic sets. Multi-space and Multi-structure 2010, 4, 410-413.
[08] Smarandache, F. Neutrosophic set is a generalization of intuitionistic fuzzy set, inconsistent intuitionistic fuzzy set, pythagorean fuzzy set, q-rung orthopair fuzzy set, spherical fuzzy set and n-hyperbolic fuzzy set while neutrosophication is a generalization ofregret theory, grey system theory and three ways decision. Journal of New Theory 2019, 29, 1-35.
[09] Gou Y., Cheng H.D., New neutrosophic approach to image segmentation, Pattern Recognition, 42 (2009), 587-595.

[^26][10] Guo, Y.H.; Sensur, A. A novel image segmentation algorithm based on neutrosophic similarity clustering. Applied Soft Computing 2014, 25, 391-398.
[11] Karaaslan, F. Correlation coefficients of single valued neutrosophic refined soft sets and their applications in clustering analysis. Neural Computing and Applications 2017, 28, 2781-2793.
[12] Ansari, A.Q.; Biswas, R.; Aggarwal, S. Proposal for applicability of neutosophic set theory in medical AI. International Journal of Computer Applications 2011, 27(5), 5-11.
[13] Wang, H.; Smarandache, F.; Zhang, Y.Q. Interval neutrosophic sets and logic: Theory and applications in computing. Hexis, Phoenix, 2005.
[14] Gou, Y.; Cheng, H.D.; Zhang, Y.; Zhao, W. A new neutrosophic approach to image de-noising. New Mathematics and Natural Computation 2009, 5, 653-662.
[15] Ye, J. Multi-criteria decision making method using the correlation coefficient under single valued neutrosophic environment. International Journal of General Systems 2013, 42, 386-394.
[16] Sun, H.X.; Yang, H.X.; Wu, J.Z.; Yao, O.Y. Interval neutrosophic numbers choquet integral operator for multi-criteria decision making. Journal of Intelligent and Fuzzy Systems 2015, 28 , 2443-2455.
[17] Ye, J. Multiple-attribute decision-making method under a single-valued neutrosophic hesitant fuzzy environment. Journal of Intelligent and Fuzzy Systems 2015, 24(1), 23-36.
[18] Ye, J. Trapezoidal neutrosophic set and its application to multiple attribute decision-making. Neural Computing and Applications 2015, 26, 1157-1166.
[19] Ye, J. Some Weighted Aggregation Operators of Trapezoidal Neutrosophic Numbers and Their Multiple Attribute Decision Making Method. Informatica 2017, 28(2), 387-402.
[20] Abdel-Basset, M.; Mohamed, M.; Hussien, A.N.; Sangaiah, A.K. A novel group decision-making model based on triangular neutrosophic numbers. Soft Computing 2017, 22, 6629-6643.
[21] Abdel-Basset, M.; Chang, V.; Gamal, A. Evaluation of the green supply chain management practices: A novel neutrosophic approach. Computers in Industry 2019, 108, 210-220.
[22] Ajay, D.; Broumi, S.; Aldring, J. An MCDM method under neutrosophic cubic fuzzy sets with geometric bonferroni mean operator. Neutrosophic Sets and Systems 2020, 32 , 187-202.
[23] Chen, J.Q.; Ye, J. Some single-valued neutrosophic Dombi weighted aggregation operators for multiple attribute decision making. Symmetry 2017, 9 (doi:10.3390/sym9060082).
[24] Karaaslan, F. Gaussian single valued neutrosophic numbers and its applications in multi attribute decision making. Neutrosophic sets and Systems 2018, 22, 101-117.
[25] Khan, M.; Gulistan, M.; Hassan, N.; Nasruddin, A.M. Air pollution model using neutrosophic cubic Einstein averaging operators. Neutrosophic Sets and Systems 2020, 32, 372-389.
[26] Liu, P.D.; Chu, Y.C.; Li, Y.W.; Chen, Y.B. Some generalized neutrosophic number Hamacher aggregation operators and their applications to group decision making. International Journal of Fuzzy Systems 2014, 16(2), 242-255.
[27] Liu, P.D.; Wang, Y.M. Multiple attribute decision making method based on single valued neutrosophic normalized weighted Bonferroni mean. Neural Computing and Applications 2014, 25, 2001-2010.
[28] Liu, P.D.; Shi, L.L. The generalized hybrid weighted average operator based on interval neutrosophic hesitant set and its application to multi-attribute decision making. Neural Computing and Applications 2015, 26, 457-471.
[29] Liu, P. The aggregation operators based on Archimedean t-Conormand t-Norm for single-valued neutrosophic numbers and their application to decision making. International Journal of Fuzzy S ystems 2016, 18(5), 849-863.
[30] Mohansundari, M.; Mohana, K. Quadripartitioned single valued neutrosophic dombi weighted aggregation operators for multi attribute decision making. Neutrosophic Sets and Systems 2020, 32 , 107-122.
[31] Nabeeb, N.A. A hybridneutrosophic approach of DEMATEL with AR-DEA in technology selection. Neutrosophic Sets and Systems 2020, 31, 1-16.
[32] Tooranloo, H.S.; Zanjirchi, S.M.; Tavangar, M. Electre approach for multi attribute decision making in refined neutrosophic environment. Neutrosophic Sets and Systems 2020, 31, 101-119.
[33] Vandhana, S; Anuradha, J. Neutrosophic fuzzy Hierarchical clustering for dengue analysis in Sri Lanka. Neutrosophic Sets and Systems 2020, 31, 179-199.
[34] Zhao, A.W.; Du, J.G.; Guan,H.J. Interval valued neutrosophic sets and multi attribute decision making based on generalized weighted aggregation operators. Journal of Intelligent and Fuzzy Systems 2015, 29, 2697-2706.
[35] Abdel-Basset, M.,; Mohamed, R.; Elhoseny, M.; Chang, V. Evaluation framework for smart disaster response systems in uncertainty environment. Mechanical Systems and Signal Processing 2020, 145, 106941.
[36] Abdel-Basset, M.; Ali, M.; Atef, A. Uncertainty assessments of linear time-cost tradeoffs using neutrosophic set. Computers \& Industrial Engineering 2020, 141, 106286.
[37] Abdel-Basset, M.; Ali, M.; Atef, A. Resource levelling problem in construction projects under neutrosophic environment. The Journal of Supercomputing 2020, 76(2), 964-988.

[^27]
HESITANT Triangular Neutrosophic Numbers and Their Applications to MADM

Abhijit Saha ${ }^{1 *}$, Irfan Deli ${ }^{2}$, and Said Broumi ${ }^{3}$
${ }^{1}$ Faculty of Mathematics, Techno College of Engineering Agartala, , Tripura, India, Pin-799004; Email: abhijit84.math@gmail.com
${ }^{2}$ Muallim Rıfat Faculty of Education, Kilis 7 Aralık University, 79000 Kilis, Turkey. E-mail: irfandeli@kilis.edu.tr
${ }^{3}$ Faculty of Science, University of Hassan II, B.P 7955, Sidi Othman, Casablanca, Morocco; Email: broumisaid78@gmail.com
*Correspondence: abhijit84.math@gmail.com

Abstract

Hesitant neutrosophic sets can accomodate more uncertainty compare to hesitant fuzzy sets and hesitant intuitionistic sets. On the other hand, triangular neutrosophic numbers are often used by the decision makers to evaluate their opinion in multi-attribute group decision making problems. Based on the combination of triangular neutrosophic numbers and hesitant neutrosophic sets, in this paper, we propose hesitant triangular neutrosophic numbers. Also, we discuss various types of operations between them including some properties. Then, we propose various types of hesitant triangular neutrosophic weighted aggregation operators to aggregate the hesitant triangular neutrosophic information. Furthermore, we introduce score of hesitant triangular neutrosophic numbers to ranking the hesitant triangular neutrosophic numbers. Based on the hesitant triangular neutrosophic weighted aggregation operators and score of hesitant triangular neutrosophic numbers, we develop a multi attribute decision making (MADM) approach, in which the evaluation values of alternatives on the attribute are represented in terms of hesitant triangular neutrosophic numbers and the alternatives are ranked according to the values of the score of hesitant triangular neutrosophic numbers to select the most desirable one. Finally, we give a practical example, including a comparision study with the other existing method, for enterprise resource planning system selection to verify the application and effectiveness of the proposed method.

Keywords: Neutrosophic sets, hesitant triangular neutrosophic numbers, aggregation operators, score value, decision making.

1. INTRODUCTION

In our real life, most of the mathematical problems do not contain exact or complete information about the given mathematicalmodeling. Therefore, fuzzy set theory by introduced Zadeh [01] is a proper tool to process inexact information because it allows the partial belongings of an element in a set with a membership function. Atanassov [02] generalized fuzzy sets to intuitionistic fuzzy sets by adding a non-membership function to overcome problems that contain incomplete information. In case of fuzzy sets and intuitionistic fuzzy sets, the membership (or non-membership) value of an element in a set is a unique value in the closed interval $[0,1]$. But since 2009, researchers begin to investigate, what if the membership (non-membership) value of an element in a set is a discrete finite subset of [0, 1]. In order to tackle this situation, Torra [03] proposed the concept of a hesitant fuzzy set, which as an extension of a fuzzy set arises from our hesitation among a few different values lying between the number 0 and 1 . Thus the hesitant fuzzy set can more accurately reflect the people's hesitancy in stating their preferences over objectives compared to the fuzzy set and its classical extensions. Beg and Rashid [04] introduced the concept of intuitionistic hesitant fuzzy sets by merging the concept of intuitionistic fuzzy sets and hesitant fuzzy sets.Various researchers have analyzed the decision making problems under fuzzy, hesitant fuzzy, intuitionistic fuzzy and intuitionistic hesitant fuzzy environment in Li [05], Ye [06], Xia and Xu [07], Xu and Xia [08], Wei et al. [09], Xu and Xia [10], Xu and Xia [11], Xu and Zhang [12], Chen et al. [13], Qian et al. [14], Yu [15], Yu [16], Ye [17], Shi et al. [18], Pathinathan and Johnson [19], Joshi and Kumar [20], Liu [21], Nehi [22], Zhang [23], Chen and Huang [24], Yang et al. [25], Lan et al. [26] and Zhang et al. [27].

Although intuitionistic fuzzy sets naturally include hesitancy degree to handle uncertain information, it cannot manage indeterminate information properly because it is dependent on memebership and non-membership degrees. To handle this situation, Smarandache [28] introduced the neutrosophic set which is basically a powerful general formal framework that generalizes the concept of the classical set, fuzzy set, intuitionistic fuzzy set. A neutrosophic set is characterized explicitly by truth-membership function, indeterminacy-membership
function and falsity membership function and it has applications on image segmentation in Gou and Cheng [29], Gou and Sensur [30], on clustering analysis in Karaaslan [31], on medical diagnosis problem in Ansari et al. [32] etc.The neutrosophic set theory have also studied in Wang et al. [33], Wang et al. [34], Gou et al. [35], Ye [36], Sun et al. [37], Ye [38] and Abdel Basset et al. [39]. The neutrosophic set cannot represent uncertain, imprecise, incomplete and inconsistent information with a few different values assigned by truth-membership degree, indeterminacy-membership degree and falsity-membership degree due to doubts of decision maker. In such a situation, all the decision making algorithms based on neutrosophic sets are difficult to use for such a decision making problem with three kinds of hesitancy information that exists in the real world. To overcome this situation, Ye [40] introduced the concept of hesitant neutrosophic sets which is characterized by three membership degrees, namely-truth membership degrees, indeterminacy membership degrees and falsity membership degrees which is a few different values lying between the number 0 and 1 .

Aggregation operators play a vital role in many fields such as decision making, supply chain, personnel evaluation and financial investment to solve multi-criteria group decision making problems. A series of aggregation operatorsin Xia et al. [41], Wang et al. [42], Zhao et al. [43], and Peng [44] were developed based on fuzzy and hesitant fuzzy information and those were applied in solving decision-making problems. Xu [45], Wan and Dong [46], Wan et al. [47] and Xu and Yager [48] presented an averaging and geometric aggregation operators for aggregating the different intuitionistic fuzzy sets based information. Wang and Liu [49] proposed some Einstein weighted geometric operators for intuitionistic fuzzy sets. Liu et al. [50] proposed some generalized neutrosophic number Hamacher aggregation operators. Liu and Wang [51] defined few neutrosophic normalized, weighted Bonferroni mean operators.Chen and Ye [52] used single-valued neutrosophic dombi weighted aggregation operators for solving a multiple attribute decision-making problem. Some more aggregation operators on neutrosophic environment can be found in Zhao et al. [53], Liu and Shi [54] and Liu and Tang [55].

Since Smarandache put forward the concept of neutrosophic sets, the neutrosophic number is given by Şubaş [56] subsequently, and it has been made much deeper by many authors in Abdel-Basset [57]. As a special neutrosophic number,Şubaş gave two special forms of single valued neutrosophic numbers such as single valued trapezoidal neutrosophic numbers and single valued triangular neutrosophic numbers on the real number set R. Now the theory of neutrosphic number has become the fundamental of neutrosophic decision making. For example; Deli and Şubaş [58] introduced the concepts of cut sets of neutrosophic numbers and also they applied to single valued trapezoidal neutrosophic numbers and triangular neutrosophic numbers. Finally they presented a ranking method by defining the values and ambiguities ofneutrosophic numbers. Also, by using the value and ambiguity index, Biswas et al. [59] presented a multi-attribute decision making method. Broumi et al. [60] gave an application shortest path problem under triangular fuzzy neutrosophic numbers. Deli and Şubaş [61] developed an approach to handle multicriteriadecision making problems under the single valued triangular neutrosophic numbers. Also, they presented some new geometric operators including weighted geometric operator, ordered weighted geometric operator and ordered hybrid weighted geometric operator. Ye [62], Biswas et al. [63] and Deli [64] proposed some weighted arithmetic operators and weighted geometric operators to present some multi attribute decision making methods. Karaaslan [65] introduced Gaussiansingle valued neutrosophic numbers and applied to a multi attribute decision making. Öztürk [66] and Deli and Öztürk [67, 68] initiated concept of distance measure based on cut sets, magnitude function, 1. and 2. centroid point and 1. and 2. score function. Deli [69] defined concept of centroid point based on single valued trapezoidal neutrosophic numbers and examine several useful properties. Also, he developed hamming ranking value and Euclidean ranking value of single valued trapezoidal neutrosophic numbers. Chakraborty et al. [70] presented a decision making method by introducing different forms of triangular neutrosophic numbers including deneutrosophication techniques. Fan et al. [71] defined linguistic neutrosophic number Einstein sum, linguistic neutrosophic number Einstein product, and linguistic neutrosophic number Einstein exponentiation operations based on the Einstein operation and used them to develop some MADM problems. Garg and Nancy [72] introduced some linguistic single valued neutrosophic power aggregation operators and presented their applications to group decision making process. Zhao et al. [73] developed induced choquet integral aggregation operators with single valued neutrosophic uncertain linguistic numbers. Recently, Deli and Karaaslan [74] defined generalized trapezoidal hesitant fuzzy numbers and Deli [75] presented a TOPSIS method formulticriteria decision making problems by using the numbers. Some more trapezoidal/triangular hesitant fuzzy numbers can be found in Zhang et al. [76] and Ye [77].

Motivated by the idea of triangular neutrosophic number, hesitant neutrosophic set and aggregation operators, the aim of this present article is:
(1) To present the idea of hesitant triangular neutrosophic numbers.
(2) To define few operations between hesitant triangular neutrosophic numbers and study their basic properties.
(3) To develop a few weighted aggregation operators such as hesitant triangular neutrosophic weighted arithmetic aggregation operator of type-1, hesitant triangular neutrosophic weighted arithmetic aggregation operator of type-2, hesitant triangular neutrosophic weighted geometric aggregation operator of type-1 and hesitant triangular neutrosophic weighted geometric aggregation operator of type-2.
(4) To propose a decision making method based on the hesitant triangular neutrosophic weighted aggregation operators to handle multicriteria decision making problems with hesitant triangular neutrosophic information.

To do so, the rest of the article is arranged as follows:
In section 2, we review some basic concepts. In Section 3, we propose hesitant triangular neutrosophic number and illustrate it with an example. Also, we discuss various types of operations between them including some properties. In section 4, we propose various types of hesitant triangular neutrosophic weighted aggregation operators to aggregate the hesitant triangular neutrosophic information. Furthermore, we introduce the score of a hesitant triangular neutrosophic number to ranking the hesitant triangular neutrosophic numbers. In section 5, based on the hesitant triangular neutrosophic weighted aggregation operators and score of hesitant triangular neutrosophic numbers, we develop a multi attribute decision making approach, in which the evaluation values of alternatives on the attribute are represented in terms of hesitant triangular neutrosophic numbers and the alternatives are ranked according to the values of the score of hesitant triangular neutrosophic numbers to select the best (most desirable) one. Also, we present a practical example for enterprise resource planning system selection to demonstrate the application and effectiveness of the proposed method. Section 6 is devoted for comparative study. In final section, we present the conclusion of the study.

2. PRELIMINARIES:

A neutrosophic set is a part of neutrosophy which studies the origin, nature and scope of neutralities as well as their interactions with different ideational spectra and is a powerful general formal framework that generalizes the traditional mathematical tools such as fuzzy sets and intuitionistic fuzzy sets.
Definition 1: [34] A single-valued neutrosophic set A on universe set E is given by

$$
A=\left\{\left\langle x, T_{A}(x), I_{A}(x), F_{A}(x)\right\rangle: x \in E\right\}
$$

where $T_{A}: E \rightarrow[0,1], I_{A}: E \rightarrow[0,1]$, and $F_{A}: E \rightarrow[0,1]$ satisfy the condition $0 \leq T_{A}(x)+I_{A}(x)+F_{A}(x) \leq 3$, for every $x \in E$. The functions T_{A}, I_{A}, and F_{A} define the degree of truth-membership function, indeterminacymembership function and falsity-membership function, respectively.

Definition 2: [52] $A=\left\{\left\langle x, T_{A}(x), I_{A}(x), F_{A}(x)\right\rangle: x \in E\right\}$ and $B=\left\{\left\langle x, T_{B}(x), I_{B}(x), F_{B}(x)\right\rangle: x \in E\right\}$ be two singlevalued neutrosophic sets and $\lambda \neq 0$. Then,

By combining single-valued neutrosophic sets and hesitant fuzzy sets, Ye (2015a) introduced the singlevalued neutrosophic hesitant fuzzy set as a further generalization of the concepts of fuzzy set, intuitionistic fuzzy set, single-valued neutrosophic set. He also developed single-valued neutrosophic hesitant fuzzy weighted averaging operator and single-valued neutrosophic hesitant fuzzy weighted geometric operator and applied them to solve a multiple-attribute decision- making problem.

Definition 3: [40] A hesitant neutrosophicset on universe set E is given by

$$
N=\left\{\left\langle x, \widetilde{T}_{N}(x), \tilde{I}_{N}(x), \widetilde{F}_{N}(x)\right\rangle: x \in E\right\}
$$

in which $\widetilde{T}_{N}(x), \tilde{\mathrm{I}}_{\mathrm{N}}(\mathrm{x})$ and $\widetilde{\mathrm{F}}_{\mathrm{N}}(\mathrm{x})$ are three sets of some values in $[0,1]$, denoting the possible truth-membership hesitant degrees, indeterminacy-membership hesitant degrees, and falsity-membership hesitant degrees of the element $x \in E$ to the set N, respectively, with the conditions $0 \leq \delta, \gamma, \eta \leq 1$ and $0 \leq \delta^{+}+\gamma^{+}+\eta^{+} \leq 3$, where
$\delta \in \widetilde{\mathrm{T}}_{\mathrm{N}}(\mathrm{x}), \quad \gamma \in \tilde{\mathrm{I}}_{\mathrm{N}}(\mathrm{x}), \eta \quad \in \widetilde{\mathrm{F}}_{\mathrm{N}}(\mathrm{x}), \delta^{+} \in \widetilde{\mathrm{T}}_{\mathrm{N}}^{+}(\mathrm{x})=\mathrm{U} \quad \delta \in \widetilde{\mathrm{T}}_{\mathrm{N}}(\mathrm{x}) \max \{\delta\}, \gamma^{+} \in$
$\tilde{I}_{N}^{+}(x)=U_{\gamma \in \tilde{I}_{N}(x)} \max \{\bar{q}\}$, and $\left.\eta^{+} \in \tilde{\mathrm{F}}_{N}^{+}(x)=U_{\eta \in \widetilde{\mathrm{F}}_{N}(x)} \operatorname{maxiq\eta }\right\}$, for $x \in E$.
For $N_{1}=\left\{\left\langle x, \widetilde{T}_{N_{1}}(x), \tilde{I}_{N_{1}}(x), \widetilde{\mathrm{F}}_{\mathrm{N}_{1}}(\mathrm{x})\right\rangle: \mathrm{x} \in \mathrm{E}\right\}$ and $\mathrm{N}_{2}=\left\{\left\langle\mathrm{x}, \widetilde{T}_{\mathrm{N}_{2}}(\mathrm{x}), \tilde{\mathrm{I}}_{\mathrm{N}_{2}}(\mathrm{x}), \widetilde{\mathrm{F}}_{\mathrm{N}_{2}}(\mathrm{x})\right\rangle: \mathrm{x} \in \mathrm{E}\right\}$ be two hesitant neutrosophicsets and $\lambda \neq 0$. Then,

$$
\begin{aligned}
& \text { 1. } N_{1} \oplus N_{1}=\left\{<x, \tilde{T}_{N_{1}}(x) \oplus \tilde{T}_{N_{2}}(x), \tilde{I}_{N_{1}}(x) \oplus \tilde{I}_{N_{2}}(x), \tilde{F}_{N_{1}}(x) \oplus \tilde{F}_{N_{2}}(x)>: x \in X\right\} \\
& =\bigcup_{\delta_{1} \in \tilde{T}_{N_{1}}(x), \delta_{2} \in \tilde{T}_{N_{2}}(x), \gamma_{1} \in \tilde{I}_{N_{1}}(x), \gamma_{2} \in \tilde{I}_{N_{2}}(x), \eta_{1} \in \tilde{F}_{N_{1}}(x), \eta_{2} \in \tilde{F}_{N_{2}}(x)}\left\{<x,\left\{\delta_{1}+\delta_{2}-\delta_{1} \cdot \delta_{2}\right\},\left\{\gamma_{1} \cdot \gamma_{2}\right\},\left\{\eta_{1} \eta_{2}\right\}>: x \in X\right\} \\
& \text { 2. } N_{1} \otimes N_{1}=\left\{<x, \tilde{T}_{N_{1}}(x) \otimes \tilde{T}_{N_{2}}(x), \tilde{I}_{N_{1}}(x) \otimes \tilde{I}_{N_{2}}(x), \tilde{F}_{N_{1}}(x) \otimes \tilde{F}_{N_{2}}(x)>: x \in X\right\} \\
& =\bigcup_{\delta_{1} \in \tilde{T}_{N_{1}}(x), \delta_{2} \in \tilde{T}_{N_{2}}(x), \gamma_{1} \in \tilde{I}_{N_{1}}(x), \gamma_{2} \in \tilde{I}_{N_{2}}(x), \eta_{1} \in \tilde{F}_{N_{1}}(x), \eta_{2} \in \tilde{F}_{N_{2}}(x)}\left\{<x,\left\{\delta_{1} \cdot \delta_{2}\right\},\left\{\gamma_{1}+\gamma_{2}-\gamma_{1} \cdot \gamma_{2}\right\},\left\{\eta_{1}+\eta_{2}-\eta_{1} \eta_{2}\right\}>: x \in X\right\}
\end{aligned}
$$

3. $\lambda \cdot N_{1}=\bigcup_{\delta_{1} \in \tilde{T}_{N_{1}}(x), \eta_{1} \in \tilde{I}_{N_{1}}(x), \eta_{1} \in \tilde{F}_{N_{1}}(x)}\left\{<x,\left\{1-\left(1-\delta_{1}\right)^{\lambda}\right\},\left\{\gamma_{1}^{\lambda}\right\},\left\{\eta_{1}^{\lambda}\right\}>: x \in X\right\}(\lambda>0)$
4. $N_{1}^{\lambda}=\bigcup_{\delta_{1} \in \tilde{T}_{N_{1}}(x), \gamma_{1} \in \tilde{I}_{N_{1}}(x), \eta_{1} \in \tilde{F}_{N_{1}}(x)}\left\{<x,\left\{\delta_{1}^{\lambda}\right\},\left\{1-\left(1-\gamma_{1}\right)^{\lambda}\right\},\left\{1-\left(1-\eta_{1}\right)^{\lambda}\right\}>: x \in X\right\}(\lambda>0)$

Definition 4: [56] Let $a_{1} \leq b_{1} \leq c_{1}$ such that $a_{1}, b_{1}, c_{1} \in R$. A triangular neutrosophic number $\tilde{A}=\left\langle\left(a_{1}, b_{1}, c_{1}\right) ; w_{\tilde{A}}, u_{\tilde{A}}, y_{\tilde{A}}\right\rangle$ is a special neutrosophic set on the real number set R , whose truth-membership function $\mu_{\tilde{A}}: R \rightarrow\left[0, w_{\tilde{A}}\right]$, indeterminacy-membership function $v_{\tilde{A}}: R \rightarrow\left[u_{\tilde{A}}, 1\right]$ and falsitymembership function $\lambda_{\tilde{A}}: R \rightarrow\left[y_{\tilde{A}}, 1\right]$ are given as follows;
$\mu_{\tilde{A}}(x)=\left\{\begin{array}{ll}\frac{\left(x-a_{1}\right) w_{\tilde{A}}}{b_{1}-a_{1}}, & a_{1} \leq x \leq b_{1} \\ \frac{\left(c_{1}-x\right) w_{\tilde{A}}}{c_{1}-b_{1}}, & b_{1} \leq x \leq c_{1} \\ 0, & \text { otherwise }\end{array} \quad, \quad v_{\tilde{A}}(x)= \begin{cases}\frac{b_{1}-x+u_{\tilde{A}}\left(x-a_{1}\right)}{b_{1}-a_{1}}, & a_{1} \leq x \leq b_{1} \\ \frac{x-b_{1}+u_{\tilde{A}}\left(c_{1}-x\right)}{c_{1}-b_{1}}, & b_{1} \leq x \leq c_{1} \\ 1, & \text { otherwise }\end{cases}\right.$

$$
\lambda_{\tilde{A}}(x)= \begin{cases}\frac{b_{1}-x+y_{\tilde{A}}\left(x-a_{1}\right)}{b_{1}-a_{1}}, & a_{1} \leq x \leq b_{1} \\ \frac{x-b_{1}+y_{\tilde{A}}\left(c_{1}-x\right)}{c_{1}-b_{1}}, & b_{1} \leq x \leq c_{1} \\ 1, & \text { otherwise }\end{cases}
$$

Since triangular neutrosophic numbers ([56], [58]) is a special case of trapozidial neutrosophic numbers (Ye 2017), operations of trapozidial neutrosophic numbers (Ye 2015b, 2017) based on algebraic sum and algebraic product for triangular neutrosophic numbers can be given as;
If $\tilde{A}=\left\langle\left(a_{1}, b_{1}, c_{1}\right) ; w_{\tilde{A}}, u_{\tilde{A}}, y_{\tilde{A}}\right\rangle$ and $\tilde{B}=\left\langle\left(a_{2}, b_{2}, c_{2}\right) ; w_{\tilde{B}}, u_{\tilde{B}}, y_{\tilde{B}}\right\rangle$ be two triangular neutrosophic numbers and $\gamma \neq 0$, then we have

1. $\tilde{A}+\tilde{B}=\left\langle\left(a_{1}+a_{1}, b_{1}+b_{2}, c_{1}+c_{2}\right) ; w_{\tilde{A}}+w_{\tilde{B}}-w_{\tilde{A}} \cdot w_{\tilde{B}}, u_{\tilde{A}} \cdot u_{\tilde{B}}, y_{\tilde{A}} \cdot y_{\tilde{B}}\right\rangle$
2. $\tilde{A} \cdot \tilde{B}=\left\langle\left(a_{1} a_{2}, b_{1} b_{2}, c_{1} c_{2}\right) ; w_{\tilde{A}} \cdot w_{\tilde{B}}, u_{\tilde{A}}+u_{\tilde{B}}-u_{\tilde{A}} \cdot u_{\tilde{B}}, y_{\tilde{A}}+y_{\tilde{B}}-y_{\tilde{A}} \cdot y_{\tilde{B}}\right\rangle$
3. $\lambda \tilde{A}=\left\langle\left(\gamma a_{1}, \gamma b_{1}, \gamma c_{1}\right) ; 1-\left(1-w_{\tilde{A}}\right)^{\lambda}, u_{\tilde{A}}{ }^{\lambda}, y_{\tilde{A}}{ }^{\lambda}\right\rangle$
4. $\tilde{A}^{\lambda}=\left\langle\left(a_{1}^{\lambda}, b_{1}^{\lambda}, c_{1}^{\lambda}\right) ; w_{\tilde{A}}{ }^{\lambda}, 1-\left(1-u_{\tilde{A}}\right)^{\lambda}, 1-\left(1-y_{\tilde{A}}\right)^{\lambda}\right\rangle$

Definition 5: [56] Let $\tilde{A}=\left\langle(a, b, c) ; w_{\tilde{A}}, u_{\tilde{A}}, y_{\tilde{A}}\right\rangle$ be atriangular neutrosophic number. Then,score function of $\widetilde{\mathrm{A}}$, is denoted by $\mathrm{S}_{\mathrm{Y}}(\widetilde{\mathrm{A}})$, is defined as:

$$
S_{Y}(\widetilde{A})=\frac{1}{8}[a+b+c] \times\left(2+\mu_{\widetilde{A}}-v_{\widetilde{A}}-\gamma_{\widetilde{A}}\right)
$$

Definition 6: [61] Let $\widetilde{\mathrm{A}}_{\mathrm{j}}=\left\langle\left(\mathrm{a}_{\mathrm{j}}, \mathrm{b}_{\mathrm{j}}, \mathrm{c}_{\mathrm{j}},\right) ; \mathrm{w}_{\widetilde{\mathrm{A}}_{j}}, \mathrm{u}_{\widetilde{A}_{j}}, y_{\widetilde{A}_{j}}\right\rangle(\mathrm{j}=1,2, \ldots, \mathrm{n})$ be a collection of triangular neutrosophic numbers. Then,

1. Triangular neutrosophic weighted arithmetic operatoris defined as;

$$
\mathrm{N}_{\mathrm{ao}}\left(\widetilde{\mathrm{~A}}_{1}, \widetilde{\mathrm{~A}}_{2}, \ldots, \widetilde{\mathrm{~A}}_{\mathrm{n}}\right)=\sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{w}_{\mathrm{j}} \widetilde{\mathrm{~A}}_{\mathrm{j}}
$$

2. Triangular neutrosophic weighted geometric operatoris defined as;

$$
N_{g o}\left(\widetilde{A}_{1}, \widetilde{A}_{2}, \ldots, \widetilde{A}_{n}\right)=\prod_{j=1}^{n} \widetilde{\mathrm{~A}}_{j}^{w_{j}}
$$

where, $w=\left(w_{1}, w_{2}, \ldots, w_{n}\right)^{T}$ is a weight vector associated with the $N_{a o}$ or $N_{g o}$ operator, for every $j(j=$ $1,2, \ldots, n)$ and $w_{j} \in[0,1]$ with $\sum_{j=1}^{n} w_{j}=1$.

3. HESITANT TRIANGULAR NEUTROSOPHIC NUMBERS:

In this section, the concept of a hesitant triangular neutrosophic number is presented on the basis of the combination of triangular neutrosophic numbers and hesitant fuzzy sets as a further generalization of the concep ttriangular neutrosophic numbers. A hesitant triangular neutrosophic number is a special hesitant neutrosophic set on the real number R, whose truth-membership function, indeterminacy-membership function and falsitymembership function are expressed by several possible functions.

Definition 7. Let $a_{1} \leq b_{1} \leq c_{1}$ such that $a_{1}, b_{1}, c_{1} \in R$, $w_{\tilde{a}}^{j} \in[0,1]\left(i \in I_{m}=\{1,2, \ldots, m\}\right)$, $u_{\tilde{a}}^{i} \in[0,1]\left(i \in I_{n}=\{1,2, \ldots, n\}\right)$ and $y_{\tilde{a}}^{i} \in[0,1]\left(i \in I_{k}=\{1,2, \ldots, k\}\right)$. A hesitant triangular neutrosophic number $\tilde{a}=<\left(a_{1}, b_{1}, c_{1}\right) ;\left\{w_{\tilde{a}}^{j}: i \in I_{m}\right\},\left\{u_{\tilde{a}}^{j}: j \in I_{n}\right\},\left\{y_{\tilde{a}}^{l}: l \in I_{k}\right\}>$ is a special hesitant neutrosophic set on the real number R , whose truth-membership functions $\mu_{\tilde{a}}^{H T R I}: R \rightarrow\left[0, w_{\tilde{a}}^{i}\right]\left(i \in I_{m}\right)$, indeterminacy-membership function $\gamma_{\tilde{a}}^{H T R I}: R \rightarrow\left[0, u_{\tilde{a}}^{j}\right]\left(j \in I_{n}\right)$ and falsity-membership function $\delta_{\tilde{a}}^{H T R I}: R \rightarrow\left[0, y_{\tilde{a}}^{l}\right]\left(l \in I_{k}\right)$ are given as follows;

$$
\begin{aligned}
& \mu_{\tilde{a}}^{H T R I}=\left\{\begin{array}{cl}
\bigcup_{\left\{\alpha: \alpha \in\left\{w_{\tilde{a}}^{i}: i \in I_{m}\right\}\right\}}\left\{\frac{\left(x-a_{1}\right) \alpha}{b_{1}-a_{1}}\right\}, & a_{1} \leq x<b_{1} \\
\left\{\alpha: \alpha \in\left\{w_{\tilde{a}}^{i}: i \in I_{m}\right\}\right\}, & x=b_{1} \\
\bigcup_{\left\{\alpha: \alpha \in\left\{w_{\tilde{a}}^{i}: i \in I_{m}\right\}\right\}}\left\{\frac{\left(c_{1}-x\right) \alpha}{c_{1}-b_{1}}\right\}, & b_{1}<x \leq c_{1} \\
\{0\}, & \text { otherwise }
\end{array},\right.
\end{aligned}
$$

$$
\begin{aligned}
& \delta_{\tilde{a}}^{H T R I}=\left\{\right.
\end{aligned}
$$

Example 8. $\tilde{a}=<(1,2,5) ;\{0.8,0.9\},\{0.4,0.5,0.6\},\{0.4\}>$ is a hesitant triangular neutrosophic number whose truth membership function, indeterminacy membership function and falsity membership functionare given respectively by:

$$
\begin{aligned}
& \mu_{\tilde{a}}^{H T R I}(x)=\left\{\begin{array}{c}
\{0.8(x-1), 0.9(x-1)\}, 1 \leq x<2 \\
\{0.8,0.9\}, \quad x=2 \\
\left\{0.8 \frac{(5-x)}{3}, 0.9 \frac{(5-x)}{3}\right\}, 2<x \leq 5 \\
\{0\}, \quad \text { otherwise }
\end{array}, \quad \delta_{\tilde{a}}^{H T R I}(x)=\left\{\begin{array}{cc}
\{1.6-0.6 x\}, & 1 \leq x<2 \\
\{0.4\}, & x=2 \\
\{0.2 x\}, & 2<x \leq 3 \\
\{1\}, & \text { otherwise }
\end{array}\right.\right. \\
& \gamma_{\tilde{a}}^{H T R I}(x)=\left\{\begin{array}{c}
\{1.6-0.6 x, 1.5-0.5 x, 1.4-0.4 x\}, 1 \leq x<2 \\
\{0.4,0.5,0.6\}, \quad x=2 \\
\left\{\frac{0.6 x}{3}, 0 . \frac{5 x+0.5}{3}, \frac{0.4 x+1}{3}\right\}, 2<x \leq 5 \\
\{1\}, \\
\text { otherwise }
\end{array}\right.
\end{aligned}
$$

4. OPERATIONS ON HESITANT TRIANGULAR NEUTROSOPHIC NUMBERS:

In this section, we introduce various operations between hesitant triangular neutrosophic numbers and demonstrate their basic properties.

Definition 9. Let $\tilde{a}=<\left(a_{1}, b_{1}, c_{1}\right) ;\left\{w_{\tilde{a}}^{i}: i \in I_{m_{1}}\right\},\left\{u_{\tilde{a}}^{j}: j \in I_{n_{1}}\right\},\left\{y_{\tilde{a}}^{l}: l \in I_{k_{1}}\right\}>$ and $\tilde{b}=<\left(a_{2}, b_{2}, c_{2}\right) ;\left\{w_{\tilde{b}}^{i}: i \in I_{m_{2}}\right\},\left\{u_{\tilde{b}}^{j}: j \in I_{n_{2}}\right\},\left\{y_{\tilde{b}}^{l}: l \in I_{k_{2}}\right\}>$ be two hesitant triangular neutrosophic numbers and $\sigma>0$, then

1. $\tilde{a} \oplus^{\prime} \tilde{b}=<\left(a_{1}+a_{2}, b_{1}+b_{2}, c_{1}+c_{2}\right) ;\left\{\alpha_{1}+\alpha_{2}-\alpha_{1} \alpha_{2}: \alpha_{1} \in\left\{w_{\tilde{a}}^{i}: i \in I_{m_{1}}\right\}, \alpha_{2} \in\left\{w_{\tilde{b}}^{i}: i \in I_{m_{2}}\right\}\right\}$,

$$
\left\{\beta_{1} \beta_{2}: \beta_{1} \in\left\{u_{\tilde{a}}^{j}: j \in I_{n_{1}}\right\}, \beta_{2} \in\left\{u_{\tilde{b}}^{j}: j \in I_{n_{2}}\right\}\right\},\left\{\lambda_{1} \lambda_{2}: \lambda_{1} \in\left\{y_{\tilde{a}}^{l}: l \in I_{k_{1}}\right\}, \lambda_{2} \in\left\{y_{\tilde{b}}^{l}: l \in I_{k_{2}}\right\}\right\}>
$$

2. $a \otimes^{\prime} \tilde{b}=<\left(a_{1} a_{2}, b_{1} b_{2}, c_{1} c_{2}\right) ;\left\{\alpha_{1} \alpha_{2}: \alpha_{1} \in\left\{w_{\tilde{a}}^{i}: i \in I_{m_{1}}\right\}, \alpha_{2} \in\left\{w_{\tilde{b}}^{i}: i \in I_{m_{2}}\right\},\left\{\beta_{1}+\beta_{2}-\beta_{1} \beta_{2}:\right.\right.$

$$
\left.\beta_{1} \in\left\{u_{a}^{j}: j \in I_{n_{1}}\right\}, \beta_{2} \in\left\{u_{b}^{j}: j \in I_{n_{2}}\right\}\right\},\left\{\lambda_{1}+\lambda_{2}-\lambda_{1} \lambda_{2}: \lambda_{1} \in\left\{y_{\bar{a}}^{l}: l \in I_{k_{1}}\right\}, \lambda_{2} \in\left\{y_{\vec{b}}^{l}: l \in I_{k_{2}}\right\}\right\}>
$$

3. $\sigma \odot^{\prime} \tilde{a}=<(\sigma a, \sigma b, \sigma c) ;\left\{1-(1-\alpha)^{\sigma}: \alpha \in\left\{w_{\tilde{a}}^{j}: i \in I_{m_{1}}\right\},\left\{\beta^{\sigma}: \beta \in\left\{u_{\tilde{a}}^{j}: j \in I_{n_{1}}\right\},,\left\{\lambda^{\sigma}: \lambda \in\left\{y_{\tilde{a}}^{l}: l \in I_{k_{1}}\right\}\right\}>\right.\right.$
4. $\sigma *^{\prime} \tilde{a}=<\left(a^{\sigma}, b^{\sigma}, c^{\sigma}\right) ;\left\{\alpha^{\sigma}: \alpha \in\left\{w_{\tilde{a}}^{i}: i \in I_{m_{1}}\right\}\right\},\left\{1-(1-\beta)^{\sigma}: \beta \in\left\{u_{\tilde{a}}^{j}: j \in I_{n_{1}}\right\}\right\}$,

$$
\left\{1-(1-\lambda)^{\sigma}: \lambda \in\left\{y_{\tilde{a}}^{l}: l \in I_{k_{1}}\right\}\right\}>
$$

Theorem 10. Let $\tilde{a}=<\left(a_{1}, b_{1}, c_{1}\right) ;\left\{w_{\tilde{a}}^{j}: i \in I_{m_{1}}\right\},\left\{u_{\tilde{a}}^{j}: j \in I_{n_{1}}\right\},\left\{y_{\tilde{a}}^{l}: l \in I_{k_{1}}\right\}>$, $\tilde{b}=<\left(a_{2}, b_{2}, c_{2}\right) ;\left\{w_{\tilde{b}}^{i}: i \in I_{m_{2}}\right\},\left\{u_{\tilde{b}}^{j}: j \in I_{n_{2}}\right\},\left\{y_{\tilde{b}}^{l}: l \in I_{k_{2}}\right\}>$ and $\tilde{c}=\left\langle\left(a_{3}, b_{3}, c_{3}\right) ;\left\{w_{\tilde{c}}^{i}: i \in I_{m_{3}}\right\},\left\{u_{\tilde{c}}^{j}: j \in I_{n_{3}}\right\},\left\{y_{\tilde{c}}^{l}: l \in I_{k_{3}}\right\}>\right.$ be three hesitant triangular neutrosophic numbers and $\sigma, \sigma_{1}, \sigma_{2}>0$, then

1. $\tilde{a} \oplus^{\prime} \tilde{b}=\tilde{b} \oplus^{\prime} \tilde{a}$
2. $\sigma \odot^{\prime}\left(\tilde{a} \oplus^{\prime} \tilde{b}\right)=\left(\sigma \odot^{\prime} \tilde{a}\right) \oplus^{\prime}\left(\sigma \odot^{\prime} \tilde{b}\right)$
3. $\tilde{a} \otimes^{\prime} \tilde{b}=\tilde{b} \otimes^{\prime} \tilde{a}$
4. $\sigma *^{\prime}\left(\tilde{a} \otimes^{\prime} \tilde{b}\right)=\left(\sigma *^{\prime} \tilde{a}\right) \otimes^{\prime}\left(\sigma *^{\prime} \tilde{b}\right)$
5. . $\tilde{a} \oplus^{\prime}\left(\tilde{b} \oplus^{\prime} \tilde{c}\right)=\left(\tilde{a} \oplus^{\prime} \tilde{b}\right) \oplus^{\prime} \tilde{c}$
6. $\sigma *^{\prime}\left(\tilde{a} \otimes^{\prime} \tilde{b}\right)=\left(\sigma *^{\prime} \tilde{a}\right) \otimes^{\prime}\left(\sigma *^{\prime} \tilde{b}\right)$
7. $\tilde{a} \otimes^{\prime}\left(\tilde{b} \otimes^{\prime} \tilde{c}\right)=\left(\tilde{a} \otimes^{\prime} \tilde{b}\right) \otimes^{\prime} \tilde{c}$
8. $\left(\sigma_{1}+\sigma_{2}\right) *^{\prime} \tilde{a}=\left(\sigma_{1} *^{\prime} \tilde{a}\right) \otimes^{\prime}\left(\sigma_{2} *^{\prime} \tilde{a}\right)$

Proof:1-2 straight forward.
3. $\tilde{a} \oplus^{\prime}\left(\tilde{b} \oplus^{\prime} \tilde{c}\right)=<\left(a_{1}, b_{1}, c_{1}\right) ; w_{\tilde{a}}, u_{\tilde{a}}, y_{\tilde{a}}>\oplus^{\prime}<a_{2}+a_{3}, b_{2}+b_{3}, c_{2}+c_{3} ;\left\{\alpha_{2}+\alpha_{3}-\alpha_{2} \alpha_{3}: \alpha_{2} \in\left\{w_{\tilde{b}}^{i}: i \in I_{m_{2}}\right\}\right.$,

$$
\begin{align*}
&\left.\alpha_{3} \in\left\{w_{\tilde{c}}^{i}: i \in I_{m_{3}}\right\}\right\},\left\{\beta_{2} \beta_{3}: \beta_{2} \in\left\{u_{\tilde{b}}^{j}: j \in I_{n_{2}}\right\}, \beta_{3} \in\left\{u_{\tilde{c}}^{j}: j \in I_{n_{3}}\right\}\right\},\left\{\lambda_{2} \lambda_{3}: \lambda_{2} \in\left\{y_{\tilde{b}}^{l}: l \in I_{k_{2}}\right\},\right. \\
&\left.\lambda_{3} \in\left\{y_{\tilde{c}}^{l}: l \in I_{k_{3}}\right\}\right\}> \\
&=<\left(a_{1}+\left(a_{2}+a_{3}\right), b_{1}+\left(b_{2}+b_{3}\right), c_{1}+\left(c_{2}+c_{3}\right)\right) ;\left\{\alpha_{1}+\left(\alpha_{2}+\alpha_{3}-\alpha_{2} \alpha_{3}\right)-\alpha_{1}\left(\alpha_{2}+\alpha_{3}-\alpha_{2} \alpha_{31}\right):\right. \\
&\left.\alpha_{1} \in\left\{w_{\tilde{u}}^{i}: i \in I_{m_{1}}\right\}, \alpha_{2} \in\left\{w_{\tilde{b}}^{i}: i \in I_{m_{2}}\right\}, \alpha_{3} \in\left\{w_{\tilde{c}}^{i}: i \in I_{m_{3}}\right\}\right\},\left\{\beta_{1}\left(\beta_{2} \beta_{3}\right): \beta_{1} \in\left\{u_{\tilde{a}}^{j}: j \in I_{n_{1}}\right\}, \beta_{2} \in\left\{u_{\tilde{b}}^{j}:\right.\right. \\
&\left.\left.j \in I_{n_{2}}\right\}, \beta_{3} \in\left\{u_{\tilde{c}}^{j}: j \in I_{n_{3}}\right\}\right\},\left\{\lambda_{1}\left(\lambda_{2} \lambda_{3}\right): \lambda_{1} \in\left\{y_{\tilde{a}}^{l}: l \in I_{k_{1}}\right\}, \lambda_{2} \in\left\{y_{\tilde{b}}^{l}: l \in I_{k_{2}}\right\}, \lambda_{3} \in\left\{y_{\tilde{c}}^{l}: l \in I_{k_{3}}\right\}\right\}> \\
&=<\left(a_{1}+a_{2}+a_{3}, b_{1}+b_{2}+b_{3}, c_{1}+c_{2}+c_{3}\right) ;\left\{\alpha_{1}+\alpha_{2}+\alpha_{3}-\alpha_{2} \alpha_{3}-\alpha_{1} \alpha_{2}+\alpha_{1} \alpha_{3}-\alpha_{1} \alpha_{2} \alpha_{3}\right): \\
&\left.\alpha_{1} \in\left\{w_{\tilde{a}}^{i}: i \in I_{m_{1}}\right\}, \alpha_{2} \in\left\{w_{\tilde{u}}^{i}: i \in I_{m_{2}}\right\}, \alpha_{3} \in\left\{w_{\tilde{c}}^{i}: i \in I_{m_{3}}\right\}\right\},\left\{\beta_{1} \beta_{2} \beta_{3}: \beta_{1} \in\left\{u_{\tilde{u}}^{j}: j \in I_{n_{1}}\right\},\right. \\
&\left.\beta_{2} \in\left\{u_{\tilde{b}}^{j}: j \in I_{n_{2}}\right\}, \beta_{3} \in\left\{u_{\tilde{c}}^{j}: j \in I_{n_{3}}\right\}\right\},\left\{\lambda_{1} \lambda_{2} \lambda_{3}: \lambda_{1} \in\left\{y_{\tilde{a}}^{l}: l \in I_{k_{1}}\right\}, \lambda_{2} \in\left\{y_{\tilde{b}}^{l}: l \in I_{k_{2}}\right\},\right. \\
&\left.\lambda_{3} \in\left\{y_{\tilde{c}}^{l}: l \in I_{k_{3}}\right\}\right\}> \tag{1}
\end{align*}
$$

and
$\left(\tilde{a} \oplus^{\prime} \tilde{b}\right) \oplus^{\prime} \tilde{c}=<\left(a_{1}+a_{2}, b_{1}+b_{2}, c_{1}+c_{2}\right) ;\left\{\alpha_{1}+\alpha_{2}-\alpha_{1} \alpha_{2}: \alpha_{1} \in\left\{w_{\tilde{a}}^{i}: i \in I_{m_{1}}\right\}, \alpha_{2} \in\left\{w_{\tilde{b}}^{i}: i \in I_{m_{2}}\right\}\right\}$,

$$
\begin{align*}
& \left\{\beta_{1} \beta_{2}: \beta_{1} \in\left\{u_{\tilde{a}}^{j}: j \in I_{n_{1}}\right\}, \beta_{2} \in\left\{u_{\tilde{\tilde{b}}}^{j}: j \in I_{n_{2}}\right\}\right\},\left\{\lambda_{1} \lambda_{2}: \lambda_{1} \in\left\{y_{\tilde{a}}^{l}: l \in I_{k_{1}}\right\}, \lambda_{2} \in\left\{y_{\tilde{b}}^{l}: l \in I_{k_{2}}\right\}\right\}> \\
& \oplus^{\prime}<\left(a_{3}, b_{3}, c_{3}\right) ;\left\{w_{\tilde{c}}^{i}: i \in I_{m_{3}}\right\},\left\{u_{\tilde{c}}^{j}: j \in I_{n_{3}}\right\},\left\{y_{\tilde{c}}^{l}: l \in I_{k_{3}}\right\}> \\
= & <\left(\left(a_{1}+a_{2}\right)+a_{3},\left(b_{1}+b_{2}\right)+b_{3},\left(c_{1}+c_{2}\right)+c_{3}\right) ;\left\{\left(\alpha_{1}+\alpha_{2}-\alpha_{1} \alpha_{2}\right)+\alpha_{3}-\left(\alpha_{1}+\beta_{1}-\alpha_{1} \beta_{1}\right) \alpha_{3}:\right. \\
& \left.\alpha_{1} \in\left\{w_{\tilde{a}}^{i}: i \in I_{m_{1}}\right\}, \alpha_{2} \in\left\{w_{\tilde{b}}^{i}: i \in I_{m_{2}}\right\}, \alpha_{3} \in\left\{w_{\tilde{c}}^{i}: i \in I_{m_{3}}\right\}\right\},\left\{\left(\beta_{1} \beta_{2}\right) \beta_{3}: \beta_{1} \in\left\{u_{\tilde{a}}^{j}: j \in I_{n_{1}}\right\}, \beta_{2} \in\left\{u_{\tilde{b}}^{j}:\right.\right. \\
& \left.\left.j \in I_{n_{2}}\right\} \beta_{3} \in\left\{u_{\tilde{c}}^{j}: j \in I_{n_{3}}\right\}\right\},\left\{\left(\lambda_{1} \lambda_{2}\right) \lambda_{3}: \lambda_{1} \in\left\{y_{\tilde{a}}^{l}: l \in I_{k_{1}}\right\}, \lambda_{2} \in\left\{y_{\tilde{b}}^{l}: l \in I_{k_{2}}\right\}, \lambda_{3} \in\left\{y_{\tilde{c}}^{l}: l \in I_{k_{3}}\right\}\right\}> \\
= & <\left(a_{1}+a_{2}+a_{3}, b_{1}+b_{2}+b_{3}, c_{1}+c_{2}+c_{3}\right) ;\left\{\alpha_{1}+\alpha_{2}+\alpha_{3}-\alpha_{2} \alpha_{3}-\alpha_{1} \alpha_{2}+\alpha_{1} \alpha_{3}-\alpha_{1} \alpha_{2} \alpha_{3}\right): \\
& \left.\alpha_{1} \in\left\{w_{\tilde{u}}^{i}: i \in I_{m_{1}}\right\}, \alpha_{2} \in\left\{w_{\tilde{b}}^{i}: i \in I_{m_{2}}\right\}, \alpha_{3} \in\left\{w_{\tilde{c}}^{i}: i \in I_{m_{3}}\right\}\right\},\left\{\beta_{1} \beta_{2} \beta_{3}: \beta_{1} \in\left\{u_{\tilde{u}}^{j}: j \in I_{n_{1}}\right\},\right. \\
& \left.\beta_{2} \in\left\{u_{\tilde{b}}^{j}: j \in I_{n_{2}}\right\}, \beta_{3} \in\left\{u_{\tilde{c}}^{j}: j \in I_{n_{3}}\right\}\right\},\left\{\lambda_{1} \lambda_{2} \lambda_{3}: \lambda_{1} \in\left\{y_{\tilde{a}}^{l}: l \in I_{\left.k_{1}\right\}}\right\}, \lambda_{2} \in\left\{y_{\tilde{b}}^{l}: l \in I_{k_{2}}\right\},\right. \\
& \left.\lambda_{3} \in\left\{y_{\tilde{c}}^{l}: l \in I_{k_{3}}\right\}\right\} \ggg \tag{2}
\end{align*}
$$

Hence from eq. 1-2, we have, $\tilde{a} \oplus^{\prime}\left(\tilde{b} \oplus^{\prime} \tilde{c}\right)=\left(\tilde{a} \oplus^{\prime} \tilde{b}\right) \oplus^{\prime} \tilde{c}$.
4. Proof is similar to 3
5. $\sigma \odot^{\prime}\left(\tilde{a} \oplus^{\prime} \tilde{b}\right)=\sigma \odot^{\prime}<\left(a_{1}+a_{2}, b_{1}+b_{2}, c_{1}+c_{2}\right) ;\left\{\alpha_{1}+\alpha_{2}-\alpha_{1} \alpha_{2}: \alpha_{1} \in\left\{w_{\tilde{a}}^{i}: i \in I_{m_{1}}\right\}, \alpha_{2} \in\left\{w_{\tilde{b}}^{i}: i \in I_{m_{2}}\right\}\right\}$, $\left\{\beta_{1} \beta_{2}: \beta_{1} \in\left\{u_{\tilde{a}}^{j}: j \in I_{n_{1}}\right\}, \beta_{2} \in\left\{u_{\tilde{b}}^{j}: j \in I_{n_{2}}\right\}\right\},\left\{\lambda_{1} \lambda_{2}: \lambda_{1} \in\left\{y_{\tilde{a}}^{l}: l \in I_{k_{1}}\right\}, \lambda_{2} \in\left\{y_{\tilde{b}}^{l}: l \in I_{k_{2}}\right\}\right\}>$ $=<\left(\sigma\left(a_{1}+a_{2}\right), \sigma\left(b_{1}+b_{2}\right), \sigma\left(c_{1}+c_{2}\right)\right) ;\left\{1-\left(1-\left(\alpha_{1}+\alpha_{2}-\alpha_{1} \alpha_{2}\right)\right)^{\sigma}: \alpha_{1} \in\left\{w_{\tilde{a}}^{i}: i \in I_{m_{1}}\right\}\right.$,
$\left.\alpha_{2} \in\left\{w_{\tilde{b}}^{i}: i \in I_{m_{2}}\right\}\right\},\left\{\left(\beta_{1} \beta_{2}\right)^{\sigma}: \beta_{1} \in\left\{u_{\tilde{a}}^{j}: j \in I_{n_{1}}\right\}, \beta_{2} \in\left\{u_{\tilde{b}}^{j}: j \in I_{n_{2}}\right\}\right\},\left\{\left(\lambda_{1} \lambda_{2}\right)^{\sigma}:\right.$
$\left.\lambda_{1} \in\left\{y_{\tilde{a}}^{l}: l \in I_{k_{1}}\right\}, \lambda_{2} \in\left\{y_{\tilde{b}}^{l}: l \in I_{k_{2}}\right\}\right\}>$ $=<\left(\sigma a_{1}+\sigma a_{2}, \sigma b_{1}+\sigma b_{2}, \sigma c_{1}+\sigma c_{2}\right) ;\left\{1-\left(1-\alpha_{1}\right)^{\sigma}\left(1-\alpha_{2}\right)^{\sigma}: \alpha_{1} \in\left\{w_{\tilde{a}}^{i}: i \in I_{m_{1}}\right\}, \alpha_{2} \in\left\{w_{\tilde{b}}^{i}: i \in I_{m_{2}}\right\}\right\}$, $\left\{\beta_{1}{ }^{\sigma} \beta_{2}{ }^{\sigma}: \beta_{1} \in\left\{u_{\tilde{a}}^{j}: j \in I_{n_{1}}\right\}, \beta_{2} \in\left\{u_{\tilde{b}}^{j}: j \in I_{n_{2}}\right\},\left\{\lambda_{1}{ }^{\sigma} \lambda_{2}{ }^{\sigma}: \lambda_{1} \in\left\{y_{\tilde{a}}^{l}: l \in I_{k_{1}}\right\}, \lambda_{2} \in\left\{y_{\tilde{b}}^{l}: l \in I_{k_{2}}\right\}\right\}>\right.$
and
$\left(\sigma \odot^{\prime} \tilde{a}\right) \oplus^{\prime}\left(\sigma \odot^{\prime} \tilde{b}\right)=<\left(\sigma a_{1}, \sigma b_{1}, \sigma c_{1}\right) ;\left\{1-\left(1-\alpha_{1}\right)^{\sigma}: \alpha_{1} \in\left\{w_{\tilde{a}}^{i}: i \in I_{m_{1}}\right\}\right\},\left\{\beta_{1}^{\sigma}: \beta_{1} \in\left\{u_{\tilde{a}}^{j}: j \in I_{n_{1}}\right\}\right\}$,

$$
\begin{align*}
& \left\{\lambda_{1}{ }^{\sigma}: \lambda_{1} \in\left\{y_{\tilde{a}}^{l}: l \in I_{k_{1}}\right\}\right\}>\oplus^{\prime}<\left(\sigma a_{2}, \sigma b_{2}, \sigma c_{2}\right) ;\left\{1-\left(1-\alpha_{2}\right)^{\sigma}: \alpha_{2} \in\left\{w_{\tilde{b}}^{i}: i \in I_{m_{2}}\right\}\right\}, \\
& \left\{\beta_{2}{ }^{\sigma}: \beta_{2} \in\left\{u_{\tilde{b}}^{j}: j \in I_{n_{2}}\right\}\right\},\left\{\lambda_{2}{ }^{\sigma}: \lambda_{2} \in\left\{y_{\tilde{b}}^{l}: l \in I_{k_{2}}\right\}\right\}> \\
= & <\left(\sigma a_{1}+\sigma a_{2}, \sigma b_{1}+\sigma b_{2}, \sigma c_{1}+\sigma c_{2}\right) ;\left\{\left(1-\left(1-\alpha_{1}\right)^{\sigma}\right)+\left(1-\left(1-\alpha_{2}\right)^{\sigma}\right)-\right. \\
& \left.\left(1-\left(1-\alpha_{1}\right)^{\sigma}\right)\left(1-\left(1-\alpha_{2}\right)^{\sigma}\right): \alpha_{1} \in\left\{w_{\tilde{a}}^{i}: i \in I_{m_{1}}\right\}, \alpha_{2} \in\left\{w_{\tilde{b}}^{i}: i \in I_{m_{2}}\right\}\right\},\left\{\beta_{1}^{\sigma} \beta_{2}{ }^{\sigma}: \beta_{1} \in\right. \\
& \left.\left\{u_{\tilde{a}}^{j}: j \in I_{n_{1}}\right\}, \beta_{2} \in\left\{u_{\tilde{b}}^{j}: j \in I_{n_{2}}\right\}\right\},\left\{\lambda_{1}{ }^{\sigma} \lambda_{2}{ }^{\sigma}: \lambda_{1} \in\left\{y_{\tilde{a}}^{l}: l \in I_{k_{1}}\right\}, \lambda_{2} \in\left\{y_{\tilde{b}}^{l}: l \in I_{k_{2}}\right\}\right\}> \\
= & <\left(\sigma a_{1}+\sigma a_{2}, \sigma b_{1}+\sigma b_{2}, \sigma c_{1}+\sigma c_{2}\right) ;\left\{1-\left(1-\alpha_{1}\right)^{\sigma}\left(1-\alpha_{2}\right)^{\sigma}: \alpha_{1} \in\left\{w_{\tilde{a}}^{i}: i \in I_{m_{1}}\right\},\right. \\
& \left.\alpha_{2} \in\left\{w_{\tilde{b}}^{i}: i \in I_{m_{2}}\right\}\right\},\left\{\beta_{1}^{\sigma} \beta_{2}{ }^{\sigma}: \beta_{1} \in\left\{u_{\tilde{a}}^{j}: j \in I_{\left.n_{1}\right\}}\right\}, \beta_{2} \in\left\{u_{\tilde{b}}^{j}: j \in I_{n_{2}}\right\}\right\},\left\{\lambda_{1}{ }^{\sigma} \lambda_{2}{ }^{\sigma}:\right. \\
& \left.\lambda_{1} \in\left\{y_{\tilde{a}}^{l}: l \in I_{k_{1}}\right\}, \lambda_{2} \in\left\{y_{\tilde{b}}^{l}: l \in I_{k_{2}}\right\}\right\}> \tag{4}
\end{align*}
$$

Hence from eq. 3-4, we have $\sigma \odot^{\prime}\left(\tilde{a} \oplus^{\prime} \tilde{b}\right)=\left(\sigma \odot^{\prime} \tilde{a}\right) \oplus^{\prime}\left(\sigma \odot^{\prime} \tilde{b}\right)$.
6. Proof is similar to 5
7. $\left(\sigma_{1}+\sigma_{2}\right) \odot^{\prime} \tilde{a}=<\left(\left(\sigma_{1}+\sigma_{2}\right) a_{1},\left(\sigma_{1}+\sigma_{2}\right) b_{1},\left(\sigma_{1}+\sigma_{2}\right) c_{1}\right) ;\left\{1-\left(1-\alpha_{1}\right)^{\sigma_{1}+\sigma_{2}}: \alpha_{1} \in\left\{w_{\tilde{a}}^{i}: i \in I_{m_{1}}\right\},\left\{\beta_{1}^{\sigma_{1}+\sigma_{2}}:\right.\right.$

$$
\begin{align*}
& \left.\beta_{1} \in\left\{u_{\tilde{a}}^{j}: j \in I_{n_{1}}\right\}\right\},\left\{\lambda_{1}^{\sigma_{1}+\sigma_{2}}: \lambda_{1} \in\left\{y_{\tilde{a}}^{l}: l \in I_{k_{1}}\right\}\right\}> \\
= & <\left(\sigma_{1} a_{1}+\sigma_{2} a_{1}, \sigma_{1} b_{1}+\sigma_{2} b_{1}, \sigma_{1} c_{1}+\sigma_{2} c_{1}\right) ;\left\{1-\left(1-\alpha_{1}\right)^{\sigma_{1}}\left(1-\alpha_{1}\right)^{\sigma_{2}}: \alpha_{1} \in w_{\tilde{a}}\right\}, \\
& \left\{\beta_{1}^{\sigma_{1}} \beta_{1}^{\sigma_{2}}: \beta_{1} \in\left\{u_{\tilde{a}}^{j}: j \in I_{n_{1}}\right\}\right\},\left\{\lambda_{1}^{\sigma_{1}} \lambda_{1}^{\sigma_{2}}: \lambda_{1} \in\left\{y_{\tilde{a}}^{l}: l \in I_{k_{1}}\right\}\right\}> \tag{5}
\end{align*}
$$

And

$$
\begin{align*}
&\left(\sigma_{1} \odot^{\prime} \tilde{a}\right) \oplus^{\prime}\left(\sigma_{2} \odot^{\prime} \tilde{a}\right)=<\left(\sigma_{1} a_{1}, \sigma_{1} b_{1}, \sigma_{1} c_{1}\right) ;\left\{1-\left(1-\alpha_{1}\right)^{\sigma_{1}}: \alpha_{1} \in\left\{w_{\tilde{a}}^{i}: i \in I_{m_{1}}\right\}\right\},\left\{\beta_{1}^{\sigma_{1}}: \beta_{1} \in\left\{u_{\tilde{a}}^{j}: j \in I_{n_{1}}\right\}\right\} \\
&\left\{\lambda_{1}^{\sigma_{1}}: \lambda_{1} \in\left\{y_{\tilde{a}}^{l}: l \in I_{k_{1}}\right\}\right\}>\oplus^{\prime}<\left(\sigma_{2} a_{1}, \sigma_{2} b_{1}, \sigma_{2} c_{1}\right) ;\left\{1-\left(1-\alpha_{1}\right)^{\sigma_{2}}: \alpha_{1} \in\left\{w_{\tilde{a}}^{i}:\right.\right. \\
&\left.\left.i \in I_{m_{1}}\right\}\right\},\left\{\beta_{1}^{\sigma_{2}}: \beta_{1} \in\left\{u_{\tilde{a}}^{j}: j \in I_{n_{1}}\right\}\right\},\left\{\lambda_{1}^{\sigma_{2}}: \lambda_{1} \in\left\{y_{\tilde{a}}^{l}: l \in I_{k_{1}}\right\}\right\}> \\
&=<\left(\sigma_{1} a_{1}+\sigma_{2} a_{1}, \sigma_{1} b_{1}+\sigma_{2} b_{1}, \sigma_{1} c_{1}+\sigma_{2} c_{1}\right) ;\left\{\left(1-\left(1-\alpha_{1}\right)^{\sigma_{1}}\right)+\left(1-\left(1-\alpha_{1}\right)^{\sigma_{2}}\right)-\right. \\
&\left.\left(1-\left(1-\alpha_{1}\right)^{\sigma_{1}}\right)\left(1-\left(1-\alpha_{1}\right)^{\sigma_{2}}\right): \alpha_{1} \in\left\{w_{\tilde{a}}^{i}: i \in I_{m_{1}}\right\}\right\},\left\{\beta_{1}^{\sigma_{1}} \beta_{1}^{\sigma_{2}}: \beta_{1} \in\left\{u_{\tilde{a}}^{j}: j \in I_{n_{1}}\right\}\right\} \\
&\left\{\lambda_{1}^{\sigma_{1}} \lambda_{1}^{\sigma_{2}}: \lambda_{1} \in\left\{y_{\tilde{a}}^{l}: l \in I_{k_{1}}\right\}\right\}> \\
&=<\left(\sigma_{1} a_{1}+\sigma_{2} a_{1}, \sigma_{1} b_{1}+\sigma_{2} b_{1}, \sigma_{1} c_{1}+\sigma_{2} c_{1}\right) ;\left\{1-\left(1-\alpha_{1}\right)^{\sigma_{1}}\left(1-\alpha_{1}\right)^{\sigma_{2}}: \alpha_{1} \in w_{\tilde{a}}\right\} \\
&\left\{\beta_{1}^{\left.\sigma_{1} \beta_{1}{ }^{\sigma_{2}}: \beta_{1} \in\left\{u_{\tilde{a}}^{j}: j \in I_{n_{1}}\right\}\right\},\left\{\lambda_{1}^{\sigma_{1}} \lambda_{1}^{\sigma_{2}}: \lambda_{1} \in\left\{y_{\tilde{a}}^{l}: l \in I_{k_{1}}\right\}\right\}}\right. \tag{6}
\end{align*}
$$

Hencefrom eq. 5-6, we have $\left(\sigma_{1}+\sigma_{2}\right) \odot^{\prime} \tilde{a}=\left(\sigma_{1} \odot^{\prime} \tilde{a}\right) \oplus^{\prime}\left(\sigma_{2} \odot^{\prime} \tilde{a}\right)$.
8. Proof is similar to 7

Definition 11. Let $\tilde{a}=<\left(a_{1}, b_{1}, c_{1}\right) ;\left\{w_{\tilde{a}}^{i}: i \in I_{m_{1}}\right\},\left\{u_{\tilde{a}}^{j}: j \in I_{n_{1}}\right\},\left\{y_{\tilde{a}}^{l}: l \in I_{k_{1}}\right\}>$ and
$\tilde{b}=<\left(a_{2}, b_{2}, c_{2}\right) ;\left\{w_{\tilde{b}}^{i}: i \in I_{m_{2}}\right\},\left\{u_{\tilde{b}}^{j}: j \in I_{n_{2}}\right\},\left\{y_{\tilde{b}}^{l}: l \in I_{k_{2}}\right\}>$ be two hesitant triangular neutrosophic numbers and $\sigma>0$, then

1. $\tilde{a} \oplus^{\prime \prime} \tilde{b}=<\left(a_{1}+a_{2}, b_{1}+b_{2}, c_{1}+c_{2}\right) ;\left\{1-\frac{1}{1+\left\{\left(\frac{\alpha_{1}^{2}}{1-\alpha_{1}^{2}}\right)^{2}+\left(\frac{\alpha_{2}^{2}}{1-\alpha_{2}^{2}}\right)^{2}\right\}^{\frac{1}{2}}}: \alpha_{1} \in\left\{w_{\tilde{a}}^{i}: i \in I_{m_{1}}\right\}, \alpha_{2} \in\left\{w_{\tilde{b}}^{i}: i \in I_{m_{2}}\right\}\right.$,

$$
\begin{aligned}
& \left\{\frac{1}{\left.1+\left\{\left(\frac{1-\beta_{1}{ }^{2}}{\beta_{1}{ }^{2}}\right)^{2}+\left(\frac{1-\beta_{2}{ }^{2}}{\beta_{2}{ }^{2}}\right)^{2}\right\}^{\frac{1}{2}}: \beta_{1} \in\left\{u_{\tilde{a}}^{j}: j \in I_{n_{1}}\right\}, \beta_{2} \in\left\{u_{\tilde{b}}^{j}: j \in I_{n_{2}}\right\}\right\},}\right. \\
& \left\{\frac{1}{\left.1+\left\{\left(\frac{1-\lambda_{1}{ }^{2}}{\lambda_{1}{ }^{2}}\right)^{2}+\left(\frac{1-\lambda_{2}{ }^{2}}{\lambda_{2}{ }^{2}}\right)^{2}\right\}^{\frac{1}{2}}: \lambda_{1} \in\left\{y_{\tilde{a}}^{l}: l \in I_{k_{1}}\right\}, \lambda_{2} \in\left\{y_{\tilde{b}}^{l}: l \in I_{k_{2}}\right\}\right\}>}\right.
\end{aligned}
$$

2. $\tilde{a} \otimes^{\prime \prime} \tilde{b}=<\left(a_{1} a_{2}, b_{1} b_{2}, c_{1} c_{2}\right) ;\left\{\frac{1}{1}: \alpha_{1} \in\left\{w_{\tilde{a}}^{i}: i \in I_{m_{1}}\right\}, \alpha_{2} \in\left\{w_{\tilde{b}}^{i}: i \in I_{m_{2}}\right\}\right\}$,

$$
1+\left\{\left(\frac{1-\alpha_{1}^{2}}{\alpha_{1}^{2}}\right)^{2}+\left(\frac{1-\alpha_{2}^{2}}{\alpha_{2}^{2}}\right)^{2}\right\}^{\frac{1}{2}}
$$

$$
\left\{1-\frac{1}{1+\left\{\left(\frac{\beta_{1}^{2}}{1-\beta_{1}^{2}}\right)^{2}+\left(\frac{\beta_{2}^{2}}{1-\beta_{2}^{2}}\right)^{2}\right\}^{\frac{1}{2}}}: \beta_{1} \in\left\{u_{a}^{j}: j \in I_{n_{1}}\right\}, \beta_{2} \in\left\{u_{\stackrel{j}{j}}: j \in I_{n_{2}}\right\}\right\},
$$

$$
\left.\left\{1-\frac{1}{1+\left\{\left(\frac{\lambda_{1}^{2}}{1-\lambda_{1}^{2}}\right)^{2}+\left(\frac{\lambda_{2}^{2}}{1-\lambda_{2}^{2}}\right)^{2}\right\}^{\frac{1}{2}}}: \lambda_{1} \in\left\{y_{\tilde{a}}^{l}: l \in I_{k_{1}}\right\}, \lambda_{2} \in\left\{y_{\tilde{b}}^{l}: l \in I_{k_{2}}\right\}\right\}\right\}>
$$

3. $\sigma \odot^{\prime \prime} \tilde{a}=<\left(\sigma a_{1}, \sigma b_{1}, \sigma c_{1}\right) ;\left\{1-\frac{1}{1+\left\{\sigma\left(\frac{\alpha^{2}}{1-\alpha^{2}}\right)^{2}\right\}^{\frac{1}{2}}}: \alpha_{1} \in\left\{w_{\tilde{a}}^{i}: i \in I_{m_{1}}\right\}\right\},\left\{\frac{1}{1+\left\{\sigma\left(\frac{1-\beta^{2}}{\beta^{2}}\right)^{2}\right\}^{\frac{1}{2}}}: \beta_{1} \in\left\{u_{\tilde{a}}^{j}: j \in I_{n_{1}}\right\}\right\}$,

$$
\left\{\frac{1}{1+\left\{\sigma\left(\frac{1-\lambda^{2}}{\lambda^{2}}\right)^{2}\right\}^{\frac{1}{2}}}: \lambda_{1} \in\left\{y_{\tilde{a}}^{l}: l \in I_{k_{1}}\right\}\right\}>
$$

4. $\sigma *^{\prime \prime} \tilde{a}=<\left(a_{1}^{\sigma}, b_{1}^{\sigma}, c_{1}^{\sigma}\right) ;\left\{\frac{1}{1+\left\{\sigma\left(\frac{1-\alpha^{2}}{\alpha^{2}}\right)^{2}\right\}^{\frac{1}{2}}}: \alpha_{1} \in\left\{w_{\tilde{a}}^{i}: i \in I_{m_{1}}\right\}\right\},\left\{1-\frac{1}{1+\left\{\sigma\left(\frac{\beta^{2}}{1-\beta^{2}}\right)^{2}\right\}^{\frac{1}{2}}}: \beta_{1} \in\left\{u_{\tilde{a}}^{j}: j \in I_{n_{1}}\right\}\right\}$,

$$
\left\{1-\frac{1}{1+\left\{\sigma\left(\frac{\lambda^{2}}{1-\lambda^{2}}\right)^{2}\right\}^{\frac{1}{2}}}: \lambda_{1} \in\left\{y_{\tilde{a}}^{l}: l \in I_{k_{1}}\right\}\right\}>
$$

Theorem 12. Let $\tilde{a}=<\left(a_{1}, b_{1}, c_{1}\right) ;\left\{w_{\tilde{a}}^{i}: i \in I_{m_{1}}\right\},\left\{u_{\tilde{a}}^{j}: j \in I_{n_{1}}\right\},\left\{y_{\tilde{a}}^{l}: l \in I_{k_{1}}\right\}>$, $\tilde{b}=<\left(a_{2}, b_{2}, c_{2}\right) ;\left\{w_{\tilde{b}}^{i}: i \in I_{m_{2}}\right\},\left\{u_{\tilde{b}}^{j}: j \in I_{n_{2}}\right\},\left\{y_{\tilde{b}}^{l}: l \in I_{k_{2}}\right\}>$ and
$\tilde{c}=<\left(a_{3}, b_{3}, c_{3}\right) ;\left\{w_{\tilde{c}}^{i}: i \in I_{m_{3}}\right\},\left\{u_{\tilde{c}}^{j}: j \in I_{n_{3}}\right\},\left\{y_{\tilde{c}}^{l}: l \in I_{k_{3}}\right\}>$ be three hesitant triangular neutrosophic numbers and $\sigma, \sigma_{1}, \sigma_{2}>0$, then

1. $\tilde{a} \oplus^{\prime \prime} \tilde{b}=\tilde{b} \oplus^{\prime \prime} \tilde{a}$
2. $\tilde{a} \otimes^{\prime \prime} \tilde{b}=\tilde{b} \otimes^{\prime \prime} \tilde{a}$
3. $\tilde{a} \oplus^{\prime \prime}\left(\tilde{b} \oplus^{\prime \prime} \tilde{c}\right)=\left(\tilde{a} \oplus^{\prime \prime} \tilde{b}\right) \oplus^{\prime \prime} \tilde{c}$
4. $\tilde{a} \otimes^{\prime \prime}\left(\tilde{b} \otimes^{\prime \prime} \tilde{c}\right)=\left(\tilde{a} \otimes^{\prime \prime} \tilde{b}\right) \otimes^{\prime \prime} \tilde{c}$
5. $\sigma \odot^{\prime \prime}\left(\tilde{a} \oplus^{\prime \prime} \tilde{b}\right)=\left(\sigma \odot^{\prime \prime} \tilde{a}\right) \oplus^{\prime \prime}\left(\sigma \odot^{\prime \prime} \tilde{b}\right)$
6. $\sigma *^{\prime \prime}\left(\tilde{a} \otimes^{\prime \prime} \tilde{b}\right)=\left(\sigma *^{\prime \prime} \tilde{a}\right) \otimes^{\prime \prime}\left(\sigma *^{\prime \prime} \tilde{b}\right)$
7. $\left(\sigma_{1}+\sigma_{2}\right) \odot^{\prime \prime} \tilde{a}=\left(\sigma_{1} \odot^{\prime \prime} \tilde{a}\right) \oplus^{\prime \prime}\left(\sigma_{2} \odot^{\prime \prime} \tilde{a}\right)$
8. $\left(\sigma_{1}+\sigma_{2}\right) *^{\prime \prime} \tilde{a}=\left(\sigma_{1} *^{\prime \prime} \tilde{a}\right) \otimes^{\prime \prime}\left(\sigma_{2} *^{\prime \prime} \tilde{a}\right)$

Proof:1.-2. Straight forward.
3. $\tilde{a} \oplus^{\prime \prime}\left(\tilde{b} \oplus^{\prime \prime} \tilde{c}\right)$

$$
\begin{aligned}
= & <\left(a_{1}, b_{1}, c_{1}\right) ;\left\{w_{\tilde{a}}^{i}: i \in I_{m_{1}}\right\},\left\{u_{\tilde{a}}^{j}: j \in I_{n_{1}}\right\},\left\{y_{\tilde{a}}^{l}: l \in I_{k_{1}}\right\}>\oplus^{\prime \prime}<\left(a_{2}+a_{3}, b_{2}+b_{3}, c_{2}+c_{3}\right) ; \\
& \left\{1-\frac{\left.1+\left\{\left(\frac{\alpha_{2}^{2}}{1-\alpha_{2}^{2}}\right)^{2}+\left(\frac{\alpha_{3}^{2}}{1-\alpha_{3}^{2}}\right)^{2}\right\}^{\frac{1}{2}}: \alpha_{2} \in\left\{w_{\tilde{b}}^{i}: i \in I_{m_{2}}\right\}, \alpha_{3} \in\left\{w_{\tilde{c}}^{i}: i \in I_{m_{3}}\right\}\right\},}{}\right. \\
& \left.1+\left\{\left(\frac{1-\beta_{2}^{2}}{\beta_{2}^{2}}\right\}^{2}+\left(\frac{1-\beta_{3}^{2}}{\beta_{3}^{2}}\right)^{2}\right\}^{\frac{1}{2}}: \beta_{2} \in\left\{u_{\tilde{b}}^{j}: j \in I_{n_{2}}\right\}, \beta_{3} \in\left\{u_{\tilde{c}}^{j}: j \in I_{n_{3}}\right\}\right\},
\end{aligned}
$$

$$
\left\{\frac{1}{[\quad 2}: \lambda_{2} \in\left\{y_{\tilde{b}}^{l}: l \in I_{k_{2}}\right\}, \lambda_{3} \in\left\{y_{\tilde{c}}^{l}: l \in I_{k_{3}}\right\}\right\}>
$$

$$
1+\left\{\left(\frac{1-\lambda_{2}{ }^{2}}{\lambda_{2}{ }^{2}}\right)^{2}+\left(\frac{1-\lambda_{3}{ }^{2}}{\lambda_{3}{ }^{2}}\right)^{2}\right\}^{\frac{1}{2}}
$$

$$
=<\left(a_{1}+\left(a_{2}+a_{3}\right), b_{1}+\left(b_{2}+b_{3}\right), c_{1}+\left(c_{2}+c_{3}\right)\right) ;
$$

$$
=<\left(a_{1}+a_{2}+a_{3}, b_{1}+b_{2}+b_{3}, c_{1}+c_{2}+c_{3}\right) ;\left\{1-\frac{1}{1+\left\{\left(\frac{\alpha_{1}^{2}}{1-\alpha_{1}^{2}}\right)^{2}+\left(\frac{\alpha_{2}^{2}}{1-\alpha_{2}^{2}}\right)^{2}+\left(\frac{\alpha_{3}^{2}}{1-\alpha_{3}^{2}}\right)^{2}\right\}^{\frac{1}{2}}}:\right.
$$

$\left.\alpha_{1} \in\left\{w_{\tilde{a}}^{i}: i \in I_{m_{1}}\right\}, \alpha_{2} \in\left\{w_{\tilde{b}}^{i}: i \in I_{m_{2}}\right\}, \alpha_{3} \in\left\{w_{\tilde{c}}^{i}: i \in I_{m_{3}}\right\}\right\}$,
$\left\{\frac{1}{1+\left\{\left(\frac{1-\beta_{1}{ }^{2}}{\beta_{1}{ }^{2}}\right)^{2}+\left(\frac{1-\beta_{2}{ }^{2}}{\beta_{2}{ }^{2}}\right)^{2}+\left(\frac{1-\beta_{3}{ }^{2}}{\beta_{3}{ }^{2}}\right)^{2}\right\}^{\frac{1}{2}}}: \beta_{1} \in\left\{u_{\tilde{a}}^{j}: j \in I_{n_{1}}\right\}, \beta_{2} \in\left\{u_{\tilde{b}}^{j}: j \in I_{n_{2}}\right\}, \beta_{3} \in\left\{u_{\tilde{c}}^{j}: j \in I_{n_{3}}\right\}\right\}$,
$\left\{\frac{1}{1+\left\{\left(\frac{1-\lambda_{1}^{2}}{\lambda_{1}^{2}}\right)^{2}+\left(\frac{1-\lambda_{2}^{2}}{\lambda_{2}^{2}}\right)^{2}+\left(\frac{1-\lambda_{3}^{2}}{\lambda_{3}^{2}}\right)^{2}\right\}^{\frac{1}{2}}}: \lambda_{1} \in\left\{y_{\tilde{a}}^{l}: l \in I_{k_{1}}\right\}, \lambda_{2} \in\left\{y_{\tilde{b}}^{l}: l \in I_{k_{2}}\right\}, \lambda_{3} \in\left\{y_{\tilde{c}}^{l}: l \in I_{k_{3}}\right\}\right\}>$
$\left(\tilde{a} \oplus^{\prime \prime} \tilde{b}\right) \oplus^{\prime \prime} \tilde{c}$

$$
=<\left(a_{1}+a_{2}, b_{1}+b_{2}, c_{1}+c_{2}\right) ;\left\{1-\frac{1}{1+\left\{\left(\frac{\alpha_{1}^{2}}{1-\alpha_{1}^{2}}\right)^{2}+\left(\frac{\alpha_{2}^{2}}{1-\alpha_{2}^{2}}\right)^{2}\right\}^{\frac{1}{2}}}: \alpha_{1} \in\left\{w_{\tilde{a}}^{i}: i \in I_{m_{1}}\right\}, \alpha_{2} \in\left\{w_{\tilde{b}}^{i}: i \in I_{m_{2}}\right\}\right\},
$$

$\left\{\frac{1}{1+\left\{\left(\frac{1-\beta_{1}{ }^{2}}{\beta_{1}{ }^{2}}\right)^{2}+\left(\frac{1-\beta_{2}{ }^{2}}{\beta_{2}{ }^{2}}\right)^{2}\right\}^{\frac{1}{2}}}: \beta_{1} \in\left\{u_{\tilde{a}}^{j}: j \in I_{n_{1}}\right\}, \beta_{2} \in\left\{u_{\tilde{b}}^{j}: j \in I_{n_{2}}\right\}\right\}$,
$\left\{\frac{1}{1+\left\{\left(\frac{1-\lambda_{1}^{2}}{\lambda_{1}^{2}}\right)^{2}+\left(\frac{1-\lambda_{2}^{2}}{\lambda_{2}^{2}}\right)^{2}\right\}^{\frac{1}{2}}}: \lambda_{1} \in\left\{y_{\tilde{a}}^{l}: l \in I_{k_{1}}\right\}, \lambda_{2} \in\left\{y_{\tilde{b}}^{l}: l \in I_{k_{2}}\right\}\right\}>\oplus^{\prime \prime}<\mathbb{Z}_{3}, b_{3}, c_{3} ; \tilde{y}_{\tilde{c}}, u_{\tilde{c}}, y_{\tilde{c}}>$

$$
\begin{aligned}
& =<\left(\left(a_{1}+a_{2}\right)+a_{3},\left(b_{1}+b_{2}\right)+b_{3},\left(c_{1}+c_{2}\right)+c_{3}\right) ;
\end{aligned}
$$

$$
\begin{aligned}
& 1
\end{aligned}
$$

$$
\begin{aligned}
& \left\{-\left\{\left(\frac{1}{1-\lambda_{3}{ }^{2}}{\lambda_{3}{ }^{2}}^{2}+\left(\frac{1-\frac{1}{1+\left\{\left(\frac{1-\lambda_{1}{ }^{2}}{\lambda_{1}{ }^{2}}\right)^{2}+\left(\frac{1-\lambda_{2}{ }^{2}}{\lambda_{2}{ }^{2}}\right)^{2}\right\}^{\frac{1}{2}}}}{1+\left\{\left(\frac{1-\lambda_{1}{ }^{2}}{\lambda_{1}{ }^{2}}\right)^{2}+\left(\frac{1-\lambda_{2}{ }^{2}}{\lambda_{2}{ }^{2}}\right)^{2}\right\}^{\frac{1}{2}}}\right)^{2}\right): \lambda_{1} \in\left\{y_{\tilde{a}}^{l}: l \in I_{k_{1}}\right\}, \lambda_{2} \in\left\{y_{\tilde{b}}^{l}: l \in I_{k_{2}}\right\}, \lambda_{3} \in\left\{y_{\tilde{c}}^{l}: l \in I_{k_{3}}\right\}\right\}>\right. \\
& =<\left(a_{1}+a_{2}+a_{3}, b_{1}+b_{2}+b_{3}, c_{1}+c_{2}+c_{3}\right) ;\left\{1-\frac{1}{\left\{q^{2}\right.}: \alpha_{1} \in\left\{w_{\tilde{a}}^{i}: i \in I_{m_{1}}\right\},\right. \\
& 1+\left\{\left(\frac{\alpha_{3}^{2}}{1-\alpha_{3}^{2}}\right)^{2}+\left(\frac{\alpha_{1}^{2}}{1-\alpha_{1}^{2}}\right)^{2}+\left(\frac{\alpha_{2}^{2}}{1-\alpha_{2}^{2}}\right)^{2}\right\}^{\frac{1}{2}}
\end{aligned}
$$

$$
\left.\alpha_{2} \in\left\{w_{\tilde{b}}^{i}: i \in I_{m_{2}}\right\}, \alpha_{3} \in\left\{w_{\tilde{c}}^{i}: i \in I_{m_{3}}\right\}\right\},\left\{\frac{1}{1+\left\{\left(\frac{1-\beta_{3}{ }^{2}}{\beta_{3}{ }^{2}}\right)^{2}+\left(\frac{1-\beta_{1}{ }^{2}}{\beta_{1}{ }^{2}}\right)^{2}+\left(\frac{1-\beta_{2}{ }^{2}}{\beta_{2}{ }^{2}}\right)^{2}\right\}^{\frac{1}{2}}}:\right.
$$

$\beta_{1} \in\left\{u_{\tilde{a}}^{j}: j \in I_{n_{1}}\right\}, \beta_{2} \in\left\{u_{\tilde{b}}^{j}: j \in I_{n_{2}}\right\}, \beta_{3} \in\left\{u_{\tilde{c}}^{j}: j \in I_{n_{3}}\right\},\{$

$$
1+\left\{\left(\frac{1-\lambda_{3}{ }^{2}}{\lambda_{3}{ }^{2}}\right)^{2}+\left(\frac{1-\lambda_{1}{ }^{2}}{\lambda_{1}{ }^{2}}\right)^{2}+\left(\frac{1-\lambda_{2}{ }^{2}}{\lambda_{2}{ }^{2}}\right)^{2}\right\}^{\frac{1}{2}}:
$$

$$
\begin{equation*}
\left.\lambda_{1} \in\left\{y_{\tilde{a}}^{l}: l \in I_{k_{1}}\right\}, \lambda_{2} \in\left\{y_{\tilde{b}}^{l}: l \in I_{k_{2}}\right\}, \lambda_{3} \in\left\{y_{\tilde{c}}^{l}: l \in I_{k_{3}}\right\}\right\}> \tag{8}
\end{equation*}
$$

Hence from eq. 7-8, we have, $\tilde{a} \oplus^{\prime \prime}\left(\tilde{b} \oplus^{\prime \prime} \tilde{c}\right)=\left(\tilde{a} \oplus^{\prime \prime} \tilde{b}\right) \oplus^{\prime \prime} \tilde{c}$.
4. Proof is similar to 3 .

$$
\left.\alpha_{2} \in\left\{w_{\tilde{b}}^{i}: i \in I_{m_{2}}\right\}\right\}
$$

$$
\left\{\frac{1}{\left\{, \frac{1}{1}_{\frac{1}{2}}\right.}: \lambda_{1} \in\left\{y_{\tilde{a}}^{l}: l \in I_{k_{1}}\right\}, \lambda_{2} \in\left\{y_{\tilde{b}}^{l}: l \in I_{k_{2}}\right\}\right\}>
$$

$$
\begin{aligned}
& \text { 5. } \sigma \odot^{\prime \prime}\left(\tilde{a} \oplus^{\prime \prime} \tilde{b}\right) \\
& =\sigma \odot^{\prime \prime}<\left(a_{1}+a_{2}, b_{1}+b_{2}, c_{1}+c_{2}\right) ;\left\{1-\frac{1}{2^{\frac{1}{2}}}: \alpha_{1} \in\left\{w_{\tilde{a}}^{i}: i \in I_{m_{1}}\right\}, \alpha_{2} \in\left\{w_{\tilde{b}}^{i}: i \in I_{m_{2}}\right\}\right\}, \\
& 1+\left\{\left(\frac{\alpha_{1}^{2}}{1-\alpha_{1}^{2}}\right)^{2}+\left(\frac{\alpha_{2}^{2}}{1-\alpha_{2}^{2}}\right)^{2}\right\}^{\frac{1}{2}} \\
& \left\{-\frac{1}{1}: \beta_{1} \in\left\{u_{\tilde{a}}^{j}: j \in I_{n_{1}}\right\}, \beta_{2} \in\left\{u_{\tilde{b}}^{j}: j \in I_{n_{2}}\right\}\right\} \text {, } \\
& 1+\left\{\left(\frac{1-\beta_{1}{ }^{2}}{\beta_{1}{ }^{2}}\right)^{2}+\left(\frac{1-\beta_{2}{ }^{2}}{\beta_{2}{ }^{2}}\right)^{2}\right\}^{\frac{1}{2}} \\
& \left\{-\frac{1}{1}: \lambda_{1} \in\left\{y_{\tilde{a}}^{l}: l \in I_{k_{1}}\right\}, \lambda_{2} \in\left\{y_{\tilde{b}}^{l}: l \in I_{k_{2}}\right\}\right\}> \\
& 1+\left\{\left(\frac{1-\lambda_{1}{ }^{2}}{\lambda_{1}{ }^{2}}\right)^{2}+\left(\frac{1-\lambda_{2}{ }^{2}}{\lambda_{2}{ }^{2}}\right)^{2}\right\}^{\frac{1}{2}} \\
& =<\left(\sigma a_{1}+\sigma a_{2}, \sigma b_{1}+\sigma b_{2}, \sigma c_{1}+\sigma c_{2}\right) ;\left\{1-\frac{1}{\{(1}\right): \alpha_{1} \in\left\{w_{\tilde{a}}^{i}: i \in I_{m_{1}}\right\}, \\
& \left.1+\left\{\sigma \frac{1}{\frac{1+\left\{\left(\frac{\alpha_{1}{ }^{2}}{1-\alpha_{1}{ }^{2}}\right)^{2}+\left(\frac{\alpha_{2}{ }^{2}}{1-\alpha_{2}{ }^{2}}\right)^{2}\right\}^{\frac{1}{2}}}{1+\left\{\left(\frac{\alpha_{1}{ }^{2}}{1-\alpha_{1}{ }^{2}}\right)^{2}+\left(\frac{\alpha_{2}{ }^{2}}{1-\alpha_{2}{ }^{2}}\right)^{2}\right\}^{\frac{1}{2}}}}\right\}^{2}\right\}^{\frac{1}{2}}
\end{aligned}
$$

$$
\begin{aligned}
& =<\left(\sigma a_{1}+\sigma a_{2}, \sigma b_{1}+\sigma b_{2}, \sigma c_{1}+\sigma c_{2}\right) ;\left\{1-\frac{1}{1+\left\{\sigma\left(\left(\frac{\alpha_{1}{ }^{2}}{1-\alpha_{1}^{2}}\right)^{2}+\left(\frac{\alpha_{2}{ }^{2}}{1-\alpha_{2}^{2}}\right)^{2}\right)\right\}^{\frac{1}{2}}}: \alpha_{1} \in\left\{w_{\tilde{a}}^{i}: i \in I_{m_{1}}\right\},\right. \\
& \left.\alpha_{2} \in\left\{w_{\tilde{b}}^{i}: i \in I_{m_{2}}\right\}\right\},\{\frac{1}{\overbrace{}^{\frac{1}{2}}}: \beta_{1} \in\left\{u_{\tilde{a}}^{j}: j \in I_{n_{1}}\right\}, \beta_{2} \in\left\{u_{\tilde{b}}^{j}: j \in I_{n_{2}}\right\}\}, \\
& 1+\left\{\sigma\left(\left(\frac{1-\beta_{1}{ }^{2}}{\beta_{1}{ }^{2}}\right)^{2}+\left(\frac{1-\beta_{2}{ }^{2}}{\beta_{2}{ }^{2}}\right)^{2}\right)\right\}^{\frac{1}{2}} \\
& \left\{\frac{1}{1+\left\{\sigma\left(\left(\frac{1-\lambda_{1}{ }^{2}}{\lambda_{1}{ }^{2}}\right)^{2}+\left(\frac{1-\lambda_{2}{ }^{2}}{\lambda_{2}{ }^{2}}\right)^{2}\right)\right\}^{\frac{1}{2}}}: \lambda_{1} \in\left\{y_{\tilde{a}}^{l}: l \in I_{k_{1}}\right\}, \lambda_{2} \in\left\{y_{\tilde{b}}^{l}: l \in I_{k_{2}}\right\}\right\}>
\end{aligned}
$$

$$
\begin{aligned}
& \left.\lambda_{1} \in\left\{y_{\tilde{a}}^{l}: l \in I_{k_{1}}\right\}, \lambda_{2} \in\left\{y_{\tilde{b}}^{l}: l \in I_{k_{2}}\right\}\right\}> \\
& =<\left(\sigma a_{1}, \sigma b_{1}, \sigma c_{1}\right) ;\left\{1-\frac{1}{1+\left\{\sigma\left(\frac{\alpha_{1}^{2}}{1-\alpha_{1}^{2}}\right)^{2}\right\}^{\frac{1}{2}}}: \alpha_{1} \in\left\{w_{\tilde{a}}^{i}: i \in I_{m_{1}}\right\}\right\},\left\{\frac{1}{1+\left\{\sigma\left(\frac{1-\beta_{1}^{2}}{\beta_{1}^{2}}\right)^{2}\right\}^{\frac{1}{2}}}: \beta_{1} \in\left\{u_{\tilde{a}}^{j}: j \in I_{n_{1}}\right\}\right\},
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\frac{1}{\left.1+\left\{\sigma\left(\frac{1-\lambda_{1}^{2}}{\lambda_{1}^{2}}\right)^{2}\right\}^{\frac{1}{2}}: \lambda_{1} \in\left\{y_{\tilde{a}}^{l}: l \in I_{k_{1}}\right\}\right\}>\oplus^{\prime \prime}<\sigma a_{2}, \sigma b_{2}, \sigma c_{2} ;\left\{1-\frac{1}{1+\left\{\sigma\left(\frac{\alpha_{2}^{2}}{1-\alpha_{2}^{2}}\right)^{2}\right\}^{\frac{1}{2}}}: \alpha_{2} \in\left\{w_{\tilde{b}}^{i}: i \in I_{m_{2}}\right\}\right\},}\right. \\
& \left\{\frac{1}{1+\left\{\sigma\left(\frac{1-\beta_{2}^{2}}{\beta_{2}^{2}}\right)^{2}\right\}^{\frac{1}{2}}}: \beta_{2} \in\left\{u_{\tilde{b}}^{j}: j \in I_{n_{2}}\right\}\right\},\left\{\frac{1}{1+\left\{\left(\frac{1-\lambda_{2}^{2}}{\lambda_{2}^{2}}\right)^{2}\right\}^{\frac{1}{2}}}: \lambda_{2} \in\left\{y_{\tilde{b}}^{l}: l \in I_{k_{2}}\right\}\right\}> \\
= & \left(\sigma \odot^{\prime \prime} \tilde{a}\right) \oplus^{\prime \prime}\left(\sigma \odot^{\prime \prime} \tilde{b}\right)
\end{aligned}
$$

6. Proof is similar to 5
7. $\left(\sigma_{1}+\sigma_{2}\right) \odot^{\prime \prime} \tilde{a}$

$$
=<\left(\left(\sigma_{1}+\sigma_{2}\right) a_{1},\left(\sigma_{1}+\sigma_{2}\right) b_{1},\left(\sigma_{1}+\sigma_{2}\right) c_{1}\right) ;\left\{1-\frac{1}{1+\left\{\left(\sigma_{1}+\sigma_{2}\right)\left(\frac{\alpha_{1}^{2}}{1-\alpha_{1}^{2}}\right)^{2}\right\}^{\frac{1}{2}}}: \alpha_{1} \in\left\{w_{\tilde{a}}^{i}: i \in I_{m_{1}}\right\}\right\},
$$

$$
\left\{\frac{1}{\left.1+\left\{\left(\sigma_{1}+\sigma_{2}\right)\left(\frac{1-\beta_{1}^{2}}{\beta_{1}^{2}}\right)^{2}\right\}^{\frac{1}{2}} \beta_{1} \in\left\{u_{\tilde{a}}^{j}: j \in I_{n_{1}}\right\}\right\},\left\{\frac{1}{1+\left\{\left(\sigma_{1}+\sigma_{2}\right)\left(\frac{1-\lambda_{1}^{2}}{\lambda_{1}^{2}}\right)^{2}\right\}^{\frac{1}{2}}}: \lambda_{1} \in\left\{y_{\tilde{a}}^{l}: l \in I_{k_{1}}\right\},\right\}}\right.
$$

$$
=<\left(\left(\sigma_{1}+\sigma_{2}\right) a_{1},\left(\sigma_{1}+\sigma_{2}\right) b_{1},\left(\sigma_{1}+\sigma_{2}\right) c_{1}\right)
$$

$\left\{1-\frac{1}{1}: \alpha_{1} \in\left\{w_{\tilde{a}}^{i}: i \in I_{m_{1}}\right\}\right\}$,

$\left\{\frac{1}{1}: \beta_{1} \in\left\{u_{\tilde{a}}^{j}: j \in I_{n_{1}}\right\}\right.$,

$$
1+\left\{\left(\frac{1}{\frac{1+\left\{\sigma_{1}\left(\frac{1-\beta_{1}{ }^{2}}{\left.\beta_{1}\right)^{2}}\right\}^{\frac{1}{2}}\right.}{1+\left\{\sigma_{1}\left(\frac{1-\beta_{1}{ }^{2}}{\beta_{1}{ }^{2}}\right)^{2}\right\}^{\frac{1}{2}}}}\right)^{2}+\left(\frac{1-\frac{1}{1+\left\{\sigma_{2}\left(\frac{1-\beta_{1}{ }^{2}}{\beta_{1}}\right)^{2}\right\}^{\frac{1}{2}}}}{1+\left\{\sigma_{2}\left(\frac{1-\beta_{1}^{2}}{\beta_{1}{ }^{2}}\right)^{2}\right\}^{\frac{1}{2}}}\right)^{2}\right\}^{\frac{1}{2}}
$$

$$
=<\left(\sigma_{1} a_{1}, \sigma_{1} b_{1}, \sigma_{1} c_{1}\right) ;\left\{1-\frac{1}{1+\left\{\sigma_{1}\left(\frac{\alpha_{1}^{2}}{1-\alpha_{1}^{2}}\right)^{2}\right\}^{\frac{1}{2}}}: \alpha_{1} \in\left\{w_{\tilde{a}}^{i}: i \in I_{m_{1}}\right\}\right\},\left\{\frac{1}{1+\left\{\sigma_{1}\left(\frac{1-\beta_{1}^{2}}{\beta_{1}^{2}}\right)^{2}\right\}^{\frac{1}{2}}}: \beta_{1} \in\left\{u_{\tilde{a}}^{j}: j \in I_{n_{1}}\right\}\right\},
$$

$$
\left\{\frac{1}{1+\left\{\sigma_{1}\left(\frac{1-\lambda_{1}^{2}}{\lambda_{1}^{2}}\right)^{2}\right\}^{\frac{1}{2}}}: \lambda_{1} \in\left\{y_{\tilde{a}}^{l}: l \in I_{k_{1}}\right\}\right\}>\oplus^{\prime \prime}<\left(\sigma_{2} a_{1}, \sigma_{2} b_{1}, \sigma_{2} c_{1}\right) ;\left\{1-\frac{1}{1+\left\{\sigma_{2}\left(\frac{\alpha_{1}^{2}}{1-\alpha_{1}^{2}}\right)^{2}\right\}^{\frac{1}{2}}}:\right.
$$

$$
\left.\alpha_{1} \in\left\{w_{\tilde{a}}^{i}: i \in I_{m_{1}}\right\}\right\},\left\{\frac{1}{1+\left\{\sigma_{2}\left(\frac{1-\beta_{1}^{2}}{\beta_{1}^{2}}\right)^{2}\right\}^{\frac{1}{2}}}: \beta_{1} \in\left\{u_{\tilde{a}}^{j}: j \in I_{n_{1}}\right\}\right\},\left\{\frac{1}{1+\left\{\sigma_{2}\left(\frac{1-\lambda_{1}^{2}}{\lambda_{1}^{2}}\right)^{2}\right\}^{\frac{1}{2}}}: \lambda_{1} \in\left\{y_{\tilde{a}}^{l}: l \in I_{k_{1}}\right\}\right\}>
$$

$$
=\left(\sigma_{1} \odot^{\prime \prime} \tilde{a}\right) \oplus^{\prime \prime}\left(\sigma_{2} \odot^{\prime \prime} \tilde{a}\right)
$$

8. Proof is similar to 7 .

5. HESITANT TRIANGULAR NEUTROSOPHIC WEIGHTED AGGREGATION OPERATORS:

This section deals with various types of hesitant triangular neutrosophic weighted aggregation operators along with their basic properties.

Definition 13: Let $\tilde{a}_{j}=<\left(a_{j}, b_{j}, c_{j}\right) ;\left\{w_{\tilde{a}_{j}}^{i}: i \in I_{m_{j}}\right\},\left\{u_{\tilde{a}_{j}}^{r}: r \in I_{n_{j}}\right\},\left\{y_{\tilde{a}_{j}}^{l}: l \in I_{k_{j}}\right\}>(\mathrm{j}=1,2,3, \ldots \ldots, \mathrm{n})$ be a collection of hesitant triangular neutrosophic numbers. Then the hesitant triangular neutrosophic weighted arithmetic aggregation operator of type-1 ($H T N W A A O_{T_{1}}$ for short) is defined as:
$H T N W A A O_{T_{1}} \tilde{a}_{1}, \tilde{a}_{2}, \tilde{a}_{3}, \ldots \ldots, \tilde{a}_{n}=\left(w_{1} \odot^{\prime} \tilde{a}_{1}\right) \oplus^{\prime}\left(w_{2} \odot^{\prime} \tilde{a}_{2}\right) \oplus^{\prime}\left(w_{3} \odot^{\prime} \tilde{a}_{3}\right) \oplus^{\prime} \ldots \ldots . . \oplus^{\prime}\left(w_{n} \odot^{\prime} \tilde{a}_{n}\right)$
where w_{j} is the weight of $\tilde{a}_{j}(\mathrm{j}=1,2,3, \ldots \ldots, n)$ such that $w_{j} \geq 0$ and $\sum_{j=1}^{n} w_{j}=1$.
Theorem 14: Let $\tilde{a}_{j}=<\left(a_{j}, b_{j}, c_{j}\right) ;\left\{w_{\tilde{a}_{j}}^{i}: i \in I_{m_{j}}\right\},\left\{u_{\tilde{a}_{j}}^{r}: r \in I_{n_{j}}\right\},\left\{y_{\tilde{a}_{j}}^{l}: l \in I_{k_{j}}\right\}>(\mathrm{j}=1,2,3, \ldots \ldots$, n) be a collection of hesitant triangularneutrosophic numbers. Then $H T N W A A O_{T_{1}} \tilde{a}_{1}, \tilde{a}_{2}, \tilde{a}_{3}, \ldots \ldots, \tilde{a}_{n}$ is a hesitant triangular neutrosophic number and

$$
\begin{aligned}
& \operatorname{HTNWAA} O_{T_{1}}\left(\tilde{a}_{1}, \tilde{a}_{2}, \tilde{a}_{3}, \ldots \ldots, \tilde{a}_{n}\right)=<\left(\sum_{j=1}^{n} w_{j} a_{j}, \sum_{j=1}^{n} w_{j} b_{j}, \sum_{j=1}^{n} w_{j} c_{j}\right),\left\{1-\prod_{j=1}^{n}\left(1-\alpha_{j k}\right)^{w_{j}}:\right. \\
& \left.\quad \alpha_{j} \in\left\{w_{\tilde{a}_{j}}^{i}: i \in I_{m_{j}}\right\}\right\},\left\{\prod_{j=1}^{n} \beta_{j m}{ }^{w_{j}}: \beta_{j} \in\left\{u_{\tilde{a}_{j}}^{r}: r \in I_{n_{j}}\right\}\right\},\left\{\prod_{j=1}^{n} \lambda_{j r}{ }^{w_{j}}: \lambda_{j} \in\left\{y_{\tilde{a}_{j}}^{l}: l \in I_{k_{j}}\right\}\right\}>
\end{aligned}
$$

where w_{j} is the weight of $\tilde{a}_{j}(\mathrm{j}=1,2,3, \ldots \ldots, \mathrm{n})$ such that $w_{j} \geq 0$ and $\sum_{j=1}^{n} w_{j}=1$.
Proof: Let us prove the result using the method of mathematical induction. For $\mathrm{n}=2$, HTNWAO $O_{T_{1}}\left(\tilde{a}_{1}, \tilde{a}_{2}\right)$
$=\left(w_{1} \odot^{\prime} \tilde{a}_{1}\right) \oplus^{\prime}\left(w_{2} \odot^{\prime} \tilde{a}_{2}\right)$
$=<\left(w_{1} a_{1}, w_{1} b_{1}, w_{1} c_{1}\right) ;\left\{1-\left(1-\alpha_{1}\right)^{w_{1}}: \alpha_{1} \in\left\{w_{\tilde{a}_{1}}^{i}: i \in I_{m_{1}}\right\}\right\},\left\{\beta_{1}^{w_{1}}: \beta_{1} \in\left\{u_{\tilde{a}_{1}}^{r}: r \in I_{n_{1}}\right\}\right\}$,
$\left\{\lambda_{1}^{w_{1}}: \lambda_{1} \in\left\{y_{\tilde{a}_{1}}^{l}: l \in I_{k_{1}}\right\}\right\}>\oplus^{\prime}<\left(w_{2} a_{2}, w_{2} b_{2}, w_{2} c_{2}\right) ;\left\{1-\left(1-\alpha_{2}\right)^{w_{2}}: \alpha_{2} \in\left\{w_{\tilde{a}_{2}}^{i}: i \in I_{m_{2}}\right\}\right\}$,
$\left\{\beta_{2}^{w_{2}}: \beta_{2} \in\left\{u_{\tilde{a}_{2}}^{r}: j \in I_{n_{2}}\right\}\right\},\left\{\lambda_{2}^{w_{2}}: \lambda_{2} \in\left\{y_{\tilde{a}_{2}}^{l}: l \in I_{k_{2}}\right\}\right\}>$
$=<\left(w_{1} a_{1}+w_{2} a_{2}, w_{1} b_{1}+w_{2} b_{2}, w_{1} c_{1}+w_{2} c_{2}\right) ;\left(1-\left(1-\alpha_{1}\right)^{w_{1}}\right)+\left(1-\left(1-\alpha_{2}\right)^{w_{2}}\right)-$
$\left\{\left(1-\left(1-\alpha_{1}\right)^{w_{1}}\right) \times\left(1-\left(1-\alpha_{2}\right)^{w_{2}}\right): \alpha_{1} \in\left\{w_{\tilde{a}_{1}}^{i}: i \in I_{m_{1}}\right\}, \alpha_{2} \in\left\{w_{\tilde{a}_{2}}^{i}: i \in I_{m_{2}}\right\}\right\},\left\{\beta_{1}^{w_{1}} \beta_{2}^{w_{2}}:\right.$
$\left.\beta_{1} \in\left\{u_{\tilde{a}_{1}}^{r}: r \in I_{n_{1}}\right\}, \beta_{2} \in\left\{u_{\tilde{a}_{2}}^{r}: j \in I_{n_{2}}\right\}\right\},\left\{\lambda_{1}^{w_{1}} \lambda_{2}^{w_{2}}: \lambda_{1} \in\left\{y_{\tilde{a}_{1}}^{l}: l \in I_{k_{1}}\right\}, \lambda_{2} \in\left\{y_{\tilde{a}_{2}}^{l}: l \in I_{k_{2}}\right\}\right\}>$
$=<\left(w_{1} a_{1}+w_{2} a_{2}, w_{1} b_{1}+w_{2} b_{2}, w_{1} c_{1}+w_{2} c_{2}\right) ;\left\{1-\left(1-\alpha_{1}\right)^{w_{1}}\left(1-\alpha_{2}\right)^{w_{2}}: \alpha_{1} \in\left\{w_{\tilde{a}_{1}}^{i}: i \in I_{m_{1}}\right\}\right.$,

$$
\left.\alpha_{2} \in\left\{w_{\tilde{a}_{2}}^{i}: i \in I_{m_{2}}\right\}\right\},\left\{\beta_{1}^{w_{1}} \beta_{2}^{w_{2}}: \beta_{1} \in\left\{u_{\tilde{a}_{1}}^{r}: r \in I_{n_{1}}\right\}, \beta_{2} \in\left\{u_{\tilde{a}_{2}}^{r}: j \in I_{n_{2}}\right\}\right\},\left\{\lambda_{1}^{w_{1}} \lambda_{2}^{w_{2}}:\right.
$$

$$
\left.\lambda_{1} \in\left\{y_{\tilde{a}_{1}}^{l}: l \in I_{k_{1}}\right\}, \lambda_{2} \in\left\{y_{\tilde{a}_{2}}^{l}: l \in I_{k_{2}}\right\}\right\}>
$$

$$
=<\left(\sum_{j=1}^{2} w_{j} a_{j}, \sum_{j=1}^{2} w_{j} b_{j}, \sum_{j=1}^{2} w_{j} c_{j}\right) ;\left\{1-\prod_{j=1}^{2}\left(1-\alpha_{j}\right)^{w_{j}}: \alpha_{j} \in\left\{w_{\tilde{a}_{j}}^{i}: i \in I_{m_{j}}\right\}\right\},\left\{\prod_{j=1}^{2} \beta_{j}^{w_{j}}: \beta_{j} \in\left\{u_{\tilde{a}_{j}}^{r}: r \in I_{n_{j}}\right\}\right\}
$$

$$
\left\{\prod_{j=1}^{2} \lambda_{j}^{w_{j}}: \lambda_{j} \in\left\{y_{\tilde{a}_{j}}^{l}: l \in I_{k_{j}}\right\}\right\}>
$$

Thus the result is true for $\mathrm{n}=2$. Let us assume that the result is true for $\mathrm{n}=\mathrm{s}$. Then $\operatorname{HTNWAO} O_{T_{1}}\left(\tilde{a}_{1}, \tilde{a}_{2}, \tilde{a}_{3}, \ldots \ldots, \tilde{a}_{s}\right)$

$$
\begin{aligned}
= & <\left(\sum_{j=1}^{s} w_{j} a_{j}, \sum_{j=1}^{s} w_{j} b_{j}, \sum_{j=1}^{s} w_{j} c_{j}\right) ;\left\{1-\prod_{j=1}^{s}\left(1-\alpha_{j}\right)^{w_{j}}: \alpha_{j} \in\left\{w_{\tilde{a}_{j}}^{i}: i \in I_{m_{j}}\right\}\right\},\left\{\prod_{j=1}^{s} \beta_{j}^{w_{j}}: \beta_{j} \in\left\{u_{\tilde{a}_{j}}^{r}: r \in I_{n_{j}}\right\}\right\} \\
& \left\{\prod_{j=1}^{s} \lambda_{j}^{w_{j}}: \lambda_{j} \in\left\{y_{\tilde{a}_{j}}^{l}: l \in I_{k_{j}}\right\}\right\}>
\end{aligned}
$$

Now for $\mathrm{n}=\mathrm{s}+1$, we have, $\operatorname{HTNWAO} O_{T_{1}}\left(\tilde{a}_{1}, \tilde{a}_{2}, \tilde{a}_{3}, \ldots \ldots ., \tilde{a}_{s+1}\right)$

$$
\begin{aligned}
= & <\left(\sum_{j=1}^{s} w_{j} a_{j}, \sum_{j=1}^{s} w_{j} b_{j}, \sum_{j=1}^{s} w_{j} c_{j}\right) ;\left\{1-\prod_{j=1}^{s}\left(1-\alpha_{j}\right)^{w_{j}}: \alpha_{j} \in\left\{w_{\tilde{a}_{j}}^{i}: i \in I_{m_{j}}\right\}\right\}, \prod_{j=1}^{s} \beta_{j}^{w_{j}}:\left\{\beta_{j} \in\left\{u_{\tilde{a}_{j}}^{r}: r \in I_{n_{j}}\right\}\right\}, \\
& \left\{\prod_{j=1}^{s} \lambda_{j}^{w_{j}}: \lambda_{j} \in\left\{y_{\tilde{a}_{j}}^{l}: l \in I_{k_{j}}\right\}\right\}>\oplus^{\prime}\left(w_{s+1} \odot \tilde{a}_{s+1}\right) \\
= & \left.<\left(\sum_{j=1}^{s} w_{j} a_{j}, \sum_{j=1}^{s} w_{j} b_{j}, \sum_{j=1}^{s} w_{j} c_{j}\right),\left\{1-\prod_{j=1}^{s}\left(1-\alpha_{j}\right)^{w_{j}}: \alpha_{j} \in\left\{w_{\tilde{a}_{j}}^{i}: i \in I_{m_{j}}\right\}\right\}, \prod_{j=1}^{s} \beta_{j}^{w_{j}}: \beta_{j} \in\left\{u_{\tilde{a}_{j}}^{r}: r \in I_{n_{j}}\right\}\right\}, \\
& \left\{\left\{\prod_{j=1}^{s} \lambda_{j}^{w_{j}}: \lambda_{j} \in\left\{y_{\tilde{a}_{j}}^{l}: l \in I_{k_{j}}\right\}\right\}>\oplus^{\prime}<\left(w_{s+1} a_{s+1}, w_{s+1} b_{s+1}, w_{s+1} c_{s+1}\right)\right) 1-\left(1-\alpha_{(s+1)}\right)^{w_{s+1}}: \\
& \left.\alpha_{s+1} \in\left\{w_{\tilde{a}_{s+1}}^{i}: i \in I_{m_{s+1}}\right\}\right\}\left\{\beta_{s+1}^{w_{s+1}}: \beta_{s+1} \in\left\{u_{\tilde{a}_{s+1}^{r}}^{r}: r \in I_{n_{s+1}}\right\}\right\},\left\{\lambda_{s+1}^{w_{s+1}}: \lambda_{s+1} \in\left\{y_{\tilde{a}_{s+1}}^{l}: l \in I_{k_{s+1}}\right\}\right\}> \\
= & <\left(\sum_{j=1}^{s} w_{j} a_{j}+w_{s+1} a_{s+1}, \sum_{j=1}^{s} w_{j} b_{j}+w_{s+1} b_{s+1}, \sum_{j=1}^{s} w_{j} c_{j}+w_{s+1} c_{s+1}\right) ; \\
& \left\{\left(1-\prod_{j=1}^{s}\left(1-\alpha_{j}\right)^{w_{j}}\right)+\left(1-\left(1-\alpha_{(s+1)}\right)^{w_{s+1}}\right)-\left(1-\prod_{j=1}^{s}\left(1-\alpha_{j}\right)^{w_{j}}\right) \times\left(1-\left(1-\alpha_{(s+1)}\right)^{w_{s+1}}\right): \alpha_{j} \in\left\{w_{\tilde{a}_{j}}^{i}: i \in I_{m_{j}}\right\},\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.\alpha_{s+1} \in\left\{w_{\tilde{a}_{s+1}}^{i}: i \in I_{m_{s+1}}\right\}\right\},\left\{\left(\prod_{j=1}^{s} \beta_{j}^{w_{j}}\right) \beta_{s+1}^{w_{s+1}}: \beta_{j} \in\left\{u_{\tilde{a}_{j}}^{r}: r \in I_{n_{j}}\right\}, \beta_{s+1} \in\left\{u_{\tilde{a}_{s+1}^{r}}^{r}: r \in I_{n_{s+1}}\right\}\right\}, \\
& \left\{\left(\prod_{j=1}^{s} \lambda_{j}^{w}\right) \lambda_{s+1}^{w_{s+1}}: \lambda_{j} \in\left\{y_{\tilde{a}_{j}}^{l}: l \in I_{k_{j}}\right\}, \lambda_{s+1} \in\left\{y_{\tilde{a}_{s+1}}^{l}: l \in I_{k_{s+1}}\right\}\right\}> \\
= & <\left(\sum_{j=1}^{s} w_{j} a_{j}+w_{s+1} a_{s+1}, \sum_{j=1}^{s} w_{j} b_{j}+w_{s+1} b_{s+1}, \sum_{j=1}^{s} w_{j} c_{j}+w_{s+1} c_{s+1}\right) ;\left\{1-\left(\left(\prod_{j=1}^{s}\left(1-\alpha_{j}\right)^{w_{j}}\right) \alpha_{s+1}^{w_{s+1}}\right): \alpha_{j} \in\left\{w_{\tilde{a}_{j}}^{i}: i \in I_{m_{j}}\right\},\right. \\
& \left.\alpha_{s+1} \in\left\{w_{\tilde{a}_{s+1}}^{i}: i \in I_{m_{s+1}}\right\}\right\},\left\{\left(\prod_{j=1}^{s} \beta_{j}^{w_{j}}\right) \beta_{s+1}^{w_{s+1}}: \beta_{j} \in\left\{u_{\tilde{a}_{j}}^{r}: r \in I_{n_{j}}\right\}, \beta_{s+1} \in\left\{u_{\tilde{a}_{s+1}^{r}}^{r}: r \in I_{n_{s+1}}\right\}\right\}, \\
& \left\{\left(\prod_{j=1}^{s} \lambda_{j}{ }^{w}\right) \lambda_{s+1}^{w_{s+1}}: \lambda_{j} \in\left\{y_{\tilde{a}_{j}}^{l}: l \in I_{k_{j}}\right\}, \lambda_{s+1} \in\left\{y_{\tilde{u}_{s+1}}^{l}: l \in I_{k_{s+1}}\right\}\right\}> \\
= & <\left(\sum_{j=1}^{s+1} w_{j} a_{j}, \sum_{j=1}^{s+1} w_{j} b_{j}, \sum_{j=1}^{s+1} w_{j} c_{j}\right),\left\{1-\prod_{j=1}^{s+1}\left(1-\alpha_{j}\right)^{w_{j}}: \alpha_{j} \in\left\{w_{\tilde{a}_{j}}^{i}: i \in I_{m_{j}}\right\}\right\},\left\{\prod_{j=1}^{s+1} \beta_{j}^{w_{j}}: \beta_{j} \in\left\{u_{\tilde{a}_{j}}^{r}: r \in I_{n_{j}}\right\}\right\}, \\
& \left\{\prod_{j=1}^{s+1} \lambda_{j}^{w_{j}}: \lambda_{j} \in\left\{y_{\tilde{a}_{j}}^{l}: l \in I_{k_{j}}\right\}\right\}>
\end{aligned}
$$

Thus the result is true for $n=s+1$ also. Hence by the principle of mathematical induction, the result is true for any natural number n.

Theorem 15: Let $\tilde{a}_{j}=<\left(a_{j}, b_{j}, c_{j}\right) ;\left\{w_{\tilde{a}_{j}}^{i}: i \in I_{m_{j}}\right\},\left\{u_{\tilde{a}_{j}}^{r}: r \in I_{n_{j}}\right\},\left\{y_{\tilde{a}_{j}}^{l}: l \in I_{k_{j}}\right\}>(\mathrm{j}=1,2,3, \ldots \ldots, n)$ be a collection of hesitant triangular neutrosophic numbers. Then for any hesitant triangular neutrosophic number $\tilde{\theta}$, we have,
(i) HTNWAAO $T_{T_{1}} \tilde{\theta} \oplus^{\prime} \tilde{a}_{1}, \tilde{\theta} \oplus^{\prime} \tilde{a}_{2}, \tilde{\theta} \oplus^{\prime} \tilde{a}_{3}, \ldots \ldots, \tilde{\theta} \oplus^{\prime} \tilde{a}_{n}=\tilde{\theta} \oplus^{\prime} H T N W A A O_{T_{1}} \quad \tilde{a}_{1}, \tilde{a}_{2}, \tilde{a}_{3}, \ldots \ldots, \tilde{a}_{n}$
(ii) $\operatorname{HTNWAA} O_{T_{1}} \quad \tilde{a}_{1}, \tilde{a}_{2}, \tilde{a}_{3}, \ldots \ldots, \tilde{a}_{n}=\tilde{\theta}$ if $\tilde{a}_{j}=\tilde{\theta}$ for each j

Proof: Straight Forward.
Definition 16: Let $\tilde{a}_{j}=<\left(a_{j}, b_{j}, c_{j}\right) ;\left\{w_{\tilde{a}_{j}}^{i}: i \in I_{m_{j}}\right\},\left\{u_{\tilde{a}_{j}}^{r}: r \in I_{n_{j}}\right\},\left\{y_{\tilde{a}_{j}}^{l}: l \in I_{k_{j}}\right\}>(\mathrm{j}=1,2,3, \ldots \ldots, \mathrm{n})$ be a collection of hesitant triangular neutrosophic numbers. Then the hesitant triangular neutrosophic weighted geometric aggregation operator of type-1 ($H T N W G A O_{T_{1}}$ for short) is defined as:
$\operatorname{HTNWGAO} O_{T_{1}}\left(\tilde{a}_{1}, \tilde{a}_{2}, \tilde{a}_{3}, \ldots \ldots, \tilde{a}_{n}\right)=\left(w_{1} *^{\prime} \tilde{a}_{1}\right) \otimes^{\prime}\left(w_{2} *^{\prime} \tilde{a}_{2}\right) \otimes^{\prime}\left(w_{3} *^{\prime} \tilde{a}_{3}\right) \otimes^{\prime} \ldots \ldots . \otimes^{\prime}\left(w_{n} *^{\prime} \tilde{a}_{n}\right)$
where w_{j} is the weight of $\tilde{a}_{j}(\mathrm{j}=1,2,3, \ldots \ldots, \mathrm{n})$ such that $w_{j} \geq 0$ and $\sum_{j=1}^{n} w_{j}=1$.
Theorem 17: Let $\tilde{a}_{j}=<\left(a_{j}, b_{j}, c_{j}\right) ;\left\{w_{\tilde{a}_{j}}^{i}: i \in I_{m_{j}}\right\},\left\{u_{\tilde{a}_{j}}^{r}: r \in I_{n_{j}}\right\},\left\{y_{\tilde{a}_{j}}^{l}: l \in I_{k_{j}}\right\}>(\mathrm{j}=1,2,3, \ldots \ldots, \mathrm{n})$ be a collection of hesitant triangularneutrosophic numbers. Then $\operatorname{HTNWGA} O_{T_{1}}\left(\tilde{a}_{1}, \tilde{a}_{2}, \tilde{a}_{3}, \ldots \ldots, \tilde{a}_{n}\right)$ is a hesitant triangular neutrosophic number and $\operatorname{HTNWGAO} O_{T_{1}}\left(\tilde{a}_{1}, \tilde{a}_{2}, \tilde{a}_{3}, \ldots \ldots ., \tilde{a}_{n}\right)$

$$
\begin{aligned}
= & \left.<\left(\prod_{j=1}^{n} a_{j}^{w_{j}}, \prod_{j=1}^{n} b_{j}^{w_{j}}, \prod_{j=1}^{n} c_{j}^{w_{j}}\right) ; \prod_{j=1}^{n} \alpha_{j}^{w_{j}}: \alpha_{j} \in\left\{w_{\tilde{u}_{j}}^{i}: i \in I_{m_{j}}\right\}\right\},\left\{1-\prod_{j=1}^{n}\left(1-\beta_{j}\right)^{w_{j}}: \beta_{j} \in\left\{u_{\tilde{a}_{j}}^{r}: r \in I_{n_{j}}\right\}\right\}, \\
& \left\{1-\prod_{j=1}^{n}\left(1-\lambda_{j}\right)^{w_{j}}: \lambda_{j} \in\left\{y_{\tilde{a}_{j}}^{l}: l \in I_{k_{j}}\right\}\right\}>
\end{aligned}
$$

where w_{j} is the weight of $\tilde{a}_{j}(\mathrm{j}=1,2,3, \ldots \ldots, \mathrm{n})$ such that $w_{j} \geq 0$ and $\sum_{j=1}^{n} w_{j}=1$.
Proof: Similar to the proof of Theorem 14.
Theorem 18: Let $\tilde{a}_{j}=<\left(a_{j}, b_{j}, c_{j}\right) ;\left\{w_{\tilde{a}_{j}}^{i}: i \in I_{m_{j}}\right\},\left\{u_{\tilde{a}_{j}}^{r}: r \in I_{n_{j}}\right\},\left\{y_{\tilde{a}_{j}}^{l}: l \in I_{k_{j}}\right\}>(\mathrm{j}=1,2,3, \ldots \ldots, n)$ be a collection of hesitant triangular neutrosophic numbers. Then for any hesitant triangular neutrosophic number $\tilde{\theta}$, we have,
(i) HTNWGAO $O_{T_{1}} \tilde{\theta} \oplus^{\prime} \tilde{a}_{1}, \tilde{\theta} \oplus^{\prime} \tilde{a}_{2}, \tilde{\theta} \oplus^{\prime} \tilde{a}_{3}, \ldots \ldots, \tilde{\theta} \oplus^{\prime} \tilde{a}_{n}=\tilde{\theta} \oplus^{\prime} H T N W G A O_{T_{1}} \quad \tilde{a}_{1}, \tilde{a}_{2}, \tilde{a}_{3}, \ldots \ldots, \tilde{a}_{n}$
(ii) $H T N W G A O_{T_{1}} \quad \tilde{a}_{1}, \tilde{a}_{2}, \tilde{a}_{3}, \ldots \ldots ., \tilde{a}_{n}=\tilde{\theta}$ if $\tilde{a}_{j}=\tilde{\theta}$ for each j

Proof: Straight forward .
Definition 19: Let $\tilde{a}_{j}=<\left(a_{j}, b_{j}, c_{j}\right) ;\left\{w_{\tilde{a}_{j}}^{i}: i \in I_{m_{j}}\right\},\left\{u_{\tilde{a}_{j}}^{r}: r \in I_{n_{j}}\right\},\left\{y_{\tilde{a}_{j}}^{l}: l \in I_{k_{j}}\right\}>(\mathrm{j}=1,2,3, \ldots \ldots, n)$ be a collection of hesitant triangular neutrosophic numbers. Then the hesitant triangular neutrosophic weighted arithmetic aggregation operator of type-2 is denoted by $\operatorname{HTNWAA} O_{T_{2}}\left(\tilde{a}_{1}, \tilde{a}_{2}, \tilde{a}_{3}, \ldots \ldots ., \tilde{a}_{n}\right)$ and is defined by:
$H T N W A A O_{T_{2}}\left(\tilde{a}_{1}, \tilde{a}_{2}, \tilde{a}_{3}, \ldots \ldots, \tilde{a}_{n}\right)=\left(w_{1} \odot^{\prime \prime} \tilde{a}_{1}\right) \oplus^{\prime \prime}\left(w_{2} \odot^{\prime \prime} \tilde{a}_{2}\right) \oplus^{\prime \prime}\left(w_{3} \odot^{\prime \prime} \tilde{a}_{3}\right) \oplus^{\prime \prime} \ldots \ldots . . \oplus^{\prime \prime}\left(w_{n} \odot^{\prime \prime} \tilde{a}_{n}\right)$
where w_{j} is the weight of $\tilde{a}_{j}(\mathrm{j}=1,2,3, \ldots \ldots, \mathrm{n})$ such that $w_{j} \geq 0$ and $\sum_{j=1}^{n} w_{j}=1$.
Theorem 20: Let $\tilde{a}_{j}=<\left(a_{j}, b_{j}, c_{j}\right) ;\left\{w_{\tilde{a}_{j}}^{i}: i \in I_{m_{j}}\right\},\left\{u_{\tilde{a}_{j}}^{r}: r \in I_{n_{j}}\right\},\left\{y_{\tilde{a}_{j}}^{l}: l \in I_{k_{j}}\right\}>(\mathrm{j}=1,2,3, \ldots \ldots$, n) be a collection of hesitant triangular neutrosophic numbers. Then $\operatorname{HTNWAAO} O_{T_{2}}\left(\tilde{a}_{1}, \tilde{a}_{2}, \tilde{a}_{3}, \ldots \ldots, \tilde{a}_{n}\right)$ is a hesitant triangular neutrosophic number and $\operatorname{HTNWAAO}{T_{2}}\left(\tilde{a}_{1}, \tilde{a}_{2}, \tilde{a}_{3}, \ldots \ldots, \tilde{a}_{n}\right)$

$$
\begin{aligned}
& =<\left(\sum_{j=1}^{n} w_{j} a_{j}, \sum_{j=1}^{n} w_{j} b_{j}, \sum_{j=1}^{n} w_{j} c_{j}\right),\left\{1-\frac{1}{1+\left\{\sum_{j=1}^{n} w_{j}\left(\frac{\alpha_{j}^{2}}{1-\alpha_{j}^{2}}\right)^{2}\right\}^{\frac{1}{2}}}: \alpha_{j} \in\left\{w_{\tilde{a}_{j}}^{i}: i \in I_{m_{j}}\right\}\right\},\left\{\frac{1}{1+\left\{\sum_{j=1}^{n} w_{j}\left(\frac{1-\beta_{j}^{2}}{\beta_{j}^{2}}\right)^{2}\right\}^{\frac{1}{2}}}:\right. \\
& \left.\beta_{j} \in\left\{u_{\tilde{a}_{j}}^{r}: r \in I_{n_{j}}\right\}\right\},\left\{\frac{1}{1+\left\{\sum_{j=1}^{n} w_{j}\left(\frac{1-\lambda_{j}^{2}}{\lambda_{j}^{2}}\right)^{2}\right\}^{\frac{1}{2}}}: \lambda_{j} \in\left\{y_{\tilde{a}_{j}}^{l}: l \in I_{k_{j}}\right\}\right\}>
\end{aligned}
$$

where w_{j} is the weight of $\tilde{a}_{j}(\mathrm{j}=1,2,3, \ldots \ldots, \mathrm{n})$ such that $w_{j} \geq 0$ and $\sum_{j=1}^{n} w_{j}=1$.
Proof:For n=2, we have,
HTNWAAO $O_{T_{2}}\left(\tilde{a}_{1}, \tilde{a}_{2}\right)$

$$
\begin{aligned}
= & \left(w_{1} \odot^{\prime \prime} \tilde{a}_{1}\right) \oplus^{\prime \prime}\left(w_{2} \odot^{\prime \prime} \tilde{a}_{2}\right) \\
= & <\left(w_{1} a_{1}, w_{1} b_{1}, w_{1} c_{1}\right) ;\left\{1-\frac{1}{1+\left\{w_{1}\left(\frac{\alpha_{1}^{2}}{1-\alpha_{1}^{2}}\right)^{2}\right\}^{\frac{1}{2}}}: \alpha_{1} \in\left\{w_{\tilde{a}_{1}}^{i}: i \in I_{m_{1}}\right\}\right\}, \frac{1}{1+\left\{w_{1}\left(\frac{1-\beta_{1}^{2}}{\beta_{1}^{2}}\right)^{2}\right\}^{\frac{1}{2}}:\left\{\beta_{1} \in\left\{u_{\tilde{a}_{1}}^{r}: r \in I_{n_{1}}\right\},\right.} \\
& \left\{\frac{1}{1+\left\{w_{1}\left(\frac{1-\lambda_{1}^{2}}{\lambda_{1}^{2}}\right)^{2}\right\}^{\frac{1}{2}}}: \lambda_{1} \in\left\{y_{\tilde{a}_{1}}^{l}: l \in I_{k_{1}}\right\}\right\}>\oplus^{\prime \prime}<\left(w_{2} a_{2}, w_{2} b_{2}, w_{2} c_{2}\right) ;\left\{1-\frac{1}{1+\left\{w_{2}\left(\frac{\alpha_{2}^{2}}{1-\alpha_{2}^{2}}\right)^{2}\right\}^{\frac{1}{2}}}:\right. \\
& \left\{\alpha_{2} \in\left\{w_{\tilde{a}_{2}}^{i}: i \in I_{m_{2}}\right\}\right\},\left\{-\frac{1}{1+\left\{w_{2}\left(\frac{1-\beta_{2}^{2}}{\beta_{2}^{2}}\right)^{2}\right\}^{\frac{1}{2}}}: \beta_{2} \in u_{\tilde{a}_{2}}\right\},\left\{\frac{1}{\left.1+\left\{w_{2}\left(\frac{1-\lambda_{2}^{2}}{\lambda_{2}^{2}}\right)^{2}\right\}^{\frac{1}{2}}: \lambda_{2} \in\left\{y_{\tilde{a}_{2}}^{l}: l \in I_{k_{2}}\right\}\right\}>}\right.
\end{aligned}
$$

$$
\begin{aligned}
& =<\left(w_{1} a_{1}+w_{2} a_{2}, w_{1} b_{1}+w_{2} b_{2}, w_{1} c_{1}+w_{2} c_{2}\right) ; \\
& \left\{1-\frac{1}{\}^{2}}: \alpha_{1} \in\left\{w_{\tilde{a}_{1}}^{i}: i \in I_{m_{1}}\right\}, \alpha_{2} \in\left\{w_{\tilde{a}_{2}}^{i}: i \in I_{m_{2}}\right\},\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.\left\{\frac{1}{1+\left\{\left(\frac{1}{1+\left\{w_{1}\left(\frac{1-\beta_{1}^{2}}{\beta_{1}^{2}}\right)^{2}\right\}^{\frac{1}{2}}}\right.\right.} \frac{1}{1+\left\{w_{1}\left(\frac{1-\beta_{1 m}^{2}}{\beta_{1 m}^{2}}\right)^{2}\right\}^{\frac{1}{2}}}\right)^{2}+\frac{1-\frac{1}{1+\left\{w_{2}\left(\frac{1-\beta_{2}^{2}}{\beta_{2}^{2}}\right)^{2}\right\}^{\frac{1}{2}}}}{1+\left\{w_{2}\left(\frac{1-\beta_{2 m}^{2}}{\beta_{2 m}^{2}}\right)^{2}\right\}^{\frac{1}{2}}}\right]^{2}\right]^{\frac{1}{2}}: \beta_{1} \in\left\{u_{\tilde{a}_{1}}^{r}: r \in I_{n_{1}}\right\}, \beta_{2} \in\left\{u_{\tilde{a}_{2}}^{r}: j \in I_{n_{2}}\right\},, \\
& \left\{-\frac{1}{\frac{1}{1}^{\frac{1}{2}}}: \lambda_{1} \in\left\{y_{\tilde{a}_{1}}^{l}: l \in I_{k_{1}}\right\}, \lambda_{2} \in\left\{y_{\tilde{a}_{2}}^{l}: l \in I_{k_{2}}\right\}\right\}> \\
& \left.1+\left\{\frac{1+\frac{1}{1+\left\{w_{1}\left(\frac{1-\lambda_{1}^{2}}{\lambda_{1}^{2}}\right)^{2}\right\}^{\frac{1}{2}}}}{1+\left\{w_{1}\left(\frac{1-\lambda_{1}^{2}}{\lambda_{1}^{2}}\right)^{2}\right\}^{\frac{1}{2}}}\right)^{2}+\left(\frac{1-\frac{1}{1+\left\{w_{2}\left(\frac{1-\lambda_{2}^{2}}{\lambda_{2}^{2}}\right)^{2}\right\}^{\frac{1}{2}}}}{1+\left\{w_{2}\left(\frac{1-\lambda_{2}^{2}}{\lambda_{2}^{2}}\right)^{2}\right\}^{\frac{1}{2}}}\right)^{2}\right\}^{\frac{1}{2}} \\
& =<\left(w_{1} a_{1}+w_{2} a_{2}, w_{1} b_{1}+w_{2} b_{2}, w_{1} c_{1}+w_{2} c_{2}\right) ;\left\{1-\frac{1}{1+\left\{w_{1}\left(\frac{\alpha_{1}^{2}}{1-\alpha_{1}^{2}}\right)^{2}+w_{2}\left(\frac{\alpha_{2}^{2}}{1-\alpha_{2}^{2}}\right)^{2}\right\}^{\frac{1}{2}}}: \alpha_{1} \in\left\{w_{\tilde{a}_{1}}^{i}: i \in I_{m_{1}}\right\},\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\frac{1}{2}: \lambda_{1} \in\left\{y_{\tilde{a}_{1}}^{l}: l \in I_{k_{1}}\right\}, \lambda_{2} \in\left\{y_{\tilde{a}_{2}}^{l}: l \in I_{k_{2}}\right\}\right\}> \\
& 1+\left\{w_{1}\left(\frac{1-\lambda_{1}^{2}}{\lambda_{1}^{2}}\right)^{2}+w_{2}\left(\frac{1-\lambda_{2}^{2}}{\lambda_{2}^{2}}\right)^{2}\right\}^{\frac{1}{2}} \\
& =<\left(\sum_{j=1}^{2} w_{j} a_{j}, \sum_{j=1}^{2} w_{j} b_{j}, \sum_{j=1}^{2} w_{j} c_{j}\right) ;\left\{1-\frac{1}{1+\left\{\sum_{j=1}^{2} w_{j}\left(\frac{\alpha_{j}^{2}}{1-\alpha_{j}^{2}}\right)^{2}\right\}^{\frac{1}{2}}}: \alpha_{j} \in\left\{w_{\tilde{a}_{j}}^{i}: i \in I_{m_{j}}\right\}\right\},\left\{\frac{1}{1+\left\{\sum_{j=1}^{2} w_{j}\left(\frac{1-\beta_{j}^{2}}{\beta_{j}^{2}}\right)^{2}\right\}^{\frac{1}{2}}}:\right.
\end{aligned}
$$

$$
\left.\beta_{j} \in\left\{u_{\tilde{a}_{j}}^{r}: r \in I_{n_{j}}\right\}\right\},\left\{\frac{1}{1+\left\{\sum_{j=1}^{2} w_{j}\left(\frac{1-\lambda_{j}^{2}}{\lambda_{j}^{2}}\right)^{2}\right\}^{\frac{1}{2}}}: \lambda_{j} \in\left\{y_{\tilde{a}_{j}}^{l}: l \in I_{k_{j}}\right\}\right\}>
$$

Thus the result is true for $n=2$. Let us assume that the result is true for $n=s$.
Then we have, HTNWAAO $O_{T_{2}}\left(\tilde{a}_{1}, \tilde{a}_{2}, \tilde{a}_{3}, \ldots . . ., \tilde{a}_{s}\right)$

$$
\begin{aligned}
=<\left(\sum_{j=1}^{s} w_{j} a_{j}, \sum_{j=1}^{s} w_{j} b_{j}, \sum_{j=1}^{s} w_{j} c_{j}\right),\left\{1-\frac{1}{1+\left\{\sum_{j=1}^{s} w_{j}\left(\frac{\alpha_{j}^{2}}{1-\alpha_{j}^{2}}\right)^{2}\right\}^{\frac{1}{2}}}: \alpha_{j} \in\left\{w_{\tilde{a}_{j}}^{i}: i \in I_{m_{j}}\right\},\left\{\frac{1}{1+\left\{\sum_{j=1}^{s} w_{j}\left(\frac{1-\beta_{j}^{2}}{\beta_{j}^{2}}\right)^{2}\right\}^{\frac{1}{2}}}:\right.\right. \\
\left.\beta_{j} \in\left\{u_{\tilde{a}_{j}}^{r}: r \in I_{n_{j}}\right\}\right\},\left\{\frac{1}{1+\left\{\sum_{j=1}^{s} w_{j}\left(\frac{1-\lambda_{j}^{2}}{\lambda_{j}^{2}}\right)^{2}\right\}^{\frac{1}{2}}}: \lambda_{j} \in\left\{y_{\tilde{a}_{j}}^{l}: l \in I_{k_{j}}\right\}\right\}>
\end{aligned}
$$

Now for $n=s+1$, we have, $\operatorname{HTNWA} O_{T_{2}}\left(\tilde{a}_{1}, \tilde{a}_{2}, \tilde{a}_{3}, \ldots \ldots ., \tilde{a}_{s+1}\right)$

$$
\begin{aligned}
= & <\left(\sum_{j=1}^{s} w_{j} a_{j}, \sum_{j=1}^{s} w_{j} b_{j}, \sum_{j=1}^{s} w_{j} c_{j}\right) ;\left\{1-\frac{1}{\left.1+\left\{\sum_{j=1}^{s} w_{j}\left(\frac{\alpha_{j}^{2}}{1-\alpha_{j}^{2}}\right\}^{2}\right\}^{\frac{1}{2}}: \alpha_{j} \in\left\{w_{\tilde{a}_{j}}^{i}: i \in I_{m_{j}}\right\}\right\},}\right. \\
& \left\{\frac{1}{\left.1+\left\{\sum_{j=1}^{s} w_{j}\left(\frac{1-\beta_{j}^{2}}{\beta_{j}^{2}}\right)^{2}\right\}^{\frac{1}{2}}: \beta_{j} \in\left\{u_{\tilde{a}_{j}}^{r}: r \in I_{n_{j}}\right\}\right\},\left\{\frac{1}{1+\left\{\sum_{j=1}^{s} w_{j}\left(\frac{1-\lambda_{j}^{2}}{\lambda_{j}^{2}}\right)^{2}\right\}^{\frac{1}{2}}}: \lambda_{j} \in\left\{y_{a_{j}}^{l}: l \in I_{k_{j}}\right\}\right\}>}\right. \\
& \left.\oplus^{\prime \prime}<\mathbb{C}_{s+1} a_{s+1}, w_{s+1} b_{s+1}, w_{s+1} c_{s+1} ; 1-\frac{1}{1+\left\{w_{s+1}\left(\frac{\alpha_{(s+1)}^{2}}{1-\alpha_{(s+1)}^{2}}\right)^{2}\right\}^{\frac{1}{2}}}: \alpha_{s+1} \in\left\{w_{\tilde{a}_{s+1}}^{i}: i \in I_{m_{s+1}}\right\}\right\},
\end{aligned}
$$

$$
\left\{\frac{1}{1+\left\{w_{s+1}\left(\frac{1-\beta_{(s+1)}^{2}}{\beta_{(s+1)}^{2}}\right)^{2}\right\}^{\frac{1}{2}}}: \beta_{s+1} \in\left\{u_{\tilde{a}_{s+1}}^{r}: r \in I_{n_{s+1}}\right\}\right\},\left\{\frac{1}{1+\left\{w_{s+1}\left(\frac{1-\lambda_{(s+1)}^{2}}{\lambda_{(s+1)}^{2}}\right)^{2}\right\}^{\frac{1}{2}}}: \lambda_{s+1} \in\left\{y_{\tilde{a}_{s+1}}^{l}: l \in I_{k_{s+1}}\right\}\right\}>
$$

$$
=<\left(w_{1} a_{1}+w_{2} a_{2}, w_{1} b_{1}+w_{2} b_{2}, w_{1} c_{1}+w_{2} c_{2}\right),
$$

$$
\left\{1-\frac{1}{\}^{2}}: \alpha_{j} \in\left\{w_{\tilde{a}_{j}}^{i}: i \in I_{m_{j}}\right\}, \alpha_{s+1} \in\left\{w_{\tilde{a}_{s+1}}^{i}: i \in I_{m_{s+1}}\right\}\right\},
$$

$$
1+\left\{\frac{1}{1-1+\frac{\left.1-\frac{1}{j \sum_{j=1}^{s} w_{j}\left(\frac{\alpha_{j k}^{2}}{1-\alpha_{j}^{2}}\right]^{2}} \frac{1}{1+\left\{\sum_{j=1}^{s} w_{j}\left(\frac{\alpha_{j}^{2}}{1-\alpha_{j}^{2}}\right)^{2}\right.}\right\}^{\frac{1}{2}}}{1+\left\{w_{s+1}\left(\frac{\alpha_{(s+1)}^{2}}{1-\alpha_{(s+1)}^{2}}\right)^{2}\right\}^{\frac{1}{2}}}}\right)^{2}+\left(\frac{1-\frac{1}{1+\left\{w_{s+1}\left(\frac{\alpha_{(s+1)}^{2}}{1-\alpha_{(s+1)}^{2}}\right)^{2}\right\}^{\frac{1}{2}}}}{\}^{\frac{1}{2}}}\right\}^{\frac{1}{2}}
$$

$\left.\left.l \in I_{k_{s+1}}\right\}\right\}>$

$$
=<\left(\sum_{j=1}^{s+1} w_{j} a_{j}, \sum_{j=1}^{s+1} w_{j} b_{j}, \sum_{j=1}^{s+1} w_{j} c_{j}\right),\left\{1-\frac{1}{1+\left\{\sum_{j=1}^{s} w_{j}\left(\frac{\alpha_{j}^{2}}{1-\alpha_{j}^{2}}\right)^{2}+w_{s+1}\left(\frac{\alpha_{(s+1)}^{2}}{1-\alpha_{(s+1)}^{2}}\right)^{2}\right\}^{\frac{1}{2}}}:\right.
$$

$$
\left.\alpha_{j} \in\left\{w_{\tilde{a}_{j}}^{i}: i \in I_{m_{j}}\right\}, \alpha_{s+1} \in\left\{w_{\tilde{u}_{s+1}}^{i}: i \in I_{m_{s+1}}\right\}\right\},
$$

$$
\left\{\frac{1}{1}: \lambda_{j} \in\left\{y_{\tilde{a}_{j}}^{l}: l \in I_{k_{j}}\right\}, \lambda_{s+1} \in\left\{y_{\tilde{a}_{s+1}}^{l}: l \in I_{k_{s+1}}\right\}\right\}>
$$

$$
1+\left\{\sum_{j=1}^{s} w_{j}\left(\frac{1-\lambda_{j}^{2}}{\lambda_{j}^{2}}\right)^{2}+w_{s+1}\left(\frac{1-\lambda_{(s+1)}^{2}}{\lambda_{(s+1)}^{2}}\right)^{2}\right\}^{\frac{1}{2}}
$$

$$
=<\left(\sum_{j=1}^{s+1} w_{j} a_{j}, \sum_{j=1}^{s+1} w_{j} b_{j}, \sum_{j=1}^{s+1} w_{j} c_{j}\right) ;\left\{1-\frac{1}{1+\left\{\sum_{j=1}^{s+1} w_{j}\left(\frac{\alpha_{j}^{2}}{1-\alpha_{j}^{2}}\right)^{2}\right\}^{\frac{1}{2}}}: \alpha_{j} \in\left\{w_{\tilde{a}_{j}}^{i}: i \in I_{m_{j}}\right\}, \alpha_{s+1} \in\left\{w_{\tilde{a}_{s+1}}^{i}: i \in I_{m_{s+1}}\right\}\right\},
$$

$$
\left\{\frac{1}{1+\left\{\sum_{j=1}^{s+1} w_{j}\left(\frac{1-\beta_{j}^{2}}{\beta_{j}^{2}}\right)^{2}\right\}^{\frac{1}{2}}}: \beta_{j} \in\left\{u_{\tilde{u}_{j}}^{r}: r \in I_{n_{j}}\right\}, \beta_{s+1} \in\left\{u_{\tilde{a}_{s+1}^{r}}^{r}: r \in I_{n_{s+1}}\right\}\right\},\left\{\frac{1}{1+\left\{\sum_{j=1}^{s+1} w_{j}\left(\frac{1-\lambda_{j}^{2}}{\lambda_{j}^{2}}\right)^{2}\right\}^{\frac{1}{2}}}:\right.
$$

$$
\left.\lambda_{j} \in\left\{y_{\tilde{a}_{j}}^{l}: l \in I_{k_{j}}\right\}, \lambda_{s+1} \in\left\{y_{\tilde{a}_{s+1}}^{l}: l \in I_{k_{s+1}}\right\}\right\}>
$$

Thus the result is true for $n=s+1$ also. Hence by the principle of mathematical induction, the result is true for any natural number n.

Theorem 21: Let $\tilde{a}_{j}=<\left(a_{j}, b_{j}, c_{j}\right) ;\left\{w_{\tilde{a}_{j}}^{i}: i \in I_{m_{j}}\right\},\left\{u_{\tilde{a}_{j}}^{r}: r \in I_{n_{j}}\right\},\left\{y_{\tilde{a}_{j}}^{l}: l \in I_{k_{j}}\right\}>(\mathrm{j}=1,2,3, \ldots \ldots, n)$ be a collection of hesitant triangular neutrosophic numbers. Then for any hesitant triangular neutrosophic number $\tilde{\theta}$, we have,
(i) $H T N W A A O_{T_{2}} \tilde{\theta} \oplus^{\prime \prime} \tilde{a}_{1}, \tilde{\theta} \oplus^{\prime \prime} \tilde{a}_{2}, \tilde{\theta} \oplus^{\prime \prime} \tilde{a}_{3}, \ldots \ldots, \tilde{\theta} \oplus^{\prime \prime} \tilde{a}_{n}=\tilde{\theta} \oplus^{\prime \prime} H T N W A A O_{T_{2}} \quad \tilde{a}_{1}, \tilde{a}_{2}, \tilde{a}_{3}, \ldots \ldots, \tilde{a}_{n}$
(ii) $H T N W A A O_{T_{2}} \quad \tilde{a}_{1}, \tilde{a}_{2}, \tilde{a}_{3}, \ldots \ldots, \tilde{a}_{n}=\tilde{\theta}$ if $\tilde{a}_{j}=\tilde{\theta}$ for each j

Proof: Straight forward .
Definition 22: Let $\tilde{a}_{j}=<\left(a_{j}, b_{j}, c_{j}\right) ;\left\{w_{\tilde{a}_{j}}^{i}: i \in I_{m_{j}}\right\},\left\{u_{\tilde{a}_{j}}^{r}: r \in I_{n_{j}}\right\},\left\{y_{\tilde{a}_{j}}^{l}: l \in I_{k_{j}}\right\}>(\mathrm{j}=1,2,3, \ldots \ldots, \mathrm{n})$ be a collection of hesitant triangular neutrosophic numbers. Then the hesitant triangular neutrosophicweighted geometric aggregation operator of type-2 is denoted by $H T N W G A O_{T_{2}}\left(\tilde{a}_{1}, \tilde{a}_{2}, \tilde{a}_{3}, \ldots . . ., \tilde{a}_{n}\right)$ and is defined by:
$H T N W G A O_{T_{2}}\left(\tilde{a}_{1}, \tilde{a}_{2}, \tilde{a}_{3}, \ldots \ldots, \tilde{a}_{n}\right)=\left(w_{1} *^{\prime \prime} \tilde{a}_{1}\right) \otimes^{\prime \prime}\left(w_{2} *^{\prime \prime} \tilde{a}_{2}\right) \otimes^{\prime \prime}\left(w_{3} *^{\prime \prime} \tilde{a}_{3}\right) \otimes^{\prime \prime} \ldots \ldots . . \otimes^{\prime \prime}\left(w_{n} *^{\prime \prime} \tilde{a}_{n}\right)$
where w_{j} is the weight of $\tilde{a}_{j}(\mathrm{j}=1,2,3, \ldots \ldots, n)$ such that $w_{j} \geq 0$ and $\sum_{j=1}^{n} w_{j}=1$.
Theorem 23: Let $\tilde{a}_{j}=<\left(a_{j}, b_{j}, c_{j}\right) ;\left\{w_{\tilde{a}_{j}}^{i}: i \in I_{m_{j}}\right\},\left\{u_{\tilde{a}_{j}}^{r}: r \in I_{n_{j}}\right\},\left\{y_{\tilde{a}_{j}}^{l}: l \in I_{k_{j}}\right\}>(\mathrm{j}=1,2,3, \ldots \ldots$, n) be a collection of hesitant triangular neutrosophic numbers. Then $H T N W G A O_{T_{2}}\left(\tilde{a}_{1}, \tilde{a}_{2}, \tilde{a}_{3}, \ldots \ldots, \tilde{a}_{n}\right)$ is a hesitant triangular neutrosophic number and
HTNWGAO $T_{T_{2}}\left(\tilde{a}_{1}, \tilde{a}_{2}, \tilde{a}_{3}, \ldots \ldots, \tilde{a}_{n}\right)$

$$
=<\left(\prod_{j=1}^{n} a_{j}{ }^{w_{j}}, \prod_{j=1}^{n} b_{j}^{w_{j}}, \prod_{j=1}^{n} c_{j}^{w_{j}}\right) ;\left\{\frac{1}{1+\left\{\sum_{j=1}^{n} w_{j}\left(\frac{1-\alpha_{j}^{2}}{\alpha_{j}^{2}}\right)^{2}\right\}^{\frac{1}{2}}}: \alpha_{j} \in\left\{w_{\tilde{a}_{j}}^{i}: i \in I_{m_{j}}\right\}\right\},\left\{1-\frac{1}{1+\left\{\sum_{j=1}^{n} w_{j}\left(\frac{\beta_{j}^{2}}{1-\beta_{j}^{2}}\right)^{2}\right\}^{\frac{1}{2}}}:\right.
$$

$$
\left.\beta_{j} \in\left\{u_{\tilde{a}_{j}}^{r}: r \in I_{n_{j}}\right\}\right\},\left\{1-\frac{1}{1+\left\{\sum_{j=1}^{n} w_{j}\left(\frac{\lambda_{j}^{2}}{1-\lambda_{j}^{2}}\right)^{2}\right\}^{\frac{1}{2}}}: \lambda_{j} \in\left\{y_{\tilde{a}_{j}}^{l}: l \in I_{k_{j}}\right\}>\right.
$$

where w_{j} is the weight of $\tilde{a}_{j}(\mathrm{j}=1,2,3, \ldots \ldots, \mathrm{n})$ such that $w_{j} \geq 0$ and $\sum_{j=1}^{n} w_{j}=1$.
Proof: Similar to the proof of Theorem 20.
Theorem 24: Let $\tilde{a}_{j}=<\left(a_{j}, b_{j}, c_{j}\right) ;\left\{w_{\tilde{a}_{j}}^{i}: i \in I_{m_{j}}\right\},\left\{u_{\tilde{a}_{j}}^{r}: r \in I_{n_{j}}\right\},\left\{y_{\tilde{a}_{j}}^{l}: l \in I_{k_{j}}\right\}>(\mathrm{j}=1,2,3, \ldots \ldots, n)$ be a collection of hesitant triangular neutrosophic numbers. Then for any hesitant triangular neutrosophic number $\tilde{\theta}$, we have,
(i) $H T N W G A O_{T_{2}} \tilde{\theta} \otimes^{\prime \prime} \tilde{a}_{1}, \tilde{\theta} \otimes^{\prime \prime} \tilde{a}_{2}, \tilde{\theta} \otimes^{\prime \prime} \tilde{a}_{3}, \ldots \ldots, \tilde{\theta} \otimes^{\prime \prime} \tilde{a}_{n}=\tilde{\theta} \otimes^{\prime \prime} H T N W G A O_{T_{2}} \quad \tilde{a}_{1}, \tilde{a}_{2}, \tilde{a}_{3}, \ldots \ldots ., \tilde{a}_{n}$
(ii) $H T N W G A O_{T_{2}} \quad \tilde{a}_{1}, \tilde{a}_{2}, \tilde{a}_{3}, \ldots \ldots ., \tilde{a}_{n}=\tilde{\theta}$ if $\tilde{a}_{j}=\tilde{\theta}$ for each j

Proof: Straight forward .
Definition 25: Let $\tilde{a}=<\left(a_{1}, b_{1}, c_{1}\right) ;\left\{w_{\tilde{a}}^{i}: i \in I_{m}\right\},\left\{u_{\tilde{a}}^{j}: j \in I_{n}\right\},\left\{y_{\tilde{a}}^{l}: l \in I_{k}\right\}>$ be a hesitant triangular neutrosophic number. Then the score of \tilde{a} is defined by:

$$
S(\tilde{a})=\frac{1}{3 \times \max \left\{a_{1}, b_{1}, c_{1}\right\}}\left(a_{1}+b_{1}+c_{1}\right) \times\left[2+\frac{1}{m} \sum_{j=1}^{m} \alpha_{j}-\frac{1}{n} \sum_{j=1}^{n} \beta_{j}-\frac{1}{k} \sum_{j=1}^{k} \lambda_{j}\right]
$$

Where $\alpha_{j} \in\left\{w_{\tilde{a}_{j}}^{i}: i \in I_{m_{j}}\right\}, \beta_{j} \in\left\{u_{\tilde{a}_{j}}^{r}: r \in I_{n_{j}}\right\}, \lambda_{j} \in\left\{y_{\tilde{a}_{j}}^{l}: l \in I_{k_{j}}\right\}$
If $\tilde{a}_{j}=<\left(a_{j}, b_{j}, c_{j}\right) ;\left\{w_{\tilde{a}_{j}}^{i}: i \in I_{m_{j}}\right\},\left\{u_{\tilde{a}_{j}}^{r}: r \in I_{n_{j}}\right\},\left\{y_{\tilde{a}_{j}}^{l}: l \in I_{k_{j}}\right\}>(j=1,2)$ be two hesitant triangular neutrosophic numbers, then, the comparison method is given as;
I. If $S\left(\tilde{a}_{1}\right)>S\left(\tilde{a}_{2}\right)$ then $\quad \tilde{a}_{1} \succ \tilde{a}_{2}$
II. If $S\left(\tilde{a}_{1}\right)=S\left(\tilde{a}_{2}\right)$ then $\tilde{a}_{1}=\tilde{a}_{2}$

5. APPLICATION OF HESITANT TRAPEZOIDAL NEUTROSOPHIC NUMBERS:

In this section, we apply the weighted aggregation operators and the score function of hesitant triangular neutrosophic numbers to the multi-attribute decision-making problem with hesitant triangular neutrosophic information.

Let $X=\left\{A_{1}, A_{2}, A_{3}, \ldots ., A_{m}\right\}$ be a set of alternatives, $A=\left\{c_{1}, c_{2}, c_{3}, \ldots ., c_{n}\right\}$ be a set of attributes and $w=\left\{w_{1}, w_{2}, w_{3}, \ldots . ., w_{n}\right\}$ be a set of weights $\left(w_{j}\right.$ is the weight of attribute $c_{j}(\mathrm{j}=1,2,3, \ldots \ldots, \mathrm{n})$ such that $w_{j} \geq 0$ and $\sum_{j=1}^{n} w_{j}=1$.) In this case, the characteristic of the alternative $A_{i}(i=1,2, \ldots, m)$ on attribute $c_{j}(j=1,2, \ldots, n)$ is represented by the following form of a hesitant triangular neutrosophic number:
$A_{i j}=<\left(a_{i j}, b_{i j}, c_{i j}\right) ;\left\{w_{\tilde{a}_{i j}}^{p}: p \in I_{m_{i j}}\right\},\left\{u_{\tilde{i}_{i j}}^{r}: r \in I_{n_{i j}}\right\},\left\{y_{\tilde{a}_{i j}}^{l}: l \in I_{k_{i j}}\right\}>$.
Now, we construct a multi-attribute decision making method by the following algorithm:

- ALGORITHM:

Step-1: Express the evaluation results of the expert based on the alternative $A_{i}(i=1,2, \ldots, m)$ on attribute $c_{j}(1,2, \ldots, n)$ in terms of hesitant triangular neutrosophic numbers $x_{i j}$ as a $m \times n$ Table.
Step-2: Compute the aggregation values $g_{i}^{T_{k}^{A}}(i=1,2, \ldots, m)(k=1,2)$ or $g_{i}^{T_{k}^{G}}(i=1,2, \ldots, m)(k=1,2)$ of $A_{i}(i=1,2, \ldots, m)$ as;

$$
\begin{gathered}
g_{i}^{T_{k}^{A}}=H T N W A A O_{T_{k}}\left(A_{i 1}, A_{i 2}, \ldots, A_{i n}\right)(i=1,2, \ldots, m)(k=1,2) \\
\text { or } \\
g_{i}^{T_{k}^{G}}=H T N W G A O_{T_{k}}\left(A_{i 1}, A_{i 2}, \ldots, A_{i n}\right)(i=1,2, \ldots, m)(k=1,2)
\end{gathered}
$$

Step-3: Calculate the score values of $g_{i}^{T_{k}^{A}}(i=1,2, \ldots, m)(k=1,2)$ or $g_{i}^{T_{k}^{G}}(i=1,2, \ldots, m)(k=1,2)$ of $A_{i}(i=1,2, \ldots, m)$ based on Definition 25.
Step-4: Rank the alternatives by using definition 25.

Example 22:

Let us consider a decision making problem adapted from Wei et al. (2017). Suppose an organisation plans to implement enterprise resource planning (ERP) system. The first step is to form a project team that consists of CIO and two senior representatives from user departments. By collecting all possible information about ERP vendors and systems, project team chooses five potential ERP systems $A_{i}(i=1,2,3,4,5)$ as candidates. The company employs some external professional organizations (or experts) to aid this decision making. The project team selects four attributes to evaluate the alternatives: function and technology c_{1}, strategic fitness c_{2}, vendor's ability c_{3} and vendor's reputation c_{4}. The five possible ERP systems $A_{i}(i=1,2,3,4,5)$ are to be evaluate during the hesitant triangular neutrosophic numbers by the decision makers under the above four attributes whose weighting vector is $w=(0.3,0.3,0.2,0.2)$.

Step-1: We express the initial evaluation results of the expertforfivepossiblealternativesbased on fourattributesbythe form of hesitant triangular neutrosophic numbers, as shownin Table 1.

Table 1:The evaluation result by the expert is shown in the below table

	c_{1}	c_{2}	c_{3}	c_{4}
A_{1}	$\begin{aligned} & <(0.3,0.4,0.2) ; \\ & \{0.5,0.6\},\{0.1,0.3\},\{0.4, \\ & 0.7\}> \end{aligned}$	$\begin{aligned} & <(0.1,0.5,0.6) ;\{0.3\},\{0.4, \\ & 0.5\},\{0.3,0.6\}> \end{aligned}$	$\begin{aligned} & <(0.5,0.6,0.7) ;\{0.2,0.4\} \\ & ,\{0.5\},\{0.3,0.4\}> \end{aligned}$	$\begin{aligned} & <(0.4,0.6,0.7) ;\{0.8\},\{0.6, \\ & 0.7\},\{0.1,0.2\}> \end{aligned}$
A_{2}	$\begin{aligned} & \langle(0.2,0.3,0.4) ;\{0.2\}, \\ & \{0.5,0.7\},\{0.4\}> \end{aligned}$	$\begin{aligned} & <(0.4,0.6,0.6) ;\{0.7,0.9\},\{ \\ & 0.2\},\{0.5,0.7\}> \end{aligned}$	$\begin{aligned} & <(0.5,0.7,0.9) ;\{0.1,0.2\} \\ & =\{0.6,0.8\},\{0.5,0.6\}> \end{aligned}$	$\begin{aligned} & \langle(0.2,0.3,0.5) ;\{0.6\},\{0.4, \\ & 0.5\},\{0.2,0.4\}> \end{aligned}$
A_{3}	$\begin{aligned} & \langle(0.6,0.6,0.7) ; 0.1,0.4\},\{0 \\ & .6,0.8\},\{0.4,0.5,0.7\}\rangle \end{aligned}$	$\begin{aligned} & \langle(0.3,0.4,0.4) ;\{0.6, \\ & 0.7\},\{0.5\},\{0.5,0.8\}> \end{aligned}$	$\begin{aligned} & \langle(0.1,0.2,0.3) ;\{0.2,0.3\} \\ & ,\{0.4,0.6\},\{0.5,0.6\}> \end{aligned}$	$\begin{aligned} & \langle(0.5,0.5,0.6) ;\{0.3,0.5\}, \\ & \{0.3,0.5\},\{0.2\}> \end{aligned}$
A_{4}	$\begin{aligned} & <(0.1,0.3,0.3) ;\{0.7\}, \\ & \{0.6,0.9\},\{0.4\} \end{aligned}$	$\begin{aligned} & \langle(0.5,0.5,0.5) ;\{0.1,0.2\},\{ \\ & 0.4,0.7\},\{0.2,0.5\}> \end{aligned}$	$\begin{aligned} & \langle(0.4,0.5,0.6) ;\{0.2,0.6\} \\ & ,\{0.2,0.4\},\{0.3,0.4\}> \end{aligned}$	$\begin{aligned} & \langle(0.1,0.1,0.2) ;\{0.3,0.5\}, \\ & \{0.7,0.8\},\{0.1,0.2\}\rangle \end{aligned}$
A_{5}	$\begin{aligned} & \langle(0.5,0.6,0.6) ;\{0.3,0.6\}, \\ & \{0.4,0.5\},\{0.2,0.4\}> \end{aligned}$	$\begin{aligned} & <(0.2,0.3,0.3) ; \\ & \{0.3,0.5\},\{0.4,0.5\},\{0.4, \\ & 0.6\}> \end{aligned}$	$\begin{aligned} & \langle(0.7,0.8,0.8) ;\{0.5,0.7\} \\ & ;\{0.3,0.6\},\{0.1,0.3\}> \end{aligned}$	$\begin{aligned} & \langle(0.2,0.3,0.5) ; \\ & \{0.4,0.5\},\{0.2,0.3\},\{0.6, \\ & 0.7,0.8\}> \end{aligned}$

Step-2:We compute the aggregationvalues $g_{i}^{T_{1}^{A}}(i=1,2, \ldots, 5)$ of $A_{i}(i=1,2, \ldots, 5)$ as;
$g_{1}^{T_{1}^{A}}=H T N W A A O_{T_{1}}\left(A_{11}, A_{12}, A_{13}, A_{14}\right)$
$=<(0.30,0.51,0.52) ;\{0.494124,0.522409,0.526880,0.553333\},\{0.299254,0.308624,0.319973,0.329992,0.416080$, $0.429108,0.444888,0.458818\},\{0.262529,0.301566,0.278077,0.319426,0.323211,0.371272$, $0.342353,0.393260,0.310519,0.356693,0.328909,0.377818,0.382294,0.439141,0.412567,0.465148\}>$
$g_{2}^{T_{1}^{A}}=H T N W A A O_{T_{1}}\left(A_{21}, A_{22}, A_{23}, A_{24}\right)$
$=<(0.32,0.47,0.58) ;\{0.468719,0.481089,0.617891,0.626787\},\{0.376740,0.393934,0.399052,0.417264,0.416754$, $\{0.389321,0.447212,0.403779,0.435774,0.441436,0.461583\}, 0.463821,0.430672,0.494712,0.446666,0.513085\}>$
$g_{3}^{T_{1}^{A}}=H T N W A A O_{T_{1}}\left(A_{31}, A_{32}, A_{33}, A_{34}\right)$
$=<(0.39,0.44,0.51) ;\{0.419636,0.457406,0.434930,0.471704,0.467623,0.502270,0.481653,0.515387,0.344568$, $0.387223,0.361840,0.403371,0.398762,0.437891,0.414606,0.452704\},\{0.456007,0.505058,0.494527$, $0.547722,0.497111,0.550583,0.539102,0.597092\},\{0.389321,0.448274,0.479310,0.460489$, $0.416275,0.530219,0.403779,0.464922,0.497111,0.477590,0.431735,0.549910\}>$
$g_{4}^{T_{4}^{A}}=H T N W A A O_{T_{1}}\left(A_{41}, A_{42}, A_{43}, A_{44}\right)$
$=<(0.39,0.44,0.51) ;\{0.398762,0.437891,0.476592,0.510656,0.419636,0.457406,0.494764,0.527644\},\{0.439833$, $0.451737,0.505235,0.518910,0.520235,0.534315,0.597593,0.613767,0.496724,0.510168,0.570586,0.586030,0.587525$, $0.603427,0.674889,0.693156\},\{0.232461,0.267027,0.282842,0.246228,0.306007,0.351510,0.372328,0.324130\}>$
$g_{5}^{T_{1}^{A}}=H T N W A A O_{T_{1}}\left(A_{51}, A_{52}, A_{53}, A_{54}\right)$
$=<(0.39,0.49,0.53) ;\{0.365425,0.388147,0.427055,0.447570,0.426353,0.446894$,
$0.482066,0.500612,0.463497,0.482708,0.515603,0.532948,0.515010,0.532376,0.562112,0.577792\},\{0.328749$, $0.356519,0.377634,0.409533,0.351510,0.381202,0.403779,0.437887,0.375847,0.407595,0.431735,0.468204\}$, $\{0.267027,0.275388,0.282842,0.332644,0.343059,0.352345,0.301566,0.311008,0.319426,0.375670,0.387433$, $0.397920,0.328749,0.339042,0.348219,0.409533,0.422356,0.433787,0.371272,0.382897,0.393260,0.462505$, $0.476986,0.489897\}>$

Step-3: Wecalculate the score values of $g_{i}^{T_{k}^{A}}(i=1,2, \ldots, 5) \quad$ of $A_{i}(i=1,2, \ldots, 5)$ as

$$
\begin{aligned}
S\left(A_{1}\right)= & \frac{(0.30+0.51+0.52)}{3 \times 0.52} \times\left[2+\frac{1}{4}(0.494124+0.522409+0.526880+0.553333)\right. \\
& -\frac{1}{8}(0.299254+0.308624+0.319973+0.329992+0.416080+0.429108+0.444888+0.458818) \\
& -\frac{1}{16}(0.262529+0.301566+0.278077+0.319426+0.323211+0.371272+0.342353+0.393260 \\
& +0.310519+0.356693+0.328909+0.377818+0.382294+0.439141+0.412567+0.465148) \\
= & \frac{1.33}{1.56} \times[2+0.524186-0.375842-0.354048] \\
= & 1.5297
\end{aligned}
$$

Similarly, we have; $S\left(A_{2}\right)=1.3244, S\left(A_{3}\right)=1.2687, S\left(A_{4}\right)=1.4110, S\left(A_{5}\right)=1.5235$.

Step-4: Since $S\left(A_{1}\right)>S\left(A_{5}\right)>S\left(A_{4}\right)>S\left(A_{2}\right)>S\left(A_{3}\right)$, So $A_{1} \succ A_{5} \succ A_{4} \succ A_{2} \succ A_{3}$.

Thus we conclude that A_{1} is the best (most desirable) ERP system. On the other hand, if we apply the other proposed weighted aggregation operators such as $\operatorname{HTNWGA} O_{T_{1}}, H T N W A A O_{T_{2}}, H T N W G A O_{T_{2}}$ for computing the best alternative(s), then step 2 of the proposed approach has been executed for each weighted aggregation operators and hence their corresponding hesitant triangular neutrosophic number has been constructed. Finally, based on these, the score values of the aggregated hesitant triangular neutrosophic numbers are computed and ranking has been done which are summarized in table-2. We can conclude from table-2 that although the ranking orders of the alternatives are slightly different; the best (most desirable) alternative is still A_{1} in all cases.

Table-2: Ranking order of alternatives

Weighted aggregation operators	Ranking	Best alternative
$H T N W A A O_{I_{1}}$	$A_{1} \succ A_{5} \succ A_{4} \succ A_{2} \succ A_{3}$	A_{1}
$H T N W G A O_{I_{1}}$	$A_{1} \succ A_{5} \succ A_{2} \succ A_{4} \succ A_{3}$	A_{1}
$H T N W A A O_{T_{2}}$	$A_{1} \succ A_{2} \succ A_{5} \succ A_{3} \succ A_{4}$	A_{1}
$H T N W G A O_{I_{2}}$	$A_{1} \succ A_{2} \succ A_{3} \succ A_{5} \succ A_{4}$	A_{1}

6. COMPARATIVE STUDY:

In order to compare the performance of the proposed method with some existing methods (Ye 2013a, Ye 2014, Ye 2015a, Ye 2015b, Liu 2016, Abdel-Basset et al. 2017, Wei et al. 2017), a comparative study is presented and their corresponding final ranking are summarized in table 3. From table-3, it is clear that although the ranking order of the alternatives are slightly different, but the best (most desirable) alternative is the same as found in the existing approaches (Ye 2013a, Ye 2014, Ye 2015a, Ye 2015b, Liu 2016, Abdel-Basset et al. 2017). Thus, our proposed method can be suitably utilized to solve the multi attribute decision making problems than the other existing methods due to the fact that more fuzziness and uncertainties are involved in our proposed approach.

Table 3: Comparative study

Existing approach	Ranking	Our proposed method	Ranking	$\begin{gathered} \text { Best } \\ \text { alternative } \end{gathered}$
Ye [36]	$A_{2} \succ A_{4} \succ A_{3} \succ A_{1}$	HTNWAAO $O_{T_{1}}$	$A_{2} \succ A_{4} \succ A_{3} \succ A_{1}$	A_{2}
			$A_{2} \succ A_{3} \succ A_{4} \succ A_{1}$	A_{2}
			$A_{2} \succ A_{4} \succ A_{1} \succ A_{3}$	A_{2}
		$H^{\prime} N W G A O_{T_{2}}$	$A_{2} \succ A_{1} \succ A_{4} \succ A_{3}$	A_{2}
Ye [17]	$A_{2} \succ A_{4} \succ A_{3} \succ A_{1}$		$A_{2} \succ A_{4} \succ A_{3} \succ A_{1}$	A_{2}
			$A_{2} \succ A_{3} \succ A_{4} \succ A_{1}$	A_{2}
		$H^{\prime} \mathrm{HNWAAO}_{T_{2}}$	$A_{2} \succ A_{4} \succ A_{1} \succ A_{3}$	A_{2}
			$A_{2} \succ A_{1} \succ A_{4} \succ A_{3}$	A_{2}
Ye [40]	$A_{2} \succ A_{4} \succ A_{3} \succ A_{1}$	$H^{\prime} N W A A O O_{T_{1}}$	$A_{2} \succ A_{4} \succ A_{3} \succ A_{1}$	A_{2}
		${ }^{H T N W G A O} O_{T_{1}}$	$A_{2} \succ A_{3} \succ A_{4} \succ A_{1}$	A_{2}
		$H^{\prime} N W A A O_{T_{2}}$	$A_{2} \succ A_{4} \succ A_{1} \succ A_{3}$	A_{2}
		$H^{\prime} N W G A O_{T_{2}}$	$A_{2} \succ A_{1} \succ A_{4} \succ A_{3}$	A_{2}
Ye [38]	$A_{4} \succ A_{2} \succ A_{3} \succ A_{1}$	$H^{\prime} N W A A O O_{T_{1}}$	$A_{4} \succ A_{2} \succ A_{3} \succ A_{1}$	A_{4}
		H^{\prime} HNWGAO $_{T_{1}}$	$A_{4} \succ A_{3} \succ A_{2} \succ A_{1}$	A_{4}
			$A_{4} \succ A_{2} \succ A_{1} \succ A_{3}$	A_{4}
			$A_{4} \succ A_{1} \succ A_{2} \succ A_{3}$	A_{4}
Liu [21]	$A_{4} \succ A_{2} \succ A_{3} \succ A_{1}$		$A_{4} \succ A_{2} \succ A_{3} \succ A_{1}$	A_{4}
		${ }^{H T N W G A O} O_{T_{1}}$	$A_{4} \succ A_{3} \succ A_{2} \succ A_{1}$	A_{4}
			$A_{4} \succ A_{2} \succ A_{1} \succ A_{3}$	A_{4}
			$A_{4} \succ A_{1} \succ A_{2} \succ A_{3}$	A_{4}
AbdelBasset et al. [57]	$A_{4} \succ A_{2} \succ A_{3} \succ A_{1}$		$A_{4} \succ A_{2} \succ A_{3} \succ A_{1}$	A_{4}
		$H^{\text {HTNW }}$ WAOO $O_{T_{1}}$	$A_{4} \succ A_{3} \succ A_{2} \succ A_{1}$	A_{4}
			$A_{4} \succ A_{2} \succ A_{1} \succ A_{3}$	A_{4}
			$A_{4} \succ A_{1} \succ A_{2} \succ A_{3}$	A_{4}

7. CONCLUSION

In this paper, hesitant triangular neutrosophic numbers and their basic properties are presented. Also, various types of operations between the hesitant triangular neutrosophic numbers are discussed. Then, various types of hesitant triangular neutrosophic weighted aggregation operators are proposed to aggregate the hesitant triangular neutrosophic information. Furthermore, score of hesitant triangular neutrosophic numbers is proposed to ranking the hesitant triangular neutrosophic numbers.Based on the hesitant triangular neutrosophic weighted aggregation operators and score of hesitant triangular neutrosophic numbers, a multi attribute decision making method is developed, in which the evaluation values of alternatives on the attribute are represented in terms of hesitant triangular neutrosophic numbers and the alternatives are ranked according to the values of the score of hesitant triangular neutrosophic numbers to select the most desirable one. Finally, a practical example for enterprise resource planning (ERP) system selection is presented to demonstrate the application and effectiveness of the proposed method. The advantage of the proposed method is that it is more suitable for solving multi attribute

[^28]decision making problems with hesitant triangular neutrosophic information because hesitant triangular neutrosophic numbers can handle indeterminate and inconsistent information and are the extensions of hesitant triangular fuzzy numbers, hesitant triangular intuitionistic fuzzy numbersas well as triangular neutrosophic numbers.

In the future, we will develop another approach called linguistic hesitant triangular neutrosophic number as a further generalization of it and this will be applied in different practical problems.

FUNDING: This research received no external funding.
ACKNOWLEDGEMENTS: Nil.
CONFLICTS OF INTEREST: The authors declare no conflict of interest.

REFERENCES:

[01] Zadeh, L.A. Fuzzy Sets. Information and Control 1965, 8, 338-353.
[02] Atanassov, K.T. Intuitionistic fuzzy sets. Fuzzy Sets and Systems 1986, 20, 87-96.
[03] Torra, V. Hesitant fuzzy sets. International Journal of Intelligent Systems 2009, 25, 529-539.
[04] Beg, I; Rashid, T. Group decision making using intuitionistic hesitant fuzzy sets. International Journal of Fuzzy Logic and Intelligent Systems 2014, 14(3), 181-187.
[05] Li, D.F. A ratio ranking method of triangular intuitionistic fuzzy numbers and its application to MADM problems. Computers and Mathematics with Applications 2010, 60, 1557-1570.
[06] Ye, J. Multi-criteria fuzzy decision-making method based on a novel accuracy function under intervalvalued intuitionistic fuzzy environment. Expert Systems with Applications 2009, 36, 6899-6902.
[07] Xia, M.M.; Xu, Z.S. Hesitant fuzzy information aggregation in decision making. International Journal of Approximate Reasoning 2011, 52, 395-407.
[08] Xu, Z.S.; Xia, M.M. Distance and similarity measures for hesitant fuzzy sets. Information Sciences 2011, 181, 2128-2138.
[09] Wei, G.; Alsaadi, F.E.; Hayat, T.; Alsaedi, A. Bipolar fuzzy Hamacher Aggregation operators in multiple attribute decision making. International Journal of Fuzzy Systems 2018, 20(1), 1-12.
[10] Xu, Z.S.; Xia, M.M. Hesitant fuzzy entropy and cross-entropy and their use in multi attribute decision making. International Journal of Intelligent Systems 2012, 27, 799-822.
[11] Xu, Z.S., Xia, M.M. On distance and correlation measures of hesitant fuzzy information. International Journal of Intelligent Systems 2013, 26, 410-425.
[12] Xu, Z.S.; Zhang, X.L. Hesitant fuzzy multi-attribute decision making based on TOPSIS with incomplete weight information. Knowledge-Based Systems 2013, 52, 53-64.
[13] Chen N., Xu, Z.S., Xia, M.M. Correlation coefficients of hesitant fuzzy sets and their applications to clustering analysis. Applied Mathematical Modeling 2013, 37, 2197-2211.
[14] Qian, G.; Wang, H.; Feng, X. Generalized of hesitant fuzzy sets and their application in decision support system. Knowledge Based Systems 2013, 37, 357-365.
[15] Yu, D. Triangular hesitant fuzzy set and its application to teaching quality evaluation. Journal of Information and Computational Science 2013, 10(7), 1925-1934.
[16] Yu, D. Intuitionistic trapezoidal fuzzy information aggregation methods and their applications toteaching quality evaluation. Journal of Information and Computational Science 2013, 10(6), 1861-1869.
[17] Ye, J. Correlation coefficient of dual hesitant fuzzy sets and its application to multi attribute decision making. Applied Mathematical Modelling 2014, 38, 659-666.
[18] Shi, J.; Meng, C.; Liu, Y. Approach to multiple attribute decision making based on the intelligence computing with hesitant triangular fuzzy information and their application. Journal of Intelligent and Fuzzy Systems 2014, 27, 701-707.
[19] Pathinathan, T.; Johnson, S.S. Trapezoidal hesitant fuzzy multi-attribute decision making based on TOPSIS. International Archive of Applied Sciences and Technology 2015, 3(6), 39-49.
[20] Joshi, D.; Kumar, S. Interval valued intuitionistic hesitant fuzzy Choquet integral based TOPSIS method for multi-criteria group decision making. European Journal of Operational Research 2016, 248, 183-191.
[21] Liu, P. The aggregation operators based on Archimedean t-Conorm and t-Norm for single-valued neutrosophic numbers and their application to decision making. International Journal of Fuzzy Systems 2016,18(5), 849-863.
[22] Nehi, H.M. A new ranking method for intuitionistic fuzzy numbers. International Journal of Fuzzy Systems 2010, 12(1), 80-86.
[23] Zhang, Z. Hesitant triangular multiplicative aggregation operators and their application to multiple attribute group decision making. Neural Computing and Applications 2017, 28, 195-217.
[24] Chen, J.J.; Huang, X.J. Hesitant triangular intuitionistic fuzzy information and its application to multiattribute decision making problem. Journal of Non-linear Science and Applications 2017, 10, 1012-1029.
[25] Yang, Y.; Hu, J.; An, Q.; Chen, X. Group decision making with multiplicative triangular hesitant fuzzy preference relations and cooperative games method. International Journal for Uncertainty Quantification 2017, 3(7), 271-284.
[26] Lan, J.; Yang, M.; Hu, M.; Liu, F. Multi attribute group decision making based on hesitant fuzzy sets, Topsis method and fuzzy preference relations. Technological and Economic Development of Economy 2017, 24(6), 2295-2317.
[27] Zhang, X.; Yang, T.; Liang, W.; Xiong, M. Closeness degree based hesitant trapezoidal fuzzy multi-criteria decision making method for evaluating green suppliers with qualitative information. Hindawi Discrete Dynamics in Nature and Society, 2018 (Article ID: 3178039, https://doi.org/10.1155/2018/3178039).
[28] Smarandache, F. A Unifying Field in Logics. Neutrosophy: Neutrosophicprobability, set and logic, 1999. American Research Press, Rehoboth.
[29] Gou, Y.; Cheng, H.D. New neutrosophic approach to image segmentation. Pattern Recognition 2009, 42, 587-595.
[30] Guo, Y.H.; Sensur, A. A novel image segmentation algorithm based on neutrosophic similarity clustering. Applied Soft Computing 2014, 25, 391-398.
[31] Karaaslan, F. Correlation coefficients of single valued neutrosophic refined soft sets and their applications in clustering analysis. Neural Computing and Applications 2017, 28, 2781-2793.
[32] Ansari, A.Q.; Biswas, R.; Aggarwal, S. Proposal for applicability of neutosophic set theory in medical AI. International Journal of Computer Applications 2011, 27(5), 5-11.
[33] Wang, H.; Smarandache, F.; Zhang, Y.Q. Interval neutrosophic sets and logic: Theory and applications in computing 2005. Hexis, Phoenix.
[34] Wang, H.; Smarandache, F.; Zhang, Y.Q.; Sunderraman, R. Single valued neutrosophic sets. Multi-space and Multi-structure 2010, 4, 410-413.
[35] Gou, Y.; Cheng, H.D.; Zhang, Y.; Zhao, W. A new neutrosophic approach to image de-noising. New Mathematics and Natural Computation 2009, 5, 653-662.
[36] Ye, J. Multi-criteria decision making method using the correlation coefficient under single valued neutrosophic environment. International Journal of General Systems 2013, 42, 386-394.
[37] Sun, H.X.; Yang, H.X.; Wu, J.Z.; Yao, O.Y. Interval neutrosophic numbers choquet integral operator for multi-criteria decision making. Journal of Intelligent and Fuzzy Systems 2015, 28, 2443-2455.
[38] Ye, J. Trapezoidal neutrosophic set and its application to multiple attribute decision-making. Neural Computing and Applications 2015, 26, 1157-1166.
[39] Abdel-Basset, M.; Chang, V.; Gamal, A. Evaluation of the green supply chain management practices: A novel neutrosophic approach. Computers in Industry 2019, 108, 210-220.
[40] Ye, J. Multiple-attribute decision-making method under a single-valued neutrosophic hesitant fuzzy environment. Journal of Intelligent Systems 2015, 24(1), 23-36.
[41] Xia, M.M.; Xu, Z.S.; Chen, N.; Some hesitant fuzzy aggregation operators with their application in group decision making. Group Decision and Negotiation 2013, 22, 259-279.
[42] Wang, C.Y.; Li, Q.; Zhou, Yang, X.Q. Hesitant triangular fuzzy information aggregation operators based on Bonferroni means and their application to multiple attribute decision making. Scientific World Journal 2014 (Article ID: 648516,http://dx.doi.org/10.1155/2014/648516).
[43] Zhao, X.F.; Lin, R.; Wei, G. Hesitant triangular fuzzy information aggregation based on Einstein operations and their application to multiple attribute decision making. Expert Systems with Applications 2014, 41, 1086-1094.
[44] Peng, X. Hesitant trapezoidal fuzzy aggregation operators based on Archimedean t-norm and t-conorm and their application in MADM with completely unknown weight information. International Journal for Uncertainty Quantification 2017, 6(7), 475-510
[45] Xu, Z.S. Intuitionistic fuzzy aggregation operators. IEEE Transactions on Fuzzy Systems 2007, 15, 11791187.
[46] Wan, S.P.; Dong, J.Y. Power geometric operators of trapezoidal intuitionistic fuzzy numbers and application to multi attribute group decision making. Applied Soft Computing 2015, 29, 153-168.
[47] Wan, S.P.; Wang, F.; Li, L.; Dong, J.Y. Some generalized aggregation operators for triangularintuitionistic fuzzy numbers and application to multi attribute group decision making. Computer and Industrial Engineering 2016, 93, 286-301.
[48] Xu, Z.S.; Yager, R. R. Some geometric aggregation operators based on intuitionistic fuzzy sets. Inter national Journal of General Systems 2006, 35, 417-433.
[49] Wang, W.Z.; Liu, X.W. Intuitionistic fuzzy geometric aggregation operators based on Einstein opera tions. Internal Journal of Intelligent Systems 2011, 26, 1049-1075.
[50] Liu, P.D.; Chu, Y. C.; Li, Y. W.; Chen, Y. B. Some generalized neutrosophic number Hamacher aggregation operators and their applications to group decision making. International Journal of Fuzzy Systems 2014, 16(2), 242-255.
[51] Liu, P. D.; Wang, Y. M. Multiple attribute decision making method based on single valued neutrosophic normalized weighted Bonferroni mean. Neural Computing and Applications 2014, 25, 2001-2010.
[52] Chen, J.Q.; Ye, J. Some single-valued neutrosophic Dombi weighted aggregation operators for multiple attribute decision making, Symmetry 2017, 9,doi:10.3390/sym9060082.
[53] Zhao, A.W.; Du, J.G.; Guan, H.J. Interval valued neutrosophic sets and multi attribute decision making based on generalized weighted aggregation operators. Journal of Intelligent and Fuzzy Systems 2015, 29, 2697-2706.
[54] Liu, P. D.; Shi, L. L. The generalized hybrid weighted average operator based on interval neutrosophic hesitant set and its application to multi attribute decision making. Neural Computing and Applications 2015, 26, 457-471.
[55] Liu, P.D.; Tang, G.L. Some power generalized aggregation operators based on the interval neutrosophic sets and their applications to decision making. Journal of Intelligent and FuzzySystems 2016, 30, 2517-2528.
[56] Şubaş, Y. Neutrosophic numbers and their application to multi-attribute decision making problems. (In Turkish, 2015) (Masters Thesis, 7 Aralık University, Graduate School of Natural and Applied Science).
[57] Abdel-Basset M.; Mohamed, M.; Hussien, A.N.; Sangaiah, A.K. A novel group decision-making model based on triangular neutrosophic numbers. Soft Computing 2017, 22, 6629-6643.
[58] Deli, I.; Şubaş, Y. A ranking method of single valued neutrosophic numbers and its application to multiattribute decision making problems. International Journal of Machine Learning and Cybernetics 2017, 8, 1309-1322.
[59] Biswas, P.; Pramanik, S.; Giri, B.C. Value and ambiguity index based ranking method of single-valued trapezoidal neutrosophic numbers and its application to multi-attribute decision making. Neutrosophic Sets and Systems 2006, 12, 127-138.
[60] Broumi, S.; Talea, M.; Bakali, A.; Smarandache, F.; Vladareanu, L. Shortest Path Problem Under Triangular Fuzzy Neutrosophic Information. 10th International Conference on Software, Knowledge, Information Management and Applications 2016 (SKIMA).
[61] Deli, I.; Şubaş, Y. Some weighted geometric operators with SVTrN-numbers and theirapplications to multicriteria decision making problems. Journal of Intelligent and Fuzzy Systems 2017, 32(1), 291-301.
[62] Ye, J. Some Weighted Aggregation Operators of Trapezoidal Neutrosophic Numbers and Their Multiple Attribute Decision Making Method, Informatica 2017, 28(2), 387-402.
[63] Biswas, P.; Pramanik, S.; Giri, B.C. Aggregation of triangular fuzzy neutrosophic set information and its application to multi-attribute decision making. Neutrosophic Sets and Systems 2016, 12, 20-38.
[64] Deli, I. Operators on single valued trapezoidal neutrosophic numbers and SVTN-group decision making. NeutrosophicSets and Systems 2018, 22, 131-151.
[65] Karaaslan, F. Gaussian single valued neutrosophic numbers and its applications in multi attribute decision making. Neutrosophic sets and Systems 2018, 22, 101-117
[66] Öztürk, E.K. Some new approaches on single valued trapezoidal neutrosophic numbers and their applications to multiple criteria decision making problems. (In Turkish 2018) (Masters Thesis, Kilis 7 Aralık University, Graduate School of Natural and Applied Science).
[67] Deli, I.; Öztürk E.K. Neutrosophic Graph Theory and Algorithms, Chapter 10: Two Centroid Point for SVTN-Numbers and SVTrN-Numbers: SVN-MADM Method, IGI Global Publisher 2020, 279-307.
[68] Deli I.; Öztürk E.K. Neutrosophic Theories in Communication, Management and Information Technology, Chapter 19: Some New Concepts On Normalized Svtn-Number And Multiple Criteria Decision Making, Nova (Publisher) 2020.
[69] Deli, I. A novel defuzzification method of SV-trapezoidal neutrosophic numbers and multi-attribute decision making: a comparative analysis, Soft Computing 2020, 23, 12529-12545.
[70] Chakraborty, A.; Mondal, S.P.; Ahmadian, A.; Senu, N.; Alam, S.; Salahshour, S. Different forms of triangular neutrosophic numbers, de-neutrosophication techniques, and their applications. Symmetry 2018, 10, (doi: 10.3390/sym10080327).
[71] Fan, C.; Feng, C.; Hu, C. Linguistic neutrosophic numbers Einstein operator and its applications in decision making. Mathematics 2019, 7, 1-11.
[72] Garg, H. ; Nancy. Linguistic single valued neutrosophic power aggregation operators and their applications to group decision making process. CAA Journal of Automatica Sinica 2019, 1-13 (doi: 10.1109/ JAS.
Abhijit Saha, Irfan Deli, and Said Broumi, HESITANT Triangular Neutrosophic Numbers and Their Applications to MADM
2019.1911522).
[73] Zhao, S.; Wang, D.; Changyong, D.; Lu, W. Induced choquet integral aggregation operators with single va lued neutrosophic uncertain linguistic numbers and their applications in multi-attribute group decision mak ing. Mathematical problems in Engineering 2019 (doi.org/10.1155/2019/9143624).
[74] Deli, I.; Karaaslan, F. Generalized trapezoidal hesitant fuzzy numbers and their applications to multiple criteria decision making problems. Soft Computing 2019 (submitted).
[75] Deli, I. A TOPSIS method by using generalized trapezoidal hesitant fuzzy numbers and application to a robot selection problem. Journal of Intelligent \& Fuzzy Systems 2019 (doi:10.3233/JIFS-179448).
[76] Zhang, X.; Xu, Z.; Liu, M. Hesitant trapezoidal fuzzy QUALIFLEX method and its application in the evaluation of green supply Chain Initiatives. Sustainability 2016, 8 (doi:10.3390/su8090952).
[77] Ye, J. Multi-criteria decision making method using expected values in trapezoidal hesitant fuzzy setting. Journal of Convergence Information Technology 2013, 8(11) (doi:10.4156/jcit.vol8.issue11.16).

Translative and Multiplicative Interpretation of Neutrosophic Cubic Set

MOHSIN KHALID ${ }^{1}$, FLORENTIN SMARANDACHE ${ }^{2}$ NEHA ANDALLEB KHALID ${ }^{3}$, SAID BROUMI 4,*

1 Department of Mathematics, The University of Lahore, Lahore, Pakistan
E-mail: mk4605107@gmail.com
2 Department of Mathematics, Lahore Collage for Women University, Lahore, Pakistan
E-mail: nehakhalid97@gmail.com
3 Department of Mathematics, University of New Mexico Mathematics Department 705 Gurley Ave., Gallup, NM 87301, USA
E-mail: fsmarandache@gmail.com, smarand@unn.edu

4 Laboratory of Information Processing, Faculty of Science Ben M'Sik, University Hassan II, Casablanca, Morocco

E-mail: s.broumi@flbenmsik.ma

* Correspondence; Mohsin Khalid; mk4605107@gmail.com

Abstract

In this paper, we introduce the idea of neutrosophic cubic translation (NCT) and neutrosophic cubic multiplication (NCM) and provide entirely new type of conditions for neutrosophic cubic translation and neutrosophic cubic multiplication on BF-algebra. This is the new kind of approach towards translation and multiplication which involves the indeterminacy membership function. We also define neutrosophic cubic magnified translation (NCMT) on BF-algebra which handles the neutrosophic cubic translation and neutrosophic cubic multiplication at the same time on membership function, indeterminacy membership function and non-membership function. We present the examples for better understanding of neutrosophic cubic translation, neutrosophic cubic multiplication, and neutrosophic cubic magnified translation, and investigate significant results of BF-ideal and BF-subalgebra by applying the ideas of NCT, NCM and NCMT. Intersection and union of neutrosophic cubic BF-ideals are also explained through this new type of translation and multiplication.

Keywords: BF-algebra, neutrosophic cubic translation, neutrosophic cubic multiplication, neutrosophic cubic BF ideal, neutrosophic cubic BF subalgebra, neutrosophic cubic magnified translation.

1. Introduction

Zadeh [1] presented the theory of fuzzy set in 1965. Fuzzy idea has been applied to different algebraic structures like groups, rings, modules, vector spaces and topologies. In this way, Iseki and Tanaka [2] introduced the idea of BCK-algebra in 1978. Iseki [3] introduced the idea of BCI-algebra in 1980 and it is obvious that the class of BCK-algebra is a proper sub class of the class of BCI-algebra. Lee et al. [4] studied the fuzzy translation,
(normalized, maximal) fuzzy extension and fuzzy multiplication of fuzzy subalgebra in BCK/BCI-algebra. Link among fuzzy translation, (normalized, maximal) fuzzy extension and fuzzy multiplication are also discussed. Ansari and Chandramouleeswaran [5] introduced the idea of fuzzy translation, fuzzy extension and fuzzy multiplication of fuzzy β ideal of β-algebra and investigated some of their properties. Satyanarayana [6] introduced the concepts of fuzzy ideals, fuzzy implicative ideals and fuzzy p-ideals in BF-algebras and investigate some of its properties. Andrzej [7] defined the BF-algebra. Lekkoksung [8] focused on fuzzy magnified translation in ternary hemirings, which is a extension of $\mathrm{BCI} / \mathrm{BCK} / \mathrm{Q} / \mathrm{KU} / \mathrm{d}$-algebra. Senapati et al. [9] have done much work on intuitionistic fuzzy H-ideal in BCK/BCI-algebra. Jana et al. [10] wrote on intuitionistic fuzzy G-algebra. Senapati et al. [11] studied fuzzy translations of fuzzy H-ideals in BCK/BCIalgebra. Atanassov [12] introduced the intuitionistic fuzzy sets. Senapati [13] investigated the relationship among intuitionistic fuzzy translation, intuitionistic fuzzy extension and intuitionistic fuzzy multiplication in B-algebra. Kim and Jeong [14] defined the intuitionistic fuzzy structure of B-algebra. Senapati et al. [15] introduced the cubic subalgebras and cubic closed ideals of B-algebras. Senapati et al. [16] discussed the fuzzy dot subalgebra and fuzzy dot ideal of B-algebras. Priya and Ramachandran [17] worked on fuzzy translation and fuzzy multiplication in PS-algebra. Chandramouleeswaran et al. [18] worked on fuzzy translation and fuzzy multiplication in BF/BG-algebra. Jana et al. [19] studied the cubic G-subalgebra of G-algebra. Smarandache [20,21] extended the intuitionistic fuzzy set, paraconsistent set, and intuitionistic set to the neutrosophic set through Several examples. Jun et al. [22] studied the Cubic set and apply the idea of cubic sets in group and gave the definition of cubic subgroups. Saeid and Rezvani [23] introduced and studied fuzzy BF-algebra, fuzzy BF-subalgebras, level subalgebras,fuzzy topological BF-algebra. Jun et al. [24] defined the neutrosophic cubic set introduced truth-internal and truth-external and discuss the many properties. Jun et al. [25] investigated the commutative falling neutrosophic ideals in BCK-algebra. C. H. Park [26] defined the neutrosophic ideal in subtraction algebra and studied it through several properties, he also discussed conditions for a neutrosophic set to be a neutrosophic ideal along with properties of neutrosophic ideal. Khalid et al. [27] investigated the neutrosophic soft cubic subalgebra through significant characteristic like P-union, R-intersection etc. Khalid et al. [28] interestinly investigated the intuitionistic fuzzy translation and multiplication through subalgebra and ideals. Khalid et al. [29] defined the T-neutrosophic cubic set and studied this set through ideals and subalgebras and investigated many results.

The purpose of this paper is to introduce the idea of neutrosophic cubic translation (NCT), neutrosophic cubic multiplication (NCM) and neutrosophic cubic magnified translation (NCMT) on BF-algebra. In second section we discuss some fundamental definitions which are used to develop the paper. In third's first subsection we discuss the neutrosophic cubic translation (NCT) and neutrosophic cubic multiplication (NCM) of BF subalgebra. In second subsection we discuss the neutrosophic cubic translation (NCT) and neutrosophic cubic multiplication (NCM) of BF ideal. In third subsection we discuss the neutrosophic cubic magnified translation (NCMT) of BF ideal and BF subalgebra.

2 Preliminaries

First we discuss some definitions which are used to present this paper.

Definition 2.1 [3] An algebra ($\mathrm{Y}, *, 0$) of type (2,0) is called a BCI-algebra if it satisfies the following conditions:
i) $\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) *\left(\mathrm{t}_{1} * \mathrm{t}_{3}\right) \leq\left(\mathrm{t}_{3} * \mathrm{t}_{2}\right)$,
ii) $t_{1} *\left(t_{1} * t_{2}\right) \leq t_{2}$,
iii) $t_{1} \leq t_{1}$,
iv) $\mathrm{t}_{1} \leq \mathrm{t}_{2}$ and $\mathrm{t}_{2} \leq \mathrm{t}_{1} \Rightarrow \mathrm{t}_{1}=\mathrm{t}_{2}$,
v) $t_{1} \leq 0 \Rightarrow t_{1}=0$, where $t_{1} \leq t_{2}$ is defined by $t_{1} * t_{2}=0$, for all $t_{1}, t_{2}, t_{3} \in Y$.

Definition 2.2 [1] An algebra ($\mathrm{Y}, *, 0$) of type (2,0) is called a BCK-algebra if it satisfies the following conditions:
i) $\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) *\left(\mathrm{t}_{1} * \mathrm{t}_{3}\right) \leq\left(\mathrm{t}_{3} * \mathrm{t}_{2}\right)$,
ii) $t_{1} *\left(t_{1} * t_{2}\right) \leq t_{2}$,
iii) $t_{1} \leq t_{1}$,
iv) $t_{1} \leq t_{2}$ and $t_{2} \leq t_{1} \Rightarrow t_{1}=t_{2}$,
v) $0 \leq t_{1} \Rightarrow t_{1}=0$, where $t_{1} \leq t_{2}$ is defined by $t_{1} * t_{2}=0$, for all $t_{1}, t_{2}, t_{3} \in Y$.

Definition 2.3 [7] A nonempty set Y with a constant 0 and a binary operation $*$ is called BF -algebra when it fulfills these axioms.
i) $t_{1} * t_{1}=0$
ii) $\mathrm{t}_{1} * 0=0$
iii) $0 *\left(t_{1} * t_{2}\right)=t_{2} * t_{1}$ for all $t_{1}, t_{2} \in Y$.

A BF-algebra is denoted by ($\mathrm{Y}, *, 0$).
Definition 2.4 [7] Let S be a nonempty subset of BF-algebra Y, then S is called a BF-subalgebra of Y if $t_{1} *$ $t_{2} \in S$, for all $t_{1}, t_{2} \in S$.

Definition 2.5 [6] Let Y ba a BF-algebra and I is a subset of Y, then I is called a BF ideal of Y if it satisfies the following conditions:
i) $0 \in I$,
ii) $t_{2} * t_{1} \in I$ and $t_{2} \in I \rightarrow t_{1} \in I$.

Definition 2.6 [6] Let Y be a BF-algebra. A fuzzy set B of Y is called a fuzzy BF ideal of Y if it satisfies the following conditions:
i) $\kappa(0) \geq \kappa\left(t_{1}\right)$,
ii) $\kappa\left(\mathrm{t}_{1}\right) \geq \min \left\{\kappa\left(\mathrm{t}_{2} * \mathrm{t}_{1}\right), \kappa\left(\mathrm{t}_{2}\right)\right\}$, for all $\mathrm{t}_{1}, \mathrm{t}_{2} \in \mathrm{Y}$.

Definition 2.7 [1] Let Y be a group of objects denoted generally by t_{1}. Then a fuzzy set B of Y is defined as $B=\left\{\left\langle t_{1}, \kappa_{B}\left(t_{1}\right)\right\rangle \mid t_{1} \in Y\right\}$, where $\kappa_{B}\left(t_{1}\right)$ is called the membership value of t_{1} in B and $\kappa_{B}\left(t_{1}\right) \in[0,1]$.

Definition 2.8 [23] A fuzzy set B of BF-algebra Y is called a fuzzy PS subalgebra of Y if $\kappa\left(t_{1} * t_{2}\right) \geq$ $\min \left\{\kappa\left(\mathrm{t}_{1}\right), \kappa\left(\mathrm{t}_{2}\right)\right\}$, for all $\mathrm{t}_{1}, \mathrm{t}_{2} \in \mathrm{Y}$.

Definition 2.9 [4,5] Let a fuzzy subset B of Y and $\alpha \in\left[0,1-\sup \left\{\kappa_{B}\left(t_{1}\right) \mid t_{1} \in Y\right\}\right]$. A mapping $\left(\kappa_{B}\right)_{\alpha}^{T} \mid Y \in$ $[0,1]$ is said to be a fuzzy α translation of κ_{B} if it satisfies $\left(\kappa_{B}\right)_{\alpha}^{T}\left(t_{1}\right)=\kappa_{B}\left(t_{1}\right)+\alpha$, for all $t_{1} \in Y$.
Definition 2.9 [4,5] Let a fuzzy subset B of Y and $\alpha \in[0,1]$. A mapping $\left(\kappa_{B}\right)_{\alpha}^{M}: Y \rightarrow[0,1]$ is said to be a fuzzy α multiplication of B if it satisfies $\left(\kappa_{B}\right)_{\alpha}^{M}\left(t_{1}\right)=\alpha .\left(\kappa_{B}\right)\left(t_{1}\right)$, for all $t_{1} \in Y$.

Definition 2.10 [12] An intuitionistic fuzzy set (IFS) B over Y is an object having the form $B=$ $\left\{\left\langle\mathrm{t}_{1}, \kappa_{B}\left(\mathrm{t}_{1}\right), \mathrm{v}_{\mathrm{B}}\left(\mathrm{t}_{1}\right)\right\rangle \mid \mathrm{t}_{1} \in \mathrm{Y}\right\}$, where $\kappa_{B}\left(\mathrm{t}_{1}\right): \mathrm{Y} \rightarrow[0,1]$ and $\mathrm{v}_{\mathrm{B}}\left(\mathrm{t}_{1}\right) \mid \mathrm{Y} \rightarrow[0,1]$, with the condition $0 \leq$ $\kappa_{B}\left(t_{1}\right)+v_{B}\left(t_{1}\right) \leq 1$, for all $t_{1} \in Y$. $\kappa_{B}\left(t_{1}\right)$ and $v_{B}\left(t_{1}\right)$ represent the degree of membership and the degree of non-membership of the element t_{1} in the set B respectively.

Definition 2.11 [12] Let $B=\left\{\left\langle t_{1}, \kappa_{B}\left(t_{1}\right), v_{B}\left(t_{1}\right)\right\rangle \mid t_{1} \in Y\right\}$ and $B=\left\{\left\langle t_{1}, \kappa_{B}\left(t_{1}\right), v_{B}\left(t_{1}\right)\right\rangle \mid t_{1}\right.$
$\in Y\}$ be two IFSs on Y. Then intersection and union of A and B are indicated by $A \cap B$ and $A \cup B$ respectively and are given by

$$
\begin{aligned}
& A \cap B=\left\{\left\langle t_{1}, \min \left(\kappa_{A}\left(t_{1}\right), \kappa_{B}\left(t_{1}\right)\right), \max \left(v_{A}\left(t_{1}\right), v_{B}\left(t_{1}\right)\right)\right\rangle \mid t_{1} \in Y\right\}, \\
& A \cup B=\left\{\left\langle t_{1}, \max \left(\kappa_{A}\left(t_{1}\right), \kappa_{B}\left(t_{1}\right)\right), \min \left(v_{A}\left(t_{1}\right), v_{B}\left(t_{1}\right)\right)\right\rangle \mid t_{1} \in Y\right\} .
\end{aligned}
$$

Definition 2.12 [14] An IFS $B=\left\{\left\langle t_{1}, \kappa_{B}\left(t_{1}\right), v_{B}\left(t_{1}\right)\right\rangle \mid t_{1} \in Y\right\}$ of Y is called an IFSU of Y if it satisfies these two conditions:
(i) $\kappa_{B}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \geq \min \left\{\kappa_{\mathrm{B}}\left(\mathrm{t}_{1}\right), \kappa_{\mathrm{B}}\left(\mathrm{t}_{2}\right)\right\}$,
(ii) $v_{B}\left(t_{1} * t_{2}\right) \leq \max \left\{v_{B}\left(t_{1}\right), v_{B}\left(t_{2}\right)\right\}$, for all $t_{1}, t_{2} \in Y$.

Definition 2.13 An IFS $B=\left\{\left\langle t_{1}, \kappa_{B}\left(t_{1}\right), v_{B}\left(t_{1}\right)\right\rangle \mid t_{1} \in Y\right\}$ of Y is said to be an IFID of Y if it satisfies these three conditions:
(i) $\kappa_{B}(0) \geq \kappa_{B}\left(t_{1}\right), v_{B}(0) \leq v_{B}\left(t_{1}\right)$,
(ii) $\kappa_{B}\left(\mathrm{t}_{1}\right) \geq \min \left\{\kappa_{\mathrm{B}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right), \kappa_{\mathrm{B}}\left(\mathrm{t}_{2}\right)\right\}$,
(iii) $v_{B}\left(t_{1}\right) \leq \max \left\{v_{B}\left(t_{1} * t_{2}\right), v_{B}\left(t_{2}\right)\right\}$, for all $t_{1}, t_{2} \in Y$.

Definition 2.14 [8] Let κ be a fuzzy subset of $Y, \alpha \in[0, T]$ and $\beta \in[0,1]$. A mapping $\kappa_{\beta \alpha}^{\mathrm{M}} \mid \mathrm{Y} \rightarrow[0,1]$ is said to be a fuzzy magnified $\beta \alpha$ translation of κ if it satisfies: $\kappa_{\beta \alpha}^{\mathrm{MT}}\left(\mathrm{t}_{1}\right)=\beta$. $\kappa\left(\mathrm{t}_{1}\right)+\alpha$ for all $\mathrm{t}_{1} \in \mathrm{Y}$.

Jun et al. [22,24]introduced neutrosophic cubic set and investigated several properties.
Definition 2.15 [24] Suppose X be a nonempty set. A neutrosophic cubic set in X is pair $\mathcal{C}=(\kappa, \sigma)$ where $\kappa=\left\{\left\langle\mathrm{t}_{1} ; \kappa_{\mathrm{E}}\left(\mathrm{t}_{1}\right), \kappa_{\mathrm{I}}\left(\mathrm{t}_{1}\right), \kappa_{\mathrm{N}}\left(\mathrm{t}_{1}\right)\right\rangle \mid \mathrm{t}_{1} \in \mathrm{X}\right\} \quad$ is an interval neutrosophic set in X and $\sigma=$ $\left\{\left\langle\mathrm{t}_{1} ; \sigma_{\mathrm{E}}\left(\mathrm{t}_{1}\right), \sigma_{\mathrm{I}}\left(\mathrm{t}_{1}\right), \sigma_{\mathrm{N}}\left(\mathrm{t}_{1}\right)\right\rangle \mid \mathrm{t}_{1} \in \mathrm{X}\right\}$ is a neutrosophic set in X .

Definition 2.16 [15] Let $C=\left\{\left\langle\mathrm{t}_{1}, \kappa\left(\mathrm{t}_{1}\right), \sigma\left(\mathrm{t}_{1}\right)\right\rangle\right\}$ be a cubic set, where $\kappa\left(\mathrm{t}_{1}\right)$ is an interval-valued fuzzy set in $\mathrm{X}, \sigma\left(\mathrm{t}_{1}\right)$ is a fuzzy set in X . Then C is cubic subalgebra under binary operation " $*$ ", if following axioms are satisfied:
i) $\quad \kappa\left(t_{1} * t_{2}\right) \geq \operatorname{rmin}\left\{\kappa\left(t_{1}\right), \kappa\left(t_{2}\right)\right\}$,
ii) $\quad \sigma\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \leq \max \left\{\sigma\left(\mathrm{t}_{1}\right), \sigma\left(\mathrm{t}_{2}\right)\right\} \forall \mathrm{t}_{1}, \mathrm{t}_{2} \in \mathrm{X}$.

Definition 2.17 [28] Let $A=\left(\kappa_{A}, v_{A}\right)$ be an IFS of G-algebra and let $\alpha \in[0, ¥]$. An object of the form $A_{\alpha}^{T}=$ $\left(\left(\kappa_{A}\right)_{\alpha}^{\mathrm{T}},\left(v_{\mathrm{A}}\right)_{\alpha}^{\mathrm{T}}\right)$ is called an intuitionistic fuzzy α-translation (IFAT) of A when $\left(\kappa_{A}\right)_{\alpha}^{\mathrm{T}}\left(\mathrm{t}_{1}\right)=\kappa_{\mathrm{A}}\left(\mathrm{t}_{1}\right)+\alpha$ and $\left(v_{A}\right)_{\alpha}^{T}\left(t_{1}\right)=v_{A}\left(t_{1}\right)-\alpha$ for all $t_{1} \in Y$.

3 Translative and Multiplicative Interpretation of Neutrosophic Cubic Set

For our simplicity, we use the notation $B=\left(\kappa_{T, I, F}, v_{T, I, F}\right)$ for the NCS $B=\left\{\left\langle t_{1}, \kappa_{T, I, F}\left(t_{1}\right), v_{T, 1, \mathrm{~F}}\left(t_{1}\right)\right\rangle \mid t_{1} \in Y\right\}$. In this paper, we used $T=[1,1]-\operatorname{rsup}\left\{\kappa_{\{T, I\}}\left(\mathrm{t}_{1}\right) \mid \mathrm{t}_{1} \in \mathrm{Y}\right\}, \quad ¥=\operatorname{rinf}\left\{\kappa_{\mathrm{F}}\left(\mathrm{t}_{1}\right) \mid \mathrm{t}_{1} \in \mathrm{Y}\right\}, \quad \Gamma=1-$ $\sup \left\{\mathrm{u}_{\{\mathrm{T}, \mathrm{I}\}}\left(\mathrm{t}_{1}\right) \mid \mathrm{t}_{1} \in \mathrm{Y}\right\}, £=\inf \left\{\mathrm{u}_{\mathrm{F}}\left(\mathrm{t}_{1}\right) \mid \mathrm{t}_{1} \in \mathrm{Y}\right.$ for any $\operatorname{NCS} B=\left(\kappa_{\mathrm{T}, \mathrm{I}, \mathrm{F}}, \mathrm{U}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}\right)$ of Y .

3.1 Translative and Multiplicative Interpretation of Neutrosophic Cubic Subalgebra

Definition 3.1.1 Let $B=\left(\kappa_{T, \mathrm{I}, \mathrm{F}}, \mathrm{v}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}\right)$ be a NCS of Y and for $\kappa_{\mathrm{T}, \mathrm{I}, \mathrm{F}}, \alpha, \beta \in[[0,0], \mathrm{T}]$ and $\gamma \in[[0,0], \neq]$, where for $\mathrm{v}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}, \alpha, \beta \in[0, \Gamma]$ and $\gamma \in[0, £]$. An object of the form $\mathrm{B}_{\alpha, \beta, \gamma}^{\mathrm{T}}=\left(\left(\kappa_{\mathrm{T}, \mathrm{I}, \mathrm{F}}\right)_{\alpha, \beta, \gamma}^{\mathrm{T}}\left(\mathrm{v}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}\right)_{\alpha, \beta, \gamma}^{\mathrm{T}}\right)$ is called a NCT of B, when $\left(\kappa_{T}\right)_{\alpha}^{\mathrm{T}}\left(\mathrm{t}_{1}\right)=\kappa_{\mathrm{B}}\left(\mathrm{t}_{1}\right)+\alpha,\left(\kappa_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}}\left(\mathrm{t}_{1}\right)=\kappa_{\mathrm{B}}\left(\mathrm{t}_{1}\right)+\beta$, $\left(\kappa_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}}\left(\mathrm{t}_{1}\right)=\kappa_{\mathrm{F}}\left(\mathrm{t}_{1}\right)-\gamma$ and $\left(v_{T}\right)_{\alpha}^{\mathrm{T}}\left(\mathrm{t}_{1}\right)=\mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{1}\right)+\alpha,\left(\mathrm{v}_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}}\left(\mathrm{t}_{1}\right)=\mathrm{v}_{\mathrm{B}}\left(\mathrm{t}_{1}\right)+\beta,\left(\mathrm{v}_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}}\left(\mathrm{t}_{1}\right)=\mathrm{v}_{\mathrm{B}}\left(\mathrm{t}_{1}\right)-\gamma$ for all $\mathrm{t}_{1} \in \mathrm{Y}$.

Example 3.1.1 Let $Y=\{0,1,2\}$ be a $B F-$-algebra with the following Cayley table:

$*$	0	1	2
0	0	1	2
1	0	0	1
2	0	2	0

Let $B=\left(\kappa_{T, I, \mathrm{~F}}, \mathrm{v}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}\right)$ be a NCS of Y is defined as

$$
\begin{aligned}
& \kappa_{\mathrm{T}}\left(\mathrm{t}_{1}\right)=\left\{\begin{array}{lc}
{[0.1,0.3]} & \text { if } \mathrm{t}_{1}=0 \\
{[0.4,0.7]} & \text { if otherwise }
\end{array}\right. \\
& \kappa_{\mathrm{I}}\left(\mathrm{t}_{1}\right)=\left\{\begin{array}{lc}
{[0.2,0.4]} & \text { if } \mathrm{t}_{1}=0 \\
{[0.5,0.7]} & \text { if otherwise }
\end{array}\right. \\
& \kappa_{\mathrm{F}}\left(\mathrm{t}_{1}\right)=\left\{\begin{array}{lc}
{[0.4,0.6]} & \text { if } \mathrm{t}_{1}=0 \\
{[0.3,0.8]} & \text { if otherwise }
\end{array}\right.
\end{aligned}
$$

and

$$
\begin{aligned}
& \mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{1}\right)=\left\{\begin{array}{cc}
0.1 & \text { if } \mathrm{t}_{1}=0 \\
0.4 & \text { if otherwise }
\end{array}\right. \\
& \mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{1}\right)=\left\{\begin{array}{cc}
0.2 & \text { if } \mathrm{t}_{1}=0 \\
0.3 & \text { if otherwise }
\end{array}\right.
\end{aligned}
$$

$$
v_{F}\left(t_{1}\right)=\left\{\begin{array}{cc}
0.5 & \text { if } t_{1}=0 \\
0.7 & \text { if otherwise }
\end{array}\right.
$$

Then B is a neutrosophic cubic subalgebra. Here we choose for $v_{T, \mathrm{I}, \mathrm{F}}, \alpha=0.01, \beta=0.02, \gamma=0.03$, and for $\kappa_{\mathrm{T}, \mathrm{I}, \mathrm{F}}, \alpha=[0.1,0.2], \beta=[0.2,0.25], \gamma=[0.2,0.3]$ then the mapping $\mathrm{B}^{\mathrm{T}}: \mathrm{Y} \rightarrow[0,1]$ is given by

$$
\begin{aligned}
& \left(\kappa_{\mathrm{T}}\right)_{[0.1,0.2]}^{\mathrm{T}}\left(\mathrm{t}_{1}\right)= \begin{cases}{[0.2,0.5]} & \text { if } \mathrm{t}_{1}=0 \\
{[0.5,0.9]} & \text { if otherwise }\end{cases} \\
& \left(\kappa_{\mathrm{I}}\right)_{[0.2,0.25]}^{\mathrm{T}}\left(\mathrm{t}_{1}\right)= \begin{cases}{[0.4,0.7]} & \text { if } \mathrm{t}_{1}=0 \\
{[0.7,0.95]} & \text { if otherwise }\end{cases} \\
& \left(\kappa_{\mathrm{F}}\right)_{[0.2,0.3]}^{\mathrm{T}}\left(\mathrm{t}_{1}\right)= \begin{cases}{[0.2,0.3]} & \text { if } \mathrm{t}_{1}=0 \\
{[0.1,0.5]} & \text { if otherwise }\end{cases}
\end{aligned}
$$

and

$$
\begin{aligned}
& \left(v_{T}\right)_{0.01}^{\mathrm{T}}\left(\mathrm{t}_{1}\right)=\left\{\begin{array}{cc}
0.11 & \text { if } t_{1}=0 \\
0.41 & \text { if otherwise. }
\end{array}\right. \\
& \left(v_{\mathrm{I}}\right)_{0.02}^{\mathrm{T}}\left(\mathrm{t}_{1}\right)=\left\{\begin{array}{cc}
0.22 & \text { if } \mathrm{t}_{1}=0 \\
0.32 & \text { if otherwise. }
\end{array}\right.
\end{aligned}
$$

$$
\left(v_{F}\right)_{0.03}^{\mathrm{T}}\left(\mathrm{t}_{1}\right)=\left\{\begin{array}{cc}
0.47 & \text { if } \mathrm{t}_{1}=0 \\
0.67 & \text { if otherwise },
\end{array}\right.
$$

which imply $\quad\left(\kappa_{T}\right)_{[0.1,0.2]}^{\mathrm{T}}\left(\mathrm{t}_{1}\right)=\kappa_{T}\left(\mathrm{t}_{1}\right)+[0.1,0.2] \quad, \quad\left(\kappa_{\mathrm{I}}\right)_{[0.2,0.25]}^{\mathrm{T}}\left(\mathrm{t}_{1}\right)=\kappa_{\mathrm{I}}\left(\mathrm{t}_{1}\right)+[0.2,0.25 \quad] \quad$, $\left(\kappa_{\mathrm{F}}\right)_{[0.2,0.3]}^{\mathrm{T}}\left(\mathrm{t}_{1}\right)=\kappa_{\mathrm{F}}\left(\mathrm{t}_{1}\right)-[0.2,0.3] \quad$ and $\left(\mathrm{v}_{\mathrm{T}}\right)_{0.01}^{\mathrm{T}}\left(\mathrm{t}_{1}\right)=\mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{1}\right)+0.01, \quad\left(\mathrm{v}_{\mathrm{I}}\right)_{0.02}^{\mathrm{T}}\left(\mathrm{t}_{1}\right)=\mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{1}\right)+0.02$, $\left(v_{F}\right)_{0.03}^{\mathrm{T}}\left(\mathrm{t}_{1}\right)=v_{\mathrm{F}}\left(\mathrm{t}_{1}\right)-0.03$ for all $\mathrm{t}_{1} \in \mathrm{Y}$. Hence B^{T} is a neutrosophic cubic translation.

Theorem 3.1.1 Let B be a NCSU of Y and for $\kappa_{\mathrm{T}, \mathrm{I}, \mathrm{F}}, \alpha, \beta \in[[0,0], 7]$ and $\gamma \in[[0,0], ¥]$, where for $\mathrm{v}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}$, $\alpha, \beta \in[0, \Gamma]$ and $\gamma \in[0, £]$. Then NCT $B_{\alpha, \beta, \gamma}^{T}$ of B is a NCSU of Y.

Proof. Assume $t_{1}, t_{2} \in Y$. Then

$$
\begin{aligned}
& \left(\kappa_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)=\kappa_{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)+\alpha \\
& \geq \operatorname{rmin}\left\{\kappa_{\mathrm{T}}\left(\mathrm{t}_{1}\right), \kappa_{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\}+\alpha \\
& =\operatorname{rmin}\left\{\kappa_{\mathrm{T}}\left(\mathrm{t}_{1}\right)+\alpha, \kappa_{\mathrm{T}}\left(\mathrm{t}_{2}\right)+\alpha\right\} \\
& \left(\kappa_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)=\operatorname{rmin}\left\{\left(\kappa_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}}\left(\mathrm{t}_{1}\right),\left(\kappa_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\}, \\
& \left(\kappa_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)=\kappa_{\mathrm{I}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)+\beta \\
& \geq \operatorname{rmin}\left\{\kappa_{\mathrm{I}}\left(\mathrm{t}_{1}\right), \kappa_{\mathrm{I}}\left(\mathrm{t}_{2}\right)\right\}+\beta \\
& =\operatorname{rmin}\left\{\kappa_{\mathrm{I}}\left(\mathrm{t}_{1}\right)+\beta, \kappa_{\mathrm{I}}\left(\mathrm{t}_{2}\right)+\beta\right\}
\end{aligned}
$$

[^29]\[

$$
\begin{aligned}
& \left(\kappa_{I}\right)_{\beta}^{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)=\operatorname{rmin}\left\{\left(\kappa_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}}\left(\mathrm{t}_{1}\right),\left(\kappa_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\}, \\
& \left(\kappa_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)=\kappa_{\mathrm{F}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)-\gamma \\
& \geq \operatorname{rmin}\left\{\kappa_{\mathrm{F}}\left(\mathrm{t}_{1}\right), \kappa_{\mathrm{F}}\left(\mathrm{t}_{2}\right)\right\}-\gamma \\
& =\operatorname{rmin}\left\{\kappa_{\mathrm{F}}\left(\mathrm{t}_{1}\right)-\gamma, \kappa_{\mathrm{F}}\left(\mathrm{t}_{2}\right)-\gamma\right\} \\
& \left(\kappa_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)=\operatorname{rmin}\left\{\left(\kappa_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}}\left(\mathrm{t}_{1}\right),\left(\kappa_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\}
\end{aligned}
$$
\]

and

$$
\begin{aligned}
& \left(\mathrm{v}_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)=\mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)+\alpha \\
& \leq \max \left\{\mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{1}\right), \mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\}+\alpha \\
& =\max \left\{\mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{1}\right)+\alpha, \mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{2}\right)+\alpha\right\} \\
& \left(\mathrm{v}_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)=\max \left\{\left(\mathrm{v}_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}}\left(\mathrm{t}_{1}\right),\left(\mathrm{v}_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\}, \\
& \left(\mathrm{v}_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)=\mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)+\beta \\
& \leq \max \left\{\mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{1}\right), \mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{2}\right)\right\}+\beta \\
& =\max \left\{\mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{1}\right)+\beta, \mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{2}\right)+\beta\right\} \\
& \left(\mathrm{v}_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)=\max \left\{\left(\mathrm{v}_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}}\left(\mathrm{t}_{1}\right),\left(\mathrm{v}_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\}, \\
& \left(\mathrm{v}_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)=\mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)-\gamma \\
& \leq \max \left\{\mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{1}\right), \mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{2}\right)\right\}-\gamma \\
& =\max \left\{\mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{1}\right)-\gamma, \mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{2}\right)-\gamma\right\} \\
& \left(\mathrm{v}_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)=\max \left\{\left(\mathrm{v}_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}}\left(\mathrm{t}_{1}\right),\left(\mathrm{v}_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\} .
\end{aligned}
$$

Hence NCT $\mathrm{B}_{\alpha, \beta, \gamma}^{\mathrm{T}}$ of B is a NCSU of Y.

Theorem 3.1.2 Let B be a NCS of Y such that NCT $B_{\alpha, \beta, \gamma}^{T}$ of B is a NCSU of Y for some $\kappa_{T, I, F}, \alpha, \beta \in$ $[[0,0], \tau]$ and $\gamma \in[[0,0], ¥]$, where for $\mathrm{v}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}, \alpha, \beta \in[0, \Gamma]$ and $\gamma \in[0, £]$. Then B is a NCSU of Y.

Proof. Let $\mathrm{B}_{\alpha, \beta, \gamma}^{\mathrm{T}}=\left(\left(\kappa_{\mathrm{T}, \mathrm{I}, \mathrm{F}}\right)_{\alpha, \beta, \gamma}^{\mathrm{T}},\left(\mathrm{U}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}\right)_{\alpha, \beta, \gamma}^{\mathrm{T}}\right)$ be a NCSU of Y for some $\kappa_{\mathrm{T}, \mathrm{I}, \mathrm{F}}, \alpha, \beta \in[[0,0], \mathrm{T}]$ and $\gamma \in$ $[[0,0], ¥]$, where for $\mathrm{v}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}, \alpha, \beta \in[0, \Gamma]$ and $\gamma \in[0, £]$ and $\mathrm{t}_{1}, \mathrm{t}_{2} \in \mathrm{Y}$. Then

$$
\begin{aligned}
& \kappa_{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)+\alpha=\left(\kappa_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \\
& \geq \operatorname{rmin}\left\{\left(\kappa_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}}\left(\mathrm{t}_{1}\right),\left(\kappa_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\} \\
& =\operatorname{rmin}\left\{\kappa_{\mathrm{T}}\left(\mathrm{t}_{1}\right)+\alpha, \kappa_{\mathrm{T}}\left(\mathrm{t}_{2}\right)+\alpha\right\} \\
& \kappa_{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)+\alpha=\operatorname{rmin}\left\{\kappa_{\mathrm{T}}\left(\mathrm{t}_{1}\right), \kappa_{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\}+\alpha, \\
& \kappa_{\mathrm{I}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)+\beta=\left(\kappa_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \\
& \geq \operatorname{rmin}\left\{\left(\kappa_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}}\left(\mathrm{t}_{1}\right),\left(\kappa_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =\operatorname{rmin}\left\{\kappa_{\mathrm{I}}\left(\mathrm{t}_{1}\right)+\beta, \kappa_{\mathrm{I}}\left(\mathrm{t}_{2}\right)+\beta\right\} \\
& \kappa_{\mathrm{I}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)+\beta=\operatorname{rmin}\left\{\kappa_{\mathrm{I}}\left(\mathrm{t}_{1}\right), \kappa_{\mathrm{I}}\left(\mathrm{t}_{2}\right)\right\}+\beta, \\
& \kappa_{\mathrm{F}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)-\gamma=\left(\kappa_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \\
& \geq \operatorname{rmin}\left\{\left(\kappa_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}}\left(\mathrm{t}_{1}\right),\left(\kappa_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\} \\
& =\operatorname{rmin}\left\{\kappa_{\mathrm{F}}\left(\mathrm{t}_{1}\right)-\gamma, \kappa_{\mathrm{F}}\left(\mathrm{t}_{2}\right)-\gamma\right\} \\
& \kappa_{\mathrm{F}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)-\gamma=\operatorname{rmin}\left\{\kappa_{\mathrm{F}}\left(\mathrm{t}_{1}\right), \kappa_{\mathrm{F}}\left(\mathrm{t}_{2}\right)\right\}-\gamma
\end{aligned}
$$

and

$$
\begin{aligned}
& \mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)+\alpha=\left(\mathrm{v}_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \\
& \leq \max \left\{\left(\mathrm{v}_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}}\left(\mathrm{t}_{1}\right),\left(\mathrm{v}_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\} \\
& =\max \left\{\mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{1}\right)+\alpha, \mathrm{v}_{\mathrm{B}}\left(\mathrm{t}_{2}\right)+\alpha\right\} \\
& \mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)+\alpha=\max \left\{\mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{1}\right), \mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\}+\alpha,
\end{aligned}
$$

$$
\mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)+\beta=\left(\mathrm{v}_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)
$$

$$
\leq \max \left\{\left(\mathrm{v}_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}}\left(\mathrm{t}_{1}\right),\left(\mathrm{v}_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\}
$$

$$
=\max \left\{\mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{1}\right)+\beta, \mathrm{v}_{\mathrm{B}}\left(\mathrm{t}_{2}\right)+\beta\right\}
$$

$$
\mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)+\beta=\max \left\{\mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{1}\right), \mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{2}\right)\right\}+\beta,
$$

$$
\mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)-\gamma=\left(\mathrm{v}_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)
$$

$$
\leq \max \left\{\left(v_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}}\left(\mathrm{t}_{1}\right),\left(\mathrm{v}_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\}
$$

$$
=\max \left\{\mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{1}\right)-\gamma, \mathrm{v}_{\mathrm{B}}\left(\mathrm{t}_{2}\right)-\gamma\right\}
$$

$$
\mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)-\gamma=\max \left\{\mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{1}\right), \mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{2}\right)\right\}-\gamma,
$$

which imply $\quad \kappa_{T}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \geq \operatorname{rmin}\left\{\kappa_{\mathrm{T}}\left(\mathrm{t}_{1}\right), \kappa_{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\}, \quad \kappa_{\mathrm{I}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \geq \operatorname{rmin}\left\{\kappa_{\mathrm{I}}\left(\mathrm{t}_{1}\right), \kappa_{\mathrm{I}}\left(\mathrm{t}_{2}\right)\right\}, \quad \kappa_{\mathrm{F}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \geq$ $\operatorname{rmin}\left\{\kappa_{\mathrm{F}}\left(\mathrm{t}_{1}\right), \kappa_{\mathrm{F}}\left(\mathrm{t}_{2}\right)\right\}$, and $\mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \leq \max \left\{\mathrm{u}_{\mathrm{T}}\left(\mathrm{t}_{1}\right), \mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\}, \mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \leq \max \left\{\mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{1}\right), \mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{2}\right)\right\}, \mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{1} *\right.$ $\left.t_{2}\right) \leq \max \left\{v_{F}\left(t_{1}\right), v_{F}\left(t_{2}\right)\right\}$, for all $t_{1}, t_{2} \in Y$. Hence B is a NCSU of Y.

Definition 3.1.2 Let B be a NCS of Y and $\delta \in[0,1]$. An object having the form $B_{\delta}^{M}=$ $\left(\left(\left(\kappa_{T}\right)_{\delta}^{\mathrm{M}},\left(\kappa_{\mathrm{I}}\right)_{\delta}^{\mathrm{M}},\left(\kappa_{\mathrm{F}}\right)_{\delta}^{\mathrm{M}}\right),\left(\left(\mathrm{v}_{\mathrm{T}}\right)_{\delta}^{\mathrm{M}},\left(\mathrm{v}_{\mathrm{I}}\right)_{\delta}^{\mathrm{M}},\left(\mathrm{v}_{\mathrm{F}}\right)_{\delta}^{\mathrm{M}}\right)\right) \quad$ is called a \quad NCM of $\quad \mathrm{B}$, when $\left(\kappa_{\mathrm{T}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1}\right)=$ $\delta . \kappa_{T}\left(t_{1}\right) \quad, \quad\left(\kappa_{I}\right)_{\delta}^{M}\left(t_{1}\right)=\delta . \kappa_{I}\left(t_{1}\right) \quad, \quad\left(\kappa_{F}\right)_{\delta}^{M}\left(t_{1}\right)=\delta . \kappa_{F}\left(t_{1}\right) \quad$ and $\quad\left(v_{T}\right)_{\delta}^{M}\left(t_{1}\right)=\delta . v_{T}\left(t_{1}\right) \quad, \quad\left(v_{I}\right)_{\delta}^{M}\left(t_{1}\right)=$ $\delta . v_{I}\left(t_{1}\right),\left(v_{F}\right)_{\delta}^{M}\left(t_{1}\right)=\delta . v_{F}\left(t_{1}\right)$ for all $t_{1} \in Y$.

Example 3.1.2 Let $Y=\{0,1,2\}$ be a BF-algebra with the following Cayley table:

$*$	0	1	2
0	0	1	2
1	0	0	1
2	0	2	0

Let $B=\left(\kappa_{T, I, F}, v_{T, I, F}\right)$ be a NCS of Y is defined as

$$
\begin{aligned}
& \kappa_{T}\left(t_{1}\right)=\left(\begin{array}{ll}
{[0.1,0.3]} & \text { if } t_{1}=0 \\
{[0.4,0.7]} & \text { if otherwise }
\end{array}\right. \\
& \kappa_{I}\left(t_{1}\right)=\left(\begin{array}{ll}
{[0.2,0.4]} & \text { if } t_{1}=0 \\
{[0.5,0.7]} & \text { if otherwise }
\end{array}\right. \\
& \kappa_{\mathrm{F}}\left(\mathrm{t}_{1}\right)=\left(\begin{array}{ll}
{[0.4,0.6]} & \text { if } \mathrm{t}_{1}=0 \\
{[0.3,0.8]} & \text { if otherwise }
\end{array}\right.
\end{aligned}
$$

and

$$
\begin{aligned}
v_{T}\left(t_{1}\right) & =\left(\begin{array}{ll}
0.1 & \text { if } t_{1}=0 \\
0.4 & \text { if otherwise }
\end{array}\right. \\
v_{I}\left(t_{1}\right) & =\left(\begin{array}{ll}
0.2 & \text { if } t_{1}=0 \\
0.3 & \text { if otherwise }
\end{array}\right. \\
v_{F}\left(t_{1}\right) & =\left(\begin{array}{ll}
0.5 & \text { if } t_{1}=0 \\
0.7 & \text { if otherwise. }
\end{array}\right.
\end{aligned}
$$

Then B is a neutrosophic cubic subalgebra, choose $\delta=0.01$ for v and $\delta=[0.1,0.2]$ for κ then the mapping $\mathrm{B}_{\delta}^{\mathrm{M}} \mid \mathrm{Y} \rightarrow[0,1]$ is given by

$$
\begin{aligned}
& \left(\kappa_{\mathrm{T}}\right)_{[0.1,0.2]}^{\mathrm{M}}\left(\mathrm{t}_{1}\right)=\left(\begin{array}{ll}
{[0.01,0.06]} & \text { if } \mathrm{t}_{1}=1 \\
{[0.04,0.14]} & \text { if otherwise, }
\end{array}\right. \\
& \left(\kappa_{I}\right)_{[0.1,0.2]}^{M}\left(t_{1}\right)=\left(\begin{array}{ll}
{[0.02,0.08]} & \text { if } t_{1}=1 \\
{[0.05,0.14]} & \text { if otherwise, }
\end{array}\right. \\
& \left(\kappa_{F}\right)_{[0.1,0.2]}^{M}\left(t_{1}\right)=\left(\begin{array}{ll}
{[0.04,0.12]} & \text { if } t_{1}=1 \\
{[0.03,0.16]} & \text { if otherwise }
\end{array}\right.
\end{aligned}
$$

and

$$
\begin{aligned}
& \left(\mathrm{v}_{\mathrm{T}}\right)_{0.01}^{\mathrm{M}}\left(\mathrm{t}_{1}\right)=\left(\begin{array}{ll}
0.001 & \text { if } \mathrm{t}_{1}=0 \\
0.004 & \text { if otherwise },
\end{array}\right. \\
& \left(v_{I}\right)_{0.01}^{\mathrm{M}}\left(\mathrm{t}_{1}\right)=\left(\begin{array}{ll}
0.002 & \text { if } \mathrm{t}_{1}=0 \\
0.003 & \text { if otherwise },
\end{array}\right. \\
& \left(v_{F}\right)_{0.01}^{\mathrm{M}}\left(\mathrm{t}_{1}\right)=\left(\begin{array}{ll}
0.005 & \text { if } \mathrm{t}_{1}=0 \\
0.007 & \text { if otherwise },
\end{array}\right.
\end{aligned}
$$

which imply $\left(\kappa_{T}\right)_{[0.1,0.2]}^{\mathrm{M}}\left(\mathrm{t}_{1}\right)=\kappa_{\mathrm{T}}\left(\mathrm{t}_{1}\right) \cdot[0.1,0.2], \quad\left(\kappa_{\mathrm{I}}\right)_{[0.1,0.2]}^{\mathrm{M}}\left(\mathrm{t}_{1}\right)=\kappa_{\mathrm{I}}\left(\mathrm{t}_{1}\right) \cdot[0.1,0.2], \quad\left(\kappa_{\mathrm{F}}\right)_{[0.1,0.2]}^{\mathrm{M}}\left(\mathrm{t}_{1}\right)=$ $\kappa_{F}\left(t_{1}\right) \cdot[0.1,0.2] \quad$ and $\quad\left(v_{T}\right)_{0.01}^{\mathrm{M}}\left(\mathrm{t}_{1}\right)=\mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{1}\right) \cdot(0.01) \quad, \quad\left(\mathrm{v}_{\mathrm{I}}\right)_{0.01}^{\mathrm{M}}\left(\mathrm{t}_{1}\right)=\mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{1}\right) \cdot(0.01) \quad, \quad\left(\mathrm{v}_{\mathrm{F}}\right)_{0.01}^{\mathrm{M}}\left(\mathrm{t}_{1}\right)=$ $v_{F}\left(t_{1}\right)$. (0.01) for all $t_{1} \in Y$. Hence B_{δ}^{M} is a neutrosophic cubic multiplication.

Theorem 3.1.3 Let B be a NCS of Y such that $\mathbf{N C M} B_{\delta}^{M}$ of B is a NCSU of Y for some $\delta \in[0,1]$. Then B is a NCSU of Y.

Proof. Assume B_{δ}^{M} of B is a NCSU of Y for some $\delta \in[0,1]$. Now for all $t_{1}, t_{2} \in Y$, we have

$$
\begin{aligned}
& \kappa_{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \cdot \delta=\left(\kappa_{\mathrm{T}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \\
& \geq \operatorname{rmin}\left\{\left(\kappa_{\mathrm{T}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1}\right),\left(\kappa_{\mathrm{T}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{2}\right)\right\} \\
& =\operatorname{rmin}\left\{\kappa_{\mathrm{T}}\left(\mathrm{t}_{1}\right) \cdot \delta, \kappa_{\mathrm{T}}\left(\mathrm{t}_{2}\right) \cdot \delta\right\} \\
& \kappa_{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \cdot \delta=\operatorname{rmin}\left\{\kappa_{\mathrm{T}}\left(\mathrm{t}_{1}\right), \kappa_{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\} \cdot \delta,
\end{aligned}
$$

$$
\kappa_{\mathrm{I}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \cdot \delta=\left(\kappa_{\mathrm{I}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)
$$

$$
\geq \operatorname{rmin}\left\{\left(\kappa_{\mathrm{I}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1}\right),\left(\kappa_{\mathrm{I}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{2}\right)\right\}
$$

$$
=\operatorname{rmin}\left\{\kappa_{\mathrm{I}}\left(\mathrm{t}_{1}\right) \cdot \delta, \kappa_{\mathrm{I}}\left(\mathrm{t}_{2}\right) \cdot \delta\right\}
$$

$$
\kappa_{I}\left(t_{1} * t_{2}\right) \cdot \delta=\operatorname{rmin}\left\{\kappa_{I}\left(t_{1}\right), \kappa_{I}\left(t_{2}\right)\right\} \cdot \delta,
$$

$$
\kappa_{\mathrm{F}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \cdot \delta=\left(\kappa_{\mathrm{F}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)
$$

$$
\geq \operatorname{rmin}\left\{\left(\kappa_{\mathrm{F}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1}\right),\left(\kappa_{\mathrm{F}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{2}\right)\right\}
$$

$$
=\operatorname{rmin}\left\{\kappa_{\mathrm{F}}\left(\mathrm{t}_{1}\right) \cdot \delta, \kappa_{\mathrm{F}}\left(\mathrm{t}_{2}\right) \cdot \delta\right\}
$$

$$
\kappa_{\mathrm{F}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \cdot \delta=\operatorname{rmin}\left\{\kappa_{\mathrm{F}}\left(\mathrm{t}_{1}\right), \kappa_{\mathrm{F}}\left(\mathrm{t}_{2}\right)\right\} . \delta
$$

and

$$
\begin{aligned}
& \mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \cdot \delta=\left(\mathrm{v}_{\mathrm{T}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \\
& \leq \max \left\{\left(\mathrm{v}_{\mathrm{T}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1}\right),\left(\mathrm{v}_{\mathrm{T}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{2}\right)\right\} \\
& =\max \left\{\mathrm{u}_{\mathrm{T}}\left(\mathrm{t}_{1}\right) \cdot \delta, \mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{2}\right) \cdot \delta\right\} \\
& \mathrm{u}_{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \cdot \delta=\max \left\{\mathrm{u}_{\mathrm{T}}\left(\mathrm{t}_{1}\right), \mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\} \cdot \delta, \\
& \mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \cdot \delta=\left(\mathrm{v}_{\mathrm{I}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \\
& \leq \max \left\{\left(\mathrm{v}_{\mathrm{I}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1}\right),\left(\mathrm{v}_{\mathrm{I}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{2}\right)\right\} \\
& =\max \left\{\mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{1}\right) \cdot \delta, \mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{2}\right) \cdot \delta\right\} \\
& \mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \cdot \delta=\max \left\{\mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{1}\right), \mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{2}\right)\right\} \cdot \delta, \\
& \mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \cdot \delta=\left(\mathrm{v}_{\mathrm{F}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \leq \max \left\{\left(\mathrm{v}_{\mathrm{F}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1}\right),\left(\mathrm{v}_{\mathrm{F}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{2}\right)\right\} \\
& =\max \left\{\mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{1}\right) \cdot \delta, \mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{2}\right) \cdot \delta\right\} \\
& \mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \cdot \delta=\max \left\{\mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{1}\right), \mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{2}\right)\right\} \cdot \delta,
\end{aligned}
$$

which imply $\quad \kappa_{T}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \geq \operatorname{rmin}\left\{\kappa_{\mathrm{T}}\left(\mathrm{t}_{1}\right), \kappa_{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\}, \quad \kappa_{\mathrm{I}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \geq \operatorname{rmin}\left\{\kappa_{\mathrm{I}}\left(\mathrm{t}_{1}\right), \kappa_{\mathrm{I}}\left(\mathrm{t}_{2}\right)\right\}, \quad \kappa_{\mathrm{F}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \geq$ $\operatorname{rmin}\left\{\kappa_{\mathrm{F}}\left(\mathrm{t}_{1}\right), \kappa_{\mathrm{F}}\left(\mathrm{t}_{2}\right)\right\}$ and $\mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \leq \max \left\{\mathrm{u}_{\mathrm{T}}\left(\mathrm{t}_{1}\right), \mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\}, \mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \leq \max \left\{\mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{1}\right), \mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{2}\right)\right\}, \mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{1} *\right.$ $\left.t_{2}\right) \leq \max \left\{u_{F}\left(t_{1}\right), v_{F}\left(t_{2}\right)\right\}$ for all $t_{1}, t_{2} \in Y$. Hence B is a NCSU of Y.

Theorem 3.1.4 Let B be a NCSU of Y for $\delta \in[0,1]$. Then NCM B_{δ}^{M} of B is a NCSU of Y.
Proof. Assume $t_{1}, t_{2} \in Y$. Then

$$
\begin{aligned}
& \left(\kappa_{\mathrm{T}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)=\delta \cdot \kappa_{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \\
& \geq \delta \cdot \operatorname{rmin}\left\{\left(\kappa_{\mathrm{T}}\right)\left(\mathrm{t}_{1}\right),\left(\kappa_{\mathrm{T}}\right)\left(\mathrm{t}_{2}\right)\right\} \\
& =\operatorname{rmin}\left\{\delta \cdot \kappa_{\mathrm{T}}\left(\mathrm{t}_{1}\right), \delta \cdot \kappa_{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\} \\
& =\operatorname{rmin}\left\{\left(\kappa_{\mathrm{T}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1}\right),\left(\kappa_{\mathrm{T}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{2}\right)\right\} \\
& \left(\kappa_{\mathrm{T}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \geq \operatorname{rmin}\left\{\left(\kappa_{\mathrm{T}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1}\right),\left(\kappa_{\mathrm{T}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{2}\right)\right\}, \\
& \left(\kappa_{\mathrm{I}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)=\delta \cdot \kappa_{\mathrm{I}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \\
& \geq \delta \cdot r \min \left\{\left(\kappa_{\mathrm{I}}\right)\left(\mathrm{t}_{1}\right),\left(\kappa_{\mathrm{I}}\right)\left(\mathrm{t}_{2}\right)\right\} \\
& =\mathrm{rmin}\left\{\delta \cdot \kappa_{\mathrm{I}}\left(\mathrm{t}_{1}\right), \delta \cdot \kappa_{\mathrm{I}}\left(\mathrm{t}_{2}\right)\right\} \\
& =\operatorname{rmin}\left\{\left(\kappa_{\mathrm{I}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1}\right),\left(\kappa_{\mathrm{I}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{2}\right)\right\} \\
& \left(\kappa_{\mathrm{I}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \geq \mathrm{rmin}\left\{\left(\kappa_{\mathrm{I}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1}\right),\left(\kappa_{\mathrm{I}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{2}\right)\right\}, \\
& \left(\kappa_{\mathrm{F}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)=\delta \cdot \kappa_{\mathrm{F}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \\
& \geq \delta \cdot r \min \left\{\left(\kappa_{\mathrm{F}}\right)\left(\mathrm{t}_{1}\right),\left(\kappa_{\mathrm{F}}\right)\left(\mathrm{t}_{2}\right)\right\} \\
& =\mathrm{rmin}\left\{\delta \cdot \kappa_{\mathrm{F}}\left(\mathrm{t}_{1}\right), \delta \cdot \kappa_{\mathrm{F}}\left(\mathrm{t}_{2}\right)\right\} \\
& =\mathrm{rmin}\left\{\left(\kappa_{\mathrm{F}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1}\right),\left(\kappa_{\mathrm{F}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{2}\right)\right\} \\
& \left(\kappa_{\mathrm{F}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \geq \mathrm{rmin}\left\{\left(\kappa_{\mathrm{F}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1}\right),\left(\kappa_{\mathrm{F}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{2}\right)\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
& \left(\mathrm{v}_{\mathrm{T}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)=\delta \cdot \mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \\
& \leq \delta \cdot \max \left\{\left(\mathrm{v}_{\mathrm{T}}\right)\left(\mathrm{t}_{1}\right),\left(\mathrm{u}_{\mathrm{T}}\right)\left(\mathrm{t}_{2}\right)\right\} \\
& =\max \left\{\delta \cdot \mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{1}\right), \delta \cdot \mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\} \\
& =\max \left\{\left(\kappa_{\mathrm{B}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1}\right),\left(\kappa_{\mathrm{B}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{2}\right)\right\} \\
& \left(\mathrm{v}_{\mathrm{T}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \leq \max \left\{\left(\mathrm{v}_{\mathrm{T}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1}\right),\left(\mathrm{v}_{\mathrm{T}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{2}\right)\right\},
\end{aligned}
$$

$$
\begin{aligned}
& \left(v_{I}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)=\delta \cdot v_{\mathrm{I}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \\
& \leq \delta \cdot \max \left\{\left(\mathrm{v}_{\mathrm{I}}\right)\left(\mathrm{t}_{1}\right),\left(\mathrm{v}_{\mathrm{I}}\right)\left(\mathrm{t}_{2}\right)\right\} \\
& =\max \left\{\delta \cdot \mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{1}\right), \delta \cdot \mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{2}\right)\right\} \\
& =\max \left\{\left(\kappa_{\mathrm{B}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1}\right),\left(\kappa_{\mathrm{B}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{2}\right)\right\} \\
& \left(\mathrm{v}_{\mathrm{I}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \leq \max \left\{\left(\mathrm{v}_{\mathrm{I}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1}\right),\left(\mathrm{v}_{\mathrm{I}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{2}\right)\right\}, \\
& \left(\mathrm{v}_{\mathrm{F}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)=\delta \cdot v_{\mathrm{F}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \\
& \leq \delta \cdot \max \left\{\left(\mathrm{v}_{\mathrm{F}}\right)\left(\mathrm{t}_{1}\right),\left(\mathrm{v}_{\mathrm{F}}\right)\left(\mathrm{t}_{2}\right)\right\} \\
& =\max \left\{\delta \cdot \mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{1}\right), \delta \cdot \mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{2}\right)\right\} \\
& =\max \left\{\left(\kappa_{\mathrm{B}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1}\right),\left(\kappa_{\mathrm{B}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{2}\right)\right\} \\
& \left(\mathrm{v}_{\mathrm{F}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \leq \max \left\{\left(\mathrm{v}_{\mathrm{F}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1}\right),\left(\mathrm{v}_{\mathrm{F}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{2}\right)\right\},
\end{aligned}
$$

which imply $\quad \kappa_{T}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \geq \operatorname{rmin}\left\{\kappa_{\mathrm{T}}\left(\mathrm{t}_{1}\right), \kappa_{T}\left(\mathrm{t}_{2}\right)\right\}, \quad \kappa_{\mathrm{I}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \geq \operatorname{rmin}\left\{\kappa_{\mathrm{I}}\left(\mathrm{t}_{1}\right), \kappa_{\mathrm{I}}\left(\mathrm{t}_{2}\right)\right\}, \quad \kappa_{\mathrm{F}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \geq$ $\operatorname{rmin}\left\{\kappa_{\mathrm{F}}\left(\mathrm{t}_{1}\right), \kappa_{\mathrm{F}}\left(\mathrm{t}_{2}\right)\right\}$ and $\mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \leq \max \left\{\mathrm{u}_{\mathrm{T}}\left(\mathrm{t}_{1}\right), \mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\}, \mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \leq \max \left\{\mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{1}\right), \mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{2}\right)\right\}, \mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{1} *\right.$ $\left.t_{2}\right) \leq \max \left\{\mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{1}\right), \mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{2}\right)\right\}$ for all $\mathrm{t}_{1}, \mathrm{t}_{2} \in \mathrm{Y}$. Hence $\mathrm{B}_{\delta}^{\mathrm{M}}$ is a NCSU of Y .

3.2 Translative and Multiplicative Interpretation of Neutrosophic Cubic Ideal

In this section, neutrosophic cubic translation of NCID, neutrosophic cubic multiplication of NCID, union and intersection of neutrosophic cubic translation of NCID are investigated through some results.

Theorem 3.2.1 If NCT $B_{\alpha, \beta, \gamma}^{\mathrm{T}}$ of B is a neutrosophic cubic BF ideal, then it fulfills the conditions $\left(\kappa_{T}\right)_{\alpha}^{\mathrm{T}}\left(\mathrm{t}_{1} *\right.$ $\left.\left(\mathrm{t}_{2} * \mathrm{t}_{1}\right)\right) \geq\left(\kappa_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}}\left(\mathrm{t}_{2}\right),\left(\kappa_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}}\left(\mathrm{t}_{1} *\left(\mathrm{t}_{2} * \mathrm{t}_{1}\right)\right) \geq\left(\kappa_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}}\left(\mathrm{t}_{2}\right),\left(\kappa_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}}\left(\mathrm{t}_{1} *\left(\mathrm{t}_{2} * \mathrm{t}_{1}\right)\right) \geq\left(\kappa_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}}\left(\mathrm{t}_{2}\right)$ and $\left(\mathrm{v}_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}}\left(\mathrm{t}_{1} *\right.$ $\left.\left(\mathrm{t}_{2} * \mathrm{t}_{1}\right)\right) \leq\left(\mathrm{v}_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}}\left(\mathrm{t}_{2}\right),\left(\mathrm{v}_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}}\left(\mathrm{t}_{1} *\left(\mathrm{t}_{2} * \mathrm{t}_{1}\right)\right) \leq\left(\mathrm{v}_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}}\left(\mathrm{t}_{2}\right),\left(\mathrm{v}_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}}\left(\mathrm{t}_{1} *\left(\mathrm{t}_{2} * \mathrm{t}_{1}\right)\right) \leq\left(\mathrm{v}_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}}\left(\mathrm{t}_{2}\right)$.

Proof. Let NCT $\mathrm{B}_{\alpha, \beta, \gamma}^{\mathrm{T}}$ of B be a neutrosophic cubic BF ideal. Then

$$
\begin{aligned}
& \left(\kappa_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}}\left(\mathrm{t}_{1} *\left(\mathrm{t}_{2} * \mathrm{t}_{1}\right)\right)=\kappa_{\mathrm{T}}\left(\mathrm{t}_{1} *\left(\mathrm{t}_{2} * \mathrm{t}_{1}\right)\right)+\alpha \\
& \geq \operatorname{rmin}\left\{\kappa_{\mathrm{T}}\left(\mathrm{t}_{2} *\left(\mathrm{t}_{1} *\left(\mathrm{t}_{2} * \mathrm{t}_{1}\right)\right)\right)+\alpha, \kappa_{\mathrm{T}}\left(\mathrm{t}_{2}\right)+\alpha\right\} \\
& =\operatorname{rmin}\left\{\kappa_{\mathrm{T}}(0)+\alpha, \kappa_{\mathrm{T}}\left(\mathrm{t}_{2}\right)+\alpha\right\} \\
& =\operatorname{rmin}\left\{\left(\kappa_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}}(0),\left(\kappa_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\} \\
& \left(\kappa_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}}\left(\mathrm{t}_{1} *\left(\mathrm{t}_{2} * \mathrm{t}_{1}\right)\right)=\left(\kappa_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}}\left(\mathrm{t}_{2}\right), \\
& \left(\kappa_{\mathrm{I}}\right)_{\alpha}^{\mathrm{T}}\left(\mathrm{t}_{1} *\left(\mathrm{t}_{2} * \mathrm{t}_{1}\right)\right)=\kappa_{\mathrm{I}}\left(\mathrm{t}_{1} *\left(\mathrm{t}_{2} * \mathrm{t}_{1}\right)\right)+\beta \\
& \geq \operatorname{rmin}\left\{\kappa_{\mathrm{I}}\left(\mathrm{t}_{2} *\left(\mathrm{t}_{1} *\left(\mathrm{t}_{2} * \mathrm{t}_{1}\right)\right)\right)+\beta, \kappa_{\mathrm{I}}\left(\mathrm{t}_{2}\right)+\beta\right\} \\
& =\operatorname{rmin}\left\{\kappa_{\mathrm{I}}(0)+\beta, \kappa_{\mathrm{I}}\left(\mathrm{t}_{2}\right)+\beta\right\}
\end{aligned}
$$

[^30]\[

$$
\begin{aligned}
& =\operatorname{rmin}\left\{\left(\kappa_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}}(0),\left(\kappa_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\} \\
& \left(\kappa_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}}\left(\mathrm{t}_{1} *\left(\mathrm{t}_{2} * \mathrm{t}_{1}\right)\right)=\left(\kappa_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}}\left(\mathrm{t}_{2}\right), \\
& \left(\kappa_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}}\left(\mathrm{t}_{1} *\left(\mathrm{t}_{2} * \mathrm{t}_{1}\right)\right)=\kappa_{\mathrm{F}}\left(\mathrm{t}_{1} *\left(\mathrm{t}_{2} * \mathrm{t}_{1}\right)\right)-\gamma \\
& \geq \operatorname{rmin}\left\{\kappa_{\mathrm{F}}\left(\mathrm{t}_{2} *\left(\mathrm{t}_{1} *\left(\mathrm{t}_{2} * \mathrm{t}_{1}\right)\right)\right)-\gamma, \kappa_{\mathrm{F}}\left(\mathrm{t}_{2}\right)-\gamma\right\} \\
& =\operatorname{rmin}\left\{\kappa_{\mathrm{F}}(0)-\gamma, \kappa_{\mathrm{F}}\left(\mathrm{t}_{2}\right)-\gamma\right\} \\
& \quad=\operatorname{rmin}\left\{\left(\kappa_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}}(0),\left(\kappa_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\} \\
& \left(\kappa_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}}\left(\mathrm{t}_{1} *\left(\mathrm{t}_{2} * \mathrm{t}_{1}\right)\right)=\left(\kappa_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}}\left(\mathrm{t}_{2}\right)
\end{aligned}
$$
\]

and

$$
\begin{aligned}
& \left(\mathrm{v}_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}}\left(\mathrm{t}_{1} *\left(\mathrm{t}_{2} * \mathrm{t}_{1}\right)\right)=\mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{1} *\left(\mathrm{t}_{2} * \mathrm{t}_{1}\right)\right)+\alpha \\
& \leq \max \left\{\mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{2} *\left(\mathrm{t}_{1} *\left(\mathrm{t}_{2} * \mathrm{t}_{1}\right)\right)\right)+\alpha, \mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{2}\right)+\alpha\right\} \\
& =\max \left\{\mathrm{v}_{\mathrm{T}}(0)+\alpha, \mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{2}\right)+\alpha\right\} \\
& =\max \left\{\left(\mathrm{v}_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}}(0),\left(\mathrm{v}_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\} \\
& \left(\mathrm{v}_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}}\left(\mathrm{t}_{1} *\left(\mathrm{t}_{2} * \mathrm{t}_{1}\right)\right)=\left(\mathrm{v}_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}}\left(\mathrm{t}_{2}\right),
\end{aligned}
$$

$$
\begin{aligned}
& \left(v_{\mathrm{I}}\right)_{\alpha}^{\mathrm{T}}\left(\mathrm{t}_{1} *\left(\mathrm{t}_{2} * \mathrm{t}_{1}\right)\right)=\mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{1} *\left(\mathrm{t}_{2} * \mathrm{t}_{1}\right)\right)+\beta \\
& \leq \max \left\{\mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{2} *\left(\mathrm{t}_{1} *\left(\mathrm{t}_{2} * \mathrm{t}_{1}\right)\right)\right)+\beta, \mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{2}\right)+\beta\right\} \\
& =\max \left\{\mathrm{v}_{\mathrm{I}}(0)+\beta, \mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{2}\right)+\beta\right\} \\
& =\max \left\{\left(\mathrm{v}_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}}(0),\left(\mathrm{v}_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\} \\
& \left(\mathrm{v}_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}}\left(\mathrm{t}_{1} *\left(\mathrm{t}_{2} * \mathrm{t}_{1}\right)\right)=\left(\mathrm{v}_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}}\left(\mathrm{t}_{2}\right),
\end{aligned}
$$

$$
\begin{aligned}
& \left(v_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}}\left(\mathrm{t}_{1} *\left(\mathrm{t}_{2} * \mathrm{t}_{1}\right)\right)=\mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{1} *\left(\mathrm{t}_{2} * \mathrm{t}_{1}\right)\right)-\gamma \\
& \leq \max \left\{\mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{2} *\left(\mathrm{t}_{1} *\left(\mathrm{t}_{2} * \mathrm{t}_{1}\right)\right)\right)-\gamma, \mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{2}\right)-\gamma\right\} \\
& =\max \left\{\mathrm{u}_{\mathrm{F}}(0)-\gamma, \mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{2}\right)-\gamma\right\} \\
& =\max \left\{\left(\mathrm{v}_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}}(0),\left(\mathrm{v}_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\} \\
& \left(\mathrm{v}_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}}\left(\mathrm{t}_{1} *\left(\mathrm{t}_{2} * \mathrm{t}_{1}\right)\right)=\left(\mathrm{v}_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}}\left(\mathrm{t}_{2}\right) .
\end{aligned}
$$

Hence $\left(\kappa_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}}\left(\mathrm{t}_{1} *\left(\mathrm{t}_{2} * \mathrm{t}_{1}\right)\right) \geq\left(\kappa_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}}\left(\mathrm{t}_{2}\right), \quad\left(\kappa_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}}\left(\mathrm{t}_{1} *\left(\mathrm{t}_{2} * \mathrm{t}_{1}\right)\right) \geq\left(\kappa_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}}\left(\mathrm{t}_{2}\right), \quad\left(\kappa_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}}\left(\mathrm{t}_{1} *\left(\mathrm{t}_{2} * \mathrm{t}_{1}\right)\right) \geq$ $\left(\kappa_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}}\left(\mathrm{t}_{2}\right)$ and $\left(\mathrm{v}_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}}\left(\mathrm{t}_{1} *\left(\mathrm{t}_{2} * \mathrm{t}_{1}\right)\right) \leq\left(\mathrm{v}_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}}\left(\mathrm{t}_{2}\right), \quad\left(\mathrm{v}_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}}\left(\mathrm{t}_{1} *\left(\mathrm{t}_{2} * \mathrm{t}_{1}\right)\right) \leq\left(\mathrm{v}_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}}\left(\mathrm{t}_{2}\right), \quad\left(\mathrm{v}_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}}\left(\mathrm{t}_{1} *\left(\mathrm{t}_{2} *\right.\right.$ $\left.\left.\mathrm{t}_{1}\right)\right) \leq\left(\mathrm{v}_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}}\left(\mathrm{t}_{2}\right)$.

Theorem 3.2.2 Let B be a NCID of Y and for $\kappa_{T, I, F}, \alpha, \beta \in[[0,0], \tau]$ and $\gamma \in[[0,0], ¥]$, where for $v_{T, I, F}$, $\alpha, \beta \in[0, \Gamma]$ and $\gamma \in[0, £]$. Then NCT $B_{\alpha, \beta, \gamma}^{\mathrm{T}}$ of B is a NCID of Y.

Proof. Let B be a NCID of Y and for $\kappa_{\mathrm{T}, \mathrm{I}, \mathrm{F}}, \alpha, \beta \in[[0,0], \tau]$ and $\gamma \in[[0,0], \ngtr]$, where for $\mathrm{v}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}, \alpha, \beta \in$ $[0, \Gamma]$ and $\gamma \in[0, £]$. Then $\left(\kappa_{T}\right)_{\alpha}^{\mathrm{T}}(0)=\kappa_{\mathrm{T}}(0)+\alpha \geq \kappa_{\mathrm{T}}\left(\mathrm{t}_{1}\right)+\alpha=\left(\kappa_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}}\left(\mathrm{t}_{1}\right), \quad\left(\kappa_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}}(0)=\kappa_{\mathrm{I}}(0)+\beta \geq$
$\kappa_{\mathrm{I}}\left(\mathrm{t}_{1}\right)+\beta=\left(\kappa_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}}\left(\mathrm{t}_{1}\right), \quad\left(\kappa_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}}(0)=\kappa_{\mathrm{F}}(0)-\gamma \geq \kappa_{\mathrm{F}}\left(\mathrm{t}_{1}\right)-\gamma=\left(\kappa_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}}\left(\mathrm{t}_{1}\right) \quad$ and $\quad\left(\mathrm{v}_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}}(0)=\mathrm{v}_{\mathrm{T}}(0)+\alpha \leq$ $v_{T}\left(\mathrm{t}_{1}\right)+\alpha=\left(\mathrm{v}_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}}\left(\mathrm{t}_{1}\right), \quad\left(\mathrm{v}_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}}(0)=\mathrm{v}_{\mathrm{I}}(0)+\beta \leq \mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{1}\right)+\beta=\left(\mathrm{v}_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}}\left(\mathrm{t}_{1}\right), \quad\left(\mathrm{v}_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}}(0)=\mathrm{v}_{\mathrm{F}}(0)-\gamma \leq$ $v_{\mathrm{F}}\left(\mathrm{t}_{1}\right)-\gamma=\left(\mathrm{v}_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}}\left(\mathrm{t}_{1}\right)$. So

$$
\begin{aligned}
& \left(\kappa_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}}\left(\mathrm{t}_{1}\right)=\kappa_{\mathrm{T}}\left(\mathrm{t}_{1}\right)+\alpha \\
& \geq \operatorname{rmin}\left\{\kappa_{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right), \kappa_{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\}+\alpha \\
& =\operatorname{rmin}\left\{\kappa_{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)+\alpha, \kappa_{\mathrm{T}}\left(\mathrm{t}_{2}\right)+\alpha\right\} \\
& \left(\kappa_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}}\left(\mathrm{t}_{1}\right)=\operatorname{rmin}\left\{\left(\kappa_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right),\left(\kappa_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\}, \\
& \left(\kappa_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}}\left(\mathrm{t}_{1}\right)=\kappa_{\mathrm{I}}\left(\mathrm{t}_{1}\right)+\beta \\
& \geq \operatorname{rmin}\left\{\kappa_{\mathrm{I}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right), \kappa_{\mathrm{I}}\left(\mathrm{t}_{2}\right)\right\}+\beta \\
& =\operatorname{rmin}\left\{\kappa_{\mathrm{I}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)+\beta, \kappa_{\mathrm{I}}\left(\mathrm{t}_{2}\right)+\beta\right\} \\
& \left.\left(\kappa_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}}\left(\mathrm{t}_{1}\right)=\operatorname{rmin}^{2}\left(\kappa_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right),\left(\kappa_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\}, \\
& \left(\kappa_{\mathrm{F}}\right)_{\alpha}^{\mathrm{T}}\left(\mathrm{t}_{1}\right)=\kappa_{\mathrm{F}}\left(\mathrm{t}_{1}\right)-\gamma \\
& \geq \operatorname{rmin}\left\{\kappa_{\mathrm{F}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right), \kappa_{\mathrm{F}}\left(\mathrm{t}_{2}\right)\right\}-\gamma \\
& =\operatorname{rmin}\left\{\kappa_{\mathrm{F}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)-\gamma, \kappa_{\mathrm{F}}\left(\mathrm{t}_{2}\right)-\gamma\right\} \\
& \left(\kappa_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}}\left(\mathrm{t}_{1}\right)=\operatorname{rmin}\left\{\left(\kappa_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right),\left(\kappa_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
& \left(\mathrm{v}_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}}\left(\mathrm{t}_{1}\right)=\mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{1}\right)+\alpha \\
& \leq \max \left\{\mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right), \mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\}+\alpha \\
& =\max \left\{\mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)+\alpha, \mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{2}\right)+\alpha\right\} \\
& \left(\mathrm{v}_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}}\left(\mathrm{t}_{1}\right)=\max \left\{\left(\mathrm{v}_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right),\left(\mathrm{v}_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\}, \\
& \left(\mathrm{v}_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}}\left(\mathrm{t}_{1}\right)=\mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{1}\right)+\beta \\
& \leq \max \left\{\mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right), \mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{2}\right)\right\}+\beta \\
& =\max \left\{\mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)+\beta, \mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{2}\right)+\beta\right\} \\
& \left(\mathrm{v}_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}}\left(\mathrm{t}_{1}\right)=\max \left\{\left(\mathrm{v}_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right),\left(\mathrm{v}_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\}, \\
& \left(\mathrm{v}_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}}\left(\mathrm{t}_{1}\right)=\mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{1}\right)-\gamma \\
& \leq \max \left\{\mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right), \mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{2}\right)\right\}-\gamma \\
& =\max \left\{\mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)-\gamma, \mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{2}\right)-\gamma\right\} \\
& \left(\mathrm{v}_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}}\left(\mathrm{t}_{1}\right)=\max \left\{\left(\mathrm{v}_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right),\left(\mathrm{v}_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\},
\end{aligned}
$$

for all $\mathrm{t}_{1}, \mathrm{t}_{2} \in \mathrm{Y}$ and for $\kappa_{\mathrm{T}, \mathrm{I}, \mathrm{F}}, \alpha, \beta \in[[0,0], 7]$ and $\gamma \in[[0,0], ¥]$, where for $\mathrm{v}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}, \alpha, \beta \in[0, \Gamma]$ and $\gamma \in$ $[0, £]$. Hence $B_{\alpha, \beta, \gamma}^{\mathrm{T}}$ of B is a NCID of Y.

Theorem 3.2.3 Let B be a neutrosophic cubic set of Y such that NCT $B_{\alpha, \beta, \gamma}^{T}$ of B is a NCID of Y for all $\kappa_{\mathrm{T}, \mathrm{I}, \mathrm{F}}, \alpha, \beta \in[[0,0], 7]$ and $\gamma \in[[0,0], ¥]$, where for $\mathrm{u}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}, \alpha, \beta \in[0, \Gamma]$ and $\gamma \in[0, £]$. Then B is a NCID of Y.

Proof. Suppose $B_{\alpha, \beta, \gamma}^{T}$ is a NCID of Y, where for $\kappa_{T, I, F}, \alpha, \beta \in[[0,0], \tau]$ and $\gamma \in[[0,0], ¥]$, and for $v_{T, I, F}$, $\alpha, \beta \in[0, \Gamma]$ and $\gamma \in[0, £]$ and $\mathrm{t}_{1}, \mathrm{t}_{2} \in \mathrm{Y}$. Then

$$
\begin{aligned}
& \kappa_{\mathrm{T}}(0)+\alpha=\left(\kappa_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}}(0) \geq\left(\kappa_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}}\left(\mathrm{t}_{1}\right)=\kappa_{\mathrm{T}}\left(\mathrm{t}_{1}\right)+\alpha, \\
& \kappa_{\mathrm{I}}(0)+\beta=\left(\kappa_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}}(0) \geq\left(\kappa_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}}\left(\mathrm{t}_{1}\right)=\kappa_{\mathrm{I}}\left(\mathrm{t}_{1}\right)+\beta, \\
& \kappa_{\mathrm{F}}(0)-\gamma=\left(\kappa_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}}(0) \geq\left(\kappa_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}}\left(\mathrm{t}_{1}\right)=\kappa_{\mathrm{F}}\left(\mathrm{t}_{1}\right)-\gamma,
\end{aligned}
$$

and

$$
\begin{aligned}
& \mathrm{v}_{\mathrm{T}}(0)+\alpha=\left(\mathrm{v}_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}}(0) \leq\left(\mathrm{v}_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}}\left(\mathrm{t}_{1}\right)=\mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{1}\right)+\alpha, \\
& \mathrm{v}_{\mathrm{I}}(0)+\beta=\left(\mathrm{v}_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}}(0) \leq\left(\mathrm{v}_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}}\left(\mathrm{t}_{1}\right)=\mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{1}\right)+\beta \\
& \mathrm{v}_{\mathrm{F}}(0)-\gamma=\left(\mathrm{v}_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}}(0) \leq\left(\mathrm{v}_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}}\left(\mathrm{t}_{1}\right)=\mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{1}\right)-\gamma,
\end{aligned}
$$

which imply $\kappa_{T}(0) \geq \kappa_{T}\left(t_{1}\right), \kappa_{I}(0) \geq \kappa_{I}\left(t_{1}\right), \kappa_{F}(0) \geq \kappa_{F}\left(t_{1}\right)$ and $v_{T}(0) \leq v_{T}\left(t_{1}\right), v_{I}(0) \leq v_{I}\left(t_{1}\right)$, $v_{F}(0) \leq v_{F}\left(t_{1}\right)$, now

$$
\begin{aligned}
& \kappa_{\mathrm{T}}\left(\mathrm{t}_{1}\right)+\alpha=\left(\kappa_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}}\left(\mathrm{t}_{1}\right) \geq \operatorname{rmin}\left\{\left(\kappa_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right),\left(\kappa_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\} \\
& =\operatorname{rmin}\left\{\kappa_{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)+\alpha, \kappa_{\mathrm{T}}\left(\mathrm{t}_{2}\right)+\alpha\right\} \\
& \kappa_{\mathrm{T}}\left(\mathrm{t}_{1}\right)+\alpha=\operatorname{rmin}\left\{\kappa_{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right), \kappa_{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\}+\alpha, \\
& \kappa_{\mathrm{I}}\left(\mathrm{t}_{1}\right)+\beta=\left(\kappa_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}}\left(\mathrm{t}_{1}\right) \geq \operatorname{rmin}\left\{\left(\kappa_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right),\left(\kappa_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\} \\
& =\operatorname{rmin}\left\{\kappa_{\mathrm{I}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)+\beta, \kappa_{\mathrm{I}}\left(\mathrm{t}_{2}\right)+\beta\right\} \\
& \kappa_{\mathrm{I}}\left(\mathrm{t}_{1}\right)+\beta=\operatorname{rmin}\left\{\kappa_{\mathrm{I}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right), \kappa_{\mathrm{I}}\left(\mathrm{t}_{2}\right)\right\}+\beta, \\
& \kappa_{\mathrm{F}}\left(\mathrm{t}_{1}\right)-\gamma=\left(\kappa_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}}\left(\mathrm{t}_{1}\right) \geq \mathrm{rmin}\left\{\left(\kappa_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right),\left(\kappa_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\} \\
& =\operatorname{rmin}\left\{\kappa_{\mathrm{F}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)-\gamma, \kappa_{\mathrm{F}}\left(\mathrm{t}_{2}\right)-\gamma\right\} \\
& \kappa_{\mathrm{F}}\left(\mathrm{t}_{1}\right)-\gamma=\operatorname{rmin}\left\{\kappa_{\mathrm{F}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right), \kappa_{\mathrm{F}}\left(\mathrm{t}_{2}\right)\right\}-\gamma,
\end{aligned}
$$

and

$$
\begin{aligned}
& \mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{1}\right)+\alpha=\left(\mathrm{v}_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}}\left(\mathrm{t}_{1}\right) \leq \max \left\{\left(\mathrm{v}_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right),\left(\mathrm{v}_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\} \\
& =\max \left\{\mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)+\alpha, \mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{2}\right)+\alpha\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{1}\right)+\alpha=\max \left\{\mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right), \mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\}+\alpha, \\
& \mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{1}\right)+\beta=\left(\mathrm{v}_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}}\left(\mathrm{t}_{1}\right) \leq \max \left\{\left(\mathrm{v}_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right),\left(\mathrm{v}_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\} \\
& =\max \left\{\mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)+\beta, \mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{2}\right)+\beta\right\} \\
& \mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{1}\right)+\beta=\max \left\{\mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right), \mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{2}\right)\right\}+\beta, \\
& \mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{1}\right)-\gamma=\left(\mathrm{v}_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}}\left(\mathrm{t}_{1}\right) \leq \max \left\{\left(\mathrm{v}_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right),\left(\mathrm{v}_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\} \\
& =\max \left\{\mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)-\gamma, \mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{2}\right)-\gamma\right\} \\
& \mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{1}\right)-\gamma=\max \left\{\mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right), \mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{2}\right)\right\}-\gamma,
\end{aligned}
$$

which imply $\kappa_{T}\left(\mathrm{t}_{1}\right) \geq \operatorname{rmin}\left\{\kappa_{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right), \kappa_{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\}, \kappa_{\mathrm{I}}\left(\mathrm{t}_{1}\right) \geq \operatorname{rmin}\left\{\kappa_{\mathrm{I}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right), \kappa_{\mathrm{I}}\left(\mathrm{t}_{2}\right)\right\}, \kappa_{\mathrm{F}}\left(\mathrm{t}_{1}\right) \geq \operatorname{rmin}\left\{\kappa_{\mathrm{F}}\left(\mathrm{t}_{1} *\right.\right.$ $\left.\left.\mathrm{t}_{2}\right), \kappa_{\mathrm{F}}\left(\mathrm{t}_{2}\right)\right\} \quad$ and $\quad \mathrm{u}_{\mathrm{T}}\left(\mathrm{t}_{1}\right) \leq \max \left\{\mathrm{u}_{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right), \mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\} \quad, \quad \mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{1}\right) \leq \max \left\{\mathrm{u}_{\mathrm{I}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right), \mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{2}\right)\right\} \quad, \quad \mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{1}\right) \leq$ $\max \left\{v_{F}\left(t_{1} * t_{2}\right), v_{F}\left(t_{2}\right)\right\}$ for all $t_{1}, t_{2} \in Y$. Hence B is a NCID of Y.

Theorem 3.2.4 Let B be a NCID of Y for some $\kappa_{T, I, F}, \alpha, \beta \in[[0,0], 7]$ and $\gamma \in[[0,0]$, $¥]$, where for $\mathrm{v}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}$, $\alpha, \beta \in[0, \Gamma]$ and $\gamma \in[0, £]$. Then NCT $B_{\alpha, \beta, \gamma}^{T}$ of B is a NCSU of Y.

Proof. Assume $t_{1}, t_{2} \in Y$. Then

$$
\begin{aligned}
& \left(\kappa_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)=\kappa_{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)+\alpha \\
& \geq \operatorname{rmin}\left\{\kappa_{\mathrm{T}}\left(\mathrm{t}_{2} *\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)\right), \kappa_{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\}+\alpha \\
& =\operatorname{rmin}\left\{\kappa_{\mathrm{T}}(0), \kappa_{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\}+\alpha \\
& \geq \operatorname{rmin}\left\{\kappa_{\mathrm{T}}\left(\mathrm{t}_{1}\right), \kappa_{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\}+\alpha \\
& =\operatorname{rmin}\left\{\kappa_{\mathrm{T}}\left(\mathrm{t}_{1}\right)+\alpha, \kappa_{\mathrm{T}}\left(\mathrm{t}_{2}\right)+\alpha\right\} \\
& \left(\kappa_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)=\operatorname{rmin}\left\{\left(\kappa_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}}\left(\mathrm{t}_{1}\right),\left(\kappa_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\} \\
& \left(\kappa_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \geq \operatorname{rmin}\left\{\left(\kappa_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}}\left(\mathrm{t}_{1}\right),\left(\kappa_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\}, \\
& \left(\kappa_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)=\kappa_{\mathrm{I}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)+\beta \\
& \geq \operatorname{rmin}\left\{\kappa_{\mathrm{I}}\left(\mathrm{t}_{2} *\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)\right), \kappa_{\mathrm{I}}\left(\mathrm{t}_{2}\right)\right\}+\beta \\
& =\operatorname{rmin}\left\{\kappa_{\mathrm{I}}(0), \kappa_{\mathrm{I}}\left(\mathrm{t}_{2}\right)\right\}+\beta \\
& \geq \mathrm{rmin}_{2}\left\{\kappa_{\mathrm{I}}\left(\mathrm{t}_{1}\right), \kappa_{\mathrm{I}}\left(\mathrm{t}_{2}\right)\right\}+\beta \\
& =\mathrm{rmin}_{2}\left\{\kappa_{\mathrm{I}}\left(\mathrm{t}_{1}\right)+\beta, \kappa_{\mathrm{I}}\left(\mathrm{t}_{2}\right)+\beta\right\} \\
& \left(\kappa_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)=\mathrm{rmin}_{\mathrm{rmin}}\left\{\left(\kappa_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}}\left(\mathrm{t}_{1}\right),\left(\kappa_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\} \\
& \left(\kappa_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \geq \operatorname{rmin}\left\{\left(\kappa_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}}\left(\mathrm{t}_{1}\right),\left(\kappa_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\}, \\
& \left(\kappa_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)=\kappa_{\mathrm{F}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)-\gamma
\end{aligned}
$$

$$
\begin{aligned}
& \geq \operatorname{rmin}\left\{\kappa_{\mathrm{F}}\left(\mathrm{t}_{2} *\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)\right), \kappa_{\mathrm{F}}\left(\mathrm{t}_{2}\right)\right\}-\gamma \\
& =\operatorname{rmin}\left\{\kappa_{\mathrm{F}}(0), \kappa_{\mathrm{F}}\left(\mathrm{t}_{2}\right)\right\}-\gamma \\
& \geq \operatorname{rmin}\left\{\kappa_{\mathrm{F}}\left(\mathrm{t}_{1}\right), \kappa_{\mathrm{F}}\left(\mathrm{t}_{2}\right)\right\}-\gamma \\
& =\operatorname{rmin}\left\{\kappa_{\mathrm{F}}\left(\mathrm{t}_{1}\right)-\gamma, \kappa_{\mathrm{F}}\left(\mathrm{t}_{2}\right)-\gamma\right\} \\
& \left(\kappa_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)=\operatorname{rmin}\left\{\left(\kappa_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}}\left(\mathrm{t}_{1}\right),\left(\kappa_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\} \\
& \left(\kappa_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \geq \operatorname{rmin}\left\{\left(\kappa_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}}\left(\mathrm{t}_{1}\right),\left(\kappa_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
& \left(\mathrm{v}_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)=\mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)+\alpha \\
& \leq \max \left\{\mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{2} *\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)\right), \mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\}+\alpha \\
& =\max \left\{\mathrm{v}_{\mathrm{T}}(0), \mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\}+\alpha \\
& \leq \max \left\{\mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{1}\right), \mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\}+\alpha \\
& =\max \left\{\mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{1}\right)+\alpha, \mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{2}\right)+\alpha\right\} \\
& \left(\mathrm{v}_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)=\max \left\{\left(\mathrm{v}_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}}\left(\mathrm{t}_{1}\right),\left(\mathrm{v}_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\} \\
& \left(\mathrm{v}_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \leq \max \left\{\left(\mathrm{v}_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}}\left(\mathrm{t}_{1}\right),\left(\mathrm{v}_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\},
\end{aligned}
$$

$$
\left(v_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)=\mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)+\beta
$$

$$
\leq \max \left\{\mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{2} *\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)\right), \mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{2}\right)\right\}+\beta
$$

$$
=\max \left\{\mathrm{v}_{\mathrm{I}}(0), \mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{2}\right)\right\}+\beta
$$

$$
\leq \max \left\{\mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{1}\right), \mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{2}\right)\right\}+\beta
$$

$$
=\max \left\{v_{\mathrm{I}}\left(\mathrm{t}_{1}\right)+\beta, \mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{2}\right)+\beta\right\}
$$

$$
\left(v_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)=\max \left\{\left(\mathrm{v}_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}}\left(\mathrm{t}_{1}\right),\left(\mathrm{v}_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\}
$$

$$
\left(v_{I}\right)_{\beta}^{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \leq \max \left\{\left(\mathrm{v}_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}}\left(\mathrm{t}_{1}\right),\left(\mathrm{v}_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\},
$$

$$
\left(v_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)=\mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)-\gamma
$$

$$
\leq \max \left\{\mathrm{u}_{\mathrm{F}}\left(\mathrm{t}_{2} *\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)\right), \mathrm{u}_{\mathrm{F}}\left(\mathrm{t}_{2}\right)\right\}-\gamma
$$

$$
=\max \left\{v_{F}(0), v_{F}\left(\mathrm{t}_{2}\right)\right\}-\gamma
$$

$$
\leq \max \left\{\mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{1}\right), \mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{2}\right)\right\}-\gamma
$$

$$
=\max \left\{\mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{1}\right)-\gamma, \mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{2}\right)-\gamma\right\}
$$

$$
\left(v_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)=\max \left\{\left(\mathrm{v}_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}}\left(\mathrm{t}_{1}\right),\left(\mathrm{v}_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\}
$$

$$
\left(v_{\mathrm{F}}\right)_{Y}^{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \leq \max \left\{\left(\mathrm{v}_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}}\left(\mathrm{t}_{1}\right),\left(v_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\} .
$$

Hence $\mathrm{B}_{\alpha, \beta, \gamma}^{\mathrm{T}}$ is a NCSU of Y.

Theorem 3.2.5 If NCT $B_{\alpha, \beta, \gamma}^{\mathrm{T}}$ of B is a NCID of Y for some $\kappa_{\mathrm{T}, \mathrm{I}, \mathrm{F}}, \alpha, \beta \in[[0,0], 7]$ and $\gamma \in[[0,0], \ngtr]$, and for $\mathrm{v}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}, \alpha, \beta \in[0, \Gamma]$ and $\gamma \in[0, £]$. Then B is a NCSU of Y .

Proof. Suppose $B_{\alpha, \beta, \gamma}^{T}$ of B is a NCID of Y. Then

$$
\begin{aligned}
& \left(\kappa_{\mathrm{T}}\right)\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)+\alpha=\left(\kappa_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \\
& \geq \operatorname{rmin}\left\{\left(\kappa_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}}\left(\mathrm{t}_{2} *\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)\right),\left(\kappa_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\} \\
& =\operatorname{rmin}\left\{\left(\kappa_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}}(0),\left(\kappa_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\} \\
& \geq \operatorname{rmin}\left\{\left(\kappa_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}}\left(\mathrm{t}_{1}\right),\left(\kappa_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\} \\
& =\operatorname{rmin}\left\{\kappa_{\mathrm{T}}\left(\mathrm{t}_{1}\right)+\alpha, \kappa_{\mathrm{T}}\left(\mathrm{t}_{2}\right)+\alpha\right\} \\
& \left(\kappa_{\mathrm{T}}\right)\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)+\alpha=\operatorname{rmin}\left\{\kappa_{\mathrm{T}}\left(\mathrm{t}_{1}\right), \kappa_{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\}+\alpha,
\end{aligned}
$$

$$
\left(\kappa_{\mathrm{I}}\right)\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)+\beta=\left(\kappa_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)
$$

$$
\geq \operatorname{rmin}\left\{\left(\kappa_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}}\left(\mathrm{t}_{2} *\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)\right),\left(\kappa_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\}
$$

$$
=\operatorname{rmin}\left\{\left(\kappa_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}}(0),\left(\kappa_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\}
$$

$$
\geq \operatorname{rmin}\left\{\left(\kappa_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}}\left(\mathrm{t}_{1}\right),\left(\kappa_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\}
$$

$$
=\operatorname{rmin}\left\{\kappa_{\mathrm{I}}\left(\mathrm{t}_{1}\right)+\beta, \kappa_{\mathrm{I}}\left(\mathrm{t}_{2}\right)+\beta\right\}
$$

$$
\left(\kappa_{\mathrm{I}}\right)\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)+\beta=\operatorname{rmin}\left\{\kappa_{\mathrm{I}}\left(\mathrm{t}_{1}\right), \mathrm{\kappa}_{\mathrm{I}}\left(\mathrm{t}_{2}\right)\right\}+\beta,
$$

$$
\left(\kappa_{\mathrm{F}}\right)\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)-\gamma=\left(\kappa_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)
$$

$$
\geq \operatorname{rmin}\left\{\left(\kappa_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}}\left(\mathrm{t}_{2} *\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)\right),\left(\kappa_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\}
$$

$$
=\operatorname{rmin}\left\{\left(\kappa_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}}(0),\left(\kappa_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\}
$$

$$
\geq \operatorname{rmin}\left\{\left(\kappa_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}}\left(\mathrm{t}_{1}\right),\left(\kappa_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\}
$$

$$
=\operatorname{rmin}\left\{\kappa_{\mathrm{F}}\left(\mathrm{t}_{1}\right)-\gamma, \kappa_{\mathrm{F}}\left(\mathrm{t}_{2}\right)-\gamma\right\}
$$

$$
\left(\kappa_{\mathrm{F}}\right)\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)-\gamma=\operatorname{rmin}\left\{\mathrm{\kappa}_{\mathrm{F}}\left(\mathrm{t}_{1}\right), \mathrm{\kappa}_{\mathrm{F}}\left(\mathrm{t}_{2}\right)\right\}-\gamma
$$

$\Rightarrow \kappa_{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \geq \operatorname{rmin}\left\{\kappa_{\mathrm{T}}\left(\mathrm{t}_{1}\right), \kappa_{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\}, \mathrm{\kappa}_{\mathrm{I}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \geq \operatorname{rmin}\left\{\kappa_{\mathrm{I}}\left(\mathrm{t}_{1}\right), \kappa_{\mathrm{I}}\left(\mathrm{t}_{2}\right)\right\}$ and $\kappa_{\mathrm{F}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)$
$\geq \operatorname{rmin}\left\{\kappa_{\mathrm{F}}\left(\mathrm{t}_{1}\right), \kappa_{\mathrm{F}}\left(\mathrm{t}_{2}\right)\right\}$ and now

$$
\begin{aligned}
& \left(\mathrm{v}_{\mathrm{T}}\right)\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)+\alpha=\left(\mathrm{v}_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \\
& \leq \max \left\{\left(\mathrm{v}_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}}\left(\mathrm{t}_{2} *\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)\right),\left(\mathrm{v}_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\} \\
& =\max \left\{\left(\mathrm{v}_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}}(0),\left(\mathrm{v}_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\} \\
& \leq \max \left\{\left(\mathrm{v}_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}}\left(\mathrm{t}_{1}\right),\left(\mathrm{v}_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\} \\
& =\max \left\{\mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{1}\right)+\alpha, \mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{2}\right)+\alpha\right\} \\
& \left(\mathrm{v}_{\mathrm{T}}\right)\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)+\alpha=\max \left\{\mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{1}\right), \mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\}+\alpha,
\end{aligned}
$$

$$
\begin{aligned}
& \left(v_{I}\right)\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)+\beta=\left(\mathrm{v}_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \\
& \leq \max \left\{\left(\mathrm{v}_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}}\left(\mathrm{t}_{2} *\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)\right),\left(\mathrm{v}_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\} \\
& =\max \left\{\left(\mathrm{v}_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}}(0),\left(\mathrm{v}_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\} \\
& \leq \max \left\{\left(\mathrm{v}_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}}\left(\mathrm{t}_{1}\right),\left(\mathrm{v}_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\} \\
& =\max \left\{\mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{1}\right)+\beta, \mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{2}\right)+\beta\right\} \\
& \left(\mathrm{v}_{\mathrm{I}}\right)\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)+\beta=\max \left\{\mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{1}\right), \mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{2}\right)\right\}+\beta
\end{aligned}
$$

$$
\left(v_{F}\right)\left(t_{1} * t_{2}\right)-\gamma=\left(v_{F}\right)_{\gamma}^{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)
$$

$$
\leq \max \left\{\left(v_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}}\left(\mathrm{t}_{2} *\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)\right),\left(\mathrm{v}_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\}
$$

$$
=\max \left\{\left(v_{F}\right)_{\gamma}^{\mathrm{T}}(0),\left(\mathrm{v}_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\}
$$

$$
\leq \max \left\{\left(v_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}}\left(\mathrm{t}_{1}\right),\left(\mathrm{v}_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\}
$$

$$
=\max \left\{\mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{1}\right)-\gamma, \mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{2}\right)-\gamma\right\}
$$

$$
\left(v_{F}\right)\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)-\gamma=\max \left\{\mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{1}\right), \mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{2}\right)\right\}-\gamma
$$

$\Rightarrow \mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \leq \max \left\{\mathrm{u}_{\mathrm{T}}\left(\mathrm{t}_{1}\right), \mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\}, \mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \leq \max \left\{\mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{1}\right), \mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{2}\right)\right\} \quad$ and $\quad \mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \leq$ $\max \left\{\mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{1}\right), \mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{2}\right)\right\}$. Hence B is a NCSU of Y .

Theorem 3.2.6 Intersection of any two neutrosophic cubic translations of a neutrosophic cubic BF ideals B of Y is a neutrosophic cubic BF ideal of Y .

Proof. Suppose $\mathrm{B}_{\alpha, \beta, \gamma}^{\mathrm{T}}$ and $\mathrm{B}_{\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}}^{\mathrm{T}}$ are two neutrosophic cubic translations of neutrosophic cubic BF ideal B and C of Y respectively, where for $B_{\alpha, \beta, \gamma}^{\mathrm{T}}$, for $\kappa_{\mathrm{T}, \mathrm{I}, \mathrm{F}}, \alpha, \beta \in[[0,0], 7], \gamma \in[[0,0], \ngtr]$, for $\mathrm{v}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}, \alpha, \beta \in[0, \Gamma]$, $\gamma \in[0, £]$ and for $\mathrm{B}_{\alpha \prime, \beta, \gamma^{\prime}}^{\mathrm{T}}$, for $\kappa_{\mathrm{T}, \mathrm{I}, \mathrm{F}} \alpha^{\prime}, \beta^{\prime} \in[[0,0], 7], \gamma^{\prime} \in[[0,0], ¥]$, for $\mathrm{v}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}, \alpha^{\prime}, \beta^{\prime} \in[0, \Gamma], \gamma^{\prime} \in[0, £]$ and $\alpha \leq \alpha^{\prime}, \beta \leq \beta^{\prime}, \gamma \leq \gamma^{\prime}$ as we know that, $\mathrm{B}_{\alpha, \beta, \gamma}^{\mathrm{T}}$ and $\mathrm{B}_{\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}}^{\mathrm{T}}$ are neutrosophic cubic BF ideals of Y . So

$$
\begin{aligned}
& \left(\left(\kappa_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}} \cap\left(\kappa_{\mathrm{T}}\right)_{\alpha^{\prime}}^{\mathrm{T}}\right)\left(\mathrm{t}_{1}\right)=\operatorname{rmin}\left\{\left(\kappa_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}}\left(\mathrm{t}_{1}\right),\left(\kappa_{\mathrm{T}}\right)_{\alpha^{\prime}}^{\mathrm{T}}\left(\mathrm{t}_{1}\right)\right\} \\
& =\operatorname{rmin}\left\{\kappa_{\mathrm{T}}\left(\mathrm{t}_{1}\right)+\alpha, \kappa_{\mathrm{T}}\left(\mathrm{t}_{1}\right)+\alpha^{\prime}\right\} \\
& =\kappa_{\mathrm{T}}\left(\mathrm{t}_{1}\right)+\alpha \\
& \left(\left(\kappa_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}} \cap\left(\kappa_{\mathrm{T}}\right)_{\alpha^{\prime}}^{\mathrm{T}}\right)\left(\mathrm{t}_{1}\right)=\left(\kappa_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}}\left(\mathrm{t}_{1}\right), \\
& \left(\left(\kappa_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}} \cap\left(\kappa_{\mathrm{I}}\right)_{\beta^{\prime}}^{\mathrm{T}}\right)\left(\mathrm{t}_{1}\right)=\operatorname{rmin}\left\{\left(\kappa_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}}\left(\mathrm{t}_{1}\right),\left(\kappa_{\mathrm{I}}\right)_{\beta^{\prime}}^{\mathrm{T}}\left(\mathrm{t}_{1}\right)\right\} \\
& =\operatorname{rmin}\left\{\kappa_{\mathrm{I}}\left(\mathrm{t}_{1}\right)+\beta, \kappa_{\mathrm{I}}\left(\mathrm{t}_{1}\right)+\beta^{\prime}\right\} \\
& =\kappa_{\mathrm{I}}\left(\mathrm{t}_{1}\right)+\beta \\
& \left(\left(\kappa_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}} \cap\left(\kappa_{\mathrm{I}}\right)_{\beta^{\prime}}^{\mathrm{T}}\right)\left(\mathrm{t}_{1}\right)=\left(\kappa_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}}\left(\mathrm{t}_{1}\right),
\end{aligned}
$$

$$
\begin{aligned}
& \left(\left(\kappa_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}} \cap\left(\kappa_{\mathrm{F}}\right)_{\gamma^{\prime}}^{\mathrm{T}}\right)\left(\mathrm{t}_{1}\right)=\operatorname{rmin}\left\{\left(\kappa_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}}\left(\mathrm{t}_{1}\right),\left(\kappa_{\mathrm{F}}\right)_{\gamma^{\prime}}^{\mathrm{T}}\left(\mathrm{t}_{1}\right)\right\} \\
& =\operatorname{rmin}\left\{\kappa_{\mathrm{F}}\left(\mathrm{t}_{1}\right)-\gamma, \kappa_{\mathrm{F}}\left(\mathrm{t}_{1}\right)-\gamma^{\prime}\right\} \\
& =\kappa_{\mathrm{F}}\left(\mathrm{t}_{1}\right)-\gamma^{\prime} \\
& \left(\left(\kappa_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}} \cap\left(\kappa_{\mathrm{F}}\right)_{\gamma^{\prime}}^{\mathrm{T}}\right)\left(\mathrm{t}_{1}\right)=\left(\kappa_{\mathrm{F}}\right)_{\gamma^{\prime}}^{\mathrm{T}}\left(\mathrm{t}_{1}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \left(\left(v_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}} \cap\left(\mathrm{v}_{\mathrm{T}}\right)_{\alpha^{\prime}}^{\mathrm{T}}\right)\left(\mathrm{t}_{1}\right)=\max \left\{\left(\mathrm{v}_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}}\left(\mathrm{t}_{1}\right),\left(\mathrm{v}_{\mathrm{T}}\right)_{\alpha^{\prime}}^{\mathrm{T}}\left(\mathrm{t}_{1}\right)\right\} \\
& =\max \left\{\mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{1}\right)+\alpha, \mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{1}\right)+\alpha^{\prime}\right\} \\
& =\mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{1}\right)+\alpha^{\prime} \\
& \left(\left(\mathrm{v}_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}} \cap\left(\mathrm{v}_{\mathrm{T}}\right)_{\alpha^{\prime}}^{\mathrm{T}}\right)\left(\mathrm{t}_{1}\right)=\left(\mathrm{v}_{\mathrm{T}}\right)_{\alpha^{\prime}}^{\mathrm{T}}\left(\mathrm{t}_{1}\right), \\
& \left(\left(\mathrm{v}_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}} \cap\left(\mathrm{v}_{\mathrm{I}}\right)_{\beta^{\prime}}^{\mathrm{T}}\right)\left(\mathrm{t}_{1}\right)=\max \left\{\left(\mathrm{v}_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}}\left(\mathrm{t}_{1}\right),\left(\mathrm{v}_{\mathrm{I}}\right)_{\beta^{\prime}}^{\mathrm{T}}\left(\mathrm{t}_{1}\right)\right\} \\
& =\max \left\{\mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{1}\right)+\beta, \mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{1}\right)+\beta^{\prime}\right\} \\
& =\mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{1}\right)+\beta^{\prime} \\
& \left(\left(\mathrm{v}_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}} \cap\left(\mathrm{v}_{\mathrm{I}}\right)_{\beta^{\prime}}^{\mathrm{T}}\right)\left(\mathrm{t}_{1}\right)=\left(\mathrm{v}_{\mathrm{I}}\right)_{\beta^{\prime}}^{\mathrm{T}}\left(\mathrm{t}_{1}\right), \\
& \\
& \left(\left(\mathrm{v}_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}} \cap\left(\mathrm{v}_{\mathrm{F}}\right)_{\gamma^{\prime}}^{\mathrm{T}}\right)\left(\mathrm{t}_{1}\right)=\max \left\{\left(\mathrm{v}_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}}\left(\mathrm{t}_{1}\right),\left(\mathrm{v}_{\mathrm{F}}\right)_{\gamma^{\prime}}^{\mathrm{T}}\left(\mathrm{t}_{1}\right)\right\} \\
& =\max \left\{\mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{1}\right)-\gamma, \mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{1}\right)-\gamma^{\prime}\right\} \\
& =\mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{1}\right)-\gamma \\
& \left(\left(\mathrm{v}_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}} \cap\left(\mathrm{v}_{\mathrm{F}}\right)_{\gamma^{\prime}}^{\mathrm{T}}\right)\left(\mathrm{t}_{1}\right)=\left(\mathrm{v}_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}}\left(\mathrm{t}_{1}\right) .
\end{aligned}
$$

Hence $\mathrm{B}_{\alpha, \beta, \gamma}^{\mathrm{T}} \cap \mathrm{B}_{\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}}^{\mathrm{T}}$ is a neutrosophic cubic BF ideal of Y .
Theorem 3.2.7 Union of any two neutrosophic cubic translations of a neutrosophic cubic BF ideals B of Y is a neutrosophic cubic BF ideal of Y.

Proof. Suppose $\mathrm{B}_{\alpha, \beta, \gamma}^{\mathrm{T}}$ and $\mathrm{B}_{\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}}^{\mathrm{T}}$ are two neutrosophic cubic translations of neutrosophic cubic BF ideal B of Y respectively, where for $B_{\alpha, \beta, \gamma}^{\mathrm{T}}$, for $\left.\kappa_{\mathrm{T}, \mathrm{I} \mathrm{F}}, \alpha, \beta \in[[0,0]\rceil,\right], \gamma \in[[0,0], ¥]$, for $\mathrm{v}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}, \alpha, \beta \in[0, \Gamma], \gamma \in$ $[0, £]$ and for $B_{\alpha, \beta, \gamma^{\prime}}^{\mathrm{T}}$, for $\kappa_{\mathrm{T}, \mathrm{I}, \mathrm{F}} \alpha^{\prime}, \beta^{\prime} \in[[0,0], 7], \gamma^{\prime} \in[[0,0], ¥]$, for $\mathrm{v}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}, \alpha^{\prime}, \beta^{\prime} \in[0, \Gamma], \gamma^{\prime} \in[0, £]$ and $\alpha \geq \alpha^{\prime}, \beta \geq \beta^{\prime}, \gamma \geq \gamma^{\prime}$ as we know that, $\mathrm{B}_{\alpha, \beta, \gamma}^{\mathrm{T}}$ and $\mathrm{B}_{\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}}^{\mathrm{T}}$ are neutrosophic cubic BF ideals of Y. Then

$$
\begin{aligned}
& \left(\left(\kappa_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}} \cup\left(\kappa_{\mathrm{T}}\right)_{\alpha^{\prime}}^{\mathrm{T}}\right)\left(\mathrm{t}_{1}\right)=\operatorname{rmax}\left\{\left(\kappa_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}}\left(\mathrm{t}_{1}\right),\left(\kappa_{\mathrm{T}}\right)_{\alpha^{\prime}}^{\mathrm{T}}\left(\mathrm{t}_{1}\right)\right\} \\
& =\operatorname{rmax}\left\{\kappa_{\mathrm{T}}\left(\mathrm{t}_{1}\right)+\alpha, \kappa_{\mathrm{T}}\left(\mathrm{t}_{1}\right)+\alpha^{\prime}\right\} \\
& =\kappa_{\mathrm{T}}\left(\mathrm{t}_{1}\right)+\alpha \\
& \left(\left(\kappa_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}} \cup\left(\kappa_{\mathrm{T}}\right)_{\alpha^{\prime}}^{\mathrm{T}}\right)\left(\mathrm{t}_{1}\right)=\left(\kappa_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}}\left(\mathrm{t}_{1}\right), \\
& \left(\left(\kappa_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}} \cup\left(\kappa_{\mathrm{I}}\right)_{\beta^{\prime}}^{\mathrm{T}}\right)\left(\mathrm{t}_{1}\right)=\operatorname{rmax}\left\{\left(\kappa_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}}\left(\mathrm{t}_{1}\right),\left(\kappa_{\mathrm{I}}\right)_{\beta^{\prime}}^{\mathrm{T}}\left(\mathrm{t}_{1}\right)\right\} \\
& =\operatorname{rmax}\left\{\kappa_{\mathrm{I}}\left(\mathrm{t}_{1}\right)+\beta, \kappa_{\mathrm{I}}\left(\mathrm{t}_{1}\right)+\beta^{\prime}\right\} \\
& =\kappa_{\mathrm{I}}\left(\mathrm{t}_{1}\right)+\beta \\
& \left(\left(\kappa_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}} \cup\left(\kappa_{\mathrm{I}}\right)_{\beta^{\prime}}^{\mathrm{T}}\right)\left(\mathrm{t}_{1}\right)=\left(\kappa_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}}\left(\mathrm{t}_{1}\right),
\end{aligned}
$$

$$
\begin{aligned}
& \left(\left(\kappa_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}} \cup\left(\kappa_{\mathrm{F}}\right)_{\gamma^{\prime}}^{\mathrm{T}}\right)\left(\mathrm{t}_{1}\right)=\operatorname{rmax}\left\{\left(\kappa_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}}\left(\mathrm{t}_{1}\right),\left(\kappa_{\mathrm{F}}\right)_{\gamma^{\prime}}^{\mathrm{T}}\left(\mathrm{t}_{1}\right)\right\} \\
& =\operatorname{rmax}\left\{\kappa_{\mathrm{F}}\left(\mathrm{t}_{1}\right)-\gamma, \kappa_{\mathrm{F}}\left(\mathrm{t}_{1}\right)-\gamma^{\prime}\right\} \\
& =\kappa_{\mathrm{F}}\left(\mathrm{t}_{1}\right)-\gamma^{\prime} \\
& \left(\left(\kappa_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}} \cup\left(\kappa_{\mathrm{F}}\right)_{\gamma^{\prime}}^{\mathrm{T}}\right)\left(\mathrm{t}_{1}\right)=\left(\kappa_{\mathrm{F}}\right)_{\gamma^{\prime}}^{\mathrm{T}}\left(\mathrm{t}_{1}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \left(\left(v_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}} \cup\left(\mathrm{v}_{\mathrm{T}}\right)_{\alpha^{\prime}}^{\mathrm{T}}\right)\left(\mathrm{t}_{1}\right)=\min \left\{\left(\mathrm{v}_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}}\left(\mathrm{t}_{1}\right),\left(\mathrm{v}_{\mathrm{T}}\right)_{\alpha^{\prime}}^{\mathrm{T}}\left(\mathrm{t}_{1}\right)\right\} \\
& =\min \left\{\mathrm{u}_{\mathrm{T}}\left(\mathrm{t}_{1}\right)+\alpha, \mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{1}\right)+\alpha^{\prime}\right\} \\
& =\mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{1}\right)+\alpha^{\prime} \\
& \left(\left(\mathrm{v}_{\mathrm{T}}\right)_{\alpha}^{\mathrm{T}} \cup\left(\mathrm{v}_{\mathrm{T}}\right)_{\alpha^{\prime}}^{\mathrm{T}}\right)\left(\mathrm{t}_{1}\right)=\left(\mathrm{v}_{\mathrm{T}}\right)_{\alpha^{\prime}}^{\mathrm{T}}\left(\mathrm{t}_{1}\right), \\
& \left(\left(\mathrm{v}_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}} \cup\left(\mathrm{v}_{\mathrm{I}}\right)_{\beta^{\prime}}^{\mathrm{T}}\right)\left(\mathrm{t}_{1}\right)=\min \left\{\left(\mathrm{v}_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}}\left(\mathrm{t}_{1}\right),\left(\mathrm{v}_{\mathrm{I}}\right)_{\beta^{\prime}}^{\mathrm{T}}\left(\mathrm{t}_{1}\right)\right\} \\
& =\min \left\{\mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{1}\right)+\beta, \mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{1}\right)+\beta^{\prime}\right\} \\
& =v_{\mathrm{I}}\left(\mathrm{t}_{1}\right)+\beta^{\prime} \\
& \left(\left(\mathrm{v}_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}} \cup\left(\mathrm{v}_{\mathrm{I}}\right)_{\beta^{\prime}}^{\mathrm{T}}\right)\left(\mathrm{t}_{1}\right)=\left(\mathrm{v}_{\mathrm{I}}\right)_{\beta}^{\mathrm{T}}\left(\mathrm{t}_{1}\right), \\
& \left(\left(\mathrm{v}_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}} \cup\left(\mathrm{v}_{\mathrm{F}}\right)_{\gamma^{\prime}}^{\mathrm{T}}\right)\left(\mathrm{t}_{1}\right)=\min \left\{\left(\mathrm{v}_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}}\left(\mathrm{t}_{1}\right),\left(\mathrm{v}_{\mathrm{F}}\right)_{\gamma^{\prime}}^{\mathrm{T}}\left(\mathrm{t}_{1}\right)\right\} \\
& =\min \left\{\mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{1}\right)-\gamma, \mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{1}\right)-\gamma^{\prime}\right\} \\
& =\mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{1}\right)-\gamma \\
& \left(\left(\mathrm{v}_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}} \cup\left(\mathrm{v}_{\mathrm{F}}\right)_{\gamma^{\prime}}^{\mathrm{T}}\right)\left(\mathrm{t}_{1}\right)=\left(\mathrm{v}_{\mathrm{F}}\right)_{\gamma}^{\mathrm{T}}\left(\mathrm{t}_{1}\right)
\end{aligned}
$$

Hence $B_{\alpha, \beta, \gamma}^{\mathrm{T}} \cup \mathrm{B}_{\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}}^{\mathrm{T}}$ is a neutrosophic cubic BF ideal of Y .
Theorem 3.2.8 Let B be a NCS of Y such that NCM B_{δ}^{M} of B is a NCID of Y for $\delta \in(0,1]$ then B is a NCID of Y.

Proof. Suppose that B_{δ}^{M} is a NCID of Y for $\delta \in(0,1]$ and $t_{1}, t_{2} \in Y$. Then $\delta . \kappa_{T}(0)=\left(\kappa_{T}\right)_{\delta}^{M}(0) \geq$ $\left(\kappa_{T}\right)_{\delta}^{M}\left(t_{1}\right)=\delta . \kappa_{T}\left(t_{1}\right)$, so $\kappa_{T}(0) \geq \kappa_{T}\left(t_{1}\right), \delta . \kappa_{I}(0)=\left(\kappa_{I}\right)_{\delta}^{M}(0) \geq\left(\kappa_{I}\right)_{\delta}^{M}\left(t_{1}\right)=\delta . \kappa_{I}\left(t_{1}\right)$, so $\kappa_{I}(0) \geq \kappa_{\mathrm{I}}\left(t_{1}\right)$, $\delta . \kappa_{F}(0)=\left(\kappa_{F}\right)_{\delta}^{\mathrm{M}}(0) \geq\left(\kappa_{\mathrm{F}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1}\right)=\delta . \kappa_{\mathrm{F}}\left(\mathrm{t}_{1}\right)$, so $\kappa_{\mathrm{F}}(0) \geq \kappa_{\mathrm{F}}\left(\mathrm{t}_{1}\right)$ and $\delta . \mathrm{v}_{\mathrm{T}}(0)=\left(\mathrm{v}_{\mathrm{T}}\right)_{\delta}^{\mathrm{M}}(0) \leq\left(\mathrm{v}_{\mathrm{T}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1}\right)$ $=\delta . v_{T}\left(t_{1}\right)$, so $v_{T}(0) \leq v_{T}\left(t_{1}\right), \delta . v_{I}(0)=\left(v_{I}\right)_{\delta}^{\mathrm{M}}(0) \leq\left(v_{I}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1}\right)=\delta . v_{\mathrm{I}}\left(\mathrm{t}_{1}\right)$, so $\mathrm{v}_{\mathrm{I}}(0) \leq \mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{1}\right)$, $\delta . v_{F}(0)=\left(v_{F}\right)_{\delta}^{M}(0) \leq\left(v_{F}\right)_{\delta}^{M}\left(t_{1}\right)=\delta . v_{F}\left(t_{1}\right)$, so $v_{F}(0) \leq v_{F}\left(t_{1}\right)$. Now

$$
\begin{aligned}
& \text { } . \kappa_{T}\left(t_{1}\right)=\left(\kappa_{\mathrm{T}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1}\right) \\
& \geq \operatorname{rmin}\left\{\left(\kappa_{\mathrm{T}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right),\left(\kappa_{\mathrm{T}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{2}\right)\right\} \\
& =\operatorname{rmin}\left\{\delta \cdot \kappa_{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right), \delta \cdot \kappa_{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\} \\
& \delta . \kappa_{\mathrm{T}}\left(\mathrm{t}_{1}\right)=\delta \cdot \operatorname{rmin}\left\{\kappa_{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right), \kappa_{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\}, \\
& \text { } . \kappa_{\mathrm{I}}\left(\mathrm{t}_{1}\right)=\left(\kappa_{\mathrm{I}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \geq \operatorname{rmin}\left\{\left(\kappa_{I}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right),\left(\kappa_{\mathrm{I}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{2}\right)\right\} \\
& =\operatorname{rmin}\left\{\delta \cdot \kappa_{\mathrm{I}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right), \delta \cdot \kappa_{\mathrm{I}}\left(\mathrm{t}_{2}\right)\right\} \\
& \delta . \kappa_{\mathrm{I}}\left(\mathrm{t}_{1}\right)=\delta \cdot \operatorname{rmin}\left\{\kappa_{\mathrm{I}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right), \kappa_{\mathrm{I}}\left(\mathrm{t}_{2}\right)\right\}, \\
& \delta . \kappa_{\mathrm{F}}\left(\mathrm{t}_{1}\right)=\left(\kappa_{\mathrm{F}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1}\right) \\
& \geq \operatorname{rmin}\left\{\left(\kappa_{\mathrm{F}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right),\left(\kappa_{\mathrm{F}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{2}\right)\right\} \\
& =\operatorname{rmin}\left\{\delta \cdot \kappa_{\mathrm{F}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right), \delta \cdot \kappa_{\mathrm{F}}\left(\mathrm{t}_{2}\right)\right\} \\
& \text { ס. } \kappa_{\mathrm{F}}\left(\mathrm{t}_{1}\right)=\delta \cdot \operatorname{rmin}\left\{\kappa_{\mathrm{F}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right), \kappa_{\mathrm{F}}\left(\mathrm{t}_{2}\right)\right\},
\end{aligned}
$$

so $\quad \kappa_{T}\left(\mathrm{t}_{1}\right) \geq \operatorname{rmin}\left\{\kappa_{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right), \kappa_{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\}, \kappa_{\mathrm{I}}\left(\mathrm{t}_{1}\right) \geq \operatorname{rmin}\left\{\kappa_{\mathrm{I}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right), \kappa_{\mathrm{I}}\left(\mathrm{t}_{2}\right)\right\} \quad$ and $\quad \kappa_{\mathrm{F}}\left(\mathrm{t}_{1}\right) \geq \operatorname{rmin}\left\{\kappa_{\mathrm{F}}\left(\mathrm{t}_{1} *\right.\right.$ $\left.\left.\mathrm{t}_{2}\right), \mathrm{\kappa}_{\mathrm{F}}\left(\mathrm{t}_{2}\right)\right\}$ and also

$$
\begin{aligned}
& \text { } . \mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{1}\right)=\left(\mathrm{v}_{\mathrm{T}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1}\right) \\
& \leq \max \left\{\left(\mathrm{v}_{\mathrm{T}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right),\left(\mathrm{v}_{\mathrm{T}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{2}\right)\right\} \\
& =\max \left\{\delta \cdot \mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right), \delta \cdot \mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\} \\
& \delta \cdot \mathrm{u}_{\mathrm{T}}\left(\mathrm{t}_{1}\right)=\delta \cdot \max \left\{\mathrm{u}_{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right), \mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\},
\end{aligned}
$$

$$
\text { . . } v_{\mathrm{I}}\left(\mathrm{t}_{1}\right)=\left(\mathrm{v}_{\mathrm{I}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1}\right)
$$

$$
\leq \max \left\{\left(v_{\mathrm{I}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right),\left(\mathrm{v}_{\mathrm{I}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{2}\right)\right\}
$$

$$
=\max \left\{\delta \cdot v_{\mathrm{I}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right), \delta \cdot \mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{2}\right)\right\}
$$

$$
\delta . v_{I}\left(\mathrm{t}_{1}\right)=\delta \cdot \max \left\{\mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right), \mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{2}\right)\right\},
$$

$$
\text { ס. } v_{\mathrm{F}}\left(\mathrm{t}_{1}\right)=\left(v_{\mathrm{F}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1}\right)
$$

$$
\leq \max \left\{\left(\mathrm{v}_{\mathrm{F}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right),\left(\mathrm{u}_{\mathrm{F}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{2}\right)\right\}
$$

$$
=\max \left\{\delta \cdot v_{F}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right), \delta \cdot \mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{2}\right)\right\}
$$

$$
\delta . \mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{1}\right)=\delta \cdot \max \left\{\mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right), \mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{2}\right)\right\},
$$

so $\quad \mathrm{u}_{\mathrm{T}}\left(\mathrm{t}_{1}\right) \leq \max \left\{\mathrm{u}_{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right), \mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\}, \mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{1}\right) \leq \max \left\{\mathrm{u}_{\mathrm{I}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right), \mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{2}\right)\right\} \quad$ and $\quad \mathrm{u}_{\mathrm{F}}\left(\mathrm{t}_{1}\right) \leq \max \left\{\mathrm{u}_{\mathrm{F}}\left(\mathrm{t}_{1} *\right.\right.$ $\left.\left.t_{2}\right), v_{F}\left(t_{2}\right)\right\}$. Hence B is a NCID of Y.

Theorem 3.2.9 If B is a NCID of Y, then NCM B_{δ}^{M} of B is a NCID of Y , for all $\delta \in(0,1]$.
Proof. Let B be a NCID of Y and $\delta \in(0,1]$. Then we have $\left(\kappa_{T}\right)_{\delta}^{\mathrm{M}}(0)=\delta . \kappa_{T}(0) \geq \delta . \kappa_{T}\left(\mathrm{t}_{1}\right) \rightarrow\left(\kappa_{T}\right)_{\delta}^{\mathrm{M}}(0)=$ $\left(\kappa_{\mathrm{T}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1}\right), \quad\left(\kappa_{\mathrm{I}}\right)_{\delta}^{\mathrm{M}}(0)=\delta . \kappa_{\mathrm{I}}(0) \geq \delta . \kappa_{\mathrm{I}}\left(\mathrm{t}_{1}\right) \rightarrow\left(\kappa_{\mathrm{I}}\right)_{\delta}^{\mathrm{M}}(0)=\left(\kappa_{\mathrm{I}}\right)_{\delta}^{\mathrm{M}} \quad\left(\mathrm{t}_{1}\right), \quad\left(\kappa_{\mathrm{F}}\right)_{\delta}^{\mathrm{M}}(0)=\delta . \kappa_{\mathrm{F}}(0) \geq$ $\delta . \kappa_{\mathrm{F}}\left(\mathrm{t}_{1}\right) \rightarrow\left(\kappa_{\mathrm{F}}\right)_{\delta}^{\mathrm{M}}(0)=\left(\kappa_{\mathrm{F}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1}\right) \quad$ and $\quad\left(\mathrm{v}_{\mathrm{T}}\right)_{\delta}^{\mathrm{M}}(0)=\delta . \mathrm{v}_{\mathrm{T}}(0) \leq \delta . \mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{1}\right) \rightarrow\left(\mathrm{v}_{\mathrm{T}}\right)_{\delta}^{\mathrm{M}}(0)=\left(\mathrm{v}_{\mathrm{T}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1}\right)$,
$\left(v_{\mathrm{I}}\right)_{\delta}^{\mathrm{M}}(0)=\delta \cdot \mathrm{v}_{\mathrm{I}}(0) \leq \delta . v_{\mathrm{I}}\left(\mathrm{t}_{1}\right) \rightarrow\left(\mathrm{v}_{\mathrm{I}}\right)_{\delta}^{\mathrm{M}}(0)=\left(\mathrm{v}_{\mathrm{I}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1}\right), \quad\left(\mathrm{v}_{\mathrm{F}}\right)_{\delta}^{\mathrm{M}}(0)=\delta . v_{\mathrm{F}}(0) \leq \delta . v_{\mathrm{F}}\left(\mathrm{t}_{1}\right) \rightarrow\left(v_{\mathrm{F}}\right)_{\delta}^{\mathrm{M}}(0)=$ $\left(v_{F}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1}\right)$.

Now

$$
\begin{aligned}
& \left(\kappa_{\mathrm{T}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1}\right)=\delta \cdot \kappa_{\mathrm{T}}\left(\mathrm{t}_{1}\right) \\
& \geq \delta \cdot \operatorname{rmin}\left\{\kappa_{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right), \kappa_{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\} \\
& =\operatorname{rmin}\left\{\delta \cdot \kappa_{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right), \delta \cdot \kappa_{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\} \\
& \left(\kappa_{\mathrm{T}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1}\right)=\operatorname{rmin}\left\{\left(\kappa_{\mathrm{T}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right),\left(\kappa_{\mathrm{T}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{2}\right)\right\} \\
& \left(\kappa_{\mathrm{T}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1}\right) \geq \operatorname{rmin}\left\{\left(\kappa_{\mathrm{T}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right),\left(\kappa_{\mathrm{T}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{2}\right)\right\}, \\
& \left(\kappa_{\mathrm{I}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1}\right)=\delta \cdot \kappa_{\mathrm{I}}\left(\mathrm{t}_{1}\right) \\
& \geq \delta \cdot \mathrm{rmin}\left\{\kappa_{\mathrm{I}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right), \kappa_{\mathrm{I}}\left(\mathrm{t}_{2}\right)\right\} \\
& =\mathrm{rmin}\left\{\delta \cdot \kappa_{\mathrm{I}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right), \delta \cdot \kappa_{\mathrm{I}}\left(\mathrm{t}_{2}\right)\right\} \\
& \left.\left(\kappa_{\mathrm{I}}\right)\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1}\right)=\operatorname{rmin}\left\{\left(\kappa_{\mathrm{I}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right),\left(\kappa_{\mathrm{I}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{2}\right)\right\} \\
& \left(\kappa_{\mathrm{I}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1}\right) \geq \mathrm{rmin}\left\{\left(\kappa_{\mathrm{I}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right),\left(\kappa_{\mathrm{I}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{2}\right)\right\}, \\
& \left(\kappa_{\mathrm{F}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1}\right)=\delta \cdot \kappa_{\mathrm{F}}\left(\mathrm{t}_{1}\right) \\
& \geq \delta \cdot \mathrm{rmin}\left\{\kappa_{\mathrm{F}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right), \kappa_{\mathrm{F}}\left(\mathrm{t}_{2}\right)\right\} \\
& =\mathrm{rmin}\left\{\delta \cdot \kappa_{\mathrm{F}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right), \delta \cdot \kappa_{\mathrm{F}}\left(\mathrm{t}_{2}\right)\right\} \\
& \left(\kappa_{\mathrm{F}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1}\right)=\mathrm{rmin}\left\{\left(\kappa_{\mathrm{F}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right),\left(\kappa_{\mathrm{F}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{2}\right)\right\} \\
& \left(\kappa_{\mathrm{F}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1}\right) \geq \operatorname{rmin}\left\{\left(\kappa_{\mathrm{F}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right),\left(\kappa_{\mathrm{F}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{2}\right)\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
& \left(v_{T}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1}\right)=\delta \cdot \mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{1}\right) \\
& \leq \delta \cdot \max \left\{\mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right), \mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\} \\
& =\max \left\{\delta \cdot \mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right), \delta \cdot \mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\} \\
& \left(\mathrm{v}_{\mathrm{T}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1}\right)=\max \left\{\left(\mathrm{v}_{\mathrm{T}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right),\left(\mathrm{v}_{\mathrm{T}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{2}\right)\right\} \\
& \left(\mathrm{v}_{\mathrm{T}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1}\right) \leq \max \left\{\left(\mathrm{v}_{\mathrm{T}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right),\left(\mathrm{v}_{\mathrm{T}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{2}\right)\right\}, \\
& \left(\mathrm{v}_{\mathrm{I}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1}\right)=\delta \cdot \mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{1}\right) \\
& \leq \delta \cdot \max \left\{\mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right), \mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{2}\right)\right\} \\
& =\max \left\{\delta \cdot v_{\mathrm{I}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right), \delta \cdot v_{\mathrm{I}}\left(\mathrm{t}_{2}\right)\right\} \\
& \left(\mathrm{v}_{\mathrm{I}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1}\right)=\max \left\{\left(\mathrm{v}_{\mathrm{I}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right),\left(\mathrm{v}_{\mathrm{I}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{2}\right)\right\} \\
& \left(\mathrm{v}_{\mathrm{I}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1}\right) \leq \max \left\{\left(\mathrm{v}_{\mathrm{I}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right),\left(\mathrm{v}_{\mathrm{I}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{2}\right)\right\},
\end{aligned}
$$

$$
\begin{aligned}
& \left(v_{F}\right)_{\delta}^{M}\left(t_{1}\right)=\delta \cdot v_{F}\left(t_{1}\right) \\
& \leq \delta \cdot \max \left\{v_{F}\left(t_{1} * t_{2}\right), v_{F}\left(t_{2}\right)\right\} \\
& =\max \left\{\delta \cdot v_{F}\left(t_{1} * t_{2}\right), \delta \cdot v_{F}\left(t_{2}\right)\right\} \\
& \left(v_{F}\right)_{\delta}^{M}\left(t_{1}\right)=\max \left\{\left(v_{F}\right)_{\delta}^{M}\left(t_{1} * t_{2}\right),\left(v_{F}\right)_{\delta}^{M}\left(t_{2}\right)\right\} \\
& \left(v_{F}\right)_{\delta}^{M}\left(t_{1}\right) \leq \max \left\{\left(v_{F}\right)_{\delta}^{M}\left(t_{1} * t_{2}\right),\left(v_{F}\right)_{\delta}^{M}\left(t_{2}\right)\right\} .
\end{aligned}
$$

Hence B_{δ}^{M} of B is a NCID of Y, for all $\delta \in(0,1]$.
Theorem 3.2.10 Let B be a NCID of Y and $\delta \in[0,1]$ then NCM B_{δ}^{M} of B is a NCSU of Y.
Proof. Suppose $t_{1}, t_{2} \in Y$. Then

$$
\begin{aligned}
& \left(\kappa_{T}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)=\delta \cdot \kappa_{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \\
& \geq \delta \cdot \operatorname{rmin}\left\{\kappa_{\mathrm{T}}\left(\mathrm{t}_{2} *\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)\right), \kappa_{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\} \\
& =\delta \cdot \operatorname{rmin}\left\{\kappa_{\mathrm{T}}(0), \kappa_{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\} \\
& \geq \delta \cdot \operatorname{rmin}\left\{\kappa_{\mathrm{T}}\left(\mathrm{t}_{1}\right), \kappa_{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\} \\
& =\operatorname{rmin}\left\{\delta \cdot \kappa_{\mathrm{T}}\left(\mathrm{t}_{1}\right), \delta \cdot \kappa_{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\} \\
& \left(\kappa_{\mathrm{T}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)=\operatorname{rmin}\left\{\left(\kappa_{\mathrm{T}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1}\right),\left(\kappa_{\mathrm{T}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{2}\right)\right\} \\
& \left(\kappa_{\mathrm{T}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \geq \operatorname{rmin}\left\{\left(\kappa_{\mathrm{T}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1}\right),\left(\kappa_{\mathrm{T}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{2}\right)\right\},
\end{aligned}
$$

$$
\left(\kappa_{\mathrm{I}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)=\delta \cdot \kappa_{\mathrm{I}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)
$$

$$
\geq \delta \cdot \operatorname{rmin}\left\{\kappa_{I}\left(\mathrm{t}_{2} *\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)\right), \mathrm{\kappa}_{\mathrm{I}}\left(\mathrm{t}_{2}\right)\right\}
$$

$$
=\delta \cdot \operatorname{rmin}\left\{\kappa_{I}(0), \kappa_{I}\left(\mathrm{t}_{2}\right)\right\}
$$

$$
\geq \delta \cdot \operatorname{rmin}\left\{\kappa_{\mathrm{I}}\left(\mathrm{t}_{1}\right), \mathrm{\kappa}_{\mathrm{I}}\left(\mathrm{t}_{2}\right)\right\}
$$

$$
=\operatorname{rmin}\left\{\delta . \kappa_{\mathrm{I}}\left(\mathrm{t}_{1}\right), \delta \cdot \kappa_{\mathrm{I}}\left(\mathrm{t}_{2}\right)\right\}
$$

$$
\left(\kappa_{\mathrm{I}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)=\operatorname{rmin}\left\{\left(\kappa_{\mathrm{I}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1}\right),\left(\kappa_{\mathrm{I}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{2}\right)\right\}
$$

$$
\left(\kappa_{\mathrm{I}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \geq \operatorname{rmin}\left\{\left(\kappa_{\mathrm{I}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1}\right),\left(\kappa_{\mathrm{I}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{2}\right)\right\},
$$

$$
\left(\kappa_{\mathrm{F}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)=\delta \cdot \kappa_{\mathrm{F}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)
$$

$$
\geq \delta \cdot \operatorname{rmin}\left\{\kappa_{\mathrm{F}}\left(\mathrm{t}_{2} *\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)\right), \kappa_{\mathrm{F}}\left(\mathrm{t}_{2}\right)\right\}
$$

$$
=\delta \cdot \operatorname{rmin}\left\{\kappa_{\mathrm{F}}(0), \kappa_{\mathrm{F}}\left(\mathrm{t}_{2}\right)\right\}
$$

$$
\geq \delta \cdot \operatorname{rmin}\left\{\kappa_{\mathrm{F}}\left(\mathrm{t}_{1}\right), \kappa_{\mathrm{F}}\left(\mathrm{t}_{2}\right)\right\}
$$

$$
=\operatorname{rmin}\left\{\delta \cdot \kappa_{\mathrm{F}}\left(\mathrm{t}_{1}\right), \delta \cdot \kappa_{\mathrm{F}}\left(\mathrm{t}_{2}\right)\right\}
$$

$$
\left(\kappa_{\mathrm{F}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)=\operatorname{rmin}\left\{\left(\kappa_{\mathrm{F}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1}\right),\left(\kappa_{\mathrm{F}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{2}\right)\right\}
$$

$$
\left(\kappa_{\mathrm{F}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \geq \operatorname{rmin}\left\{\left(\kappa_{\mathrm{F}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1}\right),\left(\kappa_{\mathrm{F}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{2}\right)\right\}
$$

and

$$
\begin{aligned}
& \left(\mathrm{v}_{\mathrm{T}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)=\delta . \mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \\
& \leq \delta \cdot \max \left\{\mathrm{u}_{\mathrm{T}}\left(\mathrm{t}_{2} *\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)\right), \mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\} \\
& =\delta \cdot \max \left\{\mathrm{u}_{\mathrm{T}}(0), \mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\} \\
& \leq \delta \cdot \max \left\{\mathrm{u}_{\mathrm{T}}\left(\mathrm{t}_{1}\right), \mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\} \\
& =\max \left\{\delta \cdot \mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{1}\right), \delta . \mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\} \\
& \left(\mathrm{U}_{\mathrm{T}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)=\max \left\{\left(\mathrm{U}_{\mathrm{T}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1}\right),\left(\mathrm{U}_{\mathrm{T}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{2}\right)\right\} \\
& \left(\mathrm{v}_{\mathrm{T}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \leq \max \left\{\left(\mathrm{v}_{\mathrm{T}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1}\right),\left(\mathrm{v}_{\mathrm{T}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{2}\right)\right\}, \\
& \left(v_{I}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)=\delta . \mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \\
& \leq \delta \cdot \max \left\{\mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{2} *\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)\right), \mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{2}\right)\right\} \\
& =\delta \cdot \max \left\{\mathrm{v}_{\mathrm{I}}(0), \mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{2}\right)\right\} \\
& \leq \delta \cdot \max \left\{\mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{1}\right), \mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{2}\right)\right\} \\
& =\max \left\{\delta \cdot \mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{1}\right), \delta \cdot \mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{2}\right)\right\} \\
& \left(v_{I}\right)_{\delta}^{M}\left(t_{1} * t_{2}\right)=\max \left\{\left(v_{I}\right)_{\delta}^{M}\left(t_{1}\right),\left(v_{I}\right)_{\delta}^{M}\left(t_{2}\right)\right\} \\
& \left(v_{I}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \leq \max \left\{\left(\mathrm{v}_{\mathrm{I}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1}\right),\left(\mathrm{v}_{\mathrm{I}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{2}\right)\right\} \text {, } \\
& \left(\mathrm{v}_{\mathrm{F}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)=\delta . \mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \\
& \leq \delta \text {. max }\left\{\mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{2} *\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)\right), \mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{2}\right)\right\} \\
& =\delta \cdot \max \left\{\mathrm{u}_{\mathrm{F}}(0), \mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{2}\right)\right\} \\
& \leq \delta \text {. max }\left\{\mathrm{u}_{\mathrm{F}}\left(\mathrm{t}_{1}\right), \mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{2}\right)\right\} \\
& =\max \left\{\delta \cdot \mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{1}\right), \delta \cdot \mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{2}\right)\right\} \\
& \left(\mathrm{v}_{\mathrm{F}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)=\max \left\{\left(\mathrm{v}_{\mathrm{F}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1}\right),\left(\mathrm{v}_{\mathrm{F}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{2}\right)\right\} \\
& \left(\mathrm{v}_{\mathrm{F}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \leq \max \left\{\left(\mathrm{v}_{\mathrm{F}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1}\right),\left(\mathrm{v}_{\mathrm{F}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{2}\right)\right\} \text {. }
\end{aligned}
$$

Hence $\mathrm{B}_{\delta}^{\mathrm{M}}$ is a NCSU of Y.
Theorem 3.2.11 If the NCM B_{δ}^{M} of B is a NCID of Y, for $\delta \in(0,1]$. Then B is a neutrosophic cubic BFsubalgebra of Y .

Proof. Assume B_{δ}^{M} of B is a NCID of Y. Then

$$
\begin{aligned}
& \text { ס. }\left(\kappa_{\mathrm{T}}\right)\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)=\left(\kappa_{\mathrm{T}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \\
& \geq \operatorname{rmin}\left\{\left(\kappa_{\mathrm{T}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{2} *\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)\right),\left(\kappa_{\mathrm{T}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{2}\right)\right\} \\
& =\operatorname{rmin}\left\{\left(\kappa_{\mathrm{T}}\right)_{\delta}^{\mathrm{M}}(0),\left(\kappa_{\mathrm{T}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{2}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \geq \operatorname{rmin}\left\{\left(\kappa_{\mathrm{T}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1}\right),\left(\kappa_{\mathrm{T}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{2}\right)\right\} \\
& =\operatorname{rmin}\left\{\delta . \kappa_{\mathrm{T}}\left(\mathrm{t}_{1}\right), \delta . \kappa_{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\} \\
& \delta .\left(\kappa_{T}\right)\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)=\delta . \operatorname{rmin}\left\{\mathrm{\kappa}_{\mathrm{T}}\left(\mathrm{t}_{1}\right), \kappa_{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\} \\
& \Rightarrow \kappa_{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \geq \operatorname{rmin}\left\{\kappa_{\mathrm{T}}\left(\mathrm{t}_{1}\right), \kappa_{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\}, \\
& \delta \text {. }\left(\kappa_{\mathrm{I}}\right)\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)=\left(\kappa_{\mathrm{I}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \\
& \geq \operatorname{rmin}\left\{\left(\kappa_{\mathrm{I}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{2} *\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)\right),\left(\kappa_{\mathrm{I}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{2}\right)\right\} \\
& =\operatorname{rmin}\left\{\left(\kappa_{\mathrm{I}}\right)_{\delta}^{\mathrm{M}}(0),\left(\kappa_{\mathrm{I}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{2}\right)\right\} \\
& \geq \operatorname{rmin}\left\{\left(\kappa_{\mathrm{I}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1}\right),\left(\mathrm{\kappa}_{\mathrm{I}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{2}\right)\right\} \\
& =\operatorname{rmin}\left\{\delta . \kappa_{\mathrm{I}}\left(\mathrm{t}_{1}\right), \delta . \kappa_{\mathrm{I}}\left(\mathrm{t}_{2}\right)\right\} \\
& \delta .\left(\kappa_{I}\right)\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)=\delta . \operatorname{rmin}\left\{\kappa_{\mathrm{I}}\left(\mathrm{t}_{1}\right), \mathrm{\kappa}_{\mathrm{I}}\left(\mathrm{t}_{2}\right)\right\} \\
& \Rightarrow \kappa_{\mathrm{I}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \geq \operatorname{rmin}\left\{\kappa_{\mathrm{I}}\left(\mathrm{t}_{1}\right), \kappa_{\mathrm{I}}\left(\mathrm{t}_{2}\right)\right\}, \\
& \text { ס. }\left(\kappa_{\mathrm{F}}\right)\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)=\left(\kappa_{\mathrm{F}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \\
& \geq \operatorname{rmin}\left\{\left(\kappa_{\mathrm{F}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{2} *\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)\right),\left(\kappa_{\mathrm{F}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{2}\right)\right\} \\
& =\operatorname{rmin}\left\{\left(\kappa_{\mathrm{F}}\right)_{\delta}^{\mathrm{M}}(0),\left(\kappa_{\mathrm{F}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{2}\right)\right\} \\
& \geq \operatorname{rmin}\left\{\left(\kappa_{\mathrm{F}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1}\right),\left(\mathrm{\kappa}_{\mathrm{F}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{2}\right)\right\} \\
& =\operatorname{rmin}\left\{\delta . \kappa_{\mathrm{F}}\left(\mathrm{t}_{1}\right), \delta . \kappa_{\mathrm{F}}\left(\mathrm{t}_{2}\right)\right\} \\
& \delta .\left(\kappa_{\mathrm{F}}\right)\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)=\delta \cdot \operatorname{rmin}\left\{\mathrm{\kappa}_{\mathrm{F}}\left(\mathrm{t}_{1}\right), \mathrm{\kappa}_{\mathrm{F}}\left(\mathrm{t}_{2}\right)\right\} \\
& \Rightarrow \kappa_{\mathrm{F}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \geq \operatorname{rmin}\left\{\kappa_{\mathrm{F}}\left(\mathrm{t}_{1}\right), \kappa_{\mathrm{F}}\left(\mathrm{t}_{2}\right)\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
& \delta .\left(\mathrm{v}_{\mathrm{T}}\right)\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)=\left(\mathrm{v}_{\mathrm{T}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \\
& \leq \max \left\{\left(\mathrm{v}_{\mathrm{T}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{2} *\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)\right),\left(\mathrm{v}_{\mathrm{T}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{2}\right)\right\} \\
& =\max \left\{\left(\mathrm{v}_{\mathrm{T}}\right)_{\delta}^{\mathrm{M}}(0),\left(\mathrm{v}_{\mathrm{T}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{2}\right)\right\} \\
& \leq \max \left\{\left(\mathrm{u}_{\mathrm{T}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1}\right),\left(\mathrm{v}_{\mathrm{T}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{2}\right)\right\} \\
& =\max \left\{\delta . \mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{1}\right), \delta . \mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\} \\
& \delta .\left(\mathrm{v}_{\mathrm{T}}\right)\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)=\delta . \max \left\{\mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{1}\right), \mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\} \\
& \Rightarrow \mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \leq \max \left\{\mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{1}\right), \mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\}, \\
& \delta .\left(\mathrm{v}_{\mathrm{I}}\right)\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)=\left(\mathrm{v}_{\mathrm{I}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \\
& \leq \max \left\{\left(\mathrm{v}_{\mathrm{I}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{2} *\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)\right),\left(\mathrm{v}_{\mathrm{I}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{2}\right)\right\} \\
& =\max \left\{\left(\mathrm{v}_{\mathrm{I}}\right)_{\delta}^{\mathrm{M}}(0),\left(\mathrm{v}_{\mathrm{I}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{2}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \leq \max \left\{\left(\mathrm{v}_{\mathrm{I}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1}\right),\left(\mathrm{v}_{\mathrm{I}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{2}\right)\right\} \\
& =\max \left\{\delta \cdot \mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{1}\right), \delta \cdot \mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{2}\right)\right\} \\
& \delta .\left(\mathrm{v}_{\mathrm{I}}\right)\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)=\delta \cdot \max \left\{\mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{1}\right), \mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{2}\right)\right\} \\
& \Rightarrow \mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \leq \max \left\{\mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{1}\right), \mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{2}\right)\right\}, \\
& \delta .\left(\mathrm{v}_{\mathrm{F}}\right)\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)=\left(\mathrm{v}_{\mathrm{F}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \\
& \leq \max \left\{\left(\mathrm{v}_{\mathrm{F}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{2} *\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)\right),\left(\mathrm{v}_{\mathrm{F}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{2}\right)\right\} \\
& =\max \left\{\left(\mathrm{v}_{\mathrm{F}}\right)_{\delta}^{\mathrm{M}}(0),\left(\mathrm{v}_{\mathrm{F}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{2}\right)\right\} \\
& \leq \max \left\{\left(\mathrm{v}_{\mathrm{F}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1}\right),\left(\mathrm{v}_{\mathrm{F}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{2}\right)\right\} \\
& =\max \left\{\delta \cdot \mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{1}\right), \delta \cdot \mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{2}\right)\right\} \\
& \delta .\left(\mathrm{v}_{\mathrm{F}}\right)\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)=\delta . \max \left\{\mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{1}\right), \mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{2}\right)\right\} \\
& \Rightarrow \mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \leq \max \left\{\mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{1}\right), \mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{2}\right)\right\} .
\end{aligned}
$$

Hence B is a NCSU of Y.
Theorem 3.2.12 Intersection of any two neutrosophic cubic multiplications of a NCID B of Y is a NCID of Y.

Proof. Suppose B_{δ}^{M} and $B_{\delta^{\prime}}^{M}$ are neutrosophic cubic multiplications of NCID B of Y, where $\delta, \delta^{\prime} \in(0,1]$ and $\delta \leq \delta^{\prime}$, as we know that $\mathrm{B}_{\delta}^{\mathrm{M}}$ and $\mathrm{B}_{\delta^{\prime}}^{\mathrm{M}}$ are NCIDs of Y. Then

$$
\begin{aligned}
& \left(\left(\kappa_{\mathrm{T}}\right)_{\delta}^{\mathrm{M}} \cap\left(\kappa_{\mathrm{T}}\right)_{\delta^{\prime}}^{\mathrm{M}}\right)\left(\mathrm{t}_{1}\right)=\operatorname{rmin}\left\{\left(\kappa_{\mathrm{T}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1}\right),\left(\kappa_{\mathrm{T}}\right)_{\delta^{\prime}}^{\mathrm{M}}\left(\mathrm{t}_{1}\right)\right\} \\
& =\operatorname{rmin}\left\{\kappa_{\mathrm{T}}\left(\mathrm{t}_{1}\right) \cdot \delta, \kappa_{\mathrm{T}}\left(\mathrm{t}_{1}\right) \cdot \delta^{\prime}\right\} \\
& =\kappa_{\mathrm{T}}\left(\mathrm{t}_{1}\right) \cdot \delta \\
& \left(\left(\kappa_{\mathrm{T}}\right)_{\delta}^{\mathrm{M}} \cap\left(\kappa_{\mathrm{T}}\right)_{\delta^{\prime}}^{\mathrm{M}}\right)\left(\mathrm{t}_{1}\right)=\left(\kappa_{\mathrm{T}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1}\right), \\
& \left(\left(\kappa_{\mathrm{I}}\right)_{\delta}^{\mathrm{M}} \cap\left(\kappa_{\mathrm{I}}\right)_{\delta^{\prime}}^{\mathrm{M}}\right)\left(\mathrm{t}_{1}\right)=\operatorname{rmin}\left\{\left(\kappa_{\mathrm{I}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1}\right),\left(\kappa_{\mathrm{I}}\right)_{\delta^{\prime}}^{\mathrm{M}}\left(\mathrm{t}_{1}\right)\right\} \\
& =\operatorname{rmin}\left\{\kappa_{\mathrm{I}}\left(\mathrm{t}_{1}\right) \cdot \delta, \kappa_{\mathrm{I}}\left(\mathrm{t}_{1}\right) \cdot \delta^{\prime}\right\} \\
& =\kappa_{\mathrm{I}}\left(\mathrm{t}_{1}\right) \cdot \delta \\
& \left(\left(\kappa_{\mathrm{I}}\right)_{\delta}^{\mathrm{M}} \cap\left(\kappa_{\mathrm{I}}\right)_{\delta^{\prime}}^{\mathrm{M}}\right)\left(\mathrm{t}_{1}\right)=\left(\kappa_{\mathrm{I}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1}\right), \\
& \left(\left(\kappa_{\mathrm{F}}\right)_{\delta}^{\mathrm{M}} \cap\left(\kappa_{\mathrm{F}}\right)_{\delta^{\prime}}^{\mathrm{M}}\right)\left(\mathrm{t}_{1}\right)=\operatorname{rmin}\left\{\left(\kappa_{\mathrm{F}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1}\right),\left(\kappa_{\mathrm{F}}\right)_{\delta^{\prime}}^{\mathrm{M}}\left(\mathrm{t}_{1}\right)\right\} \\
& =\mathrm{rmin}_{1}\left\{\kappa_{\mathrm{F}}\left(\mathrm{t}_{1}\right) \cdot \delta, \kappa_{\mathrm{F}}\left(\mathrm{t}_{1}\right) \cdot \delta^{\prime}\right\} \\
& =\kappa_{\mathrm{F}}\left(\mathrm{t}_{1}\right) \cdot \delta \\
& \left(\left(\kappa_{\mathrm{F}}\right)_{\delta}^{\mathrm{M}} \cap\left(\kappa_{\mathrm{F}}\right)_{\delta^{\prime}}^{\mathrm{M}}\right)\left(\mathrm{t}_{1}\right)=\left(\kappa_{\mathrm{F}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \left(\left(\mathrm{v}_{\mathrm{T}}\right)_{\delta}^{\mathrm{M}} \cap\left(\mathrm{U}_{\mathrm{T}}\right)_{\delta^{\prime}}^{\mathrm{M}}\right)\left(\mathrm{t}_{1}\right)=\max \left\{\left(\mathrm{v}_{\mathrm{T}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1}\right),\left(\mathrm{U}_{\mathrm{T}}\right)_{\delta^{\prime}}^{\mathrm{M}}\left(\mathrm{t}_{1}\right)\right\} \\
& =\max \left\{\mathrm{u}_{\mathrm{T}}\left(\mathrm{t}_{1}\right) \cdot \delta, \mathrm{u}_{\mathrm{T}}\left(\mathrm{t}_{1}\right) \cdot \delta^{\prime}\right\} \\
& =v_{T}\left(\mathrm{t}_{1}\right) \cdot \delta^{\prime} \\
& \left(\left(\mathrm{v}_{\mathrm{T}}\right)_{\delta}^{\mathrm{M}} \cap\left(\mathrm{v}_{\mathrm{T}}\right)_{\delta^{\prime}}^{\mathrm{M}}\right)\left(\mathrm{t}_{1}\right)=\left(\mathrm{v}_{\mathrm{T}}\right)_{\delta^{\prime}}^{\mathrm{M}}\left(\mathrm{t}_{1}\right), \\
& \left(\left(v_{\mathrm{I}}\right)_{\delta}^{\mathrm{M}} \cap\left(v_{\mathrm{I}}\right)_{\delta^{\prime}}^{\mathrm{M}}\right)\left(\mathrm{t}_{1}\right)=\max \left\{\left(v_{\mathrm{I}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1}\right),\left(v_{\mathrm{I}}\right)_{\delta^{\prime}}^{\mathrm{M}}\left(\mathrm{t}_{1}\right)\right\} \\
& =\max \left\{\mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{1}\right) \cdot \delta, \mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{1}\right) \cdot \delta^{\prime}\right\} \\
& =v_{\mathrm{I}}\left(\mathrm{t}_{1}\right) \cdot \delta^{\prime} \\
& \left(\left(v_{I}\right)_{\delta}^{\mathrm{M}} \cap\left(v_{\mathrm{I}}\right)_{\delta^{\prime}}^{\mathrm{M}}\right)\left(\mathrm{t}_{1}\right)=\left(v_{\mathrm{I}}\right)_{\delta^{\prime}}^{\mathrm{M}}\left(\mathrm{t}_{1}\right), \\
& \left(\left(v_{F}\right)_{\delta}^{\mathrm{M}} \cap\left(\mathrm{v}_{\mathrm{F}}\right)_{\delta^{\prime}}^{\mathrm{M}}\right)\left(\mathrm{t}_{1}\right)=\max \left\{\left(\mathrm{v}_{\mathrm{F}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1}\right),\left(\mathrm{v}_{\mathrm{F}}\right)_{\delta^{\prime}}^{\mathrm{M}}\left(\mathrm{t}_{1}\right)\right\} \\
& =\max \left\{\mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{1}\right) \cdot \delta, \mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{1}\right) \cdot \delta^{\prime}\right\} \\
& =v_{F}\left(t_{1}\right) \cdot \delta^{\prime} \\
& \left(\left(v_{\mathrm{F}}\right)_{\delta}^{\mathrm{M}} \cap\left(\mathrm{v}_{\mathrm{F}}\right)_{\delta^{\prime}}^{\mathrm{M}}\right)\left(\mathrm{t}_{1}\right)=\left(\mathrm{v}_{\mathrm{F}}\right)_{\delta^{\prime}}^{\mathrm{M}}\left(\mathrm{t}_{1}\right) \text {. }
\end{aligned}
$$

Hence $B_{\delta}^{M} \cap B_{\delta^{\prime}}^{M}$ is NCID of Y.
Theorem 3.2.13 Union of any two neutrosophic cubic multiplications of a NCID B of Y is a NCID of Y.

Proof. Suppose B_{δ}^{M} and $B_{\delta^{\prime}}^{M}$ are neutrosophic cubic multiplications of NCID B of Y, where $\delta, \delta^{\prime} \in(0,1]$ and $\delta \leq \delta^{\prime}$, as we know that $\mathrm{B}_{\delta}^{\mathrm{M}}$ and $\mathrm{B}_{\delta^{\prime}}^{\mathrm{M}}$ are NCIDs of Y. Then

$$
\begin{aligned}
& \left(\left(\kappa_{\mathrm{T}}\right)_{\delta}^{\mathrm{M}} \cup\left(\kappa_{\mathrm{T}}\right)_{\delta^{\prime}}^{\mathrm{M}}\right)\left(\mathrm{t}_{1}\right)=\operatorname{rmax}\left\{\left(\kappa_{\mathrm{T}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1}\right),\left(\kappa_{\mathrm{T}}\right)_{\delta^{\prime}}^{\mathrm{M}}\left(\mathrm{t}_{1}\right)\right\} \\
& \left.=\operatorname{rmax}_{\mathrm{rm}} \kappa_{\mathrm{T}}\left(\mathrm{t}_{1}\right) \cdot \delta, \kappa_{\mathrm{T}}\left(\mathrm{t}_{1}\right) \cdot \delta^{\prime}\right\} \\
& =\kappa_{\mathrm{T}}\left(\mathrm{t}_{1}\right) \cdot \delta^{\prime} \\
& \left(\left(\kappa_{\mathrm{T}}\right)_{\delta}^{\mathrm{M}} \cup\left(\kappa_{\mathrm{T}}\right)_{\delta^{\prime}}^{\mathrm{M}}\right)\left(\mathrm{t}_{1}\right)=\left(\kappa_{\mathrm{T}}\right)_{\delta^{\prime}}^{\mathrm{M}}\left(\mathrm{t}_{1}\right), \\
& \left(\left(\kappa_{\mathrm{I}}\right)_{\delta}^{\mathrm{M}} \cup\left(\kappa_{\mathrm{I}}\right)_{\delta^{\prime}}^{\mathrm{M}}\right)\left(\mathrm{t}_{1}\right)=\operatorname{rmax}\left\{\left(\kappa_{\mathrm{I}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1}\right),\left(\kappa_{\mathrm{I}}\right)_{\delta^{\prime}}^{\mathrm{M}}\left(\mathrm{t}_{1}\right)\right\} \\
& =\operatorname{rmax}\left\{\kappa_{\mathrm{I}}\left(\mathrm{t}_{1}\right) \cdot \delta, \kappa_{\mathrm{I}}\left(\mathrm{t}_{1}\right) \cdot \delta^{\prime}\right\} \\
& =\kappa_{\mathrm{I}}\left(\mathrm{t}_{1}\right) \cdot \delta^{\prime} \\
& \left(\left(\kappa_{\mathrm{I}}\right)_{\delta}^{\mathrm{M}} \cup\left(\kappa_{\mathrm{I}}\right)_{\delta^{\prime}}^{\mathrm{M}}\right)\left(\mathrm{t}_{1}\right)=\left(\kappa_{\mathrm{I}}\right)_{\delta^{\prime}}^{\mathrm{M}}\left(\mathrm{t}_{1}\right), \\
& \left(\left(\kappa_{\mathrm{F}}\right)_{\delta}^{\mathrm{M}} \cup\left(\kappa_{\mathrm{F}}\right)_{\delta^{\prime}}^{\mathrm{M}}\right)\left(\mathrm{t}_{1}\right)=\operatorname{rmax}\left\{\left(\kappa_{\mathrm{F}}\right)_{\delta}^{\mathrm{M}}\left(\mathrm{t}_{1}\right),\left(\kappa_{\mathrm{F}}\right)_{\delta^{\prime}}^{\mathrm{M}}\left(\mathrm{t}_{1}\right)\right\} \\
& ={\operatorname{rmax}\left\{\kappa_{\mathrm{F}}\left(\mathrm{t}_{1}\right) \cdot \delta, \kappa_{\mathrm{F}}\left(\mathrm{t}_{1}\right) \cdot \delta^{\prime}\right\}}^{=\kappa_{\mathrm{F}}\left(\mathrm{t}_{1}\right) \cdot \delta^{\prime}} \\
& \left(\left(\kappa_{\mathrm{F}}\right)_{\delta}^{\mathrm{M}} \cup\left(\kappa_{\mathrm{F}}\right)_{\delta^{\prime}}^{\mathrm{M}}\right)\left(\mathrm{t}_{1}\right)=\left(\kappa_{\mathrm{F}}\right)_{\delta^{\prime}}^{\mathrm{M}}\left(\mathrm{t}_{1}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \left(\left(v_{T}\right)_{\delta}^{M} \cup\left(v_{T}\right)_{\delta^{\prime}}^{M}\right)\left(t_{1}\right)=\min \left\{\left(v_{T}\right)_{\delta}^{M}\left(t_{1}\right),\left(v_{T}\right)_{\delta^{\prime}}^{M}\left(t_{1}\right)\right\} \\
& =\min \left\{\mathrm{u}_{\mathrm{T}}\left(\mathrm{t}_{1}\right) \cdot \delta, \mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{1}\right) \cdot \delta^{\prime}\right\} \\
& =v_{T}\left(t_{1}\right) \cdot \delta \\
& \left(\left(v_{T}\right)_{\delta}^{M} \cup\left(v_{T}\right)_{\delta^{\prime}}^{M}\right)\left(t_{1}\right)=\left(v_{T}\right)_{\delta}^{M}\left(t_{1}\right), \\
& \left(\left(v_{I}\right)_{\delta}^{M} \cup\left(v_{I}\right) \delta_{\delta^{\prime}}^{M}\right)\left(t_{1}\right)=\min \left\{\left(v_{I}\right)_{\delta}^{M}\left(t_{1}\right),\left(v_{I}\right)_{\delta^{\prime}}^{M}\left(t_{1}\right)\right\} \\
& =\min \left\{v_{\mathrm{I}}\left(\mathrm{t}_{1}\right) \cdot \delta, \mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{1}\right) \cdot \delta^{\prime}\right\} \\
& =v_{I}\left(t_{1}\right) \cdot \delta \\
& \left(\left(v_{I}\right)_{\delta}^{M} \cup\left(v_{I}\right) \delta_{\delta^{\prime}}^{M}\right)\left(t_{1}\right)=\left(v_{I}\right)_{\delta}^{M}\left(t_{1}\right), \\
& \left(\left(v_{F}\right)_{\delta}^{M} \cup\left(v_{F}\right)_{\delta^{\prime}}^{M}\right)\left(t_{1}\right)=\min \left\{\left(v_{F}\right)_{\delta}^{M}\left(t_{1}\right),\left(v_{F}\right)_{\delta^{\prime}}^{M}\left(t_{1}\right)\right\} \\
& =\min \left\{u_{F}\left(t_{1}\right) \cdot \delta, v_{F}\left(t_{1}\right) \cdot \delta^{\prime}\right\} \\
& =v_{F}\left(t_{1}\right) \cdot \delta \\
& \left(\left(U_{F}\right)_{\delta}^{M} \cup\left(U_{F}\right)_{\delta^{\prime}}^{M}\right)\left(t_{1}\right)=\left(v_{F}\right)_{\delta}^{M}\left(t_{1}\right) .
\end{aligned}
$$

Hence $B_{\delta}^{M} \cup B_{\delta^{\prime}}^{M}$ is NCID of Y.
3.3 Magnified Translative Interpretation of Neutrosophic Cubic Subalgebra and Neutrosophic Cubic Ideal

In this section, we define the notion of neutrosophic cubic magnified translation NCMT and investigate some results.

Definition 3.3.1 Let $B=\left(\kappa_{T, \mathrm{I}, \mathrm{F}}, \mathrm{U}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}\right)$ be a NCS of Y and for $\kappa_{\mathrm{T}, \mathrm{I}, \mathrm{F}}, \alpha, \beta \in[[0,0], \tau]$ and $\gamma \in[[0,0], ¥]$, where for $\mathrm{U}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}, \alpha, \beta \in[0, \Gamma]$ and $\gamma \in[0, £]$ and for all $\delta \in[0,1]$. An object having the form $\mathrm{B}_{\delta \alpha, \beta, \gamma}^{\mathrm{MT}}=$ $\left\{\left(\kappa_{\mathrm{T}, \mathrm{I}, \mathrm{F}}\right)_{\delta \alpha, \beta, \gamma}^{\mathrm{MT}}\left(\mathrm{U}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}\right)_{\delta \alpha, \beta, \gamma}^{\mathrm{MT}}\right\}$ is said to be a NCMT of B, when $\left(\kappa_{\mathrm{T}}\right)_{\delta \alpha}^{\mathrm{MT}}\left(\mathrm{t}_{1}\right)=\delta$. $\kappa_{\mathrm{T}}\left(\mathrm{t}_{1}\right)+\alpha,\left(\kappa_{\mathrm{I}}\right)_{\delta \beta}^{\mathrm{M}} \mathrm{T}_{\mathrm{T}}\left(\mathrm{t}_{1}\right)=$ $\delta . \kappa_{\mathrm{I}}\left(\mathrm{t}_{1}\right)+\beta,\left(\kappa_{\mathrm{F}}\right)_{\delta \gamma}^{\mathrm{M} \mathrm{T}}\left(\mathrm{t}_{1}\right)=\delta . \kappa_{\mathrm{F}}\left(\mathrm{t}_{1}\right)-\gamma$ and $\left(\mathrm{v}_{\mathrm{T}}\right)_{\delta \alpha}^{\mathrm{MT}}\left(\mathrm{t}_{1}\right)=\delta . \mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{1}\right)+\alpha,\left(\mathrm{v}_{\mathrm{I}}\right)_{\delta \beta}^{\mathrm{M}}{ }^{\mathrm{T}}\left(\mathrm{t}_{1}\right)=\delta . \mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{1}\right)+\beta$, $\left(v_{\mathrm{F}}\right)_{\delta \gamma}^{\mathrm{MT}}\left(\mathrm{t}_{1}\right)=\delta . \mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{1}\right)-\gamma$ for all $\mathrm{t}_{1} \in \mathrm{Y}$.

Example 3.3.1 Let $Y=\{0,1,2\}$ be a BF-algebra as defined in Example 3.2.1. A NCS $B=\left(\kappa_{T, I, F}, v_{T, I, F}\right)$ of Y is defined as

$$
\begin{aligned}
& \kappa_{T}\left(t_{1}\right)=\left(\begin{array}{ll}
{[0.1,0.3]} & \text { if } t_{1}=0 \\
{[0.4,0.7]} & \text { if otherwise }
\end{array}\right. \\
& \kappa_{I}\left(t_{1}\right)=\left(\begin{array}{ll}
{[0.2,0.4]} & \text { if } t_{1}=0 \\
{[0.5,0.7]} & \text { if otherwise }
\end{array}\right. \\
& \kappa_{\mathrm{F}}\left(\mathrm{t}_{1}\right)=\left(\begin{array}{ll}
{[0.4,0.6]} & \text { if } \mathrm{t}_{1}=0 \\
{[0.5,0.8]} & \text { if otherwise }
\end{array}\right.
\end{aligned}
$$

and

[^31]\[

$$
\begin{aligned}
& v_{T}\left(t_{1}\right)=\left(\begin{array}{ll}
0.1 & \text { if } t_{1}=0 \\
0.4 & \text { if otherwise }
\end{array}\right. \\
& v_{I}\left(t_{1}\right)=\left(\begin{array}{ll}
0.2 & \text { if } t_{1}=0 \\
0.3 & \text { if otherwise }
\end{array}\right. \\
& v_{F}\left(t_{1}\right)=\left(\begin{array}{ll}
0.5 & \text { if } t_{1}=0 \\
0.7 & \text { if otherwise } .
\end{array}\right.
\end{aligned}
$$
\]

Then B is a neutrosophic cubic subalgebra, for $\mathrm{v}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}$ choose $\delta=0.1, \alpha=0.02, \beta=0.03, \gamma=0.04$ and for $\kappa_{\mathrm{T}, \mathrm{IF},}$ choose $\quad \delta=[0.1,0.4], \alpha=[0.03,0.07], \beta=[0.04,0.08], \gamma=[0.02,0.06]$ then the mapping $\mathrm{B}_{(0.1)(\alpha, \beta, \gamma)}^{\mathrm{MT}} \mid \mathrm{Y} \rightarrow[0,1]$ is given by

$$
\begin{aligned}
& \left(\kappa_{T}\right)_{[0.1,0.4]}^{\mathrm{M}}[0.03,0.07]
\end{aligned}\left(\mathrm{t}_{1}\right)=\left(\begin{array}{ll}
{[0.04,0.19]} & \text { if } \mathrm{t}_{1}=1 \\
{[0.07,0.35]} & \text { if otherwise }
\end{array}\right] \begin{array}{ll}
{\left[\kappa_{\mathrm{I}}\right)_{[0.1,0.4]}^{\mathrm{MT}}[0.04,0.08]}
\end{array}\left(\mathrm{t}_{1}\right)=\left(\begin{array}{ll}
{[0.06,0.24]} & \text { if } \mathrm{t}_{1}=1 \\
{[0.09,0.36]} & \text { if otherwise }
\end{array}\right] \begin{array}{ll}
{[0.02,0.18]} & \text { if } \mathrm{t}_{1}=1 \\
{[0.03,0.26]} & \text { if otherwise }
\end{array}
$$

and

$$
\begin{aligned}
& \left(v_{T}\right)_{0.1,0.02}^{\mathrm{M}}\left(\mathrm{t}_{1}\right)=\left(\begin{array}{ll}
0.03 & \text { if } \mathrm{t}_{1}=1 \\
0.06 & \text { if otherwise }
\end{array}\right. \\
& \left(v_{\mathrm{I}}\right)_{0.1,0.03}^{\mathrm{MT}}\left(\mathrm{t}_{1}\right)=\left(\begin{array}{ll}
0.05 & \text { if } \mathrm{t}_{1}=1 \\
0.06 & \text { if otherwise }
\end{array}\right. \\
& \left(v_{\mathrm{F}}\right)_{0.1 .0 .04}^{\mathrm{MT}}\left(\mathrm{t}_{1}\right)=\left(\begin{array}{ll}
0.01 & \text { if } \mathrm{t}_{1}=1 \\
0.03 & \text { if otherwise }
\end{array}\right.
\end{aligned}
$$

which imply $\quad\left(\kappa_{T}\right)_{[0.1,0.4][0.03,0.07]}^{\mathrm{M} \mathrm{T}}\left(\mathrm{t}_{1}\right)=[0.1,0.4] . \kappa_{\mathrm{T}}\left(\mathrm{t}_{1}\right)+[0.03,0.07] \quad, \quad\left(\kappa_{\mathrm{I}}\right)_{[0.1,0.4][0.04,0.08]}^{\mathrm{MT}}\left(\mathrm{t}_{1}\right)=$ $[0.1,0.4] . \kappa_{T}\left(\mathrm{t}_{1}\right)+[0.04,0.08] \quad, \quad\left(\kappa_{\mathrm{F}}\right)_{[0.1,0.4][0.02,0.06]}^{\mathrm{MT}}\left(\mathrm{t}_{1}\right)=[0.1,0.4] . \kappa_{\mathrm{F}}\left(\mathrm{t}_{1}\right)-[0.02,0.06] \quad$ and $\left(\mathrm{v}_{\mathrm{T}}\right)_{(0.1)(0.02)}^{\mathrm{MT}}\left(\mathrm{t}_{1}\right)=(0.1) \cdot \mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{1}\right)+0.02, \quad\left(\mathrm{v}_{\mathrm{I}}\right)_{(0.1)(0.03)}^{\mathrm{M} \mathrm{T}}\left(\mathrm{t}_{1}\right)=(0.1) \cdot \mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{1}\right)+0.03, \quad\left(v_{\mathrm{F}}\right)_{(0.1)(0.04)}^{\mathrm{M} \mathrm{T}}\left(\mathrm{t}_{1}\right)=$ (0.1). $v_{F}\left(t_{1}\right)-0.04$ for all $t_{1} \in Y$. Hence $B^{M T}$ is a neutrosophic cubic magnified translation.

Theorem 3.3.1 Let B be a neutrosophic cubic subset of Y such that for $\kappa_{T, I, F}, \alpha, \beta \in[[0,0], 7]$ and $\gamma \in$ $[[0,0], ¥]$, where for $\mathrm{u}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}, \alpha, \beta \in[0, \Gamma]$ and $\gamma \in[0, £]$ and $\delta \in[0,1]$ and a mapping $\mathrm{B}_{\delta \alpha, \beta, \gamma}^{\mathrm{M} \mathrm{T,LF}} \mid \mathrm{Y} \rightarrow[0,1]$ be a NCMT of B. If B is NCSU of Y, then $B_{\delta \alpha, \beta, \gamma}^{\mathrm{MT,L,F}}$ is a NCSU of Y.
Proof. Let B be a neutrosophic cubic subset of Y such that for $\kappa_{T, \mathrm{I}, \mathrm{F}}, \alpha, \beta \in[[0,0], 7]$ and $\gamma \in[[0,0], \ngtr]$, where for $\mathrm{v}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}, \alpha, \beta \in[0, \Gamma]$ and $\gamma \in[0, £]$ and $\delta \in[0,1]$ and a mapping $\mathrm{B}_{\delta \alpha, \beta, \gamma}^{\mathrm{MT}, \mathrm{I}, \mathrm{F}} \mid \mathrm{Y} \rightarrow[0,1]$ be a NCMT of B. Suppose B is $a \quad$ NCSU of Y. Then $\kappa_{T}\left(t_{1} * t_{2}\right) \geq \operatorname{rmin}\left\{\kappa_{T}\left(t_{1}\right), \kappa_{T}\left(t_{2}\right)\right\}, \kappa_{I}\left(t_{1} * t_{2}\right) \geq$ $\operatorname{rmin}\left\{\kappa_{\mathrm{I}}\left(\mathrm{t}_{1}\right), \kappa_{\mathrm{I}}\left(\mathrm{t}_{2}\right)\right\}, \kappa_{\mathrm{F}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \geq \operatorname{rmin}\left\{\kappa_{\mathrm{F}}\left(\mathrm{t}_{1}\right), \kappa_{\mathrm{F}}\left(\mathrm{t}_{2}\right)\right\} \quad$ and $\mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \leq \max \left\{\mathrm{u}_{\mathrm{T}}\left(\mathrm{t}_{1}\right), \mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\}, \mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{1} *\right.$ $\left.\mathrm{t}_{2}\right) \leq \max \left\{\mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{1}\right), \mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{2}\right)\right\}, \mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \leq \max \left\{\mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{1}\right), \mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{2}\right)\right\}$. Now

$$
\begin{aligned}
& \left(\kappa_{\mathrm{T}}\right)_{\delta \alpha}^{\mathrm{MT}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)=\delta \cdot \kappa_{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)+\alpha \\
& \geq \delta \cdot \operatorname{rmin}\left\{\kappa_{\mathrm{T}}\left(\mathrm{t}_{1}\right), \kappa_{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\}+\alpha
\end{aligned}
$$

$$
\begin{aligned}
& =\operatorname{rmin}\left\{\delta \cdot \kappa_{\mathrm{T}}\left(\mathrm{t}_{1}\right)+\alpha, \delta \cdot \kappa_{\mathrm{T}}\left(\mathrm{t}_{2}\right)+\alpha\right\} \\
& \left(\kappa_{\mathrm{T}}\right)_{\delta \alpha}^{\mathrm{MT}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)=\operatorname{rmin}\left\{\left(\kappa_{\mathrm{T}}\right)_{\delta \alpha}^{\mathrm{MT}}\left(\mathrm{t}_{1}\right),\left(\kappa_{\mathrm{T}}\right)_{\delta \alpha}^{\mathrm{MT}}\left(\mathrm{t}_{2}\right)\right\} \\
& \left(\kappa_{\mathrm{T}}\right)_{\delta \alpha}^{\mathrm{MT}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \geq \operatorname{rmin}\left\{\left(\kappa_{\mathrm{T}}\right)_{\delta \alpha}^{\mathrm{MT}}\left(\mathrm{t}_{1}\right),\left(\kappa_{\mathrm{T}}\right)_{\delta \alpha}^{\mathrm{M} \mathrm{~T}}\left(\mathrm{t}_{2}\right)\right\}, \\
& \left(\kappa_{\mathrm{I}}\right)_{\delta \beta}^{\mathrm{M} \mathrm{~T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)=\delta \cdot \kappa_{\mathrm{I}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)+\beta \\
& \geq \delta \cdot \operatorname{rmin}\left\{\kappa_{\mathrm{I}}\left(\mathrm{t}_{1}\right), \kappa_{\mathrm{I}}\left(\mathrm{t}_{2}\right)\right\}+\beta \\
& =\operatorname{rmin}\left\{\delta \cdot \kappa_{\mathrm{I}}\left(\mathrm{t}_{1}\right)+\beta, \delta \cdot \kappa_{\mathrm{I}}\left(\mathrm{t}_{2}\right)+\beta\right\} \\
& \left(\kappa_{\mathrm{I}}\right)_{\delta \beta}^{\mathrm{MT}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)=\operatorname{rmin}\left\{\left(\kappa_{\mathrm{I}}\right)_{\delta \beta}^{\mathrm{MT} \mathrm{~T}}\left(\mathrm{t}_{1}\right),\left(\kappa_{\mathrm{I}}\right)_{\delta \beta}^{\mathrm{M} \mathrm{~T}}\left(\mathrm{t}_{2}\right)\right\} \\
& \left(\kappa_{\mathrm{I}}\right)_{\delta \beta}^{\mathrm{MT}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \geq \operatorname{rmin}\left\{\left(\kappa_{\mathrm{I}}\right)_{\delta \beta}^{\mathrm{MT}}\left(\mathrm{t}_{1}\right),\left(\kappa_{\mathrm{I}}\right)_{\delta \beta}^{\mathrm{M} \mathrm{~T}}\left(\mathrm{t}_{2}\right)\right\}, \\
& \left(\kappa_{\mathrm{F}}\right)_{\delta \gamma}^{\mathrm{MT} \mathrm{~T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)=\delta \cdot \kappa_{\mathrm{F}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)-\gamma \\
& \geq \delta \cdot \operatorname{rmin}\left\{\kappa_{\mathrm{F}}\left(\mathrm{t}_{1}\right), \kappa_{\mathrm{F}}\left(\mathrm{t}_{2}\right)\right\}-\gamma \\
& =\operatorname{rmin}\left\{\delta \cdot \kappa_{\mathrm{F}}\left(\mathrm{t}_{1}\right)-\gamma, \delta \cdot \kappa_{\mathrm{F}}\left(\mathrm{t}_{2}\right)-\gamma\right\} \\
& \left(\kappa_{\mathrm{F}}\right)_{\delta \gamma}^{\mathrm{MT}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)=\operatorname{rmin}\left\{\left(\kappa_{\mathrm{F}}\right)_{\delta \gamma}^{\mathrm{MT} \mathrm{~T}}\left(\mathrm{t}_{1}\right),\left(\kappa_{\mathrm{F}}\right)_{\delta \gamma}^{\mathrm{MT}}\left(\mathrm{t}_{2}\right)\right\} \\
& \left(\kappa_{\mathrm{F}}\right)_{\delta \gamma}^{\mathrm{MT} \mathrm{~T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \geq \operatorname{rmin}\left\{\left(\kappa_{\mathrm{F}}\right)_{\delta \gamma}^{\mathrm{MT}}\left(\mathrm{t}_{1}\right),\left(\kappa_{\mathrm{F}}\right)_{\delta \gamma}^{\mathrm{MT}}\left(\mathrm{t}_{2}\right)\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
& \left(\mathrm{v}_{\mathrm{T}}\right)_{\delta \alpha}^{\mathrm{M} \mathrm{~T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)=\delta \cdot \mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)+\alpha \\
& \leq \delta \cdot \max \left\{\mathrm{u}_{\mathrm{T}}\left(\mathrm{t}_{1}\right), \mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\}+\alpha \\
& =\max \left\{\delta \cdot \mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{1}\right)+\alpha, \delta \cdot \mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{2}\right)+\alpha\right\} \\
& \left(\mathrm{u}_{\mathrm{T}}\right)_{\delta \alpha}^{\mathrm{M} \mathrm{~T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)=\max \left\{\left(\mathrm{v}_{\mathrm{T}}\right)_{\delta \alpha}^{\mathrm{MT}}\left(\mathrm{t}_{1}\right),\left(\mathrm{v}_{\mathrm{T}}\right)_{\delta \alpha}^{\mathrm{MT}}\left(\mathrm{t}_{2}\right)\right\} \\
& \left(\mathrm{u}_{\mathrm{T}}\right)_{\delta \alpha}^{\mathrm{M} \mathrm{~T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \leq \max \left\{\left(\mathrm{v}_{\mathrm{T}}\right)_{\delta \alpha}^{\mathrm{M} \mathrm{~T}}\left(\mathrm{t}_{1}\right),\left(\mathrm{v}_{\mathrm{T}}\right)_{\delta \alpha}^{\mathrm{MT}}\left(\mathrm{t}_{2}\right)\right\},
\end{aligned}
$$

$$
\left(v_{\mathrm{I}}\right)_{\delta \beta}^{\mathrm{MT}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)=\delta \cdot \mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)+\beta
$$

$$
\leq \delta \cdot \max \left\{\mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{1}\right), \mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{2}\right)\right\}+\beta
$$

$$
=\max \left\{\delta \cdot v_{\mathrm{I}}\left(\mathrm{t}_{1}\right)+\beta, \delta \cdot \mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{2}\right)+\beta\right\}
$$

$$
\left(v_{\mathrm{I}}\right)_{\delta \beta}^{\mathrm{MT} \mathrm{~T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)=\max \left\{\left(v_{\mathrm{I}}\right)_{\delta \beta}^{\mathrm{MT}}\left(\mathrm{t}_{1}\right),\left(\mathrm{v}_{\mathrm{I}}\right)_{\delta \beta}^{\mathrm{MT}}\left(\mathrm{t}_{2}\right)\right\}
$$

$$
\left(v_{I}\right)_{\delta \beta}^{\mathrm{MT}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \leq \max \left\{\left(\mathrm{v}_{\mathrm{I}}\right)_{\delta \beta}^{\mathrm{MT} \mathrm{~T}}\left(\mathrm{t}_{1}\right),\left(\mathrm{v}_{\mathrm{I}}\right)_{\delta \beta}^{\mathrm{MT}}\left(\mathrm{t}_{2}\right)\right\},
$$

$$
\left(\mathrm{v}_{\mathrm{F}}\right)_{\delta \gamma}^{\mathrm{MT}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)=\delta \cdot \mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)-\gamma
$$

$$
\leq \delta \cdot \max \left\{\mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{1}\right), \mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{2}\right)\right\}-\gamma
$$

$$
=\max \left\{\delta \cdot v_{F}\left(\mathrm{t}_{1}\right)-\gamma, \delta \cdot v_{F}\left(\mathrm{t}_{2}\right)-\gamma\right\}
$$

$$
\left(\mathrm{v}_{\mathrm{F}}\right)_{\delta \gamma}^{\mathrm{MT} \mathrm{~T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)=\max \left\{\left(\mathrm{v}_{\mathrm{F}}\right)_{\delta \gamma}^{\mathrm{MT}}\left(\mathrm{t}_{1}\right),\left(\mathrm{v}_{\mathrm{F}}\right)_{\delta \gamma}^{\mathrm{M} \mathrm{~T}}\left(\mathrm{t}_{2}\right)\right\}
$$

$$
\left(v_{\mathrm{F}}\right)_{\delta \gamma}^{\mathrm{M} \mathrm{~T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \leq \max \left\{\left(\mathrm{v}_{\mathrm{F}}\right)_{\delta \gamma}^{\mathrm{MT}}\left(\mathrm{t}_{1}\right),\left(\mathrm{v}_{\mathrm{F}}\right)_{\delta \gamma}^{\mathrm{MT}}\left(\mathrm{t}_{2}\right)\right\} .
$$

Hence NCMT $B_{\delta \alpha, \beta, \gamma}^{\mathrm{MT}}$ is a NCSU of Y .

Theorem 3.3.2 Let B be a NCS of Y such that and for $\kappa_{T, I, F}, \alpha, \beta \in[[0,0], 7]$ and $\gamma \in[[0,0], \ngtr]$, where for $\mathrm{v}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}, \alpha, \beta \in[0, \Gamma]$ and $\gamma \in[0, £]$ and $\delta \in[0,1]$ and a mapping $\mathrm{B}_{\delta \alpha, \beta, \gamma}^{\mathrm{M}}: \mathrm{Y} \rightarrow[0,1]$ be a NCMT of B. If $B_{\delta \alpha, \beta, \gamma}^{\mathrm{M} \mathrm{T}}$ is NCSU of Y. Then B is a NCSU of Y.

Proof. Let B be a neutrosophic cubic subset of Y, where $\alpha, \beta, \gamma \in[0, ¥], \delta \in[0,1]$ and a mapping $\mathrm{B}_{\delta \alpha, \beta, \gamma}^{\mathrm{MT}}: \mathrm{Y} \rightarrow[0,1]$ be a NCMT of B. Suppose $\mathrm{B}_{\delta \alpha, \beta, \gamma}^{\mathrm{MT}}=\left\{\left(\kappa_{B}\right)_{\delta \alpha, \beta, \gamma}^{\mathrm{M} \mathrm{T,I,F}}\left(\mathrm{v}_{\mathrm{B}}\right)_{\delta \alpha, \beta, \gamma}^{\mathrm{MT,L,F}}\right\}$ is a NCSU of Y, then

$$
\begin{aligned}
& \delta \text {. } \kappa_{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)+\alpha=\left(\kappa_{\mathrm{T}}\right)_{\delta \alpha}^{\mathrm{MT}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \\
& \geq \operatorname{rmin}\left\{\left(\kappa_{\mathrm{T}}\right)_{\delta \alpha}^{\mathrm{MT}}\left(\mathrm{t}_{1}\right),\left(\kappa_{\mathrm{T}}\right)_{\delta \alpha}^{\mathrm{M} \mathrm{~T}}\left(\mathrm{t}_{2}\right)\right\} \\
& =\operatorname{rmin}\left\{\delta . \kappa_{T}\left(\mathrm{t}_{1}\right)+\alpha, \delta . \kappa_{\mathrm{T}}\left(\mathrm{t}_{2}\right)+\alpha\right\} \\
& \delta . \kappa_{T}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)+\alpha=\delta . \operatorname{rmin}\left\{\kappa_{\mathrm{T}}\left(\mathrm{t}_{2}\right), \kappa_{\mathrm{T}}\left(\mathrm{t}_{1}\right)\right\}+\alpha, \\
& \text { ס. } \kappa_{I}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)+\beta=\left(\kappa_{\mathrm{I}}\right)_{\delta \beta}^{\mathrm{M}}{ }^{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \\
& \geq \operatorname{rmin}\left\{\left(\kappa_{\mathrm{I}}\right){ }_{\delta \beta}^{\mathrm{M}}{ }^{\mathrm{T}}\left(\mathrm{t}_{1}\right),\left(\kappa_{\mathrm{I}}\right)_{\delta \beta}^{\mathrm{M}}{ }^{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\} \\
& =\operatorname{rmin}\left\{\delta \cdot \kappa_{\mathrm{I}}\left(\mathrm{t}_{1}\right)+\beta, \delta \cdot \kappa_{\mathrm{I}}\left(\mathrm{t}_{2}\right)+\beta\right\} \\
& \delta . \kappa_{\mathrm{I}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)+\beta=\delta \cdot \operatorname{rmin}\left\{\kappa_{\mathrm{I}}\left(\mathrm{t}_{2}\right), \mathrm{\kappa}_{\mathrm{I}}\left(\mathrm{t}_{1}\right)\right\}+\beta, \\
& \delta . \kappa_{\mathrm{F}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)-\gamma=\left(\kappa_{\mathrm{F}}\right)_{\delta \gamma}^{\mathrm{MT}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \\
& \geq \operatorname{rmin}\left\{\left(\kappa_{\mathrm{F}}\right)_{\delta \gamma}^{\mathrm{M} \mathrm{~T}}\left(\mathrm{t}_{1}\right),\left(\kappa_{\mathrm{F}}\right)_{\delta \gamma}^{\mathrm{MT}}\left(\mathrm{t}_{2}\right)\right\} \\
& =\operatorname{rmin}\left\{\delta . \kappa_{\mathrm{F}}\left(\mathrm{t}_{1}\right)-\gamma, \delta . \kappa_{\mathrm{F}}\left(\mathrm{t}_{2}\right)-\gamma\right\} \\
& \delta . \kappa_{\mathrm{F}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)-\gamma=\delta \cdot \operatorname{rmin}\left\{\kappa_{\mathrm{F}}\left(\mathrm{t}_{2}\right), \kappa_{\mathrm{F}}\left(\mathrm{t}_{1}\right)\right\}-\gamma,
\end{aligned}
$$

and

$$
\begin{aligned}
& \delta . \mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)+\alpha=\left(\mathrm{v}_{\mathrm{T}}\right)_{\delta \alpha}^{\mathrm{M} \mathrm{~T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \\
& \leq \max \left\{\left(\mathrm{v}_{\mathrm{T}}\right)_{\delta \alpha}^{\mathrm{MT}}\left(\mathrm{t}_{1}\right),\left(\mathrm{v}_{\mathrm{T}}\right)_{\delta \alpha}^{\mathrm{M} \mathrm{~T}}\left(\mathrm{t}_{2}\right)\right\} \\
& =\max \left\{\delta \cdot \mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{1}\right)+\alpha, \delta \cdot \mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{2}\right)+\alpha\right\} \\
& \delta . \mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)+\alpha=\delta \cdot \max \left\{\mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{2}\right), \mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{1}\right)\right\}+\alpha, \\
& \delta . \mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)+\beta=\left(\mathrm{v}_{\mathrm{I}}\right)_{\delta \beta}^{\mathrm{MT}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \\
& \leq \max \left\{\left(\mathrm{v}_{\mathrm{I}}\right)_{\delta \beta}^{\mathrm{M} \mathrm{~T}}\left(\mathrm{t}_{1}\right),\left(\mathrm{v}_{\mathrm{I}}\right)_{\delta \beta}^{\mathrm{MT}}\left(\mathrm{t}_{2}\right)\right\} \\
& =\max \left\{\delta \cdot \mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{1}\right)+\beta, \delta \cdot \mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{2}\right)+\beta\right\} \\
& \delta . \mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)+\beta=\delta \cdot \max \left\{\mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{2}\right), \mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{1}\right)\right\}+\beta,
\end{aligned}
$$

$$
\begin{aligned}
& \text { ס. } v_{\mathrm{F}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)-\gamma=\left(\mathrm{v}_{\mathrm{F}}\right)_{\delta \gamma}^{\mathrm{MT}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \\
& \leq \max \left\{\left(\mathrm{v}_{\mathrm{F}}\right)_{\delta \gamma}^{\mathrm{MT}}\left(\mathrm{t}_{1}\right),\left(\mathrm{v}_{\mathrm{F}}\right)_{\delta \gamma}^{\mathrm{M} \mathrm{~T}}\left(\mathrm{t}_{2}\right)\right\} \\
& =\max \left\{\delta \cdot \mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{1}\right)-\gamma, \delta \cdot \mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{2}\right)-\gamma\right\} \\
& \text { ס. } \mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)-\gamma=\delta \cdot \max \left\{\mathrm{u}_{\mathrm{F}}\left(\mathrm{t}_{2}\right), \mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{1}\right)\right\}-\gamma,
\end{aligned}
$$

which imply $\quad \kappa_{T}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \geq \operatorname{rmin}\left\{\kappa_{T}\left(\mathrm{t}_{1}\right), \kappa_{T}\left(\mathrm{t}_{2}\right)\right\}, \quad \kappa_{\mathrm{I}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \geq \operatorname{rmin}\left\{\kappa_{\mathrm{I}}\left(\mathrm{t}_{1}\right), \kappa_{\mathrm{I}}\left(\mathrm{t}_{2}\right)\right\}, \quad \kappa_{\mathrm{F}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \geq$ $\operatorname{rmin}\left\{\kappa_{\mathrm{F}}\left(\mathrm{t}_{1}\right), \kappa_{\mathrm{F}}\left(\mathrm{t}_{2}\right)\right\}$ and $\mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \leq \max \left\{\mathrm{u}_{\mathrm{T}}\left(\mathrm{t}_{1}\right), \mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\}, \mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \leq \max \left\{\mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{1}\right), \mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{2}\right)\right\}, \mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right) \leq$ $\max \left\{u_{F}\left(t_{1}\right), v_{F}\left(t_{2}\right)\right\}$ for all $t_{1}, t_{2} \in Y$. Hence B is a NCSU of Y.

Theorem 3.3.3 If B is a NCID of Y. Then NCMT $B_{\delta \alpha, \beta, \gamma}^{\mathrm{T}}$ of B is a NCID of Y for all $\kappa_{T, \mathrm{I}, \mathrm{F}}, \alpha, \beta \in$ $[[0,0], \tau]$ and $\gamma \in[[0,0], ¥]$, where for $\mathrm{v}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}, \alpha, \beta \in[0, \Gamma]$ and $\gamma \in[0, £]$ and $\delta \in(0,1]$.

Proof. Suppose B $=\left(\kappa_{T, I, F}, \mathrm{U}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}\right)$ is a NCID of Y. Then

$$
\begin{aligned}
& \left(\kappa_{\mathrm{T}}\right)_{\delta \alpha}^{\mathrm{MT}}(0)=\delta \cdot \kappa_{\mathrm{T}}(0)+\alpha \\
& \geq \delta . \kappa_{\mathrm{T}}\left(\mathrm{t}_{1}\right)+\alpha \\
& \left(\kappa_{\mathrm{T}}\right)_{\delta \alpha}^{\mathrm{MT}}(0)=\left(\kappa_{\mathrm{T}}\right)_{\delta \alpha}^{\mathrm{MT}}\left(\mathrm{t}_{1}\right), \\
& \left(\kappa_{\mathrm{I}}\right)_{\delta \beta}^{\mathrm{MT}}(0)=\delta \cdot \kappa_{\mathrm{I}}(0)+\beta \\
& \geq \delta . \kappa_{\mathrm{I}}\left(\mathrm{t}_{1}\right)+\beta \\
& \left(\kappa_{\mathrm{I}}\right)_{\delta \beta}^{\mathrm{MT}}(0)=\left(\kappa_{\mathrm{I}}\right)_{\delta \beta}^{\mathrm{MT}}\left(\mathrm{t}_{1}\right), \\
& \left(\kappa_{\mathrm{F}}\right)_{\delta \gamma}^{\mathrm{MT}}(0)=\delta . \kappa_{\mathrm{F}}(0)-\gamma \\
& \geq \delta . \kappa_{\mathrm{F}}\left(\mathrm{t}_{1}\right)-\gamma \\
& \left(\kappa_{\mathrm{F}}\right)_{\delta \gamma}^{\mathrm{MT}}(0)=\left(\kappa_{\mathrm{F}}\right)_{\delta \gamma}^{\mathrm{M} \mathrm{~T}}\left(\mathrm{t}_{1}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \left(v_{T}\right)_{\delta \alpha}^{\mathrm{MT}}(0)=\delta \cdot \mathrm{v}_{\mathrm{T}}(0)+\alpha \\
& \leq \delta \cdot \mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{1}\right)+\alpha \\
& \left(\mathrm{v}_{\mathrm{T}}\right)_{\delta \alpha}^{\mathrm{MT}}(0)=\left(\mathrm{v}_{\mathrm{T}}\right)_{\delta \alpha}^{\mathrm{MT}}\left(\mathrm{t}_{1}\right), \\
& \left(v_{\mathrm{I}}\right)_{\delta \beta}^{\mathrm{MT}}(0)=\delta \cdot v_{\mathrm{I}}(0)+\beta \\
& \leq \delta . v_{\mathrm{I}}\left(\mathrm{t}_{1}\right)+\beta \\
& \left(v_{\mathrm{I}}\right)_{\delta \beta}^{\mathrm{M} \mathrm{~T}}(0)=\left(v_{\mathrm{I}}\right)_{\delta \beta}^{\mathrm{MT}}\left(\mathrm{t}_{1}\right), \\
& \left(\mathrm{v}_{\mathrm{F}}\right)_{\delta \gamma}^{\mathrm{MT}}(0)=\delta \cdot v_{\mathrm{F}}(0)-\gamma \\
& \leq \delta . v_{\mathrm{F}}\left(\mathrm{t}_{1}\right)-\gamma \\
& \left(\mathrm{v}_{\mathrm{F}}\right)_{\delta \gamma}^{\mathrm{MT}}(0)=\left(v_{\mathrm{F}}\right)_{\delta \gamma}^{\mathrm{MT}}\left(\mathrm{t}_{1}\right)
\end{aligned}
$$

Now

$$
\begin{aligned}
& \left(\kappa_{\mathrm{T}}\right)_{\delta \alpha}^{\mathrm{MT}}\left(\mathrm{t}_{1}\right)=\delta . \kappa_{\mathrm{T}}\left(\mathrm{t}_{1}\right)+\alpha \\
& \geq \delta . \operatorname{rmin}\left\{\kappa_{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right), \kappa_{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\}+\alpha \\
& =\operatorname{rmin}\left\{\delta \cdot \kappa_{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)+\alpha, \delta \cdot \kappa_{\mathrm{T}}\left(\mathrm{t}_{2}\right)+\alpha\right\} \\
& \left(\kappa_{\mathrm{T}}\right)_{\delta \alpha}^{\mathrm{MT}}\left(\mathrm{t}_{1}\right)=\operatorname{rmin}\left\{\left(\kappa_{\mathrm{T}}\right)_{\delta \alpha}^{\mathrm{MT}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right),\left(\kappa_{\mathrm{T}}\right)_{\delta \alpha}^{\mathrm{MT}}\left(\mathrm{t}_{2}\right)\right\} \\
& \Rightarrow\left(\kappa_{\mathrm{T}}\right)_{\delta \alpha}^{\mathrm{MT}}\left(\mathrm{t}_{1}\right) \geq \operatorname{rmin}\left\{\left(\mathrm{\kappa}_{\mathrm{T}}\right)_{\delta \alpha}^{\mathrm{M} \mathrm{~T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right),\left(\mathrm{\kappa}_{\mathrm{T}}\right)_{\delta \alpha}^{\mathrm{MT}}\left(\mathrm{t}_{2}\right)\right\}, \\
& \left(\kappa_{\mathrm{I}}\right){ }_{\delta \beta}^{\mathrm{MT}}\left(\mathrm{t}_{1}\right)=\delta . \kappa_{\mathrm{I}}\left(\mathrm{t}_{1}\right)+\beta \\
& \geq \delta . \operatorname{rmin}\left\{\kappa_{\mathrm{I}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right), \mathrm{\kappa}_{\mathrm{I}}\left(\mathrm{t}_{2}\right)\right\}+\beta \\
& =\operatorname{rmin}\left\{\delta . \kappa_{\mathrm{I}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)+\beta, \delta \cdot \kappa_{\mathrm{I}}\left(\mathrm{t}_{2}\right)+\beta\right\} \\
& \left(\kappa_{\mathrm{I}}\right)_{\delta \beta}^{\mathrm{MT}}\left(\mathrm{t}_{1}\right)=\operatorname{rmin}\left\{\left(\kappa_{\mathrm{I}}\right)_{\delta \beta}^{\mathrm{MT}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right),\left(\kappa_{\mathrm{I}}\right)_{\delta \beta}^{\mathrm{MT}}\left(\mathrm{t}_{2}\right)\right\} \\
& \Rightarrow\left(\kappa_{\mathrm{I}}\right)_{\delta \beta}^{\mathrm{M} \mathrm{~T}}\left(\mathrm{t}_{1}\right) \geq \operatorname{rmin}\left\{\left(\mathrm{\kappa}_{\mathrm{I}}\right)_{\delta \beta}^{\mathrm{MT}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right),\left(\kappa_{\mathrm{I}}\right)_{\delta \beta}^{\mathrm{MT}}\left(\mathrm{t}_{2}\right)\right\}, \\
& \left(\kappa_{\mathrm{F}}\right)_{\delta \gamma}^{\mathrm{M} \mathrm{~T}}\left(\mathrm{t}_{1}\right)=\delta . \kappa_{\mathrm{F}}\left(\mathrm{t}_{1}\right)-\gamma \\
& \geq \delta . \operatorname{rmin}\left\{\mathrm{\kappa}_{\mathrm{F}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right), \mathrm{\kappa}_{\mathrm{F}}\left(\mathrm{t}_{2}\right)\right\}-\gamma \\
& =\operatorname{rmin}\left\{\delta \cdot \kappa_{\mathrm{F}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)-\gamma, \delta \cdot \kappa_{\mathrm{F}}\left(\mathrm{t}_{2}\right)-\gamma\right\} \\
& \left(\kappa_{\mathrm{F}}\right)_{\delta \gamma}^{\mathrm{MT}}\left(\mathrm{t}_{1}\right)=\operatorname{rmin}\left\{\left(\kappa_{\mathrm{F}}\right)_{\delta \gamma}^{\mathrm{M}}{ }^{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right),\left(\kappa_{\mathrm{F}}\right)_{\delta \gamma}^{\mathrm{M} \mathrm{~T}}\left(\mathrm{t}_{2}\right)\right\} \\
& \Rightarrow\left(\kappa_{\mathrm{F}}\right)_{\delta \gamma}^{\mathrm{M}}{ }^{\mathrm{T}}\left(\mathrm{t}_{1}\right) \geq \operatorname{rmin}\left\{\left(\kappa_{\mathrm{F}}\right)_{\delta \gamma}^{\mathrm{M}}{ }^{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right),\left(\kappa_{\mathrm{F}}\right)_{\delta \gamma}^{\mathrm{M} \mathrm{~T}}\left(\mathrm{t}_{2}\right)\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
& \left(\mathrm{v}_{\mathrm{T}}\right)_{\delta \alpha}^{\mathrm{MT}}\left(\mathrm{t}_{1}\right)=\delta \cdot \mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{1}\right)+\alpha \\
& \leq \delta \cdot \max \left\{\mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right), \mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\}+\alpha \\
& =\max \left\{\delta \cdot \mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)+\alpha, \delta \cdot \mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{2}\right)+\alpha\right\} \\
& \left(\mathrm{v}_{\mathrm{T}}\right)_{\delta \alpha}^{\mathrm{MT}}\left(\mathrm{t}_{1}\right)=\max \left\{\left(\mathrm{v}_{\mathrm{T}}\right)_{\delta \alpha}^{\mathrm{M} \mathrm{~T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right),\left(\mathrm{v}_{\mathrm{T}}\right)_{\delta \alpha}^{\mathrm{M} \mathrm{~T}}\left(\mathrm{t}_{2}\right)\right\} \\
& \Rightarrow\left(\mathrm{v}_{\mathrm{T}}\right)_{\delta \alpha}^{\mathrm{MT}}\left(\mathrm{t}_{1}\right) \leq \max \left\{\left(\mathrm{v}_{\mathrm{T}}\right)_{\delta \alpha}^{\mathrm{M} \mathrm{~T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right),\left(\mathrm{v}_{\mathrm{T}}\right)_{\delta \alpha}^{\mathrm{M} \mathrm{~T}}\left(\mathrm{t}_{2}\right)\right\}, \\
& \left(\mathrm{v}_{\mathrm{I}}\right)_{\delta \beta}^{\mathrm{M} \mathrm{~T}}\left(\mathrm{t}_{1}\right)=\delta \cdot \mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{1}\right)+\beta \\
& \leq \delta \cdot \max \left\{\mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right), \mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{2}\right)\right\}+\beta \\
& =\max \left\{\delta \cdot \mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)+\beta, \delta \cdot \mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{2}\right)+\beta\right\} \\
& \left(\mathrm{v}_{\mathrm{I}}\right)_{\delta \beta}^{\mathrm{MT}}\left(\mathrm{t}_{1}\right)=\max \left\{\left(\mathrm{v}_{\mathrm{I}}\right)_{\delta \beta}^{\mathrm{M} \mathrm{~T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right),\left(\mathrm{v}_{\mathrm{I}}\right)_{\delta \beta}^{\mathrm{MT} \mathrm{~T}}\left(\mathrm{t}_{2}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow\left(v_{\mathrm{I}}\right)_{\delta \beta}^{\mathrm{M} \mathrm{~T}}\left(\mathrm{t}_{1}\right) \leq \max \left\{\left(\mathrm{v}_{\mathrm{I}}\right)_{\delta \beta}^{\mathrm{M} \mathrm{~T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right),\left(\mathrm{v}_{\mathrm{I}}\right)_{\delta \beta}^{\mathrm{MT}}\left(\mathrm{t}_{2}\right)\right\}, \\
& \left(\mathrm{v}_{\mathrm{F}}\right)_{\delta \gamma}^{\mathrm{M} \mathrm{~T}}\left(\mathrm{t}_{1}\right)=\delta \cdot v_{\mathrm{F}}\left(\mathrm{t}_{1}\right)-\gamma \\
& \leq \delta \cdot \max \left\{\mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right), \mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{2}\right)\right\}-\gamma \\
& =\max \left\{\delta \cdot \mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)-\gamma, \delta \cdot \mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{2}\right)-\gamma\right\} \\
& \left(\mathrm{v}_{\mathrm{F}}\right)_{\delta \gamma}^{\mathrm{M} \mathrm{~T}}\left(\mathrm{t}_{1}\right)=\max \left\{\left(\mathrm{v}_{\mathrm{F}}\right)_{\delta \gamma}^{\mathrm{MT}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right),\left(\mathrm{v}_{\mathrm{F}}\right)_{\delta \gamma}^{\mathrm{MT}}\left(\mathrm{t}_{2}\right)\right\} \\
& \Rightarrow\left(\mathrm{v}_{\mathrm{F}}\right)_{\delta \gamma}^{\mathrm{MT}}\left(\mathrm{t}_{1}\right) \leq \max \left\{\left(\mathrm{v}_{\mathrm{F}}\right)_{\delta \gamma}^{\mathrm{M} \mathrm{~T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right),\left(\mathrm{v}_{\mathrm{F}}\right)_{\delta \gamma}^{\mathrm{M} \mathrm{~T}}\left(\mathrm{t}_{2}\right)\right\},
\end{aligned}
$$

for all $\mathrm{t}_{1}, \mathrm{t}_{2} \in \mathrm{Y}$ and all for $\kappa_{\mathrm{T}, \mathrm{I}, \mathrm{F}}, \alpha, \beta \in[[0,0], \mathrm{T}]$ and $\gamma \in[[0,0], \ngtr]$, where for $\mathrm{v}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}, \alpha, \beta \in[0, \Gamma]$ and $\gamma \in$ $[0, £]$ and $\delta \in(0,1]$. Hence $B_{\delta \alpha, \beta, \gamma}^{M T}$ of B is a NCID of Y.

Theorem 3.3.3 If B is a neutrosophic cubic set of Y such that NCMT $B_{\delta \alpha, \beta, \gamma}^{\mathrm{M}}$ of B is a NCID of Y for all for $\kappa_{\mathrm{T}, \mathrm{I}, \mathrm{F}}, \alpha, \beta \in[[0,0], 7]$ and $\gamma \in[[0,0], ¥]$, where for $\mathrm{v}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}, \alpha, \beta \in[0, \Gamma]$ and $\gamma \in[0, £]$ and $\delta \in(0,1]$, then B is a NCID of Y.

Proof. Suppose NCMT $B_{\delta \alpha, \beta, \gamma}^{\mathrm{T}}$ is a NCID of Y for some $\kappa_{\mathrm{T}, \mathrm{I}, \mathrm{F}}, \alpha, \beta \in[[0,0], 7]$ and $\gamma \in[[0,0], ¥]$, where for $\mathrm{v}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}, \alpha, \beta \in[0, \Gamma]$ and $\gamma \in[0, £]$ and $\delta \in(0,1]$ and $\mathrm{t}_{1}, \mathrm{t}_{2} \in \mathrm{Y}$. Then

$$
\begin{aligned}
& \delta . \kappa_{\mathrm{T}}(0)+\alpha=\left(\kappa_{\mathrm{T}}\right)_{\delta \alpha}^{\mathrm{MT}}(0) \\
& \geq\left(\kappa_{\mathrm{T}}\right)_{\delta \alpha}^{\mathrm{MT}}\left(\mathrm{t}_{1}\right) \\
& \delta . \kappa_{\mathrm{T}}(0)+\alpha=\delta \cdot \kappa_{\mathrm{T}}\left(\mathrm{t}_{1}\right)+\alpha, \\
& \delta . \kappa_{\mathrm{I}}(0)+\beta=\left(\kappa_{\mathrm{I}}\right)_{\delta \beta}^{\mathrm{M} \mathrm{~T}}(0) \\
& \geq\left(\kappa_{\mathrm{I}}\right)_{\delta \beta}^{\mathrm{M} \mathrm{~T}}\left(\mathrm{t}_{1}\right) \\
& \delta \cdot \kappa_{\mathrm{I}}(0)+\beta=\delta \cdot \kappa_{\mathrm{I}}\left(\mathrm{t}_{1}\right)+\beta, \\
& \delta \cdot \kappa_{\mathrm{F}}(0)-\gamma=\left(\kappa_{\mathrm{F}}\right)_{\delta \gamma}^{\mathrm{M} \mathrm{~T}}(0) \\
& \geq\left(\kappa_{\mathrm{F}}\right)_{\delta \gamma}^{\mathrm{MT}}\left(\mathrm{t}_{1}\right) \\
& \delta . \kappa_{\mathrm{F}}(0)-\gamma=\delta \cdot \kappa_{\mathrm{F}}\left(\mathrm{t}_{1}\right)-\gamma,
\end{aligned}
$$

and

$$
\begin{aligned}
& \delta \cdot \mathrm{v}_{\mathrm{T}}(0)+\alpha=\left(\mathrm{v}_{\mathrm{T}}\right)_{\delta \alpha}^{\mathrm{MT}}(0) \\
& \leq\left(\mathrm{v}_{\mathrm{T}}\right)_{\delta \alpha}^{\mathrm{MT}}\left(\mathrm{t}_{1}\right) \\
& \delta \cdot \mathrm{v}_{\mathrm{T}}(0)+\alpha=\delta \cdot \mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{1}\right)+\alpha, \\
& \text { } . \mathrm{v}_{\mathrm{I}}(0)+\beta=\left(\mathrm{v}_{\mathrm{I}}\right)_{\delta \beta}^{\mathrm{MT}}(0) \\
& \leq\left(\mathrm{v}_{\mathrm{I}}\right)_{\delta \beta}^{\mathrm{MT}}\left(\mathrm{t}_{1}\right) \\
& \delta \cdot \mathrm{v}_{\mathrm{I}}(0)+\beta=\delta \cdot \mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{1}\right)+\beta,
\end{aligned}
$$

$$
\begin{aligned}
& \delta . v_{F}(0)-\gamma=\left(v_{F}\right)_{\delta \gamma}^{\mathrm{M}} \mathrm{~T}(0) \\
& \leq\left(v_{\mathrm{F}}\right)_{\delta \gamma}^{\mathrm{MT}}\left(\mathrm{t}_{1}\right) \\
& \delta . v_{\mathrm{F}}(0)-\gamma=\delta \cdot v_{\mathrm{F}}\left(\mathrm{t}_{1}\right)-\gamma,
\end{aligned}
$$

which imply $\kappa_{T}(0) \geq \kappa_{T}\left(t_{1}\right), \kappa_{I}(0) \geq \kappa_{I}\left(t_{1}\right), \kappa_{F}(0) \geq \kappa_{F}\left(t_{1}\right)$ and $v_{T}(0) \leq v_{T}\left(t_{1}\right), v_{I}(0) \leq v_{I}\left(t_{1}\right), v_{F}(0) \leq$ $v_{F}\left(\mathrm{t}_{1}\right)$. Now, we have

$$
\begin{aligned}
& \delta . \kappa_{\mathrm{T}}\left(\mathrm{t}_{1}\right)+\alpha=\left(\kappa_{\mathrm{T}}\right)_{\delta \alpha}^{\mathrm{MT}}\left(\mathrm{t}_{1}\right) \\
& \geq \operatorname{rmin}\left\{\left(\kappa_{\mathrm{T}}\right)_{\delta \alpha}^{\mathrm{MT}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right),\left(\kappa_{\mathrm{T}}\right)_{\delta \alpha}^{\mathrm{MT}}\left(\mathrm{t}_{2}\right)\right\} \\
& =\operatorname{rmin}\left\{\delta \cdot \kappa_{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)+\alpha, \delta \cdot \kappa_{\mathrm{T}}\left(\mathrm{t}_{2}\right)+\alpha\right\} \\
& \delta . \kappa_{\mathrm{T}}\left(\mathrm{t}_{1}\right)+\alpha=\delta \cdot \operatorname{rmin}\left\{\kappa_{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right), \kappa_{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\}+\alpha, \\
& \delta . \kappa_{\mathrm{I}}\left(\mathrm{t}_{1}\right)+\beta=\left(\kappa_{\mathrm{I}}\right)_{\delta \beta}^{\mathrm{MT}}\left(\mathrm{t}_{1}\right) \\
& \geq \operatorname{rmin}\left\{\left(\kappa_{\mathrm{I}}\right)_{\delta \beta}^{\mathrm{MT}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right),\left(\kappa_{\mathrm{I}}\right)_{\delta \beta}^{\mathrm{MT}}\left(\mathrm{t}_{2}\right)\right\} \\
& =\operatorname{rmin}\left\{\delta \cdot \kappa_{\mathrm{I}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)+\beta, \delta \cdot \kappa_{\mathrm{I}}\left(\mathrm{t}_{2}\right)+\beta\right\} \\
& \delta . \kappa_{\mathrm{I}}\left(\mathrm{t}_{1}\right)+\beta=\delta \cdot \mathrm{rmin}^{2}\left\{\kappa_{\mathrm{I}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right), \kappa_{\mathrm{I}}\left(\mathrm{t}_{2}\right)\right\}+\beta, \\
& \delta . \kappa_{\mathrm{F}}\left(\mathrm{t}_{1}\right)-\gamma=\left(\kappa_{\mathrm{F}}\right)_{\delta \gamma}^{\mathrm{MT}}\left(\mathrm{t}_{1}\right) \\
& \geq \operatorname{rmin}\left\{\left(\kappa_{\mathrm{F}}\right)_{\delta \gamma}^{\mathrm{MT}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right),\left(\kappa_{\mathrm{F}}\right)_{\delta \gamma}^{\mathrm{MT}}\left(\mathrm{t}_{2}\right)\right\} \\
& =\operatorname{rmin}\left\{\delta \cdot \kappa_{\mathrm{F}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)-\gamma, \delta \cdot \kappa_{\mathrm{F}}\left(\mathrm{t}_{2}\right)-\gamma\right\} \\
& \delta . \kappa_{\mathrm{F}}\left(\mathrm{t}_{1}\right)-\gamma=\delta \cdot \operatorname{rmin}\left\{\kappa_{\mathrm{F}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right), \kappa_{\mathrm{F}}\left(\mathrm{t}_{2}\right)\right\}-\gamma
\end{aligned}
$$

and

$$
\begin{aligned}
& \text { 反. } \mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{1}\right)+\alpha=\left(\mathrm{v}_{\mathrm{T}}\right)_{\delta \alpha}^{\mathrm{MT}}\left(\mathrm{t}_{1}\right) \\
& \leq \max \left\{\left(\mathrm{U}_{\mathrm{T}}\right)_{\delta \alpha}^{\mathrm{M} \mathrm{~T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right),\left(\mathrm{U}_{\mathrm{T}}\right)_{\delta \alpha}^{\mathrm{M} \mathrm{~T}}\left(\mathrm{t}_{2}\right)\right\} \\
& =\max \left\{\delta \cdot \mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)+\alpha, \delta \cdot \mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{2}\right)+\alpha\right\} \\
& \delta . \mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{1}\right)+\alpha=\delta . \max \left\{\mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right), \mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\}+\alpha, \\
& \text { ס. } \mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{1}\right)+\beta=\left(\mathrm{v}_{\mathrm{I}}\right)_{\delta \beta}^{\mathrm{MT}}\left(\mathrm{t}_{1}\right) \\
& \leq \max \left\{\left(\mathrm{v}_{\mathrm{I}}\right)_{\delta \beta}^{\mathrm{MT}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right),\left(\mathrm{v}_{\mathrm{I}}\right)_{\delta \beta}^{\mathrm{M} \mathrm{~T}}\left(\mathrm{t}_{2}\right)\right\} \\
& =\max \left\{\delta \cdot v_{\mathrm{I}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)+\beta, \delta \cdot \mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{2}\right)+\beta\right\} \\
& \delta . v_{I}\left(t_{1}\right)+\beta=\delta . \max \left\{v_{I}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right), \mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{2}\right)\right\}+\beta, \\
& \delta . v_{F}\left(\mathrm{t}_{1}\right)-\gamma=\left(\mathrm{v}_{\mathrm{F}}\right)_{\delta \gamma}^{\mathrm{MT}}\left(\mathrm{t}_{1}\right) \\
& \leq \max \left\{\left(\mathrm{v}_{\mathrm{F}}\right)_{\delta \gamma}^{\mathrm{MT}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right),\left(\mathrm{v}_{\mathrm{F}}\right)_{\delta \gamma}^{\mathrm{MT}}\left(\mathrm{t}_{2}\right)\right\} \\
& =\max \left\{\delta \cdot v_{\mathrm{F}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right)-\gamma, \delta \cdot v_{\mathrm{F}}\left(\mathrm{t}_{2}\right)-\gamma\right\}
\end{aligned}
$$

$$
\delta . v_{F}\left(t_{1}\right)-\gamma=\delta \cdot \max \left\{\mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right), \mathrm{v}_{\mathrm{F}}\left(\mathrm{t}_{2}\right)\right\}-\gamma
$$

which imply $\kappa_{T}\left(\mathrm{t}_{1}\right) \geq \operatorname{rmin}\left\{\kappa_{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right), \kappa_{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\}, \kappa_{\mathrm{I}}\left(\mathrm{t}_{1}\right) \geq \operatorname{rmin}\left\{\kappa_{\mathrm{I}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right), \kappa_{\mathrm{I}}\left(\mathrm{t}_{2}\right)\right\}, \kappa_{\mathrm{F}}\left(\mathrm{t}_{1}\right) \geq \operatorname{rmin}\left\{\kappa_{\mathrm{F}}\left(\mathrm{t}_{1} *\right.\right.$ $\left.\left.\mathrm{t}_{2}\right), \kappa_{\mathrm{F}}\left(\mathrm{t}_{2}\right)\right\}$ and $\mathrm{u}_{\mathrm{T}}\left(\mathrm{t}_{1}\right) \leq \max \left\{\mathrm{u}_{\mathrm{T}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right), \mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{2}\right)\right\}, \mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{1}\right) \leq \max \left\{\mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{1} * \mathrm{t}_{2}\right), \mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{2}\right)\right\}, \mathrm{u}_{\mathrm{F}}\left(\mathrm{t}_{1}\right) \leq \max \left\{\mathrm{u}_{\mathrm{F}}\left(\mathrm{t}_{1} *\right.\right.$ $\left.\left.t_{2}\right), v_{F}\left(t_{2}\right)\right\}$ for all $t_{1}, t_{2} \in Y$. Hence B is a NCID of Y.

Theorem 3.3.4 Intersection of any two NCMT of a NCID B of Y is a NCID of Y.
Proof. Suppose $B_{\delta \alpha, \beta, \gamma}^{M T}$ and $B_{\delta^{\prime} \alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}}^{M T}$ are two NCMTs of NCID B ofY, where for $B_{\alpha, \beta, \gamma}^{M T}$, for $\kappa_{T, I, F}, \alpha, \beta \in$ $[[0,0]\rceil,], \gamma \in[[0,0], \ngtr]$, for $\mathrm{v}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}, \alpha, \beta \in[0, \Gamma], \gamma \in[0, £]$ and for $\mathrm{B}_{\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}}^{\mathrm{T}}$, for $\left.\kappa_{\mathrm{T}, \mathrm{I}, \mathrm{F}} \alpha^{\prime}, \beta^{\prime} \in[[0,0]\rceil,\right], \gamma^{\prime} \in$ $[[0,0], ¥]$, for $\mathrm{v}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}, \alpha^{\prime}, \beta^{\prime} \in[0, \Gamma], \gamma^{\prime} \in[0, £]$. Assume $\alpha \leq \alpha^{\prime}, \beta \leq \beta^{\prime}, \gamma \leq \gamma^{\prime}$ and $\delta=\delta^{\prime}$. Then by Theorem 3.3.3, $\mathrm{B}_{\delta \alpha, \beta, \gamma}^{\mathrm{MT}}$ and $\mathrm{B}_{\delta^{\prime} \alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}}^{\mathrm{MT}}$ are NCIDs of Y. So

$$
\begin{aligned}
& \left.\left(\left(\kappa_{\mathrm{T}}\right)_{\delta \alpha}^{\mathrm{MT}} \cap\left(\kappa_{\mathrm{T}}\right)_{\delta^{\prime} \alpha^{\prime}}^{\mathrm{M}}\right)\left(\mathrm{t}_{1}\right)=\operatorname{rmin}\left\{\left(\kappa_{\mathrm{T}}\right)_{\delta \alpha}^{\mathrm{M} \mathrm{~T}}\left(\mathrm{t}_{1}\right),\left(\kappa_{\mathrm{T}}\right)_{\delta^{\prime} \alpha^{\prime}}^{\mathrm{M}} \mathrm{t}_{1}\right)\right\} \\
& =\operatorname{rmin}\left\{\delta . \kappa_{\mathrm{T}}\left(\mathrm{t}_{1}\right)+\alpha, \delta^{\prime} . \kappa_{\mathrm{T}}\left(\mathrm{t}_{1}\right)+\alpha^{\prime}\right\} \\
& =\delta . \kappa_{T}\left(t_{1}\right)+\alpha \\
& \left(\left(\kappa_{\mathrm{T}}\right)_{\delta \alpha}^{\mathrm{MT}} \cap\left(\kappa_{\mathrm{T}}\right)_{\delta^{\prime} \alpha^{\prime}}^{\mathrm{MT}}\right)\left(\mathrm{t}_{1}\right)=\left(\kappa_{\mathrm{T}}\right)_{\delta \alpha}^{\mathrm{MT}}\left(\mathrm{t}_{1}\right), \\
& \left(\left(\kappa_{I}\right)_{\delta \beta}^{\mathrm{MT}} \cap\left(\kappa_{\mathrm{I}}\right)_{\delta^{\prime} \beta^{\prime}}^{\mathrm{MT}}\right)\left(\mathrm{t}_{1}\right)=\operatorname{rmin}\left\{\left(\kappa_{\mathrm{I}}\right)_{\delta \beta}^{\mathrm{M}}{ }^{\mathrm{T}}\left(\mathrm{t}_{1}\right),\left(\kappa_{\mathrm{I}}\right)_{\delta^{\prime} \prime}^{\mathrm{M}}{ }^{\mathrm{T}}\left(\mathrm{t}_{1}\right)\right\} \\
& =\operatorname{rmin}\left\{\delta \cdot \kappa_{\mathrm{I}}\left(\mathrm{t}_{1}\right)+\beta, \delta^{\prime} . \kappa_{\mathrm{I}}\left(\mathrm{t}_{1}\right)+\beta^{\prime}\right\} \\
& =\delta . \kappa_{\mathrm{I}}\left(\mathrm{t}_{1}\right)+\beta \\
& \left(\left(\kappa_{\mathrm{I}}\right)_{\delta \beta}^{\mathrm{M} \mathrm{~T}} \cap\left(\kappa_{\mathrm{I}}\right)_{\delta \prime}^{\mathrm{M} \mathrm{~T}}{ }_{\prime}\right)\left(\mathrm{t}_{1}\right)=\left(\kappa_{\mathrm{I}}\right)_{\delta \beta}^{\mathrm{M} \mathrm{~T}}\left(\mathrm{t}_{1}\right) \text {, } \\
& \left(\left(\kappa_{\mathrm{F}}\right)_{\delta \gamma}^{\mathrm{MT}} \cap\left(\kappa_{\mathrm{F}}\right)_{\delta \gamma^{\prime}}^{\mathrm{MT}}\right)\left(\mathrm{t}_{1}\right)=\operatorname{rmin}\left\{\left(\kappa_{\mathrm{F}}\right)_{\delta \gamma}^{\mathrm{MT}}\left(\mathrm{t}_{1}\right),\left(\kappa_{\mathrm{F}}\right)_{\delta^{\prime} \gamma^{\prime}}^{\mathrm{M} \mathrm{~T}}\left(\mathrm{t}_{1}\right)\right\} \\
& =\operatorname{rmin}\left\{\delta . \kappa_{\mathrm{F}}\left(\mathrm{t}_{1}\right)-\gamma, \delta^{\prime} . \kappa_{\mathrm{F}}\left(\mathrm{t}_{1}\right)-\gamma^{\prime}\right\} \\
& =\delta^{\prime} . \kappa_{\mathrm{F}}\left(\mathrm{t}_{1}\right)-\gamma^{\prime} \\
& \left(\left(\kappa_{\mathrm{F}}\right)_{\delta \gamma}^{\mathrm{MT}} \cap\left(\kappa_{\mathrm{F}}\right)_{\delta^{\prime} \gamma^{\prime}}^{\mathrm{MT}}\right)\left(\mathrm{t}_{1}\right)=\left(\kappa_{\mathrm{F}}\right),_{\delta^{\prime} \gamma^{\prime}}^{\mathrm{MT}}\left(\mathrm{t}_{1}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \left(\left(v_{\mathrm{T}}\right)_{\delta \alpha}^{\mathrm{MT}} \cap\left(\mathrm{v}_{\mathrm{T}}\right)_{\delta^{\prime} \alpha^{\prime}}^{\mathrm{MT}}\right)\left(\mathrm{t}_{1}\right)=\max \left\{\left(\mathrm{v}_{\mathrm{T}}\right)_{\delta \alpha}^{\mathrm{MT}}\left(\mathrm{t}_{1}\right),\left(\mathrm{v}_{\mathrm{T}}\right)_{\delta^{\prime} \alpha^{\prime}}^{\mathrm{MT}}\left(\mathrm{t}_{1}\right)\right\} \\
& =\max \left\{\delta \cdot \mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{1}\right)+\alpha^{\prime}, \delta^{\prime} \cdot \mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{1}\right)+\alpha^{\prime}\right\} \\
& =\delta^{\prime} \cdot \mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{1}\right)+\alpha^{\prime} \\
& \left(\left(\mathrm{v}_{\mathrm{T}}\right)_{\delta \alpha}^{\mathrm{MT}} \cap\left(\mathrm{v}_{\mathrm{T}}\right)_{\delta^{\prime} \alpha^{\prime}}^{\mathrm{MT}}\right)\left(\mathrm{t}_{1}\right)=\left(\mathrm{v}_{\mathrm{T}}\right)_{\delta^{\prime} \alpha^{\prime}}^{\mathrm{MT}}\left(\mathrm{t}_{1}\right), \\
& \left(\left(v_{\mathrm{I}}\right)_{\delta \beta}^{\mathrm{MT}} \cap\left(v_{\mathrm{I}}\right)_{\delta^{\prime} \beta^{\prime}}^{\mathrm{MT}}\right)\left(\mathrm{t}_{1}\right)=\max \left\{\left(\mathrm{v}_{\mathrm{I}}\right)_{\delta \beta}^{\mathrm{MT}}\left(\mathrm{t}_{1}\right),\left(v_{\mathrm{I}}\right)_{\delta^{\prime} \beta^{\prime}}^{\mathrm{MT}}\left(\mathrm{t}_{1}\right)\right\} \\
& =\max \left\{\delta \cdot v_{\mathrm{I}}\left(\mathrm{t}_{1}\right)+\beta, \delta^{\prime} \cdot v_{\mathrm{I}}\left(\mathrm{t}_{1}\right)+\beta^{\prime}\right\} \\
& =\delta^{\prime} \cdot v_{\mathrm{I}}\left(\mathrm{t}_{1}\right)+\beta^{\prime} \\
& \left(\left(v_{\mathrm{I}}\right)_{\delta \beta}^{\mathrm{MT}} \cap\left(v_{\mathrm{I}}\right)_{\delta^{\prime} \beta^{\prime}}^{\mathrm{MT}}\right)\left(\mathrm{t}_{1}\right)=\left(v_{\mathrm{I}}\right)_{\delta^{\prime} \beta^{\prime}}^{\mathrm{MT}}\left(\mathrm{t}_{1}\right),
\end{aligned}
$$

$$
\begin{aligned}
& \left(\left(v_{\mathrm{F}}\right)_{\delta \gamma}^{\mathrm{MT}} \cap\left(\mathrm{v}_{\mathrm{F}}\right)_{\delta^{\prime} \gamma^{\prime}}^{\mathrm{MT}}\right)\left(\mathrm{t}_{1}\right)=\max \left\{\left(\mathrm{v}_{\mathrm{F}}\right)_{\delta \gamma}^{\mathrm{MT}}\left(\mathrm{t}_{1}\right),\left(\mathrm{v}_{\mathrm{F}}\right)_{\delta^{\prime} \gamma^{\prime}}^{\mathrm{MT}}\left(\mathrm{t}_{1}\right)\right\} \\
& =\max \left\{\delta \cdot v_{\mathrm{F}}\left(\mathrm{t}_{1}\right)-\gamma, \delta^{\prime} \cdot v_{\mathrm{F}}\left(\mathrm{t}_{1}\right)-\gamma^{\prime}\right\} \\
& =\delta \cdot v_{\mathrm{F}}\left(\mathrm{t}_{1}\right)-\gamma \\
& \left(\left(\mathrm{v}_{\mathrm{F}}\right)_{\delta \gamma}^{\mathrm{MT}} \cap\left(v_{\mathrm{F}}\right)_{\delta^{\prime} \gamma^{\prime}}^{\mathrm{MT}}\right)\left(\mathrm{t}_{1}\right)=\left(v_{\mathrm{F}}\right)_{\delta \gamma}^{\mathrm{MT}}\left(\mathrm{t}_{1}\right) .
\end{aligned}
$$

Hence $B_{\delta \alpha, \beta, \gamma}^{\mathrm{MT}} \cap \mathrm{B}_{\delta^{\prime} \alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}}^{\mathrm{MT}}$ is NCID of Y.
Theorem 3.3.5 Union of any two NCMT $B_{\delta \alpha, \beta, \gamma}^{M T}$ of a NCID B of Y is a NCID of Y.
Proof. Suppose $\mathrm{B}_{\delta \alpha, \beta, \gamma}^{\mathrm{M}} \mathrm{T}$ and $\mathrm{B}_{\delta^{\prime} \alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}}^{\mathrm{T}}$ are two NCMTs of NCID B of Y, where for $\mathrm{B}_{\alpha, \beta, \gamma}^{\mathrm{MT}}$, for $\kappa_{\mathrm{T}, \mathrm{I}, \mathrm{F}}, \alpha, \beta \in$ $[[0,0], 7], \gamma \in[[0,0], \nsupseteq]$, for $\mathrm{v}_{\mathrm{T}, \mathrm{I}, \mathrm{F}}, \alpha, \beta \in[0, \Gamma], \gamma \in[0, £]$ and for $\mathrm{B}_{\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}}^{\mathrm{T}}$, for $\left.\kappa_{\mathrm{T}, \mathrm{I}, \mathrm{F}} \alpha^{\prime}, \beta^{\prime} \in[[0,0]\rceil,\right], \gamma^{\prime} \in$ $[[0,0], ¥]$, for $v_{T, ı, F}, \alpha^{\prime}, \beta^{\prime} \in[0, \Gamma], \gamma^{\prime} \in[0, £]$. Assume $\alpha \geq \alpha^{\prime}, \beta \geq \beta^{\prime}, \gamma \geq \gamma^{\prime}$ and $\delta=\delta^{\prime}$. Then by Theorem 3.3.3, $\mathrm{B}_{\delta \alpha, \beta, \gamma}^{\mathrm{MT}}$ and $\mathrm{B}_{\delta^{\prime} \alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}}^{\mathrm{MT}}$ are NCIDs of Y. So

$$
\begin{aligned}
& \left(\left(\kappa_{\mathrm{T}}\right)_{\delta \alpha}^{\mathrm{MT}} \cup\left(\kappa_{\mathrm{T}}\right)_{\delta \prime \alpha^{\prime}}^{\mathrm{MT}}\right)\left(\mathrm{t}_{1}\right)=\operatorname{rmax}\left\{\left(\kappa_{\mathrm{T}}\right)_{\delta \alpha}^{\mathrm{MT}}\left(\mathrm{t}_{1}\right),\left(\kappa_{\mathrm{T}}\right)_{\delta^{\prime} \alpha^{\prime}}^{\mathrm{M}}\left(\mathrm{t}_{1}\right)\right\} \\
& =\operatorname{rmax}\left\{\delta . \kappa_{\mathrm{T}}\left(\mathrm{t}_{1}\right)+\alpha, \delta^{\prime} \cdot \kappa_{\mathrm{T}}\left(\mathrm{t}_{1}\right)+\alpha^{\prime}\right\} \\
& =\delta . \kappa_{\mathrm{T}}\left(\mathrm{t}_{1}\right)+\alpha \\
& \left(\left(\kappa_{T}\right)_{\delta \alpha}^{\mathrm{MT}} \cup\left(\kappa_{T}\right)_{\delta^{\prime} \alpha^{\prime}}^{\mathrm{MT}}\right)\left(\mathrm{t}_{1}\right)=\left(\kappa_{\mathrm{T}}\right)_{\delta \alpha}^{\mathrm{MT}}\left(\mathrm{t}_{1}\right), \\
& \left(\left(\kappa_{\mathrm{I}}\right)_{\delta \beta}^{\mathrm{MT}} \cup\left(\kappa_{\mathrm{I}}\right){ }_{\delta^{\prime} \beta^{\prime}}^{\mathrm{M} T}\right)\left(\mathrm{t}_{1}\right)=\operatorname{rmax}\left\{\left(\kappa_{\mathrm{I}}\right){ }_{\delta \beta}^{\mathrm{MT}}\left(\mathrm{t}_{1}\right),\left(\kappa_{\mathrm{I}}\right)_{\delta^{\prime} \beta^{\prime}}^{\mathrm{MT}}\left(\mathrm{t}_{1}\right)\right\} \\
& =\operatorname{rmax}\left\{\delta . \kappa_{\mathrm{I}}\left(\mathrm{t}_{1}\right)+\beta, \delta^{\prime} . \kappa_{\mathrm{I}}\left(\mathrm{t}_{1}\right)+\beta^{\prime}\right\} \\
& =\delta . \kappa_{\mathrm{I}}\left(\mathrm{t}_{1}\right)+\beta \\
& \left(\left(\kappa_{\mathrm{I}}\right)_{\delta \beta}^{\mathrm{M} \mathrm{~T}} \cup\left(\kappa_{\mathrm{I}}\right)_{\delta^{\prime} \beta^{\prime}}^{\mathrm{MT}}\right)\left(\mathrm{t}_{1}\right)=\left(\kappa_{\mathrm{I}}\right)_{\delta \beta}^{\mathrm{M} \mathrm{~T}}\left(\mathrm{t}_{1}\right) \text {, } \\
& \left(\left(\kappa_{\mathrm{F}}\right)_{\delta \gamma}^{\mathrm{MT}} \cup\left(\kappa_{\mathrm{F}}\right)_{\delta \prime}^{\mathrm{MT}}{ }^{\mathrm{M}}\right)\left(\mathrm{t}_{1}\right)=\operatorname{rmax}\left\{\left(\kappa_{\mathrm{F}}\right)_{\delta \gamma}^{\mathrm{M} \mathrm{~T}}\left(\mathrm{t}_{1}\right),\left(\kappa_{\mathrm{F}}\right)_{\delta^{\prime}}^{\mathrm{M}}{ }_{\gamma^{\prime}}^{\mathrm{T}}\left(\mathrm{t}_{1}\right)\right\} \\
& =\operatorname{rmax}\left\{\delta . \kappa_{\mathrm{F}}\left(\mathrm{t}_{1}\right)-\gamma, \delta^{\prime} . \kappa_{\mathrm{F}}\left(\mathrm{t}_{1}\right)-\gamma^{\prime}\right\} \\
& \left.=\delta^{\prime} \cdot \kappa_{\mathrm{F}}\left(\mathrm{t}_{1}\right)-\gamma^{\prime}\right\} \\
& \left(\left(\kappa_{\mathrm{F}}\right)_{\delta \gamma}^{\mathrm{MT}} \cup\left(\kappa_{\mathrm{F}}\right)_{\delta^{\prime}}^{\mathrm{MT}}{ }_{\gamma^{\prime}}\right)\left(\mathrm{t}_{1}\right)=\left(\kappa_{\mathrm{F}}\right)_{\delta^{\prime} \gamma^{\prime}}^{\mathrm{MT}}\left(\mathrm{t}_{1}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \left(\left(\mathrm{v}_{\mathrm{T}}\right)_{\delta \alpha}^{\mathrm{MT}} \cup\left(\mathrm{v}_{\mathrm{T}}\right)_{\delta^{\prime} \alpha^{\prime}}^{\mathrm{MT}}\right)\left(\mathrm{t}_{1}\right)=\min \left\{\left(\mathrm{v}_{\mathrm{T}}\right)_{\delta \alpha}^{\mathrm{MT}}\left(\mathrm{t}_{1}\right),\left(\mathrm{v}_{\mathrm{T}}\right)_{\delta^{\prime} \alpha^{\prime}}^{\mathrm{MT}}\left(\mathrm{t}_{1}\right)\right\} \\
& =\min \left\{\delta \cdot \mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{1}\right)+\alpha, \delta^{\prime} \cdot \mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{1}\right)+\alpha^{\prime}\right\} \\
& =\delta^{\prime} \cdot \mathrm{v}_{\mathrm{T}}\left(\mathrm{t}_{1}\right)+\alpha^{\prime} \\
& \left(\left(\mathrm{v}_{\mathrm{T}}\right)_{\delta \alpha}^{\mathrm{MT}} \cup\left(\mathrm{v}_{\mathrm{T}}\right)_{\delta^{\prime} \alpha^{\prime} \prime}^{\mathrm{MT}}\right)\left(\mathrm{t}_{1}\right)=\left(\mathrm{v}_{\mathrm{T}}\right)_{\delta^{\prime} \alpha^{\prime}}^{\mathrm{MT}}\left(\mathrm{t}_{1}\right), \\
& \left(\left(\mathrm{v}_{\mathrm{I}}\right)_{\delta \beta}^{\mathrm{MT}} \cup\left(v_{\mathrm{I}}\right)_{\delta^{\prime} \beta_{\prime} \prime}^{\mathrm{M} \mathrm{~T}}\right)\left(\mathrm{t}_{1}\right)=\min \left\{\left(\mathrm{v}_{\mathrm{I}}\right)_{\delta \beta}^{\mathrm{M} \mathrm{~T}}\left(\mathrm{t}_{1}\right),\left(\mathrm{v}_{\mathrm{I}}\right)_{\delta^{\prime} \beta^{\prime}}^{\mathrm{MT}}\left(\mathrm{t}_{1}\right)\right\} \\
& =\min \left\{\delta \cdot \mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{1}\right)+\beta, \delta^{\prime} \cdot \mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{1}\right)+\beta^{\prime}\right\} \\
& =\delta^{\prime} \cdot \mathrm{v}_{\mathrm{I}}\left(\mathrm{t}_{1}\right)+\beta^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\left(v_{I}\right)_{\delta \beta}^{\mathrm{MT}} \cup\left(v_{I}\right)_{\delta^{\prime} \beta^{\prime}}^{\mathrm{MT}}\right)\left(\mathrm{t}_{1}\right)=\left(v_{I}\right)_{\delta^{\prime} \beta^{\prime}}^{\mathrm{MT}}\left(\mathrm{t}_{1}\right), \\
& \left(\left(v_{\mathrm{F}}\right)_{\delta \gamma}^{\mathrm{MT}} \cup\left(v_{\mathrm{F}}\right)_{\delta^{\prime} \gamma^{\prime}}^{\mathrm{MT}}\right)\left(\mathrm{t}_{1}\right)=\min \left\{\left(v_{\mathrm{F}}\right)_{\delta \gamma}^{\mathrm{MT}}\left(\mathrm{t}_{1}\right),\left(v_{\mathrm{F}}\right)_{\delta^{\prime} \gamma^{\prime}}^{\mathrm{MT}}\left(\mathrm{t}_{1}\right)\right\} \\
& =\min \left\{\delta . v_{\mathrm{F}}\left(\mathrm{t}_{1}\right)-\gamma^{\prime}, \delta^{\prime} \cdot v_{\mathrm{F}}\left(\mathrm{t}_{1}\right)-\gamma^{\prime}\right\} \\
& =\delta \cdot v_{\mathrm{F}}\left(\mathrm{t}_{1}\right)-\gamma \\
& \left(\left(v_{\mathrm{F}}\right)_{\delta \gamma}^{\mathrm{MT}} \cup\left(v_{\mathrm{F}}\right)_{\delta^{\prime} \gamma^{\prime}}^{\mathrm{MT}}\right)\left(\mathrm{t}_{1}\right)=\left(v_{\mathrm{F}}\right)_{\delta \gamma^{\prime}}^{\mathrm{MT}}\left(\mathrm{t}_{1}\right) .
\end{aligned}
$$

Hence $\mathrm{B}_{\delta \alpha, \beta, \gamma}^{\mathrm{M} \mathrm{T}} \cup \mathrm{B}_{\delta^{\prime} \alpha \prime, \beta \prime, \gamma^{\prime}}^{\mathrm{MT}}$ is NCID of Y.

4. Conclusion

In this paper, we defined neutrosophic cubic translation,, neutrosophic cubic multiplication and neutrosophic cubic magnified translation for neutrosophic cubic set on BF-algebra. We provided the new sort of different conditions for neutrosophic cubic translation, neutrosophic cubic multiplication and neutrosophic cubic magnified translation and proved with examples. Moreover, for better understanding we investigated many results for NCT, NCM and NCMT using the subalgebra and ideals. For future work, translation and multiplication can be applied on neutrosophic cubic soft set and T-neutrosophic cubic set.

References

1. L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338-353.
2. K. Iseki, S. Tanaka, An introduction to the theory of BCK-algebras, Math Japonica 23 (1978), 1-20.
3. K. Iseki, On BCI-algebras, Math. Seminar Notes 8 (1980), 125-130.
4. K. J. Lee, Y. B. Jun, M. I. Doh, Fuzzy translations and fuzzy multiplications of BCK/BCI-algebras, Commun. Korean Math. Soc. 24 (2009), No.3, 353-360.
5. M. A. A. Ansari, M. Chandramouleeswaran, Fuzzy translations of fuzzy β-ideals of β-algebras, International Journal of Pure and Applied Mathematics, Vol.92, No. 5, (2014), 657-667.
6. B. Satyanarayana, D. Ramesh, M. V. V. Kumar, R. D. Prasad, International J. of Math. Sci. \& Engg. Appls. (IJMSEA) ISSN 0973-9424, Vol. 4 No. V (December, 2010), pp. 263-274.
7. A. Walendziak, On BF-algebras, Mathematics Slovaca (2007) 57(2) DOI: 10.2478/s 12175-007-0003x .
8. S. Lekkoksung, On fuzzy magnifed translation in ternary hemirings, International Mathematical Forum, vol. 7, No. 21, (2012), 1021-1025.
9. T. Senapati, M. Bhowmik, M. Pal, Atanassov's intuitionistic fuzzy translations of intuitionistic fuzzy H-ideals in BCK/BCI-algebras, Notes on Intuitionistic Fuzzy Sets 19, (2013), 32-47.
10. C. Jana, T. Senapati, M. Bhowmik, M. Pal, On intuitionistic fuzzy G-subalgebras, Fuzzy Information and Engineering 7, (2015), 195-209.
11. T. Senapati, M. Bhowmik, M. Pal, B. Davvaz, Fuzzy translations of fuzzy H-ideals in BCK/BCIalgebras, Journal of the Indonesian Mathematical Society 21, (2015), 45-58.
12. K. T. Atanassov, Intuitionistic fuzzy sets theory and applications, Studies in Fuzziness and Soft Computing, Vol. 35, Physica-Verlag, Heidelberg, New York, 1999.
13. T. Senapati, Translation of intuitionistic fuzzy B-algebras, Fuzzy Information and Engineering, 7, 2015, 389-404.
14. Y. H. Kim, T. E. Jeong, Intuitionistic fuzzy structure of B-algebras, Journal of Applied Mathematicsand Computing 22, (2006), 491-500.
15. T. Senapati, C. S. Kim, M. Bhowmik, M. Pal, Cubic subalgebras and cubic closed ideals of B-algebras, Fuzzy Information and Engineering 7, (2015), 129-149.
16. T. Senapati, M. Bhowmik, M. Pal, Fuzzy dot subalgebras and fuzzy dot ideals of B-algebras, Journal of Uncertain Systems 8, (2014), 22-30.
17. T. Priya, T. Ramachandran, Fuzzy translation and fuzzy multiplication on PS-algebras, International Journal of Innovation in Science and Mathematics Vol. 2, Issue 5, ISSN (Online): 2347-9051.
18. M. Chandramouleeswaran, P. Muralikrishna, S. Srinivasan, Fuzzy translation and fuzzy multiplication in BF/BG-algebras, Indian Journal of Science and Technology, Vol. 6 (9), September (2013), Print ISSN: 0974-6846, Online ISSN: 0974-5645.
19. C. Jana, T. Senapati, Cubic G-subalgebras of G-algebras, jounral of Pure and Applied Mathematics Vol.10, No.1, (2015), 105-115 ISSN: 2279-087X (P), 2279-0888(online).
20. F. Smarandache, Neutrosophic set-a generalization of the intuitionistic fuzzy set, Int. J. Pure Appl. Math. 24(3), (2005), 287-297.
21. F. Smarandache, A unifying field in logics: Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Neutrosophic Probability, (American Reserch Press), Rehoboth, (1999).
22. Y. B. Jun, C. S. Kim, K. O. Yang, Cubic sets, Annuals of Fuzzy Mathematics and Informatics, 4, (2012),83-98.
23. S. Borumand, M. A. Rezvani, On fuzzy BF-algebras. International Mathematical Forum,. 4, (2009), 1325.
24. Y. B. Jun, F. Smarandache, C. S. Kim, Neutrosophic Cubic Sets, New Math. and Natural Comput, (2015),8-41.
25. Y. B. Jun, F. Smarandache, M. A. Ozturk, Commutative falling neutrosophic ideals in BCK-algebras, Neutrosophic Sets and Systems, vol. 20, pp. 44-53, 2018, http://doi.org/10.5281/zenodo . 1235351.
26. C. H. Park, Neutrosophic ideal of subtraction algebras, Neutrosophic Sets and Systems, vol. 24, pp. 36-45, 2019, DOI: 10.5281/zenodo. 2593913.
27. M. Khalid, R. Iqbal, S. Broumi, Neutrosophic soft cubic subalgebras of G-algebras, Neutrosophic Sets and Systems, 28, (2019), 259-272. 10.5281/zenodo. 3382552
28. M. Khalid, R. Iqbal, S. Zafar, H. Khalid, Intuitionistic fuzzy translation and multiplication of Galgebra,The Journal of Fuzzy Mathematics, 27, (3), (2019), 17.
29. M. Khalid, N. A. Khalid, S. Broumi, T-Neutrosophic Cubic Set on BF-Algebra, Neutrosophic Sets and Systems, (2020), http://doi.org/10.5281/zenodo. 3639470.

Received: Apr 13, 2020. Accepted: July 42020

Neutrosophic Generalized Homeomorphism

Md. Hanif PAGE ${ }^{1}$ and Qays Hatem Imran ${ }^{2 *}$
${ }^{1}$ Department of Mathematics, KLE Technological University, Hubballi-580031, Karnataka, India.
E-mail: mb_page@kletech.ac.in (hanif01@yahoo.com)
${ }^{2}$ Department of Mathematics, College of Education for Pure Science, Al-Muthanna University, Samawah, Iraq.
E-mail: qays.imran@mu.edu.iq
* Correspondence: qays.imran@mu.edu.iq

Abstract

The idea of neutrosophic generalized homeomorphism is presented in neutrosophic topological spaces. In addition to this, neutrosophic generalized closed and open mappings are also presented. At the same time, their characterizations are discussed by establishing their related attributes.

Keywords: GN-closed set, GN-closed map, GN-open map, Neutrosophic g-homeomorphism, Neutrosophic ${ }^{*}$-homeomorphism.

1. Introduction

Neutrosophic sets were initially established as a generality of intuitionistic fuzzy sets [10] by Smarandache [18] such that the membership, the non-membership, and the indeterminacy degrees are considered. In analogy with more unsure philosophy, the neutrosophic set discharge agreement with an indeterminacy condition. The neutrosophic conception has a broad scope of real-time requests in the fields of [1-9] Artificial Intelligence, Computer Science, Information Systems, Decision Making, Uncertainty assessments of linear time-cost tradeoffs, Applied Mathematics, and solving the supply chain problem. Salama et al. $[15,16]$ adapted the notion of the neutrosophic set to operate in neutrosophic topological spaces (NTSs in short) and pioneered generalized neutrosophic set and topological spaces. In [11], generalized neutrosophic closed set (in short, GNCS) is defined and using this generalized neutrosophic continuous (GN-continuous), and generalized neutrosophic irresolute (in short, GN-irresolute) functions are defined. Recently in [12, 13], the perception of generalized α-contra continuous and neutrosophic almost α-contra-continuous functions are introduced. Parimala M et al. [14] introduced and studied the thought of Neutrosophic homeomorphism and Neutrosophic $\alpha \psi$ homeomorphism in Neutrosophic topological spaces. This paper aspires to overly enunciate the thought of neutrosophic generalized homeomorphism (in short, neutrosophic g-homeomorphism) in NTSs by utilizing GN-continuous function and study some of their properties. We have also provided the idea of generalized neutrosophic closed and open mappings by establishing some of their characterizations. Besides, neutrosophic g^{*}-homeomorphism is also presented and establish its relation with the neutrosophic g-homeomorphism.

2. Preliminaries

Definition 2.1 [15]: A neutrosophic topology (in short,N-topology) on $X \neq \varnothing$ is a family ξ of N -sets in X satisfying the laws given below:
(i) $0_{N}, 1_{N} \in \xi$,
(ii) $W_{1} \cap W_{2} \in \xi$ being $W_{1}, W_{2} \in \xi$,
(iii) $U W_{i} \in \xi$ for arbitrary family $\left\{W_{i} \mid i \in \Lambda\right\} \subseteq \xi$.

In this situation the ordered pair (X, ξ) or simply X is termed as NTS and each NS in ξ is named as neutrosophic open set (in short, NOS). The complement $\bar{\Lambda}$ of an N-open set Λ in X is known as neutrosophic closed set (briefly, NCS) in X.

Definition 2.2 [15]: Let Λ be an NS in an NTS (X, ξ). Thereupon
(i) $\operatorname{Nint}(\Lambda)=\bigcup\{G \mid G$ is a NOS in X and $G \subseteq \Lambda\}$ is termed as neutrosophic interior (in brief Nint) of Λ;
(ii) $\operatorname{Ncl}(\Lambda)=\cap\{G \mid G$ is an NCS in X and $G \supseteq \Lambda\}$ is termed as neutrosophic closure (shortly $N c l$) of Λ.

Definition 2.3 [11]: Allow (X, ξ) be a NTS. A NS Λ in (X, ξ) is termed as generalized neutrosophic closed set (in short GNCS) if $\operatorname{Ncl}(\Lambda) \subseteq \Gamma$ whenever $\Lambda \subseteq \Gamma$ and Γ is a NOS. The complement of a GNCS is generalized neutrosophic open set (in short GNOS).

Definition 2.4 [11]: Let (X, ξ) be NTS and B be a NS in X. Then neutrosophic generalized closure is defined as, $\operatorname{GNcl}(B)=\cap\{G: G$ is a GNCS in X and $B \subseteq G\}$.

Definition 2.5 [11, 17]: A map $\eta: X \rightarrow Y$ is said to be
(i) neutrosophic closed (in short, NC-map) if the image of every NCS in X is a NCS in Y.
(ii) neutrosophic continuous (in short, N -continuous) if inverse image of every NCS in Y is a NCS in X.
(iii) generalized neutrosophic continuous (in short, GN-continuous) if inverse image of every NCS in Y is a GNCS in X.
(iv) generalized neutrosophic irresolute (in short, GN-irresolute) if inverse image of every GNCS in Y is a GNCS in X.

Definition 2.6 [14]: A bijection $\mathrm{g}: X \rightarrow Y$ is called a neutrosophic homeomorphism if g and g^{-1} are neutrosophic continuous.

3. Neutrosophic Generalized Homeomorphism

Definition 3.1: A bijection $\eta: X \rightarrow Y$ is named as neutrosophic generalized homeomorphism (in short neutrosophic g-homeomorphism) if η and η^{-1} are GN-continuous.

Proposition 3.2: Every neutrosophic homeomorphism is a neutrosophic g-homeomorphism.
Proof: Consider a bijection mapping $\eta: X \rightarrow Y$ be a neutrosophic homeomorphism, in which η as well as η^{-1} are N -continuous. We have each N -continuous mapping is GN -continuous, so η and η^{-1} are GN-continuous. Hence, η is neutrosophic g-homeomorphism.

Remark 3.3: The next illustration makes clear that the opposite of the above proposition is not valid.

Example 3.4: Let $X=\{p, q, r\}, \xi=\left\{0_{N}, \mathcal{A}_{1}, \mathcal{A}_{2}, \mathcal{A}_{3}, \mathcal{A}_{4}, 1_{N}\right\}$ be a N -topology on X.
$\mathcal{A}_{1}=\langle x,(0.2,0.1,0.1),(0.2,0.1,0.1),(0.3,0.5,0.5)\rangle, \mathcal{A}_{2}=\langle x,(0.1,0.2,0.2),(0.4,0.3,0.3),(0.3,0.3,0.3)\rangle$,
$\mathcal{A}_{3}=\langle x,(0.2,0.2,0.2),(0.2,0.1,0.1),(0.3,0.3,0.3)\rangle, \mathcal{A}_{4}=\langle x,(0.1,0.1,0.1),(0.4,0.3,0.3),(0.3,0.5,0.5)\rangle$,
and let $Y=\{p, q, r\}, \sigma=\left\{0_{N}, \mathcal{B}_{1}, \mathcal{B}_{2}, \mathcal{B}_{3}, \mathcal{B}_{4}, 1_{N}\right\}$ be a neutrosophic topology on Y.
$\mathcal{B}_{1}=\langle y,(0.3,0.3,0.3),(0.2,0.1,0.1),(0.2,0.2,0.2)\rangle, \mathcal{B}_{2}=\langle y,(0.2,0.2,0.2),(0.1,0.1,0.1),(0.3,0.3,0.3)\rangle$,
$\mathcal{B}_{3}=\langle y,(0.3,0.3,0.3),(0.1,0.1,0.1),(0.2,0.1,0.1)\rangle, \mathcal{B}_{4}=\langle y,(0.2,0.2,0.2),(0.2,0.1,0.1),(0.3,0.3,0.3)\rangle$.
Define $\eta:(X, \xi) \rightarrow(Y, \sigma)$ by $\eta(p)=p, \eta(q)=q$ and $\eta(r)=r$. Then η is neutrosophic g -homeomorphism but not neutrosophic homeomorphism.

Definition 3.5: A mapping $\eta: X \rightarrow Y$ is generalized neutrosophic closed (in short, GNC-map) if the image $\eta(Q)$ is GNCS in Y for every NCS Q in X.

Definition 3.6: A mapping $\eta: X \rightarrow Y$ is generalized neutrosophic open (in short, GNO-map) if the image $\eta(R)$ is GNOS in Y for every NOS R in X.

Proposition 3.7: Every NC-mapping is a GNC-mapping.
Proof: Consider $\eta: X \rightarrow Y$ is a NC-mapping, so as Q is an NCS in X. As η is NC-mapping, $\eta(Q)$ is NCS in Y. Since each NCS is GNCS. Therefore, $\eta(Q)$ is a GNCS in Y. Hence, η is GNC-mapping.

Remark 3.8: The opposite of the above proposition is not valid as indicated.

Example 3.9: Let $X=\{p, q, r\}, \xi=\left\{0_{N}, \mathcal{A}_{1}, \mathcal{A}_{2}, \mathcal{A}_{3}, \mathcal{A}_{4}, 1_{N}\right\}$ be a N -topology on X.
$\mathcal{A}_{1}=\langle x,(0.2,0.1,0.1),(0.2,0.1,0.1),(0.3,0.5,0.5)\rangle, \mathcal{A}_{2}=\langle x,(0.1,0.2,0.2),(0.4,0.3,0.3),(0.3,0.3,0.3)\rangle$,
$\mathcal{A}_{3}=\langle x,(0.2,0.2,0.2),(0.2,0.1,0.1),(0.3,0.3,0.3)\rangle, \mathcal{A}_{4}=\langle x,(0.1,0.1,0.1),(0.4,0.3,0.3),(0.3,0.5,0.5)\rangle$,
and let $Y=\{p, q, r\}, \sigma=\left\{0_{N}, \mathcal{B}_{1}, \mathcal{B}_{2}, \mathcal{B}_{3}, \mathcal{B}_{4}, 1_{N}\right\}$ be a neutrosophic topology on Y.
$\mathcal{B}_{1}=\langle y,(0.3,0.3,0.3),(0.2,0.1,0.1),(0.2,0.2,0.2)\rangle, \mathcal{B}_{2}=\langle y,(0.2,0.2,0.2),(0.1,0.1,0.1),(0.3,0.3,0.3)\rangle$,
$\mathcal{B}_{3}=\langle y,(0.3,0.3,0.3),(0.1,0.1,0.1),(0.2,0.1,0.1)\rangle, \mathcal{B}_{4}=\langle y,(0.2,0.2,0.2),(0.2,0.1,0.1),(0.3,0.3,0.3)\rangle$.
Define $\eta:(X, \xi) \rightarrow(Y, \sigma)$ by $\eta(p)=p, \eta(q)=q$ and $\eta(r)=r$. Then η is GNC-mapping but not NC-mapping.

Proposition 3.10: A map $\eta: X \rightarrow Y$ is a GNC-mapping if the image of each NOS in X is GNOS in Y. Proof: Let R be a NOS in X. Hence \bar{R} is a NCS in X. As η is GNC-mapping, $\eta(\bar{R})$ is a GNCS in Y.

Since $\eta(\bar{R})=\overline{(\eta(R))}, \eta(R)$ is a GNOS in Y.

Proposition 3.11: Let $\eta: X \rightarrow Y$ be a bijective mapping, then the next assertions are same:
(i) η is GNO-mapping.
(ii) η is GNC-mapping.
(iii) η^{-1} is GN -continuous.

Proof: $(i) \rightarrow(i i)$. Suppose that η is GNO-mapping. Then, P is a NOS in X, then image $\eta(P)$ is GNOS in Y. Here, P is NCS in X, then $X-P$ is a NOS in X. By prediction, $\eta(X-P)$ is a GNOS in Y. Hence, $Y-\eta(X-P)$ is a GNCS in Y. Hence, η is a GNC-mapping.
(ii) $\rightarrow($ iii $)$. Let R be an NCS in X. By (ii), $\eta(R)$ is GNCS in Y. Therefore, $\eta(R)=\left(\eta^{-1}\right)^{-1}(R)$, so η^{-1} is a GNCS in Y. Hence, η^{-1} is a GN-continuous.
(iii) $\rightarrow(i)$. Let Q be a NOS in X. By (iii), $\left(\eta^{-1}\right)^{-1}(Q)=\eta(Q)$ is GNO-mapping.

Proposition 3.12: Let $\eta:(X, \xi) \rightarrow(Y, \sigma)$ be a bijective mapping. If η is GN-continuous, thereupon the declarations are identical:
(i) η is GNC-mapping.
(ii) η is GNO-mapping.
(iii) η^{-1} is neutrosophic g-homeomorphism.

Proof: $(i) \rightarrow(i i)$. Presume that η is bijective as well as a GNC-mapping. So, η^{-1} is a GN-continuous mapping. As we have every NOS is GNOS in Y. Hence, η is GNO-mapping.
(ii) \rightarrow (iii). Consider a bijective NO-mapping η. Furthermore, η^{-1} is a GN-continuous mapping. Accordingly, η and η^{-1} are GN-continuous. Hence, η is neutrosophic g-homeomorphism.
(iii) \rightarrow (i). Let η be neutrosophic g-homeomorphism, then η and η^{-1} are GN-continuous. As each NCS in X is a GNCS in Y, therefore η is a GNC-mapping.

Definition 3.13 [19]: Let (X, ξ) be an NTS said to be a as neutrosophic- $\mathrm{T}_{1 / 2}$ (in short $\mathrm{N}-\mathrm{T}_{1 / 2}$) space if every GNCS is NCS in X.

Proposition 3.14: Let $\eta:(X, \xi) \rightarrow(Y, \sigma)$ be neutrosophic g-homeomorphism, then η is neutrosophic homoemorphism if X and Y are $\mathrm{N}-\mathrm{T}_{1 / 2}$ space.
Proof: Consider that D is an NCS in Y, then $\eta^{-1}(D)$ is a GNCS in X due to the assumption. Since X is $\mathrm{N}-\mathrm{T}_{1 / 2}$ space, $\eta^{-1}(D)$ is NCS in X. Then, η is GN-continuous. By hypothesis η^{-1} is GN-continuous. Let H be a NCS in $X .\left(\eta^{-1}\right)^{-1}(H)=\eta(H)$ is a NCS in Y, by preassumption. As Y is $\mathrm{N}-\mathrm{T}_{1 / 2}$ space, $\eta(H)$ is a NCS in Y. Hence, η^{-1} is N -continuous. Therefore, η is a neutrosophic homeomorphism.

Proposition 3.15: Let $\eta: X \rightarrow Y$ and $\mu: Y \rightarrow Z$ be GNC-mappings where X and Z are NTSs and Y is $\mathrm{N}-\mathrm{T}_{1 / 2}$ space, then (μ o η) is GNC-mapping.
Proof: Let R be a NCS in X. As η is GNC-map and $\eta(R)$ is a GNCS in Y, by assumption, $\eta(R)$ is a NCS in Y. Since μ is GNC-map, then $\mu(\eta(R))$ is a GNCS in X and Z and $\mu(\eta(R))=(\mu \circ \eta)(R)$. Therefore, $(\mu \circ \eta$) is GNC-map.

Proposition 3.16: Let $\mu: X \rightarrow Y$ and $\lambda: Y \rightarrow Z$ be NTSs, then the following hold:
(i) If $(\lambda o \mu)$ is GNO-map and μ is N-continuous, then λ is GNO-map.
(ii) If $(\lambda o \mu)$ is GNO-map and μ is GN-continuous, then λ is GNO-map.

Proof: (i) Let K be NOS in Y. Then, $\mu^{-1}(K)$ is a NOS in X. Since ($\lambda o \mu$) GNO-map and $(\lambda o \mu) \mu^{-1}(K)=\lambda\left(\mu\left(\mu^{-1}(K)\right)\right)=\lambda(K)$ is GN-open in Z, hence λ is GN-open map.
(ii) Let K be NOS in X. Then, $\lambda(\mu(K))$ is a NOS in Z. Hence, $\lambda^{-1}(\lambda(\mu(K))=\mu(K)$ is GNOS in Y. Therefore μ is GNO- map.

4. Neutrosophic g*-Homeomorphism *

Definition 4.1: A bijection $\mu: X \rightarrow Y$ is called neutrosophic g^{*}-homeomorphism if μ and μ^{-1} are GN-irresolute mappings.

Proposition 4.2: Every neutrosophic g^{*}-homeomorphism is a neutrosophic g-homeomorphism.
Proof: A map μ is a neutrosophic g^{*}-homeomorphism. Predict that K is a NCS in Y. So it is a GNCS in Y. By pressumption, $\mu^{-1}(K)$ is a GNCS in X. Accordingly, μ is GN-continuous mapping. Therefore, μ and μ^{-1} are GN-continuous mappings. Henec, μ is a neutrosophic g-homeomorphism.

Remark 4.3: The example is given to show that the reverese of the above proposition is not possible.

Example 4.4: Let $X=\{p, q, r\}, \xi=\left\{0_{N}, \mathcal{A}_{1}, \mathcal{A}_{2}, \mathcal{A}_{3}, \mathcal{A}_{4}, 1_{N}\right\}$ be a N -topology on X.
$\mathcal{A}_{1}=\langle x,(0.2,0.1,0.1),(0.2,0.1,0.1),(0.3,0.5,0.5)\rangle, \mathcal{A}_{2}=\langle x,(0.1,0.2,0.2),(0.4,0.3,0.3),(0.3,0.3,0.3)\rangle$,
$\mathcal{A}_{3}=\langle x,(0.2,0.2,0.2),(0.2,0.1,0.1),(0.3,0.3,0.3)\rangle, \mathcal{A}_{4}=\langle x,(0.1,0.1,0.1),(0.4,0.3,0.3),(0.3,0.5,0.5)\rangle$,
and let $Y=\{p, q, r\}, \sigma=\left\{0_{N}, \mathcal{B}_{1}, \mathcal{B}_{2}, \mathcal{B}_{3}, \mathcal{B}_{4}, 1_{N}\right\}$ be a neutrosophic topology on Y.
$\mathcal{B}_{1}=\langle y,(0.3,0.3,0.3),(0.2,0.1,0.1),(0.2,0.2,0.2)\rangle, \mathcal{B}_{2}=\langle y,(0.2,0.2,0.2),(0.1,0.1,0.1),(0.3,0.3,0.3)\rangle$,
$\mathcal{B}_{3}=\langle y,(0.3,0.3,0.3),(0.1,0.1,0.1),(0.2,0.1,0.1)\rangle, \mathcal{B}_{4}=\langle y,(0.2,0.2,0.2),(0.2,0.1,0.1),(0.3,0.3,0.3)\rangle$.
Define $\eta:(X, \xi) \rightarrow(Y, \sigma)$ by $\eta(p)=p, \eta(q)=q \quad$ and $\eta(r)=r$. Then η is neutrosophic g -homeomorphism but not neutrosophic g^{*}-homeomorphism.

Proposition 4.5: If $\mu: X \rightarrow Y$ and $\lambda: Y \rightarrow Z$ are neutrosophic g^{*}-homeomorphisms, then $(\lambda o \mu)$ is a neutrosophic g^{*}-homeomorphism.

Proof: Consider μ and λ as neutrosophic g^{*}-homeomorphisms. Predict K is a GNCS in Z. Thereupon, by the presumption, $\lambda^{-1}(K)$ is a GNCS in Y. Hence, by hypothesis, $\mu^{-1}\left(\lambda^{-1}(K)\right)$ is a GNCS in X. Hence, $(\lambda o \mu)$ is a GN-irresolute mapping. Now, consider H be a GNCS in X. Then, by the presumption, $\mu(H)$ is a GNCS in Y. So, by hypothesis, $\lambda(\mu(H))$ is a GNCS in Z. This implies that $(\lambda o \mu)$ is a GN-irresolute mapping. Therefore, $(\lambda o \mu)$ is neutrosophic g^{*}-homeomorphism.

Proposition 4.6: If $\mu: X \rightarrow Y$ is a neutrosophic g^{*}-homeomorophism, then $\operatorname{NGcl}\left(\mu^{-1}(K)\right)=$ $\mu^{-1}(\operatorname{NGcl}(K))$ for each NS K in Y.
Proof: As μ is neutrosophic g^{*}-homeomorphism, then μ is GN-irresolute mapping. Let K be a NS in Y. Clearly, $N G c l(K)$ is GNCS in X. This proves that $G N c l(K)$ is GNCS in X. Since $\mu^{-1}(K) \subseteq$
$\mu^{-1}(\operatorname{GNcl}(K))$, then $\operatorname{GNcl}\left(\mu^{-1}(K)\right) \subseteq \operatorname{GNcl}\left(\mu^{-1}(\operatorname{GNcl}(K))\right)=\mu^{-1}(\operatorname{GNcl}(K))$. Therefore, $\operatorname{GNcl}\left(\mu^{-1}(K)\right) \subseteq \mu^{-1}(G N c l(K))$.
Let μ be neutrosophic g^{*}-homeomorphism. μ^{-1} is a GN -irresolute mapping. Consider NS $\mu^{-1}(K)$ in X, which implies that $\operatorname{GNcl}\left(\mu^{-1}(K)\right)$ is GNCS in X. Therefore, $\operatorname{GNcl}\left(\mu^{-1}(K)\right)$ is a GNCS in X. This implies that $\left(\mu^{-1}\right)^{-1}\left(\operatorname{GNcl}\left(\mu^{-1}(K)\right)=\mu\left(\operatorname{GNcl}\left(\mu^{-1}(K)\right)\right)\right.$ is a GNCS in Y. This proves that $K=$ $\left(\mu^{-1}\right)^{-1}\left(\mu^{-1}(K)\right) \subseteq\left(\mu^{-1}\right)^{-1}\left(\operatorname{GNcl}\left(\mu^{-1}(K)\right)\right)=\mu\left(\operatorname{GNcl}\left(\mu^{-1}(K)\right)\right), \quad$ since $\quad \mu^{-1} \quad$ is $\quad G N-i r r e s o l u t e$ mapping. Hence, $\mu^{-1}(\operatorname{GNcl}(K)) \subseteq \mu^{-1}\left(\mu\left(\operatorname{GNcl}\left(\mu^{-1}(K)\right)\right)\right)=\operatorname{GNcl}\left(\mu^{-1}(K)\right)$.

That is, $\mu^{-1}(\operatorname{GNcl}(K)) \subseteq \operatorname{GNcl}\left(\mu^{-1}(K)\right)$. Hence, $\operatorname{GNcl}\left(\mu^{-1}(K)\right)=\mu^{-1}(\operatorname{GNcl}(K))$.

5. Conclusions

We have introduced neutrosophic generalized homeomorphism in neutrosophic topological space using GN-contiuous functions. Some characterizations have been provided to illustrate how far topological structures are conserved by the new neutrosophic notion defined. Furthermore, neutrosophic g^{*}-homeomorphism, neutrosophic generalized open and closed mappings are also studied. The study demonstrated neutrosophic g^{*}-homeomorphisms and also proved some of their related attributes. Also, the relation between generalized neutrosophic closed mappings and other existed Neutrosophic closed mappings in Neutrosophic topological spaces were established and derived some of their related attributes. Examples are given wherever necessary.

In future, we can carry out the further rsearch on neutrosophic g-compactness, neutrosophic g-connectedness and neutrosophic almost g-contra continuous functions.

Funding: This research received no external funding.
Acknowledgments: The authors are highly grateful to the Referees for their constructive suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Abdel-Basset M., Mohamed R.,. Zaied A.E.N.H, \& Smarandache F., A Hybrid Plithogenic Decision-Making Approach with Quality Function Deployment for Selecting Supply Chain Sustainability Metrics. Symmetry, 11(7), (2019), 903.
2. Abdel-Basset M., Nabeeh N.A., H.A. El-Ghareeb, \& Aboelfetouh A., Utilising neutrosophic theory to solve transition difficulties of IoT-based enterprises. Enterprise Information Systems, (2019), 1-21.
3. Abdel-Baset M., Chang V., \& Gamal A., Evaluation of the green supply chain management practices: A novel neutrosophic approach. Computers in Industry, 108, (2019), 210-220.
4. Abdel-Basset M., Saleh M, Gamal A., \& Smarandache F., An approach of TOPSIS technique for developing supplier selection with group decision making under type-2 neutrosophic number. Applied Soft Computing, 77, (2019), 438-452.
5. Abdel-Baset M, Chang V., Gamal A., \& Smarandache F., An integrated neutrosophic ANP and VIKOR method for achieving sustainable supplier selection: A case study in importing field. Computers in Industry, 106, (2019), 94-110.
6. Abdel-Basset M, Manogaran G., Gamal A., \& Smarandache F., A group decision making framework based on neutrosophic TOPSIS approach for smart medical device selection. Journal of medical systems, 43(2), (2019), 38.
7. Abdel-Basset M., Gamal, A., Son L. H., \& Smarandache, F., A Bipolar Neutrosophic Multi Criteria Decision Making Framework for Professional Selection. Applied Sciences, 10(4), (2020), 1202.
8. Abdel-Basset M., Mohamed, R., Zaied, A. E. N. H., Gamal, A., \& Smarandache, F., Solving the supply chain problem using the best-worst method based on a novel Plithogenic model. In Optimization Theory Based on Neutrosophic and Plithogenic Sets, (2020), 1-19. Academic Press.
9. Abdel-Basset M., \& Mohamed, R., A novel plithogenic TOPSIS-CRITIC model for sustainable supply chain risk management. Journal of Cleaner Production, 247, (2020), 119586.
10. Atanassov K., Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20, (1986), 87-96.
11. Dhavaseelan R. and Jafari S., Generalized neutrosophic closed sets, New Trends in Neutrosophic Theory and Applications, 2, (2017), 261-273.
12. Dhavaseelan R., Jafari S., Md. Hanif PAGE, Neutrosophic generalized α-contra -continuity, CREAT. MATH. INFORM, 27(2), (2018), 133-139.
13. Dhavaseelan R. and Md. Hanif PAGE., Neutrosophic Almost α-contra-continuous function, Neutrosophic Sets and Systems, 29, (2019), 71-77.
14. Parimala M, Jeevitha R, Smarandache F, Jafari S and Udhayakumar R, Neutrosophic $\alpha \psi$ Homeomorphism in Neutrosophic Topological Spaces, Information, 9(187), (2018), 1-10.
15. Salama A.A. and Alblowi S.A., Neutrosophic Set and Neutrosophic Topological Spaces, IOSR Journal of Mathematics, 3(4), (2012), 31-35.
16. Salama A.A., Alblowi S.A., Generalized Neutrosophic Set and Generalized Neutrosophic Topological Spaces, Comp. Sci. Engg., 2, (2012), 129-132.
17. Salama A.A., Smarandache F. and Valeri K., Neutrosophic Closed Set and Neutrosophic continuous functions, Neutrosophic Sets and Systems, 4, (2014), 4-8.
18. Smarandache F., Neutrosophic set- a generalization of the intuitionistic fuzzy set International Journal of pure and applied mathematics, 24(3), (2005), 287-294.
19. Wadei Al-Omeri, Smarandache F., New Neutrosophic Sets via Neutrosophic Topological Spaces. In Neutrosophic Operational Research; Smarandache, F., Pramanik, S., Eds.; Pons Editions: Brussels, Belgium,1, (2017), 189-209.

Triangular Neutrosophic Based Production Reliability Model of Deteriorating Item with Ramp Type Demand under Shortages and Time Discounting

Shilpi Pal ${ }^{1}$, Avishek Chakraborty ${ }^{1,2^{*}}$
${ }^{1}$ Department of Basic Science \& Humanities (Mathematics), Narula Institute of Technology, Kolkata, India.
E-mail: shilpi88pal@gmail.com
${ }^{2}$ Department of Mathematics, Indian Institute of Engineering Science and Technology, Shibpur, India.
E-mail: tirtha.avishek93@gmail.com
*Corresponding email: tirtha.avishek93@gmail.com

Abstract

An economic production quantity model with triangular neutrosophic environment has been developed for deteriorating items with ramp type demand rate and reliability dependent unit production. The main objective of this paper is to determine the most cost effective production to generate better quality items under time discounting. Additionally, it is considered that the deterioration function deals with three parameters Weibull's distribution under finite time horizon. Moreover, it also considered the effect of shortages which are partially backordered and partially lost in sale. Here the reliability of the production process along with the production period is considered as decision variables. A numerical example is studied in both crisp and neutrosophic environment and a comparative analysis is performed here. It is observed that the model performs better in triangular neutrosophic arena rather than crisp domain. Finally, a sensitivity analysis of optimal solution is observed for some parameters and some crucial decision is taken with managerial insight.

Keywords: Ramp-type demand, Finite time horizon, Time-value of money, Reliability, Triangular Neutrosophic number.

1. Introduction

In market economy system, for a single product, many items are produced by the different manufacturing companies. The manufacturers are trying to give wide variety of option to the customer to gain competitive advantages over their competitors. But customers choose those items which have high reliability i.e. better in quality, and lower in cost. The companies require advanced planning many years prior to the sale target date in order to minimize the total cost and maximize the profit. Thus the facts like variation in the reliability of the production process, demand rate of an item, deterioration and shortages are in growing interest. In case of classical EPQ model the basic assumptions are that the production set-up cost is fixed and the item produced are of perfect quality. All the manufacturing sectors want to
produce perfect quality item, but in reality the product quality are not always perfect because there may be machine breakdown, labor problem, etc. The product quality is directly affected by the reliability of production process. In addition to that, the classical models also consider an ideal case that the demand and quality of the items remains unaffected by time and replenishment is done instantaneously. However in reality these assumptions do not hold. The inventories are often replenished periodically at certain production rate. Even if the items are purchased it takes days to sell the item so the items remained stored and hence the item deteriorates and their value reduces with time. Cheng [1] proposed a general equation for relationship between production set up cost and process reliability and flexibility. Later it was used by (Leung [2]; Bag et al. [3]) in their respective models studied on fuzzy random demand with flexibility and reliability on production process. Sarkar [4] analyzed an EMQ model with reliability in an imperfect production process. Many researchers (like Gomez et al. [5]; Cai et al. [6]) worked for production quality, tracking production control, etc. Pan and Li [7] worked with stochastic production system for deteriorating item with some environmental constrains. Rathore [8] explored a production reliability model with advertisement related demand. The paper considers reliability in unit production cost in order to identify the product quality with minimum total cost.

Traditionally in inventory models, the researchers have assumed constant demand pattern in their deterministic models, but in reality demand has specific patterns which depicts the real scenarios in market. There are various types of demand rates such as linear or quadratic function of time, exponentially increasing or decreasing, price and stock dependent, etc. If the demand is linearly dependent on time i.e., demand as well as the vending increases and decreases in growth and decline phase respectively. Researchers have manifested these demands in their respective papers (Hariga [9], Bose et al. [10], etc). Demand of the item depending on price and stocking amount of the items with optimal replenishment policy for non-instantaneous deteriorating items with partial backlogging was discussed by Wu et al. [11]. Alfares [12] worked on stock dependent demand. Chung and Wee [13] organized an inventory model for stock dependent selling rate with deterioration under replenishment plan. Pal et al. [14] has developed a inventory model with price and stock depended demand rate for deteriorating item under inflation and delay in payment. In this field, some remarkable researches were done by Yang et al. [15]. It was observed that for seasonal and fashionable products the nature of demand is increasing-steady-decreasing. But for newly launched fashion goods and cosmetics, garments, etc. the demand rate increases linearly with time and then it become constant. Thus to understand the concept of such a demand, the ramp type function of time was introduced. (Skouri et al. [16], Luo [17], Manna and Chaudhari [18]) worked with ramp type demand rate with time dependent deterioration. Pal et al. [19] considered the EOQ model with ramp type demand under finite time horizon.
As the effect of deterioration cannot be ignored so many researchers worked on it (Skouri et al. [20], Jaggi et al. [21], etc.). Generally, deterioration means spoilage or damage obsolescence, etc. which cannot be used further for its original purpose. Medicine, blood banks, etc. are difficult to preserve and they have some expiry date i.e., products maximum life time is time bounded. Electronic products become obsolete as technology changes; new fashion depreciates the clothing value over time; all these are also considered as deterioration. It has been observed that the delinquency in the life expectancy drugs, deterioration of
roasted ground coffee, corn seeds, frozen food, pasteurized milk, refrigerated meat, ice creams, and leakage failure of the batteries can be expressed in terms of Weibull's distribution. Wu [22] presented an inventory model with ramp type demand and Weibull's distribution deterioration under partial backlogging. Many researcher such as Skouri et al. [23], Sharma and Chaudhury [24], etc. worked with this type of deterioration. Mandal [25] discussed an inventory model with Weibull's distributed deterioration with ramp type demand rate. A common characteristic in most of these models are that they does not allows shortages. Widyadana et al. [26] developed an EOQ model for deteriorating items with planned backorder level. Wee et al. al. [27] worked with shortages and finite time horizon for deteriorating items. Yang [28] developed an inventory model with deterioration as three parameter Weibull's distribution in two ware house system. Recently Pal and Chakraborty [29] have worked on non- instantaneous deteriorating items under shortage, Rahaman et al. [30] worked on arbitrary ordered generalized EPQ model with and without deterioration. In this paper shortages is also considered where the part of the unsatisfied demand are backordered and part of the sales are lost.
As the amount of the money available at the present time is worth more than that of the same amount in the future due to its potential earning capacity. So it is necessary to consider the effect of time value of money in today's inventory where forecasting is required. To consider the effect of time value of money, a finite time horizon for planning the replenishment cycle is considered. From the last few decades we have observed that the economic situation of most countries has changes so it would be unrealistic to ignore the effect of time value of money. Hariga [31] developed the effect of inflation and time value of money for time dependent demand. Hou [32] considered a model for deteriorating items and stock-dependent demand rate with shortages and time discounting. Dash et al. [33] worked on EPQ model for declined quadratic demand with time value of money and shortages. Thus the paper considers time value of money specially when investment and forecasting are considered.
In this current century, vagueness theory plays a crucial role in different Öeld of mathematical modeling and engineering problems. The theory of impreciseness was first invented by Zadeh [34]. Difference between crisp set and fuzzy set is shown briefly in this article by considering membership gradation and its formulation. Demonstration of triangular [35], trapezoidal [36], pentagonal [37] fuzzy number has already been developed by the researchers. In 1983 and later in 1986 Attasonov [38, 39] manifested a remarkable idea of intuitionistic fuzzy set where membership and non-membership functions are both considered together. Further, triangular intuitionistic [40, 41], trapezoidal intuitionistic [42] number has been introduced in this intuitionistic fuzzy research arena. After that, in 1998 Smarandache [43] established an amazing concept of neutrosophic fuzzy set where three disjunctive kinds of membership functions has been considered namely i) truthness ii) falseness iii) indeterminacy. Due to the presence of hesitation factor in fuzzy arena, neutrosophic number becomes more logical and scientific significance in research work. In this current era, researchers from different arena are focusing on neutrosophic concept and developed lots of interesting articles in this domain. Illustration of triangular, trapezoidal neutrosophic number has been introduced day by day and recently in 2018 Chakraborty et.al [44, 45] classifies different form of triangular and trapezoidal neutrosophic number and de-neutrosophication technique for crispification. Further, bipolarization of triangular bipolar number has been developed by

Chakraborty et.al [46] and also Maity et.al [47] manifested the concept of heptagonal dense fuzzy number related EOQ based model in 2018. Recently, Mullai [48] introduced EOQ model in neutrosophic domain and Mondal et.al [49] manifested optimization of EOQ Model with limited storage capacity by neutrosophic Geometric Programming application. Also, Majumdar et.al [50] focused on EPQ Model of deteriorating Items under partial trade credit financing and demand declining market in neutrosophic environment. Some useful articles [51-58] are also developed by the researchers in the neutrosophic arena recently. As developments goes on, some researchers [59-62] have extended the idea of neutrosophic set into plithogenic set and applied it in MCDM, MADM and optimization technique supply chain based model. Currently, several researchers from distinct fields focused on triangular neutrosophic number related to operation research models. As uncertainty prevails in various parameters such as inflation, holding cost, purchase cost so we have developed an EPQ under ramp type demand and considered the hesitation in those parameters by considering those parameter as neutrosophic number. Finally we compare the model in crisp and neutrosophic domain and observe that the model works better in neutrosophic arena.
Previously the researchers have worked on ramp type demand with two parameter Weibull's distribution as deterioration. But in this paper we have considered ramp type demand with three parameter Weibull's distribution. In addition the model assumes that the product qualities are never perfect and it is the function of reliability of the production process so the production of items depend on the reliability of the items i.e., if the items are highly reliable then there is more demand in the market and hence its production should be more in order to fulfill the demand. In this model we also have considered finite planning horizon to observe the effect of time value of money under shortage. The shortage items are partially backlogged or partially lost in sales, which cannot be ignored. Also under this complicated scenario no work has been done by considering holding cost, purchase cost and inflation as triangular neutrosophic number.

The rest of the paper is organized as follows: In section 2 we have presented some assumptions and notations and some definition of neutrosophic number that we have used in this paper. In this section we have defined few terminologies related to triangular neutrosophic number and also have formulated the model. In section 3 we have analyzed and optimized of the model. In Section 4 we have discussed the de-neutrosophication of the triangular neutrosophic number. In section 5 we present the numerical example and its mathematical analysis which is shown graphically. It is observed that the model works better in neutrosophic domain. In section 6 we present sensitivity analysis of some parameters. Finally in section 7 a concluding remark is stated along with its future extension.

2. Mathematical formulation of the inventory model

In this model we have considered ramp type demand with deterioration as three parameter Weibull distributions, shortages, lost in sales under the influence of time discounting in finite planning horizon. The finite time horizon has been considered to evaluate the effect of inflation on the total cost for a finite period. The paper also considered reliability in production of items. The proposed model is graphically shown in figure-1.

The production process starts from $t=0$ and ends $t=t$. The production has occurred along with the demand in the market and at $t=t_{1}$ the inventory level is maximum, Q_{m}. From $t=t_{1}$ to $t=t_{2}$ the inventory level decreases and at time $t=t_{2}$, the inventory level reaches zero. Now during [$\mathrm{t}_{2}, \mathrm{t}_{3}$] the model undergoes shortage with partial backlog and partial lost in sales. Only the backlogged items are replaced by the next replenishment. During [$\mathrm{t}_{3}, \mathrm{~T}_{1}$] production resumes to overcome the shortage (i.e., for backlogged items). Thus the total number of backlogged items is replaced in the next replenishment and the cycle repeats.

Notations

The notations used in this paper are as follows:
G Demand rate,
P Production rate,
p Unit production cost,
$\mathrm{Q}(\mathrm{t})$ Time distribution for deterioration of the item,
k Discount rate,
h Inventory carrying cost per unit item per unit time,
d Deterioration cost per unit per unit time,
S Set-up cost for one replenishment cycle.
c1 Purchase cost per unit item,
c2 Shortage cost,
сз Penalty cost of a lost sale including loss of profit,
r Production process reliability (a decision variable)
B Fraction of backorder $(0<B \leq 1)$,
T Replenishment cycle,
H Finite Planning horizon,
m No. of replenishment during the planning horizon i.e., $m=(H / T)$,
$\mathrm{T}_{\mathrm{j}} \quad$ Time between start and end of $\mathrm{j}^{\text {th }}$ replenishment cycle i.e., $\mathrm{T}_{0}=0, \mathrm{~T}_{1}=\mathrm{T}, \mathrm{T}_{2}=2 \mathrm{~T}, \ldots ., \mathrm{T}_{\mathrm{m}}=\mathrm{mT}=\mathrm{H}$,
Q_{m} Maximum quantity of inventory,
$Q_{s} \quad$ Maximum quantity of inventory after shortage.

Assumptions

The assumptions which are considered in this model are as follows.

1. A ramp type demand rate $\mathrm{G}=\mathrm{f}(\mathrm{t})$ is a function of time $f(t)=R[t-(t-\mu) H(t-\mu)], R>0$ and $H(t)$ is a Heaviside function $H(t-\mu)= \begin{cases}1 & \text { if } t \geq \mu \\ 0 & \text { if } t<\mu\end{cases}$
2. A function of three parameter Weibull's distribution of time is used to represent deterioration of the item is $\rho(t)=\alpha \beta(t-\gamma)^{\beta-1}, 0<\alpha<1, \beta \geq 1,-\infty<\gamma<\infty$ actually in this model $T_{j}<\gamma<T_{j+1}, i=$ $0,1,2, \ldots, m$, where $\alpha(0<\alpha<1)$ is a scaling parameter, β is the shape parameter and γ is the location parameter i.e., items shelf-time and t is the time of deterioration.
3. Deterioration begins as it reaches the inventory.
4. One item is considered in the prescribed time cycle.
5. Demand during shortage is partially lost and partially backordered.
6. Time discounting effect is considered under finite time horizon.

7 Production rate is greater than demand rate so $\mathrm{P}=\sigma \mathrm{f}(\mathrm{t})$ is the production rate where $\sigma>1$.
8. μ is less than production time.
9. The unit production cost is inversely proportional to the demand rate (G) and directly proportional to production reliability (r), so the unit production cost is $p=a G^{-b} r^{c}$, where $\mathrm{b}(>1)$ is called price elasticity and $\mathrm{a}, \mathrm{c}(>0)$ are scaling parameters.
10. The reliability r means, $\mathrm{r} \%$ of all the item produced are of acceptable quality that can fulfill the demand.

Few assumptions taken above are the basic assumption used in classical inventory model for deteriorating item with shortages. The first assumption states that the demand rate linearly increases with time when $t<\mu$ and then become steady i.e., constant at and after $t \geq \mu$. We can see this type of demand in newly launched items like fashionable products, electronic items, etc. The demand increases with time during the initial stage i.e., $[0, \mu]$. After some time the demand become constant, this continues for some period i.e., in the time interval $\left[\mu, T_{1}\right]$. Then the cycle ends. Again the next cycle starts with another new brand item and it will follow the same pattern of demand and production i.e., increasing and then steady and then stops. The finite time horizon has been considered to evaluate the effect of the time value of money on the total cost. Thus to understand the concept of value of future money in present date (which actually decreases due to time discounting rate) we need to consider a finite time horizon where its effect will be observed. The last assumption is mainly based on the unit variable production which is dependent on demand and process reliability. When the demand of an item increases then the production/purchase cost per unit item decreases and hence the unit production cost reduces which is inversely proportional to demand. Again the reliability of the produced items increases by using high quality raw material, technologically advanced machinery, quality control inspections, etc. Thus to produce high reliable product the production cost per unit item increases.

3. Neutrosophic number and its De-neutrosophication technique

Definition 3.1 (Neutrosophic Set [5]) A set \tilde{S} in the universal discourse X , it is said to be a neutrosophic set if $\tilde{S}=\left\{\left\langle x ;\left[\pi_{\tilde{S}}(x), \theta_{\tilde{S}}(x), \eta_{\tilde{S}}(x)\right]\right\rangle: x \in X\right\}$, where $\left.\pi_{\tilde{S}}(x): X \rightarrow\right]-0,1+[$ is called the truth membership function, $\left.\theta_{\tilde{S}}(x): X \rightarrow\right]-0,1+\left[\right.$ is called the hesitation membership function, and $\left.\eta_{\tilde{S}}(x): X \rightarrow\right]-0,1+[$ is called the false membership function of the decision maker, where $\pi_{\tilde{S}}(x), \theta_{\tilde{S}}(x), \eta_{\tilde{S}}(x)$ satisfies the following condition: $0 \leq \operatorname{Sup}\left\{\pi_{\tilde{S}}(x)\right\}+\operatorname{Sup}\left\{\theta_{\tilde{S}}(x)\right\}+\operatorname{Sup}\left\{\eta_{\tilde{S}}(x)\right\} \leq 3$.

Definition 3.2 (Single-Valued Neutrosophic Set) A Neutrosophic set \tilde{S} in the above definition 2.1 is also known as single-Valued Neutrosophic Set $\operatorname{sig}(\tilde{S})$ if x is a single-valued independent variable. $\operatorname{sig}(\tilde{S})=\left\{\left\langle x ;\left[\pi_{\operatorname{sig}(\tilde{S})}(\mathrm{x}), \theta_{\operatorname{sig}(\tilde{S})}(\mathrm{x}), \eta_{\operatorname{sig}(\tilde{S})}(\mathrm{x})\right]\right\rangle: \mathrm{x} \in \mathrm{X}\right\}$, where $\pi_{\operatorname{sig}(\tilde{S})}(\mathrm{x}), \theta_{\operatorname{sig}(\tilde{S})}(\mathrm{x}), \eta_{\operatorname{sig}(\tilde{S})}(\mathrm{x})$ represent the concept of truth, hesitation and falsity memberships function respectively.

Definition 3.2.1: (Neutro-normal) Let us consider three points, for which p,q,r for which, $\pi_{\operatorname{sig}(\tilde{S})}(\mathrm{p})=1$, $\theta_{\operatorname{sig}(\tilde{S})}(\mathrm{q})=1, \eta_{\operatorname{sig}(\tilde{S})}(\mathrm{r})=1$ then the $\operatorname{sig}(\tilde{S})$ is defined as neutro-normal.

Definition 3.2.2: (Neutro-convex) A $\operatorname{sig}(\tilde{S})$ is called neutro-convex if the following condition holds:

$$
\begin{aligned}
& (i) \pi_{\operatorname{sig}(\tilde{S})}(\lambda \alpha+(1-\lambda) \beta) \geq \min \left(\pi_{\operatorname{sig}(\tilde{S})}(\alpha), \pi_{\operatorname{sig}(\tilde{S})}(\beta)\right) \\
& (i i) \theta_{\operatorname{sig}(\tilde{S})}(\lambda \alpha+(1-\lambda) \beta) \geq \min \left(\theta_{\operatorname{sig}(\tilde{S})}(\alpha), \theta_{\operatorname{sig}(\tilde{S})}(\beta)\right) \\
& (i i i) \eta_{\operatorname{sig}(\tilde{S})}(\lambda \alpha+(1-\lambda) \beta) \geq \min \left(\eta_{\operatorname{sig}(\tilde{S})}(\alpha), \eta_{\operatorname{sig}(\tilde{S})}(\beta)\right)
\end{aligned}
$$

where $\alpha, \beta \in R$, and $\lambda \in[0,1]$

Definition 3.3 (Triangular Single Valued Neutrosophic Number) A triangular Single Valued Neutrosophic Number (\tilde{S}) is defined as $\tilde{S}=<\left(m_{1}, m_{2}, m_{3}: \mu\right),\left(n_{1}, n_{2}, n_{3}: \vartheta\right),\left(p_{1}, p_{2}, p_{3}: \zeta\right)>$, where $\mu, \vartheta, \zeta \in[0,1]$. Here the truth membership function $\pi_{\tilde{S}}: \mathrm{R} \rightarrow[0, \mu]$, the hesitation membership function $\theta_{\tilde{S}}: \mathrm{R} \rightarrow[\vartheta, 1]$ and the falsity membership function $\eta_{\tilde{S}}: R \rightarrow[\zeta, 1]$ are defined as follows:

$$
\pi_{\tilde{S}}(x)=\left\{\begin{array}{lr}
\delta_{\tilde{S} l}(x), & m_{1} \leq x<m_{2} \\
\mu, & x=m_{2} \\
\delta_{\tilde{S} r}(x), & m_{2}<x \leq m_{3} \\
0, & \text { otherwise }
\end{array} \theta_{\tilde{S}(x)}=\left\{\begin{array}{cc}
\varepsilon_{\tilde{S} l}(x), n_{1} \leq x<n_{2} \\
\vartheta, & x=n_{2} \\
\varepsilon_{\tilde{S} r}(x), n_{2}<x \leq n_{3} \\
1, & \text { otherwise }
\end{array} \quad \eta_{\tilde{S}}(x)=\left\{\begin{array}{l}
l_{\tilde{S} l}(x), p_{1} \leq x<p_{2} \\
\vartheta, \\
l_{\tilde{S} r}(x), p_{2}<x \leq p_{3} \\
1, \\
\text { otherwise }
\end{array}\right.\right.\right.
$$

De-neutrosophication of triangular single valued neutrosophic number: In this model we have applied removal area technique to evaluate the de-neutrosophication value of triangular single valued neutrosophic number
$\tilde{S}=<\left(m_{1}, m_{2}, m_{3}: \mu\right),\left(n_{1}, n_{2}, n_{3}: \vartheta\right),\left(p_{1}, p_{2}, p_{3}: \zeta\right)>$ as done by (Chakraborty, et. al.). The de-neutrosophic form of \tilde{S} is given as $n e u D_{\tilde{S}}=\left(\frac{m_{1}+2 m_{2}+m_{3}+n_{1}+2 n_{2}+n_{3}+p_{1}+2 p_{2}+p_{3}}{12}\right)$

4. Proposed model

Thus the inventory level for the proposed model at any time tover [0,T] is described mathematically by the following equations:
$\begin{array}{ll}\frac{d Q(t)}{d t}+\rho(t) Q(t)=r P-G=(r \sigma-1) R t, & 0 \leq t \leq \mu \\ \frac{d Q(t)}{d t}+\rho(t) Q(t)=(r \sigma-1) R \mu, & \mu \leq t \leq t_{1} \\ \frac{d Q(t)}{d t}+\rho(t) Q(t)=-G=-R \mu, & t_{1} \leq t \leq t_{2} \\ \frac{d Q(t)}{d t}=-B G=-B R \mu, & t_{2} \leq t \leq t_{3} \\ \frac{d Q(t)}{d t}=r P-G=r K-R \mu=(r \sigma-1) R \mu, t_{3} \leq t \leq T_{1}\end{array}$
with boundary conditions

$$
\begin{gathered}
Q(0)=0, Q(\mu)=I, Q\left(t_{1}\right)=Q_{m}, Q\left(t_{2}\right)=0, Q\left(t_{3}\right)=-Q_{s} \text { and } Q\left(T_{1}\right)=0, \\
\text { where } I=(r \sigma-1) R\left[\left(\frac{\mu^{2}}{2}\right)+\left(\frac{\alpha \gamma}{\beta+1}\right)(\mu-\gamma)^{\beta+1}+\left(\frac{\alpha}{\beta+2}\right)(\mu-\gamma)^{\beta+2}+\frac{(-1)^{\beta} \gamma^{\beta+2}}{(\beta+1)(\beta+2)}\right]
\end{gathered}
$$

4.1 Mathematical Analysis of the proposed model

From the above differential equations $[1,2,3,4,5]$ and using the assumptions and the boundary conditions we obtain the inventory level of the proposed inventory model as follows:

$$
\begin{align*}
& \quad Q(t)=(r \sigma-1) R\left[\left(\frac{t^{2}}{2}\right)-\left(\frac{\alpha t^{2}}{2}\right)(t-\gamma)^{\beta}+\left(\frac{\alpha \gamma}{\beta+1}\right)(t-\gamma)^{\beta+1}+\left(\frac{\alpha}{\beta+2}\right)(t-\gamma)^{\beta+2}+\left(\frac{(-1)^{\{\beta\} \gamma^{\beta+2}}}{(\beta+1)(\beta+2)}\right)\right] \\
& Q(t)=(r \sigma-1) R\left[t \mu-\left(\frac{\mu^{2}}{2}\right)+\mu \alpha(t-\gamma)^{\beta}\left(\left(\frac{t-\gamma}{\beta+1}\right)-t+\left(\frac{\mu}{2}\right)\right)-\left(\frac{\alpha}{(\beta+1)(\beta+2)}\right)\left\{(\mu-\gamma)^{\beta+2}-(-1)^{\beta} \gamma^{\beta+2}\right\}\right] \tag{6}\\
& Q(t)=R \mu\left[t_{1}-t+\left(\frac{\alpha}{\beta+1}\right)\left\{\left(t_{1}-\gamma\right)^{\beta+1}-(t-\gamma)^{\beta+1}\right\}+\alpha\left(t-t_{1}\right)(t-\gamma)^{\beta}\right]+Q_{m}\left(1-\alpha(t-\gamma)^{\beta}+\alpha\left(t_{1}-\gamma\right)^{\beta}\right), t_{1} \leq t \leq t_{2} \tag{7}\\
& Q(t)=-B R \mu\left(t-t_{2}\right), \quad t_{2} \leq t \leq t_{3} \tag{8}\\
& Q(t)=(r \sigma-1) R \mu\left(t-t_{3}\right)-Q_{S}, \quad t_{3} \leq t \leq T_{1} \tag{9}
\end{align*}
$$

Now using $Q\left(t_{2}\right)=0$ and eq.(6) we get the maximum amount inventory Q_{m},
$Q_{m}=R \mu\left[t_{2}-t_{1}+\left(\frac{\alpha}{\beta+1}\right)\left(t_{2}-\gamma\right)^{\beta+1}-\alpha\left(t_{1}-\gamma\right)^{\beta}\left(\left(\frac{t^{1}-\gamma}{\beta+1}\right)+t_{2}-t_{1}\right)\right]$
Now using eq.(8), eq.(9) and the relation $Q\left(t_{3}\right)=-Q_{s}$ we get the maximum shortages in the inventory level, $Q_{s}=B R \mu\left(t_{3}-t_{2}\right)$
Inventory carrying cost or holding cost:

$$
\begin{aligned}
& H C=h\left[\int_{0}^{\mu} Q(t) d t+\int_{\mu}^{t_{1}} Q(t) d t+\int_{t_{1}}^{t_{2}} Q(t) d t\right] \\
& =h\left[(r \sigma - 1) R \left\{\left(\frac{\mu^{4}}{6}\right)-\left(\frac{\alpha \beta \mu(\mu-\gamma)^{\beta+3}}{2(\beta+2)(\beta+3)}\right)\left(\frac{\gamma(\beta+5)}{\beta+1}\right)+\mu+\left(\frac{\left((-1)^{\beta} \alpha \mu \gamma^{\beta+2}\right)}{(\beta+1)(\beta+2)}\right)\left(\mu-\left(\frac{\gamma}{\beta+3}\right)\right)\right.\right. \\
& \quad+\left(\frac{\alpha \mu \gamma^{2}(\mu-\gamma)^{\beta+1}}{2(\beta+1)}\right)+\left(\frac{\mu t_{1}}{2}\right)\left(t_{1}-\mu\right)-\left(\frac{\alpha \beta \mu\left(t_{1}-\gamma\right)^{\beta+2}}{(\beta+1)(\beta+2)}\right)+R \mu\left\{-\left(\frac{\left(t_{2}-t_{1}\right)^{2}}{2}\right)\right.
\end{aligned}
$$

$$
\begin{align*}
& \left.+\left(\frac{\alpha \mu\left(\left(\frac{\mu}{2}\right)-\gamma\right)}{\beta+1}\right)\left[\left(t_{1}-\gamma\right)^{\beta+1}-(\mu-\gamma)^{\beta+1}\right]+\left(\frac{\left(\alpha(\mu-\gamma)^{\beta+2}\right)}{\beta+2}\right)\left(\mu-\left(\frac{t_{1}}{\beta+1}\right)\right)+\left(\frac{(-1)^{\beta} \alpha \gamma^{(\beta+2)}}{(\beta+1)(\beta+2)}\right)\left(t_{1}-\mu\right)\right\}+ \\
& \left.\left.\left(\frac{\alpha\left(t_{1}-\gamma\right)\left(t_{2}-\gamma\right)}{\beta+1}\right)\left[\left(t_{1}-\gamma\right)^{\beta}-\left(t_{2}-\gamma\right)^{\beta}\right]+Q_{m}\left(t_{2}-t_{1}-\left(\frac{\alpha\left(t_{2}-\gamma \gamma^{\beta+1}\right.}{\beta+1}\right)+\alpha\left(t_{1}-\gamma\right)^{\beta}\left(\left(\frac{t_{1}-\gamma}{\beta+1}\right)-t_{2}-t_{1}\right)\right)\right\}\right] \tag{12}
\end{align*}
$$

Production cost: The unit production cost depends on demand and process reliability. When the demand of an item increases then the production/purchase cost of the item decreases hence the unit production cost reduces i.e., production / purchase cost varies inversely with demand. The process reliability level r means only $\mathrm{r} \%$ of the produced items is of acceptable quality which can be used to meet demand.
The unit production cost $p=a D^{-b} r^{c}$ where $a, b, c>0$ and $b \neq 2$.
The cost of production in $[t, t+d t]$ is $K p d t=\sigma D . a D^{-b} r^{c} d t=\left(\frac{\sigma a r^{c}}{D^{b-1}}\right) d t$.
Since the production occurs $\left[0, \mathrm{t}_{1}\right]$ and $\left[\mathrm{t}_{3}, \mathrm{~T}_{1}\right]$ so the production $\operatorname{cost}(\mathrm{PDC})$ is given as follows.
Production cost (PDC) $=\int_{0}^{\mu}\left(\frac{\sigma a r^{c}}{D^{b-1}}\right) d t+\int_{\mu}^{t_{1}}\left(\frac{\sigma a r^{c}}{D^{b-1}}\right) d t+\int_{t_{3}}^{T_{1}}\left(\frac{\sigma a r^{c}}{D^{b-1}}\right) d t$
$=\operatorname{\sigma ar}^{c}\left[\int_{0}^{\mu}(R t)^{1-b} d t+\int_{\mu}^{t_{1}}(R \mu)^{1-b} d t+\int_{t_{3}}^{T_{1}}(R \mu)^{1-b} d t\right]$
$=\left(\frac{\sigma a r c_{R^{1-b}}}{2-b}\right)\left[(b-1) \mu^{2-b}+(2-b) \mu^{1-b}\left(t_{1}+T_{1}-t_{3}\right)\right], b \neq 2$
Deterioration cost: The total no. of deteriorated items in $\left[0, \mathrm{~T}_{1}\right]$ is same as deterioration in $\left[0, \mathrm{t}_{2}\right]$ as there is no deterioration of items during the period $\left[\mathrm{t}_{2}, \mathrm{~T}_{1}\right]$.
$D_{1}=$ Total no. of deteriorated items in $\left[0, t_{2}\right]$ $=r \times$ Production in $[0, \mu]+r \times$ Production in $\left[\mu, t_{1}\right]$-Demand in $[0, \mu]$-Demand in $\left[\mu, t_{2}\right]$

$$
\begin{gather*}
=r \sigma \int_{0}^{\mu} R t d t+r \sigma \int_{\mu}^{t_{1}} R \mu d t-\int_{0}^{\mu} R t d t-\int_{\mu}^{t_{2}} R \mu d t \\
=\left(\frac{1}{2}\right) R r \mu \sigma\left(2 t_{1}-\mu\right)-\left(\frac{1}{2}\right) R \mu\left(2 t_{2}-\mu\right) \tag{14}
\end{gather*}
$$

\therefore Deterioration cost $(D C)=\left(d D_{1}\right)=\left(\frac{R \mu d}{2}\right)\left(r \sigma\left(2 t_{1}-\mu\right)-\left(2 t_{2}-\mu\right)\right)$
Purchase cost: Since there is shortages in our model so the producer has to purchase raw material not only during $\left[0, t_{1}\right]$ but also in $\left[t_{3}, T_{1}\right]$. So we have to calculate purchase cost during the above two period.
$P C=c_{1} \sigma\left(\int_{0}^{\mu} R t d t+r \sigma \int_{\mu}^{t_{1}} R \mu d t+\int_{t_{3}}^{T_{1}} R \mu d t\right)=c_{1} \sigma R \mu\left(t_{1}+T_{1}-t_{3}-\left(\frac{\mu}{2}\right)\right)$
Shortage cost: Since the model undergoes shortages so we observe shortages during $\left[\mathrm{t}_{2}, \mathrm{~T}_{1}\right]$.

$$
\begin{equation*}
S C=c_{2} \int_{t_{2}}^{t_{3}}-Q(t) d t+c_{2} \int_{t_{3}}^{T_{1}}-Q(t) d t=\left(\frac{c^{2} R \mu}{2}\right)\left[B\left(t_{3}-t_{2}\right)^{2}+(r \sigma-1)\left(T_{1}-t_{3}\right)^{2}\right] \tag{16}
\end{equation*}
$$

Lost cost: Due to urgency of demand the consumer opt to another shop so there is a chance for loss in sale during the shortages period $\left[\mathrm{t}_{2}, \mathrm{t}_{3}\right]$. Thus the lost cost for one replenishment interval is (LC).
$L C=c_{3}(1-B) \int_{t_{2}}^{t_{3}} R \mu d t=c_{3}(1-B) R \mu\left(t_{3}-t_{2}\right)$

The present value of total cost is (TC):

$$
T C=(D C+P C+H C+L C+P D C+S C) \sum_{i=1}^{m} e^{-(i-1) k T} \approx(D C+P C+L C+S C+P D C+H C)\left(\frac{1-e^{-k m T}}{1-e^{-k T}}\right)
$$

$=R \mu\left[\left(\frac{d}{2}\right)\left(r \sigma\left(2 t_{1}-\mu\right)-\left(2 t_{2}-\mu\right)\right)+c_{1} \sigma\left(t_{1}+T_{1}-t_{3}-\frac{\mu}{2}\right)+c_{3}(1-B)\left(t_{3}-t_{2}\right)+\left(\frac{c_{2}}{2}\right)\left[B\left(t_{3}-t_{2}\right)^{2}+\right.\right.$
$\left.(r \sigma-1)\left(T_{1}-t_{3}\right)^{2}\right]+\left(\frac{\sigma a r^{c} R^{-b}}{2-b}\right)\left[(b-1) \mu^{1-b}+(2-b) \mu^{-b}\left(t_{1}+T_{1}-t_{3}\right)\right]+h\left[(r \sigma-1)\left\{\xi+\left(\frac{t_{1}}{2}\right)\left(t_{1}-\mu\right)-\right.\right.$ $\left.\left(\frac{\alpha\left\{\mu \beta\left(t_{1}-\gamma\right)^{\beta+2}-t_{1}(\mu-\gamma)^{\beta+2}+(-1)^{(\beta)} \alpha \gamma^{\beta+2} t_{1}\right\}}{\mu(\beta+1)(\beta+2)}\right)+\frac{\left(\alpha\left(\frac{\mu}{2}-\gamma\right)\right)\left(t_{1}-\gamma\right)^{\beta+1}}{\beta+1}\right\}-\left(\frac{\left(t_{2}-t_{1}\right)^{2}}{2}\right)+\left(\frac{\alpha\left[\left(t_{1}-\gamma\right)^{\beta+1}\left(t_{2}-\gamma\right)-\left(t_{1}-\gamma\right)\left(t_{2}-\gamma\right)^{\beta+1}\right]}{\beta+1}\right)+$ $\left.\left.Q_{m}\left(t_{2}-t_{1}-\left(\frac{\alpha\left(t_{2}-\gamma\right)^{\beta+1}}{\beta+1}\right)+\alpha\left(t_{1}-\gamma\right)^{\beta}\left(\left(\frac{t_{1}-\gamma}{\beta+1}\right)-t_{2}-t_{1}\right)\right)\right]\right]\left(\frac{1-e^{-k m T}}{1-e^{-k T}}\right)$

Where

$$
\begin{aligned}
& b \neq 2, \quad \xi=\frac{\mu^{3}}{6}-\frac{\alpha \beta(\mu-\gamma)^{\beta+3}}{2(\beta+2)(\beta+3)}\left(\frac{\gamma(\beta+5)}{\beta+1}+\mu\right)+\frac{(-1)^{\beta} \alpha \gamma^{\beta+2}}{(\beta+1)(\beta+2)}\left(\mu-\frac{\gamma}{\beta+3}-1\right) \\
&+\frac{\alpha(\mu-\gamma)^{\beta+1}\left(\gamma^{2}+2 \gamma-\mu\right)}{2(\beta+1)}+\frac{\alpha(\mu-\gamma)^{\beta+2}}{\beta+2}
\end{aligned}
$$

We observe that TC is a function of t_{1}, t_{2}, t_{3} and m. But for the sake of simplicity we simplified t_{2} and t_{3} in terms of t_{1} and r.

Considering eq.(7), eq.(8) and the condition $Q\left(t_{1}\right)=Q_{m}$ we get t_{2} in terms of t_{1}, and r. Expanding the exponential terms and neglecting the second and higher order terms of α and after simplifying the above two equations we get,
$t_{2}=(r \sigma-1)\left[\frac{\mu}{2}-\frac{\alpha}{\mu(\beta+1)(\beta+2)}\left\{(\mu-\gamma)^{\beta+2}-(-1)^{\beta} \gamma^{\beta+2}\right\}\right]+r \sigma\left[t_{1}+\frac{\alpha\left(t_{1}-\gamma\right)^{\beta+1}}{\beta+1}\right]$
Also considering (11), and $Q\left(T_{1}\right)=0$, we get t_{3} in terms of t_{1}, and r.

$$
\begin{gather*}
B P \mu\left(t_{3}-t_{2}\right)=(\gamma-1) R \mu\left(T_{1}-t_{3}\right) \\
t_{3}=\frac{1}{B+r \sigma-1}\left((r \sigma-1) T_{1}+B t_{2}\right) \tag{20}
\end{gather*}
$$

Thus the total cost TC is function of t_{1}, r and m.

Optimization process

The following technique is derived to obtain the optimal value of t_{1}, r and m.
Step 1: Start by choosing a discrete value of m, a positive integer number.
Step 2: Take the partial derivative of total cost $T C\left(t_{1}, r, m\right)$ with respect to t_{1} and r and equate it to zero, the necessary condition for optimality is $\frac{\partial T C\left(t_{1}, r, m\right)}{\partial t_{1}}=0$ and $\frac{\partial T C\left(t_{1}, r, m\right)}{\partial r}=0$.

Step 3: For different values of m, Obtain the optimum value of the time taken $t_{1}{ }^{*}$ and reliability r^{*} from the above two equation. Then substituting the value of $\mathrm{t}_{1}{ }^{*}, \mathrm{r}^{*}$ and m in equation [18] and obtain $\mathrm{TC}\left(\mathrm{t}_{1}{ }^{*}, \mathrm{r}^{*}, \mathrm{~m}\right)$

Step 4: Repeat step 2 and step 3 for different values of m and obtain the $T C\left(t_{1}{ }^{*}, r^{*}, m\right)$. The minimum value of TC is obtained for optimum value of m^{*}. Thus $\left(t_{1}{ }^{*}, r^{*}, m^{*}\right)$ and $T C\left(t_{1}{ }^{*}, r^{*}, m^{*}\right)$ are the optimal solution of our model. It satisfies the following condition:

$$
\Delta T C\left(\mathrm{t}_{1}^{*}, \mathrm{r}^{*}, \mathrm{~m}^{*}-1\right)<0<\Delta T C\left(\mathrm{t}_{1}^{*}, \mathrm{r}^{*}, \mathrm{~m}^{*}+1\right)
$$

Where $\Delta T C\left(\mathrm{t}_{1}^{*}, \mathrm{r}^{*}, \mathrm{~m}^{*}\right)=T C\left(\mathrm{t}_{1}^{*}, \mathrm{r}^{*}, \mathrm{~m}^{*}+1\right)-T C\left(\mathrm{t}_{1}^{*}, \mathrm{r}^{*}, \mathrm{~m}^{*}\right)$
Step 5: To confirm that the objective function is convex, the derived value of $\mathrm{TC}\left(\mathrm{t}_{1}^{*}, \mathrm{r}^{*}, \mathrm{~m}^{*}\right)$ must satisfy the sufficient condition:

$$
\left(\begin{array}{ll}
\frac{\partial^{2} T C\left(t_{1}, r\right)}{\partial t_{1}^{2}} & \frac{\partial^{2} T C\left(t_{1}, r\right)}{\partial r \partial t_{1}} \tag{21}\\
\frac{\partial^{2} T C\left(t_{1}, r\right)}{\partial t_{1} \partial r} & \frac{\partial^{2} T C\left(t_{1}, r\right)}{\partial r^{2}}
\end{array}\right)>0 \text { and } \frac{\partial^{2} T C\left(t_{1}, r\right)}{\partial t_{1}^{2}}>0 \text { or } \frac{\partial^{2} T C\left(t_{1}, r\right)}{\partial r^{2}}>0
$$

Since TC* is very complicated with high powers so it is not possible to show the analytic validity of eq.(21). For this reason the above inequality is assessed by a numerical example.

4.2 Effect of Neutrosophication of parameter in proposed inventory model

Neutrosophic number actually deals with the conception of three different kinds of membership function related with real life scenario. It consists of truth, hesitation and falseness of an imprecise number. In this model we have considered purchase cost $\left(c_{1}\right)$, holding cost (h) and inflation (k) as neutrosophic fuzzy number since in reality all the parameters are uncertain and contains a dilemma in decision maker's mind. So we try to manifest the model by introducing neutrosophication in the above cost and rates, and thus observe the effect of the above by comparing it with crisp model. The neutrosophic form of holding cost, purchase cost and inflation are represented by $\tilde{h}, \widetilde{c_{1}}$ and \tilde{k}. Thus

$$
\begin{gathered}
\tilde{h}=<\left(h_{1}-\varepsilon_{1}, h_{1}, h_{1}+\varepsilon_{2}: \mu\right),\left(h_{2}-\varepsilon_{1}, h_{2}, h_{2}+\varepsilon_{2}: \vartheta\right),\left(h_{3}-\varepsilon_{1}, h_{3}, h_{3}+\varepsilon_{2}: \zeta\right)>, \\
\widetilde{c_{1}}=<\left(c_{11}-\varepsilon_{1}, c_{11}, c_{11}+\varepsilon_{2}: \mu\right),\left(c_{12}-\varepsilon_{1}, c_{12}, c_{12}+\varepsilon_{2}: \vartheta\right),\left(c_{13}-\varepsilon_{1}, c_{13}, c_{13}+\varepsilon_{2}: \zeta\right)> \\
\tilde{k}=<\left(k_{1}-\varepsilon_{1}, k_{1}, k_{1}+\varepsilon_{2}: \mu\right),\left(k_{2}-\varepsilon_{1}, k_{2}, k_{2}+\varepsilon_{2}: \vartheta\right),\left(k_{3}-\varepsilon_{1}, k_{3}, k_{3}+\varepsilon_{2}: \zeta\right)>
\end{gathered}
$$

where $\mu, \vartheta, \zeta \in[0,1]$ and $0<\varepsilon_{1}, \varepsilon_{2}<1$.
This neutrosophic fuzzy number is implemented in this model and thus the total cost obtain using this neutrosophic number is
$T C_{\text {neu }}\left(\tilde{h}, \widetilde{c_{1}}, \tilde{k}\right)=R \mu\left[\left(\frac{d}{2}\right)\left(r \sigma\left(2 t_{1}-\mu\right)-\left(2 t_{2}-\mu\right)\right)+\widetilde{c_{1}} \sigma\left(t_{1}+T_{1}-t_{3}-\frac{\mu}{2}\right)+c_{3}(1-B)\left(t_{3}-t_{2}\right)+\right.$
$\left(\frac{c_{2}}{2}\right)\left[B\left(t_{3}-t_{2}\right)^{2}+(r \sigma-1)\left(T_{1}-t_{3}\right)^{2}\right]+\left(\frac{\sigma a r^{c} R^{-b}}{2-b}\right)\left[(b-1) \mu^{1-b}+(2-b) \mu^{-b}\left(t_{1}+T_{1}-t_{3}\right)\right]+\tilde{h}[(r \sigma-1)\{\xi+$
$\left.\left(\frac{t_{1}}{2}\right)\left(t_{1}-\mu\right)-\left(\frac{\alpha\left\{\mu \beta\left(t_{1}-\gamma\right)^{\beta+2}-t_{1}(\mu-\gamma)^{\beta+2}+(-1)^{(\beta)} \alpha \gamma^{\beta+2} t_{1}\right\}}{\mu(\beta+1)(\beta+2)}\right)+\frac{\left(\alpha\left(\frac{\mu}{2}-\gamma\right)\right)\left(t_{1}-\gamma\right)^{\beta+1}}{\beta+1}\right\}-\left(\frac{\left(t_{2}-t_{1}\right)^{2}}{2}\right)+$

$$
\begin{equation*}
\left.\left.\left(\frac{\alpha\left[\left(t_{1}-\gamma\right)^{\beta+1}\left(t_{2}-\gamma\right)-\left(t_{1}-\gamma\right)\left(t_{2}-\gamma\right)^{\beta+1}\right]}{\beta+1}\right)+Q_{m}\left(t_{2}-t_{1}-\left(\frac{\alpha\left(t_{2}-\gamma\right)^{\beta+1}}{\beta+1}\right)+\alpha\left(t_{1}-\gamma\right)^{\beta}\left(\left(\frac{t_{1}-\gamma}{\beta+1}\right)-t_{2}-t_{1}\right)\right)\right]\right]\left(\frac{1-e^{-\widetilde{k} m T}}{1-e^{-\tilde{k} T}}\right) \tag{22}
\end{equation*}
$$

Using removal area technique (Chakraborty et. al. [3]) the de- neutrosophic numbers are

$$
\widetilde{h_{\text {neuD }}}=\frac{h_{1}+h_{2}+h_{3}}{3}-\frac{\varepsilon_{1}+\varepsilon_{2}}{4},\left(\widetilde{\left.c_{1}\right)_{\text {neuD }}}=\frac{c_{11}+c_{12}+c_{13}}{3}-\frac{\varepsilon_{1}+\varepsilon_{2}}{4}, \text { and } \widetilde{k_{\text {neuD }}}=\frac{k_{1}+k_{2}+k_{3}}{3}-\frac{\varepsilon_{1}+\varepsilon_{2}}{4} .\right.
$$

So we substitute the value of $h_{\text {neuD }},\left(c_{1}\right)_{\text {neud }}$ and $k_{\text {neuD }}$ and obtain the total cost in neutrosophic domain.

Thus by de-neutrosophication we get

$$
\begin{align*}
& T C_{\text {neu }}\left(\tilde{h}, \widetilde{c_{1}}, \tilde{k}\right)=R \mu\left[\left(\frac{d}{2}\right)\left(r \sigma\left(2 t_{1}-\mu\right)-\left(2 t_{2}-\mu\right)\right)+\left(\widetilde{\left.c_{1}\right)_{\text {neuD }} \sigma}\left(t_{1}+T_{1}-t_{3}-\frac{\mu}{2}\right)+c_{3}(1-B)\left(t_{3}-t_{2}\right)+\left(\frac{c_{2}}{2}\right)\left[B \left(t_{3}-\right.\right.\right.\right. \\
& \left.\left.t_{2}\right)^{2}+(r \sigma-1)\left(T_{1}-t_{3}\right)^{2}\right]+\left(\frac{\sigma a r^{c} R^{-b}}{2-b}\right)\left[(b-1) \mu^{1-b}+(2-b) \mu^{-b}\left(t_{1}+T_{1}-t_{3}\right)\right]+\widetilde{h_{\text {neuD }}}\left[(r \sigma - 1) \left\{\xi+\left(\frac{t_{1}}{2}\right)\left(t_{1}-\mu\right)-\right.\right. \\
& \left.\left(\frac{\alpha\left\{\mu \beta\left(t_{1}-\gamma\right)^{\beta+2}-t_{1}(\mu-\gamma)^{\beta+2}+(-1)^{(\beta)} \alpha \gamma^{\beta+2} t_{1}\right\}}{\mu(\beta+1)(\beta+2)}\right)+\frac{\left(\alpha\left(\frac{\mu}{2}-\gamma\right)\right)\left(t_{1}-\gamma\right)^{\beta+1}}{\beta+1}\right\}-\left(\frac{\left(t_{2}-t_{1}\right)^{2}}{2}\right)+\left(\frac{\alpha\left[\left(t_{1}-\gamma\right)^{\beta+1}\left(t_{2}-\gamma\right)-\left(t_{1}-\gamma\right)\left(t_{2}-\gamma\right)^{\beta+1}\right]}{\beta+1}\right)+ \\
& \left.\left.Q_{m}\left(t_{2}-t_{1}-\left(\frac{\alpha\left(t_{2}-\gamma\right)^{\beta+1}}{\beta+1}\right)+\alpha\left(t_{1}-\gamma\right)^{\beta}\left(\left(\frac{t_{1}-\gamma}{\beta+1}\right)-t_{2}-t_{1}\right)\right)\right]\right]\left(\frac{1-e^{-k_{\text {neuD }} m T}}{1-e^{-k_{\text {neuD }} T}}\right) \tag{23}
\end{align*}
$$

5. Numerical Example

The model is illustrated by an example. A new brand item follows the demand rate as ramp type function of time where the produced items are directly affected by reliability (r) of production process. The manufacturer maintains the production rate 1.3 times the demand rate where demand factor is considered as 12 unit per cycle. Also the items deteriorate with time is in the form of $\alpha \beta(\mathrm{t}-\gamma)^{\beta-1}$, (where $\gamma=0.6$ unit and $\alpha=0.001, \beta=1$) which cost $1 \$$ per unit time. The purchase cost of the raw material of the item is $3.5 \$$ per unit item and $100 \$$ is used for setting up for the production cycle. To hold the item in store the retailer has to pay $0.4 \$$ per unit item. During shortages, which cost $3.2 \$$, let 0.75 fraction of stock demand get backordered as the rest sales are lost. The cost for penalty (lost in sell) is $15 \$$. The model is considered under 15 years of planning horizon with various replenishment cycle i.e., $m=2,3,4,5$ and discounting rate of inflation as 12%.

Therefore, the data considered to illustrate the models are as follows:

$$
\begin{gathered}
c_{1}=3.5, c_{2}=3.2, c_{3}=15, h=0.4, d=1, B=0.75, H=15, T=H / m, \mu=1.2, \sigma=1.3, \alpha=0.001, \beta=1, \gamma \\
=0.6, a=3, b=0.8, c=2, k=0.12, R=12, S=100
\end{gathered}
$$

Table 1: Optimal solution of inventory model for different replenishment

m	T in year	$\mathrm{t}_{1}{ }^{*}$ in year	$\mathrm{t}_{2}{ }^{*}$ in year	$\mathrm{t}_{3}{ }^{*}$ in year	reliability $\left(\mathrm{r}^{*}\right)$	TC
2	7.5	7.175	7.452	7.454	0.799	806.54
3	5	4.571	4.883	4.894	0.828	738.13
4	3.75	3.249	3.579	3.603	0.864	717.58
5^{*}	3^{*}	2.451^{*}	2.789^{*}	2.83^{*}	0.909^{*}	715.26^{*}

From the table 1 it is observed that the optimal solution is obtained (i.e., total cost is minimum) if we consider short replenishment cycles. This is realistic because if we decrease the time of the production then it produces less items and hence the total cost of the inventory decreases. It is also observed the better quality items are produced at shorter replenishment cycle i.e., the reliability (r) of the items increases in shorter production or replenishment cycle. This occurs because if we take small cycle then at the end of each cycle their is maintenance in production system happens regularly and thus the reliability of the items increases.

Figure 2: Graphical presentation of production cycle vs total cost

Figure 3: Graphical presentation of reliability vs total cost.

We observe from the figure 2 that for smaller production cycle (i.e., for large value of m), the optimal total cost (TC) decreases with optimal cost at $\mathrm{m}=5$.
In figure 3 we observe that the as reliability (r) increases then the total cost (TC) decreases. This holds because as reliability increases the demand of the item in the market increases as a result the cost per unit item decreases and hence the total cost decreases.

The above result is desirable because in the competitive market the business strategies of the manufacturer is to work in small cycle and producing highly reliable items at less cost.

Figure 4: Graphical representation of total cost vs reliability and production time

Figure 4 gives the 3-dimensional plot of the total cost, reliability and no. of replenishment cycle in crisp model. In this figure we observe that reliability (r) increases for large value of m where the total cost (TC) decreases, i.e., highly reliable items are produced during small replenishment cycle at less cost, which is desirable in producer-oriented EPQ model. This is obvious as, in small cycle, the machinery gets upgraded and ameliorated eventually at the end of each cycle, and hence better quality of items are produced at much faster rate and thus cost per unit items decreases and hence the total costing of the inventory decreases. In reality few parameters are uncertain and thus there is a dilemma in decision maker's mind. Thus instead of considering the model in crisp domain let us consider the model in neutrosophic domain and examine the same example as above. Here we have considered purchase cost (c_{1}), holding cost (h) and inflation (k) as triangular neutrosophic fuzzy number. Thus the neutrosophic numbers of the above parameters are $k_{1}=$ $0.125, k_{2}=0.118, k_{3}=0.132, h_{1}=0.38, h_{2}=0.4, h_{3}=0.42, c_{11}=2.5, c_{12}=2.45 . c_{13}=2.55, \varepsilon_{1}=0.005, \varepsilon_{2}=$ 0.007 .

$$
\begin{aligned}
& \text { Then, } \widetilde{c}_{1}=<(2.495,2.5,2.507),(2.445,2.45,2.457),(2.545,2.55,2.557)>\text {, } \\
& \widetilde{h}=<(0.375,0.38,0.387),(0.395,0.4,0.407),(0.415,0.42,0.427)>\text { and } \\
& \widetilde{k}=<(0.12,0.125,0.132),(0.113,0.118,0.125),(0.127,0.132,0.139)>.
\end{aligned}
$$

Thus we obtained table 2 under neutrosophic arena for the optimal solution of the model for different replenishment cycle.

Table 2: Optimal time and cost of inventory model under neutrosophic domain

m	T in year	$\mathrm{t}_{1}{ }^{*}$ in year	$\mathrm{t}_{2}{ }^{*}$ in year	$\mathrm{t}_{3}{ }^{*}$ in year	reliability $\left(\mathrm{r}^{*}\right)$	TC^{*}
2	7.5	7.172	7.448	7.451	0.799	802.45
3	5	4.569	4.886	4.897	0.829	733
4	3.75	3.247	3.58	3.605	0.865	711.87
5^{*}	3^{*}	2.449^{*}	2.789^{*}	2.83^{*}	0.91^{*}	709.11^{*}

Thus if we compare table 1 and table 2 it is observed that the total cost (TC) decreases if we consider the model in neutrosophic arena. This is desirable as few parameters has hesitation factor in decision maker's mind and thus this model under neutrosophic domain gives us better result.

6. Sensitivity Analysis

The retailer should be aware of the effect in the total cost for any changes in the parameter. In order to examine the implications of these changes, the sensitivity analysis will be helpful for decision-making. Using the numerical example as given in the preceding section, we perform the sensitivity analysis by changing few crisp parameters by $-10 \%,-5 \%, 5 \%$ and 10% by taking one parameter at time and keeping the other parameter fixed. As per Table 1 we observe that optimal solution is obtained when we consider small replenishment cycle. So we perform the sensitivity analysis for $\mathrm{m}=5$.

Table 3. Sensitivity analysis of some parameters

Parameters	Change (\%)	$\mathrm{t}_{1}{ }^{\text {a }}$ in year	$\mathbf{t}_{2}{ }^{\text {in }}$ year	$t_{3}{ }^{*}$ in year	reliability (\mathbf{r}^{*})	TC*	\% change of TC*
C_{1}	-10	2.642	2.933	2.44	0.878	677.95	-5.5
	-5	2.557	2.872	2.894	0.892	696.78	-2.65
	5	2.313	2.677	2.748	0.932	733.29	2.46
	10	2.122	2.517	2.64	0.968	750.71	4.72
h	-10	2.398	2.776	2.825	0.93	711.92	-0.47
	-5	2.425	2.761	2.808	0.91	713.67	-0.22
	5	2.475	2.796	2.834	0.9	716.7	0.2
	10	2.498	2.803	2.838	0.892	718.01	0.38
S	-10	2.451	2.789	2.83	0.909	687.65	-4.02
	-5	2.451	2.789	2.83	0.909	701.45	-1.97
	5	2.451	2.789	2.83	0.909	729.06	1.89
	10	2.451	2.789	2.83	0.909	742.87	3.72
σ	-10	2.617	2.903	2.918	0.975	681.84	-4.9
	-5	2.533	2.844	2.871	0.939	698.61	-2.38
	5	2.364	2.728	2.786	0.883	731.72	2.25
	10	2.264	2.66	2.742	0.865	747.95	4.37
μ	-10	2.398	2.771	2.819	0.923	681.47	-4.96
	-5	2.425	2.781	2.825	0.916	698.63	-2.38
	5	2.475	2.798	2.836	0.903	731.35	2.2
	10	2.498	2.805	2.841	0.897	746.92	4.24
k	-10	2.451	2.789	2.83	0.909	750.84	4.74
	-5	2.451	2.789	2.83	0.909	732.63	2.37
	5	2.451	2.789	2.83	0.909	698.69	-2.37
	10	2.451	2.789	2.83	0.909	682.87	-4.74
R	-10	2.41	2.781	2.828	0.926	671.72	-6.48
	-5	2.431	2.785	2.829	0.917	693.48	-3.14
	5	2.471	2.794	2.832	0.901	737.05	2.96
	10	2.49	2.799	2.834	0.894	758.86	5.74

From the above table 3 it is observed that the model is highly sensitive to purchase cost, demand rate factor (R), moderately sensitive to setup cost, σ, μ, inflation (k) and less sensitive to holding cost. It is also noted that the model is insensitive to the shortage cost, lost in sale cost and deterioration cost. That means deterioration is not going to affect the model as much.
(i) The model is highly sensitive to purchase cost i.e., if we increase purchase cost (c_{1}), the total cost increases.

It is also noted that as the purchase cost increases, the reliability increases and production time decreases which means if we buy good quality raw material then we have better quality of finished good at less manufacturing time. Again the total cost TC increases with increase in demand factor R. This is obvious
because if demand increases means more items are produced and hence the production time and production cost also increases which leads to increase in total cost.
(ii) The model is moderately sensitive to set up cost (S), σ, μ, inflation (k). Investing more money for upgradation of machineries, i.e., by increasing in set up cost (S), the total cost increases. It is noted that in our model the set up cost does not depends on reliability and production time. Again with the increase in production rate (σ) and production time (μ), the total cost increases. This is true because, if production time increases then more items are produced also if we increase the production rate then we have more finished good at less manufacturing time and thus in both the case the total cost increases. Also the toal cost decreases with increase in inflation (k). This is obvious because with the increase in inflation the time value of money increases and thus the total cost decreases in present day.
(iii) It is noticed that as the holding cost (h) is a less sensitive parameter. With the increase in holding cost, the total cost increases. It is also observed that the production time also increases with increase in holding cost. It means that the items has to be held for longer time with high value of holding cost then obviously the total cost will increase.

It has been observed that there are various parameters which are very less sensitive hence it is not included in the table.

7. Concluding remarks

This paper developed an EPQ model for deteriorating item with reliability in production process and ramp type demand rate under crisp and neutrosophic domain. The model also considers shortages where part of the items gets backlogged and part of the sales are lost. The model coincides with practical situations since we have considered the effect of time value of money under finite time horizon. Also the model optimizes by considering the reliability of production process, as the reliability of production process increases, the total cost decreases. This model is cost effective because highly reliable items are obtained at less cost and which is desirable in managerial point of view. It is also observed that the highly reliable items are produced in small cycles. The paper also compares the model under two different environment, crisp and neutrosophic, and it is observed that the model works better in neutrosophic domain as compare to crisp environment. In this paper we have done sensitivity analysis in crisp environment to illustrate our example and we have noted that the minimum value of total cost is obtained for short replenishment cycle. This work could be extended by considering multi-layer supply chain lot sizing model with manufacturer end, retailer end under neutrosophic environment. Also we can extend this same model and can compare the model with neutrosophic number and hybrid plithogenic decision-making method.
Further, in the forthcoming research, people can fruitfully execute and apply the idea of triangular neutrosophic into distinct research arenas like structural modeling, diagnostic problems, realistic modeling, recruitment based problems, pattern recognition etc.

References

1. T. C. E. Cheng, An economic production quantity model with flexibility and reliability consideration. European Journal of Operations Research 39, (1989), 174-179.
2. K. F. Leung, A generalized geometric programming solution to an economic production quantity model with flexibility and reliability considerations. European Journal of Operational Research 176, (2007), 240-251.
3. S. Bag, D. Chakraborty and A. R. Roy, A Production inventory model with fuzzy random demand and with flexibility and reliability considerations. Computers and Industrial Engineering 56, (2009), 411-416.
4. B. Sarkar, An inventory model with reliability in an imperfect production process. Applied Mathematics and Computation 218, (2012), 4881-4891.
5. H. R. Gomez, A. Gharbi and J. P. Kenné, Production and quality control policies for deteriorating manufacturing system. International Journal of Production Research 51(11), (2013), 3443-3462.
6. X. Cai, Y. Feng, Y. Li and D. Shi, Optimal pricing policy for a deteriorating product by dynamic tracking control. International Journal of Production Research 51(8), (2013), 2491-2504.
7. X. Pan and S. Li, Optimal control of a stochastic production--inventory system under deteriorating items and environmental constraints. International Journal of Production Research 53(2), (2015), 1787-1807.
8. H. Rathore, An Inventory Model with Advertisement Dependent Demand and Reliability Consideration. International Journal of Applied and computational mathematics (2019), DOI: 10.1007/s40819-019-0618-y
9. M.A. Hariga, An EOQ model for deteriorating items with shortages and time-varying demand. Journal of Operational Research Society 46, (1995), 398-404.
10. S. Bose, A. Goswami and K.S. Chaudhuri, An EOQ model for deteriorating items with linear time dependent demand rate and shortage under inflation and time discounting. Journal of Operational Research Society 46, (1995), 771-782.
11. K.S. Wu, K.S., L. Y. Ouyang and C. T. Yang, An optimal replenishment policy for non-instantaneous deteriorating items with stock dependent demand and partial backlogging. International Journal of Production Economics 101, (2006), 369-384.
12. H. K. Alfares, Production-inventory system with finite production rate, stock-dependent demand, and variable holding cost, RAIRO-Operation Research 48, (2014), 135-150.
13. C. J. Chung and H.M. Wee, Scheduling and replenishment plan for an integrated deteriorating inventory model with stock dependent selling rate. International Journal of Advanced Manufacturing Technology 35, (2007), 665-679.
14. S. Pal, G. S. Mahaparta and G. P. Samanta, An inventory model of price and stock dependent demand rate with deterioration under inflation and delay in payment. International Journal of System Assurance Engineering and Management 5(4), (2014), 591-601.
15. H. L. Yang, J.T. Teng and M. S. Chern, An inventory model under inflation for deteriorating items with stock dependent consumption rate and partial backlogging, shortages. International Journal of Production Economics 123, (2010), 8-19.
16. K. Skouri, I. Konstantaras, S. Papachristos and J. T. Teng, Supply chain models for deteriorating products with ramp type demand under permissible delay in payments. Expert System with Application 38, (2011), 14861-14869.
17. X. Luo, Analysis of inventory models with ramp type demand. Journal of Interdisciplinary Mathematics 20(2), (2017), 543-554.
18. S.K. Manna and K.S. Chaudhuri, An EOQ model with ramp type demand rate, time dependent deterioration rate, unit production cost and shortages. European Journal of Operational Research 171, (2006), 557-566.
19. S. Pal, G. S. Mahaparta and G. P. Samanta, An EPQ model of ramp type demand with Weibull deterioration under inflation and finite horizon in crisp and fuzzy environment. International Journal of Production Economics 156, (2014), 159-166.
20. K. Skouri, I. Konstantaras, S. K. Manna and K. S. Chaudhuri, Inventory models with ramp type demand rate, time dependent deterioration rate, unit production cost and shortage. Annals of Operations Research 191(1), (2011), 73-95.
21. C.K. Jaggi, A. Khanna and P. Verma, Two- warehouse partial backlogging inventory model for deteriorating items with linear trend in demand under inflationary conditions. International Journal of System Science 42(7), (2011), 1185-1196.
22. K.S. Wu, An EOQ inventory model for items with Weibull distribution deterioration, ramp type demand rate and partial backlogging. Production Planning \& Control: The Management of Operations 12(8), (2001), 787-793.
23. K. SkourI, I. Konstantaras, S. Papachristos and I. Ganas, Inventory models with ramp type demand rate, partial backlogging and Weibull deterioration rate. European Jounal of Operational Research 192(1), (2009), 79-92.
24. V. Sharma and R.R. Chaudhury, An inventory model for deteriorating items with Weibull Distribution with time dependent demand. Research Journal of Management Sciences 2(3), (2013), 28-30.
25. B. Mandal, An EOQ inventory model for Weibull distributed deteriorating items under ramp type demand and shortages. Opsearch 47(2), (2010), 158-165.
26. G.A. Widyadana, L.E. Cardenas-Barron and H. M. Wee, Economic order quantity model for deteriorating items with planned backorder level. Mathematical and Computer Modelling 54, (2011), 1569-1575.
27. H. M. Wee, S.T. Lo, J. Yu and H. C. Chen, An inventory model for ameliorating and deteriorating items taking account of time value of money and finite planning horizon. International Journal of System Science 39(8), (2008), 801-807.
28. H. L. Yang, Two-warehouse partial backlogging inventory models with three parameter Weibull distribution deterioration under inflation. International Journal of Production Economics 138, (2012), 107-116.
29. S Pal, A. Chakraborty, Triangular Neutrosophic-based EOQ model for non-Instantaneous Deteriorating Item under Shortages, American Journal of Business and Operations research 1(1), (2020), 28-35.
30. M. Rahaman , S. P. Mondal , A. A. Shaikh , A. Ahmadian, N. Senu and S. Salahshour, Arbitrary-order economic production quantity model with and without deterioration: generalized point of view. Advances in Differential Equations 16, (2020), 1-30.
31. M.A. Hariga, Effects of inflation and time-value of money on an inventory model with time-dependent demand rate and shortages. European Journal of Operational Research 81(3), (1995), 512 - 520.
32. K.L. Hou, An inventory model for deteriorating items with stock-dependent consumption rate and shortages under inflation and time discounting. European Journal of Operational Research 168, (2006), 463-474.
33. B. Dash, M. Pattnaik and H. Pattnaik, Deteriorated Economic Production Quality (EPQ) Model for Declined Quadratic Demand with Time- value of Money and Shortages. Applied Mathematical Science 8, (2014), 3607 - 3618.
34. L. A. Zadeh, Fuzzy sets. Information and Control 8(5), (1965), 338--353.
35. K. K. Yen, S. Ghoshray, G. Roig, A linear regression model using triangular fuzzy number coefficients. fuzzy sets and system, doi: 10.1016/S0165-0114(97)00269-8.
36. S. Abbasbandy and T. Hajjari, A new approach for ranking of trapezoidal fuzzy numbers. Computers and Mathematics with Applications 57(3), (2009), 413-419.
37. A. Chakraborty, S. P. Mondal, A. Ahmadian, N. Senu, D. De, S. Alam and S. Salahshour, The Pentagonal Fuzzy Number: Its Different Representations, Properties, Ranking, Defuzzification and Application in Game Problem. Symmetry 11(2), (2019), 248-277.
38. K. T. Atanassov, Intuitionistic fuzzy sets. VII ITKR's Session, Sofia, Bulgarian (1983).
39. K. T Atanossav, Intuinistic fuzzy set. Fuzzy Sets and System 20(1), (1986), 87-96.
40. D. F. Li, A ratio ranking method of triangular intuitionistic fuzzy numbers and its application to MADM problems. Computers \& Mathematics with Applications 60(6), 2010, 1557-1570.
41. F. Liu and X. H. Yuan, Fuzzy number intuitionistic fuzzy set. Fuzzy Systems and Mathematics 21(1), (2007), 88-91.
42. J. Ye, prioritized aggregation operators of trapezoidal intuitionistic fuzzy sets and their application to multi criteria decision making. Neural Computing and Applications 25(6), (2014), 1447-1454.
43. F. Smarandache, A unifying field in logics neutrosophy: neutrosophic probability, set and logic. American Research Press, Rehoboth (1998).
44. A. Chakraborty, S. P. Mondal, A. Ahmadian, N. Senu, S. Alam and S. Salahshour, Different Forms of Triangular Neutrosophic Numbers, De-Neutrosophication Techniques, and their Applications. Symmetry 10, (2018), 327-355.
45. A. Chakraborty, S. Mondal, A. Mahata, S. Alam, Different linear and non-linear form of trapezoidal neutrosophic numbers, de-neutrosophication techniques and its application in time cost optimization technique, sequencing problem. RAIRO-Operation Research (2019), DOI: 10.1051/ro/2019090.
46. A. Chakraborty, S. P. Mondal, S. Alam, A. Ahmadian, N. Senu, D. De and S. Salahshour, Disjunctive Representation of Triangular Bipolar Neutrosophic Numbers, De-Bipolarization Technique and Application in Multi-Criteria Decision-Making Problems. Symmetry 11(7), (2019), 932-952.
47. S. Maity, A. Chakraborty, S. K. De, S. P. Mondal and S. Alam, A comprehensive study of a backlogging EOQ model with nonlinear heptagonal dense fuzzy environment. Rairo Operations Research, EDP Science, (2018), doi: 10.1051/ro/2018114.
48. M. Mullai, Neutrosophic EOQ Model with Price Break. Neutrosophic Sets and Systems 19, (2018), 24-28.
49. B. Mondal, C. Kar, A. Garai and T. K. Roy, Optimization of EOQ Model with Limited Storage Capacity by Neutrosophic Geometric Programming. Neutrosophic Sets and Systems 22, (2018), 5-29.
50. P. Majumder, U. K. Bera, M. Maiti, An EPQ Model of Deteriorating Items under Partial Trade Credit Financing and Demand Declining Market in Crisp and Fuzzy Environment Procedia Computer Science 45, (2015), 780-789.
51. A. Chakraborty, A New Score Function of Pentagonal Neutrosophic Number and its Application in Networking Problem. International Journal of Neutrosophic Science 1(1), (2020), 35-46.
52. A. Chakraborty, S. P Mondal, S.Alam, A. Mahata, Cylindrical Neutrosophic Single-Valued Number and its Application in Networking problem, Multi Criterion Decision Making Problem and Graph Theory. CAAI Transactions on Intelligence Technology (2020), Vol-5(2), pp: 68-77 .
53. T.S.Haque, A. Chakraborty, S. P Mondal, S.Alam, A. Mahata, A new approach to solve multi criteria group decision making problems by exponential law in generalized spherical fuzzy environment. CAAI Transactions on Intelligence Technology (2020), Vol-5(2), pp: 106-114.
54. A. Chakraborty, S. Broumi, P.K Singh, Some properties of Pentagonal Neutrosophic Numbers and its Applications in Transportation Problem Environment. Neutrosophic Sets and Systems 28, (2019), 200-215.
55. A. Chakraborty, S. Mondal, S. Broumi, De-neutrosophication technique of pentagonal neutrosophic number and application in minimal spanning tree. Neutrosophic Sets and Systems 29, (2019), 1-18.
56. A. Chakraborty, S. Maity, S.Jain, S.P Mondal, S.Alam, Hexagonal Fuzzy Number and its Distinctive Representation, Ranking, Defuzzification Technique and Application in Production Inventory Management Problem. Granular Computing, Springer, (2020), DOI: 10.1007/s41066-020-00212-8.
57. A. Chakraborty, Minimal Spanning Tree in Cylindrical Single-Valued Neutrosophic Arena. Neutrosophic Graph theory and algorithm (2019), DOI-10.4018/978-1-7998-1313-2.ch009.
58. A. Chakraborty, B. Banik, S.P. Mondal, \& S. Alam, Arithmetic and Geometric Operators of Pentagonal Neutrosophic Number and its Application in Mobile Communication Service Based MCGDM Problem; Neutrosophic Sets and Systems 32, (2020),61-79.
59. M. Abdel-Basset, A. Gamal, L.H. Son, F. Smarandache, A Bipolar Neutrosophic Multi Criteria Decision Making Framework for Professional Selection. Applied Sciences 10(4), (2020), 1202.
60. M. Abdel-Basset, R. Mohamed, A.E. N.H. Zaied, A. Gamal, F. Smarandache, Solving the supply chain problem using the best-worst method based on a novel Plithogenic model. In Optimization Theory Based on Neutrosophic and Plithogenic Sets, Academic Press, (2020), 1-19.
61. M. Abdel-Basset, R. Mohamed, A novel plithogenic TOPSIS-CRITIC model for sustainable supply chain risk management. Journal of Cleaner Production 247, (2020), 119586.
62. M. Abdel-Basset, R. Mohamed, A.E. N.H. Zaied, F. Smarandache, A hybrid plithogenic decision-making approach with quality function deployment for selecting supply chain sustainability metrics. Symmetry 11(7), (2019), 903.

Received: Apr 18, 2020 Accepted: July 12, 2020.

Operations on Neutrosophic Vague Graphs

S. Satham Hussain ${ }^{1 *}$, Saeid Jafari ${ }^{2}$, Said Broumi ${ }^{3}$ and N. Durga ${ }^{4}$
${ }^{1}$ Department of Mathematics, Jamal Mohamed College, Trichy, Tamil Nadu, India. E-mail: sathamhussain5592@gmail.
${ }^{2}$ College of Vestsjaelland South, Slagelse, Denmark and Mathematical and Physical Science Foundation, Slagelse, Denmark. E-mail: jafaripersia@gmail.com
${ }^{3}$ Laboratory of Information Processing, Faculty of Science Ben MSik, University Hassan II, Casablanca, Morocco. E-mail: broumisaid78@gmail.com
${ }^{4}$ Department of Mathematics, The Gandhigram Rural Institute (Deemed to be University), Gandhigram, Tamil Nadu, India. E-mail: durga1992mdu@gmail.com
*Correspondence: S. Satham Hussain (sathamhussain5592@gmail.com)

Abstract

Neutrosophic graph is a mathematical tool to hold with imprecise and unspecified data. In this manuscript, the operations on neutrosophic vague graphs are introduced. Moreover, Cartesian product, lexicographic product, cross product, strong product and composition of neutrosophic vague graphs are investigated. The proposed concepts are demonstrated with suitable examples.

Keywords: Neutrosophic vague graph, Operations of neutrosophic vague graph, Cartesian product, Cross product, Strong product

1. Introduction

In a classical graph, any vertex or edge have two situations, namely, it is either in the graph or it is not in the graph and it is not sufficient to model uncertain optimization problems. Therefore, real-life problems are not suitable to model using classical graphs. Hence the fuzzy set arises, which is an extension of classical set; here the objects have varying membership degrees. Vague sets are regarded as a special case of context-dependent fuzzy sets. At first, vague set theory was investigated by Gau and Buehrer [36] that is an extension of fuzzy set theory. The classical fuzzy set handles only the membership degree, but intuitionistic fuzzy handles independent membership degree and non-membership degree for any element with the only requirement is that the sum of non-membership and membership degree values is not greater than one [16].

On the other hand, to hold this indeterminate and inconsistent information, the neutrosophic set is introduced by F. Smarandache and has been studied extensively (see [31]-[35]). Neutrosophic set and related notions have weird applications in many different fields. In the definition of neutrosophic set, the indeterminacy value is quantified explicitly and truth-membership, false-membership and indeterminacy-membership are stated as exactly independent provided sum of these values belonging to 0 and 3 . Neutrosophic soft rough graphs with applications are established in [10]. Neutrosophic soft relations and neutrosophic refined relations with their properties are studied in [15, 20]. Single valued neutrosophic graph are studied in [17, 18]. Some types of neutrosophic graphs and co-neutrosophic graphs are discussed in [23]. Neutrosophic vague set is first initiated in [11]. Al-Quran and Hassan in [7] introduced the notion of neutrosophic vague soft expert set as a generalization of neutrosophic vague set and soft expert set in order to revise the application in decision-making in real-life problems. Intuitionistic bipolar neutrosophic set and its application to graphs are established in [28]. Further, neutrosophic vague graphs are investigated in
[27]. Motivated by the articles [11, 27, 28, 29], we introduce the concept of operations on neutrosophic vague graphs. The main contributions in this manuscript are given below:

- Operations on neutrosophic vague graphs are established. In Section 2, basic definitions regarding to neutrosophic vague graphs are explained with an example.
- In Section 3, Cartesian product, lexicographic product, cross product, strong product and composition of neutrosophic vague graph are illustrated with examples. Finally, a conclusion is elaborated with future direction.

2. Preliminaries

In this section, basic definitions and example are given, which is used to prove the main results.
Definition 2.1 [36] A vague set \mathbb{A} on a non empty set \mathbb{X} is a pair $\left(\mathbb{T}_{\mathbb{A}}, \mathbb{F}_{\mathbb{A}}\right)$, where $\mathbb{T}_{\mathbb{A}}: \mathbb{X} \rightarrow[0,1]$ and $\mathbb{F}_{A}: \mathbb{X} \rightarrow[0,1]$ are true membership and false membership functions, respectively, such that

$$
0 \leq \mathbb{T}_{\mathbb{A}}(\mathrm{x})+\mathbb{F}_{\mathrm{A}}(\mathrm{x}) \leq 1 \text { for every } \mathrm{x} \in \mathbb{X}
$$

Let \mathbb{X} and \mathbb{Y} be two non-empty sets. A vague relation R of \mathbb{X} to \mathbb{Y} is a vague set R on $\mathbb{X} \times \mathbb{Y}$ that is $R=\left(\mathbb{T}_{R}, \mathbb{F}_{R}\right)$, where $\mathbb{T}_{R}: \mathbb{X} \times \mathbb{Y} \rightarrow[0,1], \mathbb{F}_{R}: \mathbb{X} \times \mathbb{Y} \rightarrow[0,1]$ and satisfies the condition:

$$
0 \leq \mathbb{T}_{R}(x, y)+\mathbb{F}_{R}(x, y) \leq 1 \text { for any } x, y \in \mathbb{X}
$$

Definition 2.2 [12] Let $\mathbb{G}^{*}=(\mathbb{V}, \mathbb{E})$ be a graph. A pair $\mathbb{G}=(\mathbb{J}, \mathbb{K})$ is called a vague graph on \mathbb{G}^{*}, where $\mathbb{J}=\left(\mathbb{T}_{\mathbb{V}}, \mathbb{F}_{\mathbb{V}}\right)$ is a vague set on \mathbb{V} and $\mathbb{K}=\left(\mathbb{T}_{\mathbb{K}}, \mathbb{F}_{\mathbb{K}}\right)$ is a vague set on $\mathbb{E} \subseteq \mathbb{V} \times \mathbb{V}$ such that for each $x y \in \mathbb{E}$,

$$
\mathbb{T}_{\mathbb{K}}(\mathrm{xy}) \leq \min \left\{\mathbb{T}_{\mathbb{D}}(\mathrm{x}), \mathbb{T}_{\mathbb{D}}(\mathrm{y})\right\} \text { and } \mathbb{F}_{\mathbb{K}}(\mathrm{xy}) \geq \max \left\{\mathbb{F}_{\mathbb{D}}(\mathrm{x}), \mathbb{F}_{\mathbb{D}}(\mathrm{y})\right\}
$$

Definition 2.3 [31] A Neutrosophic set \mathbb{A} is contained in another neutrosophic set \mathbb{B}, (i.e) $\mathbb{A} \subseteq \mathbb{B}$ if $\forall \mathrm{x} \in \mathbb{X}, \mathbb{T}_{\mathbb{A}}(\mathrm{x}) \leq \mathbb{T}_{\mathbb{B}}(\mathrm{x}), \mathbb{I}_{\mathbb{A}}(\mathrm{x}) \geq \mathbb{I}_{\mathbb{B}}(\mathrm{x})$ and $\mathbb{F}_{\mathbb{A}}(\mathrm{x}) \geq \mathbb{F}_{\mathbb{B}}(\mathrm{x})$.
Definition $2.4[20,31]$ Let \mathbb{X} be a space of points (objects), with generic elements in \mathbb{X} denoted by x. A single valued neutrosophic set \mathbb{A} in \mathbb{X} is characterised by truth-membership function $\mathbb{T}_{\mathbb{A}}(x)$, indeterminacy-membership function $\mathbb{I}_{\mathbb{A}}(x)$ and falsity-membership-function $\mathbb{F}_{\mathbb{A}}(x)$,
For each point x in $\mathbb{X}, \mathbb{T}_{\mathbb{A}}(\mathrm{x}), \mathbb{I}_{\mathbb{A}}(\mathrm{x}), \mathbb{F}_{\mathbb{A}}(\mathrm{x}) \in[0,1]$. Also

$$
\mathbb{A}=\left\{\left\langle\mathrm{x}, \mathbb{T}_{\mathbb{A}}(\mathrm{x}), \mathbb{I}_{\mathbb{A}}(\mathrm{x}), \mathbb{F}_{\mathbb{A}}(\mathrm{x})\right\rangle\right\} \text { and } 0 \leq \mathbb{T}_{\mathbb{A}}(\mathrm{x}),+\mathbb{I}_{\mathbb{A}}(\mathrm{x})+\mathbb{F}_{\mathbb{A}}(\mathrm{x}) \leq 3
$$

Definition $2.5[6,18]$ A neutrosophic graph is defined as a pair $\mathbb{G}^{*}=(\mathbb{V}, \mathbb{E})$ where
(i) $\mathbb{V}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$ such that $\mathbb{T}_{1}: \mathbb{V} \rightarrow[0,1], \mathbb{I}_{1}: \mathbb{V} \rightarrow[0,1]$ and $\mathbb{F}_{1}: \mathbb{V} \rightarrow[0,1]$ denote the degree of truth-membership function, indeterminacy function and falsity-membership function, respectively, and

$$
0 \leq \mathbb{T}_{1}(v)+\mathbb{I}_{1}(v)+\mathbb{F}_{1}(v) \leq 3
$$

(ii) $\mathbb{E} \subseteq \mathbb{V} \times \mathbb{V}$ where $\mathbb{T}_{2}: \mathbb{E} \rightarrow[0,1], \mathbb{I}_{2}: \mathbb{E} \rightarrow[0,1]$ and $\mathbb{F}_{2}: \mathbb{E} \rightarrow[0,1]$ are such that

$$
\begin{aligned}
\mathbb{T}_{2}(\mathrm{uv}) & \leq \min \left\{\mathbb{T}_{1}(\mathrm{u}), \mathbb{T}_{1}(\mathrm{v})\right\} \\
\mathbb{I}_{2}(\mathrm{uv}) & \leq \min \left\{\mathbb{I}_{1}(\mathrm{u}), \mathbb{I}_{1}(\mathrm{v})\right\} \\
\mathbb{F}_{2}(\mathrm{uv}) & \leq \max \left\{\mathbb{F}_{1}(\mathrm{u}), \mathbb{F}_{1}(\mathrm{v})\right\}
\end{aligned}
$$

$$
\text { and } 0 \leq \mathbb{T}_{2}(\text { uv })+\mathbb{I}_{2}(u v)+\mathbb{F}_{2}(\text { uv }) \leq 3, \forall u v \in \mathbb{E} .
$$

Definition 2.6 [11] A Neutrosophic Vague Set $\mathbb{A}_{N V}$ (NVS in short) on the universe of discourse \mathbb{X} written as

$$
\mathbb{A}_{\mathrm{NV}}=\left\{\left\langle\mathrm{x}, \widehat{\mathbb{T}}_{\mathbb{A}_{\mathrm{NV}}}(\mathrm{x}), \hat{\mathbb{I}}_{\mathbb{A}_{\mathrm{NV}}}(\mathrm{x}), \widehat{\mathbb{F}}_{\mathbb{A}_{\mathrm{NV}}}(\mathrm{x})\right\rangle, \mathrm{x} \in \mathbb{X}\right\},
$$

whose truth-membership, indeterminacy membership and falsity-membership function are defined as
S. Satham Hussain, Saeid Jafari, Said Broumi and N. Durga "Operations on Neutrosophic Vague Graphs"

$$
\widehat{\mathbb{T}}_{\mathbb{A}_{\mathrm{NV}}}(\mathrm{x})=\left[\mathbb{T}^{-}(\mathrm{x}), \mathbb{T}^{+}(\mathrm{x})\right], \widehat{\mathbb{}}_{\mathbb{A}_{\mathrm{NV}}}(\mathrm{x})=\left[\mathbb{I}^{-}(\mathrm{x}), \mathbb{I}^{+}(\mathrm{x})\right] \text { and } \widehat{\mathbb{F}}_{\mathbb{A}_{\mathrm{NV}}}(\mathrm{x})=\left[\mathbb{F}^{-}(\mathrm{x}), \mathbb{F}^{+}(\mathrm{x})\right]
$$

where $\mathbb{T}^{+}(\mathrm{x})=1-\mathbb{F}^{-}(\mathrm{x}), \mathbb{F}^{+}(\mathrm{x})=1-\mathbb{T}^{-}(\mathrm{x})$, and $0 \leq \mathbb{T}^{-}(\mathrm{x})+\mathbb{I}^{-}(\mathrm{x})+\mathbb{F}^{-}(\mathrm{x}) \leq 2$.
Definition 2.7 [11] The complement of NVS $\mathbb{A}_{N V}$ is denoted by $\mathbb{A}_{N V}^{c}$ and it is defined by

$$
\begin{aligned}
& \widehat{\mathbb{T}}_{\mathbb{A}_{N V}}^{c}(\mathrm{x})=\left[1-\mathbb{T}^{+}(\mathrm{x}), 1-\mathbb{T}^{-}(\mathrm{x})\right], \\
& \widehat{\mathbb{I}}_{\mathbb{A}_{\mathrm{NV}}}^{c}(\mathrm{x})=\left[1-\mathbb{I}^{+}(\mathrm{x}), 1-\mathbb{I}^{-}(\mathrm{x})\right], \\
& \widehat{\mathbb{}}_{\mathbb{A}_{N V}}^{c}(\mathrm{x})=\left[1-\mathbb{F}^{+}(\mathrm{x}), 1-\mathbb{F}^{-}(\mathrm{x})\right] .
\end{aligned}
$$

Definition $2.8[11]$ Let $\mathbb{A}_{N V}$ and $\mathbb{B}_{N V}$ be two NVSs of the universe \mathbb{U}. If for all $u_{i} \in \mathbb{U}$,

$$
\widehat{\mathbb{T}}_{\mathbb{A}_{N V}}\left(u_{i}\right) \leq \widehat{\mathbb{T}}_{\mathbb{B}_{N V}}\left(u_{i}\right), \hat{\mathbb{I}}_{\mathbb{A}_{N V}}\left(u_{i}\right) \geq \hat{\mathbb{I}}_{\mathbb{B}_{N V}}\left(u_{i}\right), \widehat{\mathbb{F}}_{\mathbb{A}_{N V}}\left(u_{i}\right) \geq \widehat{\mathbb{F}}_{\mathbb{B}_{N V}}\left(u_{i}\right)
$$

then the NVS, $\mathbb{A}_{N V}$ are included in \mathbb{B}_{NV}, denoted by $\mathbb{A}_{\mathrm{NV}} \subseteq \mathbb{B}_{\mathrm{NV}}$ where $1 \leq \mathrm{i} \leq \mathrm{n}$.
Definition 2.9 [11] The union of two NVSs, $\mathbb{A}_{N V}$ and $\mathbb{B}_{N V}$, is a NVSs, \mathbb{D}_{NV}, written as $\mathbb{D}_{\mathrm{NV}}=$ $\mathbb{A}_{\mathrm{NV}} \cup \mathbb{B}_{\mathrm{NV}}$ whose truth-membership function, indeterminacy-membership function and false-membership function are related to those of $\mathbb{A}_{N V}$ and $\mathbb{B}_{N V}$ by

$$
\begin{aligned}
& \widehat{\mathbb{T}}_{\mathbb{D}_{\mathrm{NV}}}(\mathrm{x})=\left[\max \left(\mathbb{T}_{\mathbb{A}_{\mathrm{NV}}}^{-}(\mathrm{x}), \mathbb{T}_{\mathbb{B}_{\mathrm{NV}}}^{-}(\mathrm{x})\right), \max \left(\mathbb{T}_{\mathbb{A}_{\mathrm{NV}}}^{+}(\mathrm{x}), \mathbb{T}_{\mathbb{B}_{\mathrm{NV}}}^{+}(\mathrm{x})\right)\right] \\
& \widehat{\mathbb{I}}_{\mathbb{D}_{\mathrm{NV}}}(\mathrm{x})=\left[\min \left(\mathbb{I}_{\mathbb{A}_{\mathrm{NV}}}(\mathrm{x}), \mathbb{I}_{\mathbb{B}_{\mathrm{NV}}}(\mathrm{x})\right), \min \left(\mathbb{I}_{\mathbb{A}_{\mathrm{NV}}}(\mathrm{x}), \mathbb{I}_{\mathbb{B}_{\mathrm{NV}}}^{+}(\mathrm{x})\right)\right] \\
& \widehat{\mathbb{F}}_{\mathbb{D}_{\mathrm{NV}}}(\mathrm{x})=\left[\min \left(\mathbb{F}_{\mathbb{A}_{\mathrm{NV}}}^{-}(\mathrm{x}), \mathbb{F}_{\mathbb{B}_{\mathrm{NV}}}^{-}(\mathrm{x})\right), \min \left(\mathbb{F}_{\mathbb{A}_{\mathrm{NV}}}^{+}(\mathrm{x}), \mathbb{F}_{\mathbb{B}_{\mathrm{NV}}}^{+}(\mathrm{x})\right)\right] .
\end{aligned}
$$

Definition 2.10 [11] The intersection of two NVSs, $\mathbb{A}_{N V}$ and $\mathbb{B}_{N V}$ is a NVSs, \mathbb{D}_{NV}, written as $\mathbb{D}_{\mathrm{NV}}=$ $\mathbb{A}_{\mathrm{NV}} \cap \mathbb{B}_{\mathrm{NV}}, \quad$ whose truth-membership function, indeterminacy-membership function and false-membership function are related to those of $\mathbb{A}_{N V}$ and $\mathbb{B}_{N V}$ by

$$
\begin{gathered}
\widehat{\mathbb{T}}_{\mathbb{D}_{N V}}(x)=\left[\min \left(\mathbb{T}_{\mathbb{A}_{N V}}^{-}(x), \mathbb{T}_{\mathbb{B}_{N V}}^{-}(x)\right), \min \left(\mathbb{T}_{\mathbb{A}_{N V}}^{+}(x), \mathbb{T}_{\mathbb{B}_{N V}}^{+}(x)\right)\right] \\
\widehat{\mathbb{I}}_{\mathbb{D}_{N V}}(x)=\left[\max \left(\mathbb{I}_{\mathbb{A}_{N V}}^{-}(x), \mathbb{I}_{\mathbb{B}_{N V}}^{-}(x)\right), \max \left(\mathbb{I}_{\mathbb{A}_{N V}}^{+}(x), \mathbb{I}_{\mathbb{B}_{N V}}^{+}(x)\right)\right] \\
\widehat{\mathbb{F}}_{\mathbb{D}_{\mathrm{NV}}}(x)=\left[\max \left(\mathbb{F}_{\mathbb{A}_{N V}}^{-}(x), \mathbb{F}_{\mathbb{B}_{N V}}^{-}(x)\right), \max \left(\mathbb{F}_{\mathbb{A}_{N V}}^{+}(x), \mathbb{F}_{\mathbb{B}_{\mathrm{NV}}}^{+}(x)\right)\right] .
\end{gathered}
$$

Definition 2.11 [27] Let $G^{*}=(R, S)$ be a graph. A pair $\mathbb{G}=(\mathbb{A}, \mathbb{B})$ is called a neutrosophic vague graph (NVG) on G^{*} or a neutrosophic vague graph where $\mathbb{A}=\left(\widehat{\mathbb{T}}_{\mathbb{A}}, \widehat{\mathbb{I}}_{\mathbb{A}}, \widehat{\mathbb{F}}_{\mathbb{A}}\right)$ is a neutrosophic vague set on R and $\mathbb{B}=\left(\widehat{\mathbb{T}}_{\mathbb{B}}, \widehat{\mathbb{I}}_{\mathbb{B}}, \widehat{\mathbb{F}}_{\mathbb{B}}\right)$ is a neutrosophic vague set $S \subseteq R \times R$ where
(1) $R=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ such that $\mathbb{T}_{A}^{-}: R \rightarrow[0,1], \mathbb{I}_{\mathrm{A}}^{-}: R \rightarrow[0,1], \mathbb{F}_{\mathrm{A}}^{-}: R \rightarrow[0,1]$ which satisfies the condition $\mathbb{F}_{\mathbb{A}}^{-}=\left[1-\mathbb{T}_{\mathbb{A}}^{+}\right]$,

$$
\mathbb{T}_{A}^{+}: R \rightarrow[0,1], \mathbb{I}_{A}^{+}: R \rightarrow[0,1], \mathbb{F}_{A}^{+}: R \rightarrow[0,1] \quad \text { which satisfies the condition } \mathbb{F}_{\mathbb{A}}^{+}=\left[1-\mathbb{T}_{\mathbb{A}}^{-}\right]
$$

denotes the degree of truth membership function, indeterminacy membership and falsity membership of the element $v_{i} \in R$, and

$$
\begin{aligned}
& 0 \leq \mathbb{T}_{\mathbb{A}}^{-}\left(v_{i}\right)+\mathbb{I}_{\mathbb{A}}^{-}\left(v_{i}\right)+\mathbb{F}_{\mathbb{A}}^{-}\left(v_{i}\right) \leq 2 \\
& 0 \leq \mathbb{T}_{\mathbb{A}}^{+}\left(v_{i}\right)+\mathbb{I}_{\mathbb{A}}^{+}\left(v_{i}\right)+\mathbb{F}_{\mathbb{A}}^{+}\left(v_{i}\right) \leq 2
\end{aligned}
$$

(2) $S \subseteq R \times R$ where

$$
\begin{aligned}
& \mathbb{T}_{\mathbb{B}}^{-}: \mathrm{R} \times \mathrm{R} \rightarrow[0,1], \mathbb{I}_{\mathbb{B}}^{-}: \mathrm{R} \times \mathrm{R} \rightarrow[0,1], \mathbb{F}_{\mathbb{B}}^{-}: \mathrm{R} \times \mathrm{R} \rightarrow[0,1] \\
& \mathbb{T}_{\mathbb{B}}^{+}: \mathrm{R} \times \mathrm{R} \rightarrow[0,1], \mathbb{I}_{\mathbb{B}}^{+}: \mathrm{R} \times \mathrm{R} \rightarrow[0,1], \mathbb{F}_{\mathbb{B}}^{+}: \mathrm{R} \times \mathrm{R} \rightarrow[0,1]
\end{aligned}
$$

denotes the degree of truth membership function, indeterminacy membership and falsity membership of the element $v_{i} v_{j} \in S$, respectively and such that,

$$
\begin{aligned}
0 & \leq \mathbb{T}_{\mathbb{B}}^{-}\left(v_{i} v_{j}\right)+\mathbb{I}_{\mathbb{B}}^{-}\left(v_{i} v_{j}\right)+\mathbb{F}_{\mathbb{B}}^{-}\left(v_{i} v_{j}\right) \leq 2 \\
0 & \leq \mathbb{T}_{\mathbb{B}}^{+}\left(v_{i} v_{j}\right)+\mathbb{I}_{\mathbb{B}}^{+}\left(v_{i} v_{j}\right)+\mathbb{F}_{\mathbb{B}}^{+}\left(v_{i} v_{j}\right) \leq 2 .
\end{aligned}
$$

such that

$$
\begin{gathered}
\mathbb{T}_{\mathbb{B}}^{-}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{j}}\right) \leq \min \left\{\mathbb{T}_{\mathbb{A}}^{-}\left(\mathrm{v}_{\mathrm{i}}\right), \mathbb{T}_{\mathbb{A}}^{-}\left(\mathrm{v}_{\mathrm{j}}\right)\right\} \\
\mathbb{I}_{\mathbb{B}}^{-}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{j}}\right) \leq \min \left\{\mathbb{I}_{\mathbb{A}}^{-}\left(\mathrm{v}_{\mathrm{i}}\right), \mathbb{I}_{\mathbb{A}}^{-}\left(\mathrm{v}_{\mathrm{j}}\right)\right\} \\
\mathbb{F}_{\mathbb{B}}^{-}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{j}}\right) \leq \max \left\{\mathbb{F}_{\mathbb{A}}^{-}\left(\mathrm{v}_{\mathrm{i}}\right), \mathbb{F}_{\mathbb{A}}^{-}\left(\mathrm{v}_{\mathrm{j}}\right)\right\}
\end{gathered}
$$

and similarly

$$
\begin{gathered}
\mathbb{T}_{\mathbb{B}}^{+}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{j}}\right) \leq \min \left\{\mathbb{T}_{\mathbb{A}}^{+}\left(\mathrm{v}_{\mathrm{i}}\right), \mathbb{T}_{\mathbb{A}}^{+}\left(\mathrm{v}_{\mathrm{j}}\right)\right\} \\
\mathbb{I}_{\mathbb{B}}^{+}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{j}}\right) \leq \min \left\{\mathbb{I}_{\mathbb{A}}^{+}\left(\mathrm{v}_{\mathrm{i}}\right), \mathbb{I}_{\mathbb{A}}^{+}\left(\mathrm{v}_{\mathrm{j}}\right)\right\} \\
\mathbb{F}_{\mathbb{B}}^{+}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{j}}\right) \leq \max \left\{\mathbb{F}_{\mathbb{A}}^{+}\left(\mathrm{v}_{\mathrm{i}}\right), \mathbb{F}_{\mathbb{A}}^{+}\left(\mathrm{v}_{\mathrm{j}}\right)\right\} .
\end{gathered}
$$

Example 2.12 Consider a neutrosophic vague graph $G=(R, S)$ such that $\mathbb{A}=\{a, b, c\}$ and $\mathbb{B}=$ $\{a b, b c, c a\}$ are defined by

$$
\begin{gathered}
\hat{\mathrm{a}}=\mathrm{T}[0.5,0.6], \mathrm{I}[0.4,0.3], \mathrm{F}[0.4,0.5], \quad \hat{\mathrm{b}}=\mathrm{T}[0.4,0.6], \mathrm{I}[0.7,0.3], \mathrm{F}[0.4,0.6], \\
\hat{\mathrm{c}}=\mathrm{T}[0.4,0.4], \mathrm{I}[0.5,0.3], \mathrm{F}[0.6,0.6] \\
\mathrm{a}^{-}=(0.5,0.4,0.4), \mathrm{b}^{-}=(0.4,0.7,0.4), \mathrm{c}^{-}=(0.4,0.5,0.6) \\
\mathbf{a}^{+}=(\mathbf{0 . 6}, \mathbf{0 . 3} \mathbf{0} \mathbf{0 . 5}), \mathbf{b}^{+}=(\mathbf{0 . 6}, \mathbf{0 . 3}, \mathbf{0 . 6}), \mathbf{c}^{+}=(\mathbf{0 . 4 , 0 . 3} \mathbf{0} \mathbf{0} \mathbf{6}) .
\end{gathered}
$$

Figure 1: NEUTROSOPHIC VAGUE GRAPH

3. Operations on Neutrosophic Vague Graphs

In this section, the results on operations of neutrosophic vague graphs with example are established.
Definition 3.1 The Cartesian product of two NVGs G_{1} and G_{2} is denoted by the pair $G_{1} \times G_{2}=$ $\left(R_{1} \times R_{2}, S_{1} \times S_{2}\right)$ and defined as

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{A}_{1} \times \mathrm{A}_{2}}^{-}(\mathrm{kl})=\mathrm{T}_{\mathrm{A}_{1}}^{-}(\mathrm{k}) \wedge \mathrm{T}_{\mathrm{A}_{2}}^{-}(\mathrm{l}) \\
& \mathrm{I}_{\mathrm{A}_{1} \times \mathrm{A}_{2}}^{-}(\mathrm{kl})=\mathrm{I}_{\mathrm{A}_{1}}^{-}(\mathrm{k}) \wedge \mathrm{I}_{\mathrm{A}_{2}}^{-}(\mathrm{l}) \\
& \mathrm{F}_{\mathrm{A}_{1} \times \mathrm{A}_{2}}^{-}(\mathrm{kl})=\mathrm{F}_{\mathrm{A}_{1}}^{-}(\mathrm{k}) \vee \mathrm{F}_{\mathrm{A}_{2}}^{-}(\mathrm{l}) \\
& \mathrm{T}_{\mathrm{A}_{1} \times \mathrm{A}_{2}}(\mathrm{kl})=\mathrm{T}_{\mathrm{A}_{1}}^{+}(\mathrm{k}) \wedge \mathrm{T}_{\mathrm{A}_{2}}^{+}(\mathrm{l}) \\
& \mathrm{I}_{\mathrm{A}_{1} \times \mathrm{A}_{2}}(\mathrm{kl})=\mathrm{I}_{\mathrm{A}_{1}}(\mathrm{k}) \wedge \mathrm{I}_{\mathrm{A}_{2}}^{(\mathrm{l}} \mathrm{l} \text { (kl} \mathrm{F}_{\mathrm{A}_{1}}^{+}(\mathrm{k}) \vee \mathrm{F}_{\mathrm{A}_{2}}^{+}(\mathrm{l})
\end{aligned}
$$

for all $(k, l) \in R_{1} \times R_{2}$.

The membership value of the edges in $G_{1} \times G_{2}$ can be calculated as,

$$
\text { (1) } \begin{aligned}
\mathrm{T}_{\mathrm{B}_{1} \times \mathrm{B}_{2}}^{-}\left(\mathrm{kl}_{1}\right)\left(\mathrm{kl}_{2}\right) & =\mathrm{T}_{\mathrm{A}_{1}}^{-}(\mathrm{k}) \wedge \mathrm{T}_{\mathrm{B}_{2}}^{-}\left(\mathrm{l}_{1} \mathrm{l}_{2}\right) \\
\mathrm{T}_{\mathrm{B}_{1} \times \mathrm{B}_{2}}^{+}\left(\mathrm{kl}_{1}\right)\left(\mathrm{kl}_{2}\right) & =\mathrm{T}_{\mathrm{A}_{1}}^{+}(\mathrm{k}) \wedge \mathrm{T}_{\mathrm{B}_{2}}^{+}\left(\mathrm{l}_{1} \mathrm{l}_{2}\right),
\end{aligned}
$$

(2) $\mathrm{I}_{\mathrm{B}_{1} \times \mathrm{B}_{2}}^{-}\left(\mathrm{kl}_{1}\right)\left(\mathrm{kl}_{2}\right)=\mathrm{I}_{\mathrm{A}_{1}}^{-}(\mathrm{k}) \wedge \mathrm{I}_{\mathrm{B}_{2}}^{-}\left(\mathrm{l}_{1} \mathrm{l}_{2}\right)$
$\mathrm{I}_{\mathrm{B}_{1} \times \mathrm{B}_{2}}^{+}\left(\mathrm{kl}_{1}\right)\left(\mathrm{kl}_{2}\right)=\mathrm{I}_{\mathrm{A}_{1}}^{+}(\mathrm{k}) \wedge \mathrm{I}_{\mathrm{B}_{2}}^{+}\left(\mathrm{l}_{1} \mathrm{l}_{2}\right)$,
(3) $\mathrm{F}_{\mathrm{B}_{1} \times \mathrm{B}_{2}}^{-}\left(\mathrm{kl}_{1}\right)\left(\mathrm{kl}_{2}\right)=\mathrm{F}_{\mathrm{A}_{1}}^{-}(\mathrm{k}) \vee \mathrm{F}_{\mathrm{B}_{2}}^{-}\left(\mathrm{l}_{1} \mathrm{l}_{2}\right)$
$\mathrm{F}_{\mathrm{B}_{1} \times \mathrm{B}_{2}}^{+}\left(\mathrm{kl}_{1}\right)\left(\mathrm{kl}_{2}\right)=\mathrm{F}_{\mathrm{A}_{1}}^{+}(\mathrm{k}) \vee \mathrm{F}_{\mathrm{B}_{2}}^{+}\left(\mathrm{l}_{1} \mathrm{l}_{2}\right)$,
for all $k \in R_{1}, l_{1} l_{2} \in S_{2}$.
(4) $\mathrm{T}_{\mathrm{B}_{1} \times \mathrm{B}_{2}}^{-}\left(\mathrm{k}_{1} \mathrm{l}\right)\left(\mathrm{k}_{2} \mathrm{l}\right)=\mathrm{T}_{\mathrm{A}_{2}}^{-}(\mathrm{l}) \wedge \mathrm{T}_{\mathrm{B}_{2}}^{-}\left(\mathrm{k}_{1} \mathrm{k}_{2}\right)$

$$
\mathrm{T}_{\mathrm{B}_{1} \times \mathrm{B}_{2}}^{+}\left(\mathrm{k}_{1} \mathrm{l}\right)\left(\mathrm{k}_{2} \mathrm{l}\right)=\mathrm{T}_{\mathrm{A}_{2}}^{+}(\mathrm{l}) \wedge \mathrm{T}_{\mathrm{B}_{2}}^{+}\left(\mathrm{k}_{1} \mathrm{k}_{2}\right),
$$

(5) $\mathrm{I}_{\mathrm{B}_{1} \times \mathrm{B}_{2}}^{-}\left(\mathrm{k}_{1} \mathrm{l}\right)\left(\mathrm{k}_{2} \mathrm{l}\right)=\mathrm{I}_{\mathrm{A}_{2}}^{-}(\mathrm{l}) \wedge \mathrm{I}_{\mathrm{B}_{2}}^{-}\left(\mathrm{k}_{1} \mathrm{k}_{2}\right)$

$$
\mathrm{I}_{\mathrm{B}_{1} \times \mathrm{B}_{2}}^{+}\left(\mathrm{k}_{1} \mathrm{l}\right)\left(\mathrm{k}_{2} \mathrm{l}\right)=\mathrm{I}_{\mathrm{A}_{2}}^{+}(\mathrm{l}) \wedge \mathrm{I}_{\mathrm{B}_{2}}^{+}\left(\mathrm{k}_{1} \mathrm{k}_{2}\right),
$$

(6) $\mathrm{F}_{\mathrm{B}_{1} \times \mathrm{B}_{2}}^{-}\left(\mathrm{k}_{1} \mathrm{l}\right)\left(\mathrm{k}_{2} \mathrm{l}\right)=\mathrm{F}_{\mathrm{A}_{2}}^{-}(\mathrm{l}) \vee \mathrm{F}_{\mathrm{B}_{2}}^{-}\left(\mathrm{k}_{1} \mathrm{k}_{2}\right)$
$\mathrm{F}_{\mathrm{B}_{1} \times \mathrm{B}_{2}}^{+}\left(\mathrm{k}_{1} \mathrm{l}\right)\left(\mathrm{k}_{2} \mathrm{l}\right)=\mathrm{F}_{\mathrm{A}_{2}}^{+}(\mathrm{l}) \vee \mathrm{F}_{\mathrm{B}_{2}}^{+}\left(\mathrm{k}_{1} \mathrm{k}_{2}\right)$,
for all $k_{1} k_{2} \in S_{1}, l \in R_{2}$.

Example 3.2 Consider $G_{1}=\left(R_{1}, S_{1}\right)$ and $G_{2}=\left(R_{2}, S_{2}\right)$ are two NVGs of $G=(R, S)$, as represented in Figure 2, now we get $G_{1} \times G_{2}$ as follows see Figure 3 .

$$
\begin{array}{r}
\hat{\mathrm{k}}_{1}=\mathrm{T}[0.5,0.6], \mathrm{I}[0.6,0.4], \mathrm{F}[0.4,0.5], \hat{\mathrm{k}}_{2}=\mathrm{T}[0.4,0.6], \mathrm{I}[0.7,0.3], \mathrm{F}[0.4,0.6], \\
\hat{\mathrm{k}}_{3}=\mathrm{T}[0.6,0.4], \mathrm{I}[0.3,0.7], \mathrm{F}[0.6,0.4], \hat{\mathrm{k}}_{4}=\mathrm{T}[0.4,0.4], \mathrm{I}[0.4,0.6], \mathrm{F}[0.6,0.6] \\
\hat{\mathrm{I}}_{1}=\mathrm{T}[0.4,0.4], \mathrm{I}[0.5,0.3], \mathrm{F}[0.6,0.6], \hat{\mathrm{I}}_{2}=\mathrm{T}[0.5,0.6], \mathrm{I}[0.4,0.3], \mathrm{F}[0.4,0.5], \\
\hat{\mathrm{I}}_{3}=\mathrm{T}[0.4,0.6], \mathrm{I}[0.7,0.3], \mathrm{F}[0.4,0.6] \\
\mathrm{k}_{1}^{-}=(0.5,0.6,0.4), \mathrm{k}_{2}^{-}=(0.4,0.7,0.4), \mathrm{k}_{3}^{-}=(0.6,0.3,0.6), \mathrm{k}_{4}^{-}=(0.4,0.4,0.6) \\
\mathrm{k}_{1}^{+}=(0.6,0.4,0.5), \mathrm{k}_{2}^{+}=(0.6,0.3,0.6), \mathrm{k}_{3}^{+}=(0.4,0.7,0.4), \mathrm{k}_{4}^{-}=(0.4,0.6,0.6) \\
\\
\mathrm{l}_{1}^{-}=(0.4,0.5,0.6), \mathrm{l}_{2}^{-}=(05,0.4,0.4), \mathrm{l}_{3}^{-}=(0.4,0.7,0.4) \\
\mathbf{l}_{\mathbf{1}}^{+}=(\mathbf{0 . 4 , 0 . 3}, \mathbf{0 . 6}), \mathbf{l}_{\mathbf{2}}^{+}=(\mathbf{0 . 6}, \mathbf{0 . 3}, \mathbf{0 . 5}), \mathbf{l}_{3}^{+}=(\mathbf{0 . 6}, \mathbf{0 . 3}, \mathbf{0 . 6}) .
\end{array}
$$

G_{1}

\boldsymbol{G}_{2}
Figure 2: NEUTROSOPHIC VAGUE GRAPH

S. Satham Hussain, Saeid Jafari, Said Broumi and N. Durga "Operations on Neutrosophic Vague Graphs"

Figure 3: CARTESIAN PRODUCT OF NEUTROSOPHIC VAGUE GRAPH
Theorem 3.3 The Cartesian product $G_{1} \times G_{2}=\left(R_{1} \times R_{2}, S_{1} \times S_{2}\right)$ of two NVG G_{1} and G_{2} is also the NVG of $G_{1} \times G_{2}$.

Proof. We consider two cases.
Case 1: for $k \in R_{1}, l_{1} l_{2} \in S_{2}$,

$$
\begin{aligned}
\widehat{\mathrm{T}}_{\left(\mathrm{B}_{1} \times \mathrm{B}_{2}\right)}\left(\left(\mathrm{kl}_{1}\right)\left(\mathrm{kl}_{2}\right)\right) & =\widehat{\mathrm{T}}_{\mathrm{A}_{1}}(\mathrm{k}) \wedge \widehat{\mathrm{T}}_{\mathrm{B}_{2}}\left(\mathrm{l}_{1} \mathrm{l}_{2}\right) \\
& \leq \widehat{\mathrm{T}}_{\mathrm{A}_{1}}(\mathrm{k}) \wedge\left[\widehat{\mathrm{T}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{1}\right) \wedge \widehat{\mathrm{T}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{2}\right)\right] \\
& =\left[\widehat{\mathrm{T}}_{\mathrm{A}_{1}}(\mathrm{k}) \wedge \widehat{\mathrm{T}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{1}\right)\right] \wedge\left[\widehat{\mathrm{T}}_{\mathrm{A}_{1}}(\mathrm{k}) \wedge \widehat{\mathrm{T}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{2}\right)\right] \\
& \left.=\widehat{\mathrm{T}}_{\left(\mathrm{A}_{1} \times \mathrm{A}_{2}\right)}\right)\left(\mathrm{k}, \mathrm{l}_{1}\right) \wedge \widehat{\mathrm{T}}_{\left(\mathrm{A}_{1} \times \mathrm{A}_{2}\right)}\left(\mathrm{k}, \mathrm{l}_{2}\right)
\end{aligned}
$$

$$
\hat{\mathrm{I}}_{\left(\mathrm{B}_{1} \times \mathrm{B}_{2}\right)}\left(\left(\mathrm{kl}_{1}\right)\left(\mathrm{kl}_{2}\right)\right)=\hat{\mathrm{I}}_{\mathrm{A}_{1}}(\mathrm{k}) \wedge \hat{\mathrm{I}}_{\mathrm{B}_{2}}\left(\mathrm{l}_{1} \mathrm{l}_{2}\right)
$$

$$
\leq \hat{\mathrm{I}}_{\mathrm{A}_{1}}(\mathrm{k}) \wedge\left[\hat{\mathrm{I}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{1}\right) \wedge \hat{\mathrm{I}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{2}\right)\right]
$$

$$
=\left[\hat{\mathrm{I}}_{\mathrm{A}_{1}}(\mathrm{k}) \wedge \hat{\mathrm{I}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{1}\right)\right] \wedge\left[\hat{\mathrm{I}}_{\mathrm{A}_{1}}(\mathrm{k}) \wedge \hat{\mathrm{I}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{2}\right)\right]
$$

$$
=\hat{I}_{\left(\mathrm{A}_{1} \times \mathrm{A}_{2}\right)}\left(\mathrm{k}, \mathrm{l}_{1}\right) \wedge \hat{\mathrm{I}}_{\left(\mathrm{A}_{1} \times \mathrm{A}_{2}\right)}\left(\mathrm{k}, \mathrm{l}_{2}\right)
$$

$$
\hat{\mathrm{F}}_{\left(\mathrm{B}_{1} \times \mathrm{B}_{2}\right)}\left(\left(\mathrm{kl}_{1}\right)\left(\mathrm{kl}_{2}\right)\right)=\hat{\mathrm{F}}_{\mathrm{A}_{1}}(\mathrm{k}) \vee \hat{\mathrm{F}}_{\mathrm{B}_{2}}\left(\mathrm{l}_{1} \mathrm{l}_{2}\right)
$$

$$
\leq \hat{\mathrm{F}}_{\mathrm{A}_{1}}(\mathrm{k}) \vee\left[\hat{\mathrm{F}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{1}\right) \vee \hat{\mathrm{F}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{2}\right)\right]
$$

$$
=\left[\hat{\mathrm{F}}_{\mathrm{A}_{1}}(\mathrm{k}) \vee \hat{\mathrm{F}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{1}\right)\right] \vee\left[\hat{\mathrm{F}}_{\mathrm{A}_{1}}(\mathrm{k}) \vee \hat{\mathrm{F}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{2}\right)\right]
$$

$$
=\hat{\mathrm{F}}_{\left(\mathrm{A}_{1} \times \mathrm{A}_{2}\right)}\left(\mathrm{k}, \mathrm{l}_{1}\right) \vee \hat{\mathrm{F}}_{\left(\mathrm{A}_{1} \times \mathrm{A}_{2}\right)}\left(\mathrm{k}, \mathrm{l}_{2}\right)
$$

for all $\mathrm{kl}_{1}, \mathrm{kl}_{2} \in \mathrm{G}_{1} \times \mathrm{G}_{2}$.
Case 2: for $k \in R_{2}, l_{1} l_{2} \in S_{1}$.

$$
\begin{aligned}
\widehat{\mathrm{T}}_{\left(\mathrm{B}_{1} \times \mathrm{B}_{2}\right)}\left(\left(\mathrm{l}_{1} \mathrm{k}\right)\left(\mathrm{l}_{2} \mathrm{k}\right)\right) & =\widehat{\mathrm{T}}_{\mathrm{A}_{2}}(\mathrm{k}) \wedge \widehat{\mathrm{T}}_{\mathrm{B}_{1}}\left(\mathrm{l}_{1} \mathrm{l}_{2}\right) \\
& \leq \widehat{\mathrm{T}}_{\mathrm{A}_{2}}(\mathrm{k}) \wedge\left[\widehat{\mathrm{T}}_{\mathrm{A}_{1}}\left(\mathrm{l}_{1}\right) \wedge \widehat{\mathrm{T}}_{\mathrm{A}_{1}}\left(\mathrm{l}_{2}\right)\right] \\
& =\left[\widehat{\mathrm{T}}_{\mathrm{A}_{2}}(\mathrm{k}) \wedge \widehat{\mathrm{T}}_{\mathrm{A}_{1}}\left(\mathrm{l}_{1}\right)\right] \wedge\left[\widehat{\mathrm{T}}_{\mathrm{A}_{2}}(\mathrm{k}) \wedge \widehat{\mathrm{T}}_{\mathrm{A}_{1}}\left(\mathrm{l}_{2}\right)\right] \\
& =\widehat{\mathrm{T}}_{\left(\mathrm{A}_{1} \times \mathrm{A}_{2}\right)}\left(\mathrm{l}_{1}, \mathrm{k}\right) \wedge \widehat{\mathrm{T}}_{\left(\mathrm{A}_{1} \times \mathrm{A}_{2}\right)}\left(\mathrm{l}_{2}, \mathrm{k}\right) \\
\hat{\mathrm{I}}_{\left(\mathrm{B}_{1} \times \mathrm{B}_{2}\right)}\left(\left(\mathrm{l}_{1} \mathrm{k}\right)\left(\mathrm{l}_{2} \mathrm{k}\right)\right) & =\hat{\mathrm{I}}_{\mathrm{A}_{2}}(\mathrm{k}) \wedge \hat{\mathrm{I}}_{\mathrm{B}_{1}}\left(\mathrm{l}_{1} \mathrm{l}_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \leq \hat{\mathrm{I}}_{\mathrm{A}_{2}}(\mathrm{k}) \wedge\left[\hat{\mathrm{I}}_{\mathrm{A}_{1}}\left(\mathrm{l}_{1}\right) \wedge \hat{\mathrm{I}}_{\mathrm{A}_{1}}\left(\mathrm{l}_{2}\right)\right] \\
& =\left[\hat{\mathrm{I}}_{\mathrm{A}_{2}}(\mathrm{k}) \wedge \hat{\mathrm{I}}_{\mathrm{A}_{1}}\left(\mathrm{l}_{1}\right)\right] \wedge\left[\hat{\mathrm{I}}_{\mathrm{A}_{2}}(\mathrm{k}) \wedge \hat{\mathrm{I}}_{\mathrm{A}_{1}}\left(\mathrm{l}_{2}\right)\right] \\
& =\hat{\mathrm{I}}_{\left(\mathrm{A}_{1} \times \mathrm{A}_{2}\right)}\left(\mathrm{l}_{1}, \mathrm{k}\right) \wedge \hat{\mathrm{I}}_{\left(\mathrm{A}_{1} \times \mathrm{A}_{2}\right)}\left(\mathrm{l}_{2}, \mathrm{k}\right) \\
\hat{\mathrm{F}}_{\left(\mathrm{B}_{1} \times \mathrm{B}_{2}\right)}\left(\left(\mathrm{l}_{1} \mathrm{k}\right)\left(\mathrm{l}_{2} \mathrm{k}\right)\right) & =\hat{\mathrm{F}}_{\mathrm{A}_{2}}(\mathrm{k}) \vee \hat{\mathrm{F}}_{\mathrm{B}_{1}}\left(\mathrm{l}_{1} \mathrm{l}_{2}\right) \\
& \leq \hat{\mathrm{F}}_{\mathrm{A}_{2}}(\mathrm{k}) \vee\left[\hat{\mathrm{F}}_{\mathrm{A}_{1}}\left(\mathrm{l}_{1}\right) \vee \hat{\mathrm{F}}_{\mathrm{A}_{1}}\left(\mathrm{l}_{2}\right)\right] \\
& =\left[\hat{\mathrm{F}}_{\mathrm{A}_{2}}(\mathrm{k}) \vee \hat{\mathrm{F}}_{\mathrm{A}_{1}}\left(\mathrm{l}_{1}\right)\right] \vee\left[\hat{\mathrm{F}}_{\mathrm{A}_{2}}(\mathrm{k}) \vee \hat{\mathrm{F}}_{\mathrm{A}_{1}}\left(\mathrm{l}_{2}\right)\right] \\
& \left.=\hat{\mathrm{F}}_{\left(\mathrm{A}_{1} \times A_{2}\right)}\right)\left(\mathrm{l}_{1}, \mathrm{k}\right) \vee \hat{\mathrm{F}}_{\left(\mathrm{A}_{1} \times \mathrm{A}_{2}\right)}\left(\mathrm{l}_{2}, \mathrm{k}\right)
\end{aligned}
$$

for all $\mathrm{l}_{1} \mathrm{k}, \mathrm{l}_{2} \mathrm{k} \in \mathrm{G}_{1} \times \mathrm{G}_{2}$.
Definition 3.4 The Cross product of two NVGs G_{1} and G_{2} is denoted by the pair $G_{1} \star G_{2}=\left(R_{1} \star\right.$ $\mathrm{R}_{2}, \mathrm{~S}_{1} \star \mathrm{~S}_{2}$) and is defined as

$$
\begin{aligned}
& \text { (i) } \mathrm{T}_{\mathrm{A}_{1} \star \mathrm{~A}_{2}}^{-}(\mathrm{kl})=\mathrm{T}_{\mathrm{A}_{1}}^{-}(\mathrm{k}) \wedge \mathrm{T}_{\mathrm{A}_{2}}^{-}(\mathrm{l}) \\
& \mathrm{I}_{\mathrm{A}_{1} \times \mathrm{A}_{2}}^{-}(\mathrm{kl})=\mathrm{I}_{\mathrm{A}_{1}}^{-}(\mathrm{k}) \wedge \mathrm{I}_{\mathrm{A}_{2}}^{-}(\mathrm{l}) \\
& \mathrm{F}_{\mathrm{A}_{1} \times \mathrm{A}_{2}}^{-}(\mathrm{kl})=\mathrm{F}_{\mathrm{A}_{1}}^{-}(\mathrm{k}) \vee \mathrm{F}_{\mathrm{A}_{2}}^{-}(\mathrm{l}) \\
& \mathrm{T}_{\mathrm{A}_{1} \times \mathrm{A}_{2}}^{+}(\mathrm{kl})=\mathrm{T}_{\mathrm{A}_{1}}^{+}(\mathrm{k}) \wedge \mathrm{T}_{\mathrm{A}_{2}}^{+}(\mathrm{l}) \\
& I_{A_{1} * A_{2}}^{+}(k l)=I_{A_{1}}^{+}(k) \wedge I_{\mathrm{A}_{2}}^{+}(\mathrm{l}) \\
& \mathrm{F}_{\mathrm{A}_{1} \star \mathrm{~A}_{2}}^{+}(\mathrm{kl})=\mathrm{F}_{\mathrm{A}_{1}}^{+}(\mathrm{k}) \vee \mathrm{F}_{\mathrm{A}_{2}}^{+}(\mathrm{l}) \text {, }
\end{aligned}
$$

for all $k, l \in R_{1} \star R_{2}$.

$$
\begin{aligned}
& \text { (ii) } \mathrm{T}_{\left(\mathrm{B}_{1} \star \mathrm{~B}_{2}\right)}\left(\mathrm{k}_{1} \mathrm{l}_{1}\right)\left(\mathrm{k}_{2} \mathrm{l}_{2}\right)=\mathrm{T}_{\mathrm{B}_{1}}^{-}\left(\mathrm{k}_{1} \mathrm{k}_{2}\right) \wedge \mathrm{T}_{\mathrm{B}_{2}}^{-}\left(\mathrm{l}_{1} \mathrm{l}_{2}\right) \\
& \mathrm{I}_{\left(\mathrm{B}_{1} \star \mathrm{~B}_{2}\right)}^{-}\left(\mathrm{k}_{1} \mathrm{l}_{1}\right)\left(\mathrm{k}_{2} \mathrm{l}_{2}\right)=\mathrm{I}_{\mathrm{B}_{1}}^{-}\left(\mathrm{k}_{1} \mathrm{k}_{2}\right) \wedge \mathrm{I}_{\mathrm{B}_{2}}^{-}\left(\mathrm{l}_{1} \mathrm{l}_{2}\right) \\
& \mathrm{F}_{\left(\mathrm{B}_{1} \times \mathrm{B}_{2}\right)}^{-}\left(\mathrm{k}_{1} \mathrm{l}_{1}\right)\left(\mathrm{k}_{2} \mathrm{l}_{2}\right)=\mathrm{F}_{\mathrm{B}_{1}}^{-}\left(\mathrm{k}_{1} \mathrm{k}_{2}\right) \vee \mathrm{F}_{\mathrm{B}_{2}}^{-}\left(\mathrm{l}_{1} \mathrm{l}_{2}\right) \\
& \text { (iii) } \mathrm{T}_{\left(\mathrm{B}_{1} * \mathrm{~B}_{2}\right)}^{+}\left(\mathrm{k}_{1} \mathrm{l}_{1}\right)\left(\mathrm{k}_{2} \mathrm{l}_{2}\right)=\mathrm{T}_{\mathrm{B}_{1}}^{+}\left(\mathrm{k}_{1} \mathrm{k}_{2}\right) \wedge \mathrm{T}_{\mathrm{B}_{2}}^{+}\left(\mathrm{l}_{1} \mathrm{l}_{2}\right) \\
& \mathrm{I}_{\left(\mathrm{B}_{1} \times \mathrm{B}_{2}\right)}^{+}\left(\mathrm{k}_{1} \mathrm{I}_{1}\right)\left(\mathrm{k}_{2} \mathrm{l}_{2}\right)=\mathrm{I}_{\mathrm{B}_{1}}^{+}\left(\mathrm{k}_{1} \mathrm{k}_{2}\right) \wedge \mathrm{I}_{\mathrm{B}_{2}}^{+}\left(\mathrm{I}_{1} \mathrm{l}_{2}\right) \\
& \mathrm{F}_{\left(\mathrm{B}_{1} \times \mathrm{B}_{2}\right)}^{+}\left(\mathrm{k}_{1} \mathrm{l}_{1}\right)\left(\mathrm{k}_{2} \mathrm{l}_{2}\right)=\mathrm{F}_{\mathrm{B}_{1}}^{+}\left(\mathrm{k}_{1} \mathrm{k}_{2}\right) \vee \mathrm{F}_{\mathrm{B}_{2}}^{+}\left(\mathrm{l}_{1} \mathrm{l}_{2}\right) \text {, }
\end{aligned}
$$

for all $\mathrm{k}_{1} \mathrm{k}_{2} \in \mathrm{~S}_{1}, \mathrm{l}_{1} \mathrm{l}_{2} \in \mathrm{~S}_{2}$.
Example 3.5 Consider $\mathbf{G}_{\mathbf{1}}=\left(\mathbf{R}_{\mathbf{1}}, \mathbf{S}_{\mathbf{1}}\right)$ and $\mathbf{G}_{\mathbf{2}}=\left(\mathbf{R}_{\mathbf{2}}, \mathbf{S}_{\mathbf{2}}\right)$ as two NVG of $\mathbf{G}=(\mathbf{R}, \mathbf{S})$ respectively, (see Figure 2). We obtain the cross product of $\mathbf{G}_{\mathbf{1}} \star \mathbf{G}_{\mathbf{2}}$ as follows (see Figure 4).

Figure 4: CROSS PRODUCT OF NEUTROSOPHIC VAGUE GRAPH

Theorem 3.6 The cross product $G_{1} \star G_{2}=\left(R_{1} \star R_{2}, S_{1} \star S_{2}\right)$ of two NVG G_{1} and G_{2} is an the NVG of $G_{1} \star G_{2}$.
Proof. For all $k_{1} l_{1}, k_{2} l_{2} \in G_{1} \star G_{2}$

$$
\begin{aligned}
\widehat{\mathrm{T}}_{\left(\mathrm{B}_{1} \star \mathrm{~B}_{2}\right)}\left(\left(\mathrm{k}_{1} \mathrm{l}_{1}\right)\left(\mathrm{k}_{2} \mathrm{l}_{2}\right)\right) & =\widehat{\mathrm{T}}_{\mathrm{B}_{1}}\left(\mathrm{k}_{1} \mathrm{k}_{2}\right) \wedge \widehat{\mathrm{T}}_{\mathrm{B}_{2}}\left(\mathrm{l}_{1} \mathrm{l}_{2}\right) \\
& \leq\left[\widehat{T}_{\mathrm{A}_{1}}\left(\mathrm{k}_{1}\right) \wedge \widehat{\mathrm{T}}_{\mathrm{A}_{1}}\left(\mathrm{k}_{2}\right)\right] \wedge\left[\widehat{\mathrm{T}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{1}\right) \wedge \widehat{\mathrm{T}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{2}\right)\right] \\
& =\left[\widehat{\mathrm{T}}_{\mathrm{A}_{1}}\left(\mathrm{k}_{1}\right) \wedge \widehat{\mathrm{T}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{1}\right)\right] \wedge\left[\widehat{\mathrm{T}}_{\mathrm{A}_{1}}\left(\mathrm{k}_{2}\right) \wedge \widehat{\mathrm{T}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{2}\right)\right] \\
& =\widehat{\mathrm{T}}_{\left(\mathrm{A}_{1} * \mathrm{~A}_{2}\right)}\left(\mathrm{k}_{1} 1_{1}\right) \wedge \widehat{\mathrm{T}}_{\left(\mathrm{A}_{1} * \mathrm{~A}_{2}\right)}\left(\mathrm{k}_{2}, \mathrm{l}_{2}\right)
\end{aligned}
$$

$$
\hat{\mathrm{I}}_{\left(\mathrm{B}_{1} \times \mathrm{B}_{2}\right)}\left(\left(\mathrm{k}_{1} \mathrm{l}_{1}\right)\left(\mathrm{k}_{2} \mathrm{l}_{2}\right)\right)=\hat{\mathrm{I}}_{\mathrm{B}_{1}}\left(\mathrm{k}_{1} \mathrm{k}_{2}\right) \wedge \hat{\mathrm{I}}_{\mathrm{B}_{2}}\left(\mathrm{l}_{1} \mathrm{l}_{2}\right)
$$

$$
\leq\left[\hat{\mathrm{I}}_{\mathrm{A}_{1}}\left(\mathrm{k}_{1}\right) \wedge \hat{\mathrm{I}}_{\mathrm{A}_{1}}\left(\mathrm{k}_{2}\right)\right] \wedge\left[\hat{\mathrm{I}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{1}\right) \wedge{\hat{\mathrm{I}} \mathrm{~A}_{2}}\left(\mathrm{l}_{2}\right)\right]
$$

$$
=\left[\hat{\mathrm{I}}_{\mathrm{A}_{1}}\left(\mathrm{k}_{1}\right) \wedge \hat{\mathrm{I}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{1}\right)\right] \wedge\left[\hat{\mathrm{I}}_{\mathrm{A}_{1}}\left(\mathrm{k}_{2}\right) \wedge{\hat{\mathrm{I}} \mathrm{~A}_{2}}\left(\mathrm{l}_{2}\right)\right]
$$

$$
=\hat{\mathrm{I}}_{\left(\mathrm{A}_{1} \times A_{2}\right)}\left(\mathrm{k}_{1} \mathrm{I}_{1}\right) \wedge \hat{\mathrm{I}}_{\left(\mathrm{A}_{1} \not \mathrm{~A}_{2}\right)}\left(\mathrm{k}_{2}, \mathrm{l}_{2}\right)
$$

$$
\widehat{\mathrm{F}}_{\left(\mathrm{B}_{1} \star \mathrm{~B}_{2}\right)}\left(\left(\mathrm{k}_{1} \mathrm{l}_{1}\right)\left(\mathrm{k}_{2} \mathrm{l}_{2}\right)\right)=\hat{\mathrm{F}}_{\mathrm{B}_{1}}\left(\mathrm{k}_{1} \mathrm{k}_{2}\right) \vee \widehat{\mathrm{F}}_{\mathrm{B}_{2}}\left(\mathrm{l}_{1} \mathrm{l}_{2}\right)
$$

$$
\leq\left[\hat{\mathrm{F}}_{\mathrm{A}_{1}}\left(\mathrm{k}_{1}\right) \vee \hat{\mathrm{F}}_{\mathrm{A}_{1}}\left(\mathrm{k}_{2}\right)\right] \vee\left[\hat{\mathrm{F}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{1}\right) \vee \hat{\mathrm{F}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{2}\right)\right]
$$

$$
=\left[\hat{\mathrm{F}}_{\mathrm{A}_{1}}\left(\mathrm{k}_{1}\right) \vee \widehat{\mathrm{F}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{1}\right)\right] \vee\left[\hat{\mathrm{F}}_{\mathrm{A}_{1}}\left(\mathrm{k}_{2}\right) \vee \hat{\mathrm{F}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{2}\right)\right]
$$

$$
=\hat{\mathrm{F}}_{\left(\mathrm{A}_{1} \star A_{2}\right)}\left(\mathrm{k}_{1} \mathrm{l}_{1}\right) \vee \hat{\mathrm{F}}_{\left(\mathrm{A}_{1} \star A_{2}\right)}\left(\mathrm{k}_{2}, \mathrm{l}_{2}\right) .
$$

This completes the proof.
Definition 3.7 The lexicographic product of two NVGs G_{1} and G_{2} is denoted by the pair $G_{1} \bullet G_{2}=$ $\left(R_{1} \cdot R_{2}, S_{1} \cdot S_{2}\right)$ and defined as

$$
\begin{aligned}
(\mathrm{i}) \mathrm{T}_{\left(\mathrm{A}_{1} \cdot \mathrm{~A}_{2}\right)}^{-}(\mathrm{kl}) & =\mathrm{T}_{\mathrm{A}_{1}}^{-}(\mathrm{k}) \wedge \mathrm{T}_{\mathrm{A}_{2}}^{-}(\mathrm{l}) \\
\mathrm{I}_{\left(\mathrm{A}_{1} \cdot \mathrm{~A}_{2}\right)}(\mathrm{kl}) & =\mathrm{I}_{\mathrm{A}_{1}}^{-}(\mathrm{k}) \wedge \mathrm{I}_{\mathrm{A}_{2}}^{-}(\mathrm{l}) \\
\mathrm{F}_{\left(\mathrm{A}_{1} \cdot \mathrm{~A}_{2}\right)}(\mathrm{kl}) & =\mathrm{F}_{\mathrm{A}_{1}}^{-}(\mathrm{k}) \vee \mathrm{F}_{\mathrm{A}_{2}}^{-}(\mathrm{l}) \\
\mathrm{T}_{\left(\mathrm{A}_{1} \cdot \mathrm{~A}_{2}\right)}(\mathrm{kl}) & =\mathrm{T}_{\mathrm{A}_{1}}^{+}(\mathrm{k}) \wedge \mathrm{T}_{\mathrm{A}_{2}}^{+}(\mathrm{l}) \\
\mathrm{I}_{\left(\mathrm{A}_{1} \cdot \mathrm{~A}_{2}\right)}(\mathrm{kl}) & =\mathrm{I}_{\mathrm{A}_{1}}^{+}(\mathrm{k}) \wedge \mathrm{I}_{\mathrm{A}_{2}}^{(}(\mathrm{l}) \\
\mathrm{F}_{\left(\mathrm{A}_{1} \cdot \mathrm{~A}_{2}\right)}^{+}(\mathrm{kl}) & \mathrm{F}_{\mathrm{A}_{1}}^{+}(\mathrm{k}) \vee \mathrm{F}_{\mathrm{A}_{2}}^{+}(\mathrm{l}),
\end{aligned}
$$

for all $\mathrm{kl} \in \mathrm{R}_{1} \times \mathrm{R}_{2}$

$$
\begin{gathered}
\text { (ii) } \mathrm{T}_{\left(\mathrm{B}_{1} \cdot \mathrm{~B}_{2}\right)}^{-}\left(\mathrm{kl}_{1}\right)\left(\mathrm{kl}_{2}\right)=\mathrm{T}_{\mathrm{A}_{1}}^{-}(\mathrm{k}) \wedge \mathrm{T}_{\mathrm{B}_{2}}^{-}\left(\mathrm{l}_{1} \mathrm{l}_{2}\right) \\
\mathrm{I}_{\left(\mathrm{B}_{1} \cdot \mathrm{~B}_{2}\right)}\left(\mathrm{kl}_{1}\right)\left(\mathrm{kl}_{2}\right)=\mathrm{I}_{\mathrm{A}_{1}}^{-}(\mathrm{k}) \wedge \mathrm{I}_{\mathrm{B}_{2}}^{-}\left(\mathrm{l}_{1} \mathrm{l}_{2}\right) \\
\mathrm{F}_{\left(\mathrm{B}_{1} \cdot \mathrm{~B}_{2}\right)}\left(\mathrm{kl}_{1}\right)\left(\mathrm{kl}_{2}\right)=\mathrm{F}_{\mathrm{A}_{1}}^{-}(\mathrm{k}) \vee \mathrm{F}_{\mathrm{B}_{2}}^{-}\left(\mathrm{l}_{1} \mathrm{l}_{2}\right)\left(\mathrm{Bl}_{1}\right)\left(\mathrm{kl}_{2}\right)=\mathrm{T}_{\mathrm{A}_{1}}^{+}(\mathrm{k}) \wedge \mathrm{T}_{\mathrm{B}_{2}}^{+}\left(\mathrm{l}_{1} \mathrm{l}_{2}\right) \\
\mathrm{I}_{\left(\mathrm{B}_{1} \cdot \mathrm{~B}_{2}\right)}^{+}\left(\mathrm{kl}_{1}\right)\left(\mathrm{kl}_{2}\right)=\mathrm{I}_{\mathrm{A}_{1}}^{+}(\mathrm{k}) \wedge \mathrm{I}_{\mathrm{B}_{2}}^{+}\left(\mathrm{l}_{1} \mathrm{l}_{2}\right) \\
\mathrm{F}_{\left(\mathrm{B}_{1} \cdot \mathrm{~B}_{2}\right)}\left(\mathrm{kl}_{1}\right)\left(\mathrm{kl}_{2}\right)=\mathrm{F}_{\mathrm{A}_{1}}^{+}(\mathrm{k}) \vee \mathrm{F}_{\mathrm{B}_{2}}^{+}\left(\mathrm{l}_{1} \mathrm{l}_{2}\right),
\end{gathered}
$$

for all $k \in R_{1}, l_{1} l_{2} \in S_{2}$.

$$
\begin{aligned}
& \text { (iii) } \mathrm{T}_{\left(\mathrm{B}_{1} \cdot \mathrm{~B}_{2}\right)}^{-}\left(\mathrm{k}_{1} \mathrm{l}_{1}\right)\left(\mathrm{k}_{2} \mathrm{l}_{2}\right)=\mathrm{T}_{\mathrm{B}_{1}}^{-}\left(\mathrm{k}_{1} \mathrm{k}_{2}\right) \wedge \mathrm{T}_{\mathrm{B}_{2}}^{-}\left(\mathrm{l}_{1} \mathrm{l}_{2}\right) \\
& \mathrm{I}_{\left(\mathrm{B}_{1} \cdot \mathrm{~B}_{2}\right)}^{-}\left(\mathrm{k}_{1} \mathrm{l}_{1}\right)\left(\mathrm{k}_{2} \mathrm{l}_{2}\right)=\mathrm{I}_{\mathrm{B}_{1}}^{-}\left(\mathrm{k}_{1} \mathrm{k}_{2}\right) \wedge \mathrm{I}_{\mathrm{B}_{2}}^{-}\left(\mathrm{l}_{1} \mathrm{l}_{2}\right) \\
& \mathrm{F}_{\left(\mathrm{B}_{1} \cdot \mathrm{~B}_{2}\right)}^{-}\left(\mathrm{k}_{1} \mathrm{l}_{1}\right)\left(\mathrm{k}_{2} \mathrm{l}_{2}\right)=\mathrm{F}_{\mathrm{B}_{1}}^{-}\left(\mathrm{k}_{1} \mathrm{k}_{2}\right) \vee \mathrm{F}_{\mathrm{B}_{2}}^{-}\left(\mathrm{l}_{1} \mathrm{l}_{2}\right) \\
& \mathrm{T}_{\left(\mathrm{B}_{1} \cdot B_{2}\right)}^{+}\left(\mathrm{k}_{1} \mathrm{l}_{1}\right)\left(\mathrm{k}_{2} \mathrm{l}_{2}\right)=\mathrm{T}_{\mathrm{B}_{1}}^{+}\left(\mathrm{k}_{1} \mathrm{k}_{2}\right) \wedge \mathrm{T}_{\mathrm{B}_{2}}^{+}\left(\mathrm{l}_{1} \mathrm{l}_{2}\right) \\
& \mathrm{I}_{\left(\mathrm{B}_{1} \cdot \mathrm{~B}_{2}\right)}^{+}\left(\mathrm{k}_{1} \mathrm{l}_{1}\right)\left(\mathrm{k}_{2} \mathrm{l}_{2}\right)=\mathrm{I}_{\mathrm{B}_{1}}^{+}\left(\mathrm{k}_{1} \mathrm{k}_{2}\right) \wedge \mathrm{I}_{\mathrm{B}_{2}}^{+}\left(\mathrm{l}_{1} \mathrm{l}_{2}\right) \\
& \mathrm{F}_{\left(\mathrm{B}_{1} \cdot \mathrm{~B}_{2}\right)}^{+}\left(\mathrm{k}_{1} \mathrm{l}_{1}\right)\left(\mathrm{k}_{2} \mathrm{l}_{2}\right)=\mathrm{F}_{\mathrm{B}_{1}}^{+}\left(\mathrm{k}_{1} \mathrm{k}_{2}\right) \vee \mathrm{F}_{\mathrm{B}_{2}}^{+}\left(\mathrm{l}_{1} \mathrm{l}_{2}\right), \text { for all } \mathrm{k}_{1} \mathrm{k}_{2} \in \mathrm{~S}_{1}, \mathrm{l}_{1} \mathrm{l}_{2} \in \mathrm{~S}_{2} .
\end{aligned}
$$

Example 3.8 The lexicographic product of NVG $G_{1}=\left(R_{1}, S_{1}\right)$ and $G_{2}=\left(R_{2}, S_{2}\right)$ shown in Figure 2 is defined as $G_{1} \bullet G_{2}=\left(R_{1} \bullet R_{2}, S_{1} \bullet S_{2}\right)$ and is presented in Figure 5.

Figure 5: LEXICOGRAPHIC PRODUCT OF NEUTROSOPHIC VAGUE GRAPH

Theorem 3.9 The lexicographic product $G_{1} \bullet G_{2}=\left(R_{1} \bullet R_{2}, S_{1} \bullet S_{2}\right)$ of two NVG G_{1} and G_{2} is the NVG of $G_{1} \bullet G_{2}$.
Proof. We have two cases.
Case 1: For $k \in R_{1}, l_{1} l_{2} \in S_{2}$,

$$
\begin{aligned}
\widehat{\mathrm{T}}_{\left(\mathrm{B}_{1} \cdot \mathrm{~B}_{2}\right)}\left(\left(\mathrm{kl}_{1}\right)\left(\mathrm{kl}_{2}\right)\right) & =\widehat{\mathrm{T}}_{\mathrm{A}_{1}}(\mathrm{k}) \wedge \widehat{\mathrm{T}}_{\mathrm{B}_{2}}\left(\mathrm{l}_{1} \mathrm{l}_{2}\right) \\
& \leq \widehat{\mathrm{T}}_{\mathrm{A}_{1}}(\mathrm{k}) \wedge\left[\widehat{\mathrm{T}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{1}\right) \wedge \widehat{\mathrm{T}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{2}\right)\right] \\
& =\left[\widehat{\mathrm{T}}_{\mathrm{A}_{1}}(\mathrm{k}) \wedge \widehat{\mathrm{T}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{1}\right)\right] \wedge\left[\widehat{\mathrm{T}}_{\mathrm{A}_{1}}(\mathrm{k}) \wedge \widehat{\mathrm{T}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{2}\right)\right] \\
& =\widehat{\mathrm{T}}_{\left(\mathrm{A}_{1} \cdot \mathrm{~A}_{2}\right)}\left(\mathrm{k}, \mathrm{l}_{1}\right) \wedge \widehat{\mathrm{T}}_{\left(\mathrm{A}_{1} \cdot \mathrm{~A}_{2}\right)}\left(\mathrm{k}, \mathrm{l}_{2}\right) \\
\hat{\mathrm{I}}_{\left(\mathrm{B}_{1} \cdot \mathrm{~B}_{2}\right)}\left(\left(\mathrm{kl}_{1}\right)\left(\mathrm{kl}_{2}\right)\right) & =\hat{\mathrm{I}}_{\mathrm{A}_{1}}(\mathrm{k}) \wedge \hat{\mathrm{I}}_{\mathrm{B}_{2}}\left(\mathrm{l}_{1} \mathrm{l}_{2}\right) \\
& \leq \hat{\mathrm{I}}_{\mathrm{A}_{1}}(\mathrm{k}) \wedge\left[\hat{\mathrm{I}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{1}\right) \wedge \hat{\mathrm{I}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{2}\right)\right] \\
& =\left[\hat{\mathrm{I}}_{\mathrm{A}_{1}}(\mathrm{k}) \wedge \hat{\mathrm{I}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{1}\right)\right] \wedge\left[\hat{\mathrm{I}}_{\mathrm{A}_{1}}(\mathrm{k}) \wedge \hat{\mathrm{I}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{2}\right)\right] \\
& =\hat{\mathrm{I}}_{\left(\mathrm{A}_{1} \cdot \mathrm{~A}_{2}\right)}\left(\mathrm{k}, \mathrm{l}_{1}\right) \wedge \hat{\mathrm{I}}_{\left(\mathrm{A}_{1} \cdot \mathrm{~A}_{2}\right)}\left(\mathrm{k}, \mathrm{l}_{2}\right) \\
\hat{\mathrm{F}}_{\left(\mathrm{B}_{1} \cdot \mathrm{~B}_{2}\right)}\left(\left(\mathrm{kl}_{1}\right)\left(\mathrm{kl}_{2}\right)\right) & =\widehat{\mathrm{F}}_{\mathrm{A}_{1}}(\mathrm{k}) \vee \hat{\mathrm{F}}_{\mathrm{B}_{2}}\left(\mathrm{l}_{1} \mathrm{l}_{2}\right) \\
& \leq \widehat{\mathrm{F}}_{\mathrm{A}_{1}}(\mathrm{k}) \vee\left[\hat{\mathrm{F}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{1}\right) \vee \hat{\mathrm{F}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{2}\right)\right] \\
& =\left[\hat{\mathrm{F}}_{\mathrm{A}_{1}}(\mathrm{k}) \vee \widehat{\mathrm{F}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{1}\right)\right] \vee\left[\hat{\mathrm{F}}_{\mathrm{A}_{1}}(\mathrm{k}) \vee \hat{\mathrm{F}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{2}\right)\right] \\
& =\widehat{\mathrm{F}}_{\left(\mathrm{A}_{1} \cdot \mathrm{~A}_{2}\right)}\left(\mathrm{k}, \mathrm{l}_{1}\right) \vee \hat{\mathrm{F}}_{\left(\mathrm{A}_{1} \cdot \mathrm{~A}_{2}\right)}\left(\mathrm{k}, \mathrm{l}_{2}\right)
\end{aligned}
$$

for all $\mathrm{kl}_{1}, \mathrm{kl}_{2} \in \mathrm{~S}_{1} \times \mathrm{S}_{2}$.
Case 2: For all $\mathrm{k}_{1} \mathrm{l}_{1} \in \mathrm{~S}_{1}, \mathrm{k}_{2} \mathrm{l}_{2} \in \mathrm{~S}_{2}$,

$$
\begin{aligned}
\widehat{\mathrm{T}}_{\left(\mathrm{B}_{1} \cdot \mathrm{~B}_{2}\right)}\left(\left(\mathrm{k}_{1} \mathrm{l}_{1}\right)\left(\mathrm{k}_{2} \mathrm{l}_{2}\right)\right) & =\widehat{\mathrm{T}}_{\mathrm{B}_{1}}\left(\mathrm{k}_{1} \mathrm{k}_{2}\right) \wedge \widehat{\mathrm{T}}_{\mathrm{B}_{2}}\left(\mathrm{l}_{1} \mathrm{l}_{2}\right) \\
& \leq\left[\widehat{\mathrm{T}}_{\mathrm{A}_{1}}\left(\mathrm{k}_{1}\right) \wedge \widehat{\mathrm{T}}_{\mathrm{A}_{1}}\left(\mathrm{k}_{2}\right)\right] \wedge\left[\widehat{\mathrm{T}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{1}\right) \wedge \widehat{\mathrm{T}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{2}\right)\right] \\
& =\left[\widehat{\mathrm{T}}_{\mathrm{A}_{1}}\left(\mathrm{k}_{1}\right) \wedge \widehat{\mathrm{T}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{1}\right)\right] \wedge\left[\widehat{\mathrm{T}}_{\mathrm{A}_{1}}\left(\mathrm{k}_{2}\right) \wedge \widehat{\mathrm{T}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{2}\right)\right] \\
& =\widehat{\mathrm{T}}_{\left(\mathrm{A}_{1} \cdot \mathrm{~A}_{2}\right)}\left(\mathrm{k}_{1} \mathrm{l}_{1}\right) \wedge \widehat{\mathrm{T}}_{\left(\mathrm{A}_{1} \cdot \mathrm{~A}_{2}\right)}\left(\mathrm{k}_{2}, \mathrm{l}_{2}\right)
\end{aligned}
$$

$$
\hat{\mathrm{I}}_{\left(\mathrm{B}_{1} \cdot \mathrm{~B}_{2}\right)}\left(\left(\mathrm{k}_{1} \mathrm{l}_{1}\right)\left(\mathrm{k}_{2} \mathrm{l}_{2}\right)\right)=\hat{\mathrm{I}}_{\mathrm{B}_{1}}\left(\mathrm{k}_{1} \mathrm{k}_{2}\right) \wedge \hat{\mathrm{I}}_{\mathrm{B}_{2}}\left(\mathrm{l}_{1} \mathrm{l}_{2}\right)
$$

$$
\leq\left[\hat{\mathrm{I}}_{\mathrm{A}_{1}}\left(\mathrm{k}_{1}\right) \wedge \hat{\mathrm{I}}_{\mathrm{A}_{1}}\left(\mathrm{k}_{2}\right)\right] \wedge\left[\hat{\mathrm{I}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{1}\right) \wedge \hat{\mathrm{I}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{2}\right)\right]
$$

$$
=\left[\hat{\mathrm{I}}_{\mathrm{A}_{1}}\left(\mathrm{k}_{1}\right) \wedge \hat{\mathrm{I}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{1}\right)\right] \wedge\left[\hat{\mathrm{I}}_{\mathrm{A}_{1}}\left(\mathrm{k}_{2}\right) \wedge \hat{\mathrm{I}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{2}\right)\right]
$$

$$
=\hat{\mathrm{I}}_{\left(\mathrm{A}_{1} \cdot \mathrm{~A}_{2}\right)}\left(\mathrm{k}_{1} \mathrm{l}_{1}\right) \wedge \hat{\mathrm{I}}_{\left(\mathrm{A}_{1} \cdot \mathrm{~A}_{2}\right)}\left(\mathrm{k}_{2}, \mathrm{l}_{2}\right)
$$

$$
\widehat{\mathrm{F}}_{\left(\mathrm{B}_{1} \cdot \mathrm{~B}_{2}\right)}\left(\left(\mathrm{k}_{1} \mathrm{l}_{1}\right)\left(\mathrm{k}_{2} \mathrm{l}_{2}\right)\right)=\hat{\mathrm{F}}_{\mathrm{B}_{1}}\left(\mathrm{k}_{1} \mathrm{k}_{2}\right) \vee \hat{\mathrm{F}}_{\mathrm{B}_{2}}\left(\mathrm{l}_{1} \mathrm{l}_{2}\right)
$$

$$
\leq\left[\hat{\mathrm{F}}_{\mathrm{A}_{1}}\left(\mathrm{k}_{1}\right) \vee \hat{\mathrm{F}}_{\mathrm{A}_{1}}\left(\mathrm{k}_{2}\right)\right] \vee\left[\hat{\mathrm{F}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{1}\right) \vee \hat{\mathrm{F}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{2}\right)\right]
$$

$$
=\left[\hat{\mathrm{F}}_{\mathrm{A}_{1}}\left(\mathrm{k}_{1}\right) \vee \hat{\mathrm{F}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{1}\right)\right] \vee\left[\hat{\mathrm{F}}_{\mathrm{A}_{1}}\left(\mathrm{k}_{2}\right) \vee \hat{\mathrm{F}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{2}\right)\right]
$$

$$
=\hat{\mathrm{F}}_{\left(\mathrm{A}_{1} \cdot \mathrm{~A}_{2}\right)}\left(\mathrm{k}_{1} \mathrm{l}_{1}\right) \vee \hat{\mathrm{F}}_{\left(\mathrm{A}_{1} \cdot \mathrm{~A}_{2}\right)}\left(\mathrm{k}_{2}, \mathrm{l}_{2}\right)
$$

for all $\mathrm{k}_{1}, \mathrm{l}_{1} \in \mathrm{k}_{2}, \mathrm{l}_{2} \in \mathrm{R}_{1} \bullet \mathrm{R}_{2}$.
Definition 3.10 The strong product of two NVG G_{1} and G_{2} is denoted by the pair $G_{1} \boxtimes G_{2}=\left(R_{1} \boxtimes\right.$ $R_{2}, S_{1} \boxtimes S_{2}$) and defined as

$$
\begin{aligned}
& \text { (i) } \mathrm{T}_{\left(\mathrm{A}_{1} \boxtimes \mathrm{~A}_{2}\right)}^{-}(\mathrm{kl})=\mathrm{T}_{\mathrm{A}_{1}}^{-}(\mathrm{k}) \wedge \mathrm{T}_{\mathrm{A}_{2}}^{-}(\mathrm{l}) \\
& \mathrm{I}_{\left(\mathrm{A}_{1} \boxtimes \mathrm{~A}_{2}\right)}^{-}(\mathrm{kl})=\mathrm{I}_{\mathrm{A}_{1}}^{-}(\mathrm{k}) \wedge \mathrm{I}_{\mathrm{A}_{2}}^{-}(\mathrm{l}) \\
& \mathrm{F}_{\left(\mathrm{A}_{1} \boxtimes \mathrm{~A}_{2}\right)}^{-}(\mathrm{kl})=\mathrm{F}_{\mathrm{A}_{1}}^{-}(\mathrm{k}) \vee \mathrm{F}_{\mathrm{A}_{2}}^{-}(\mathrm{l})
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{T}_{\left(\mathrm{A}_{1} \boxtimes \mathrm{~A}_{2}\right)}(\mathrm{kl})=\mathrm{T}_{\mathrm{A}_{1}}^{+}(\mathrm{k}) \wedge \mathrm{T}_{\mathrm{A}_{2}}^{+}(\mathrm{l}) \\
& \mathrm{I}_{\left(\mathrm{A}_{1} \boxtimes \mathrm{~A}_{2}\right)}(\mathrm{kl})=\mathrm{I}_{\mathrm{A}_{1}}^{+}(\mathrm{k}) \wedge \mathrm{I}_{\mathrm{A}_{2}}^{+}(\mathrm{l}) \\
& \mathrm{F}_{\left(\mathrm{A}_{1} \boxtimes \mathrm{~A}_{2}\right)}(\mathrm{kl})=\mathrm{F}_{\mathrm{A}_{1}}^{+}(\mathrm{k}) \vee \mathrm{F}_{\mathrm{A}_{2}}^{+}(\mathrm{l})
\end{aligned}
$$

for all $k l \in R_{1} \boxtimes R_{2}$

$$
\begin{aligned}
\text { (ii) } \mathrm{T}_{\left(\mathrm{B}_{1} \boxtimes \mathrm{~B}_{2}\right)}\left(\mathrm{kl}_{1}\right)\left(\mathrm{kl}_{2}\right) & =\mathrm{T}_{\mathrm{A}_{1}}^{-}(\mathrm{k}) \wedge \mathrm{T}_{\mathrm{B}_{2}}^{-}\left(\mathrm{l}_{1} \mathrm{l}_{2}\right) \\
\mathrm{I}_{\left(\mathrm{B}_{1} \boxtimes \mathrm{~B}_{2}\right)}\left(\mathrm{kl}_{1}\right)\left(\mathrm{kl}_{2}\right) & =\mathrm{I}_{\mathrm{A}_{1}}^{-}(\mathrm{k}) \wedge \mathrm{I}_{\mathrm{B}_{2}}^{-}\left(\mathrm{l}_{1} \mathrm{l}_{2}\right) \\
\mathrm{F}_{\left(\mathrm{B}_{1} \boxtimes \mathrm{~B}_{2}\right)}\left(\mathrm{kl}_{1}\right)\left(\mathrm{kl}_{2}\right) & =\mathrm{F}_{\mathrm{A}_{1}}^{-}(\mathrm{k}) \vee \mathrm{F}_{\mathrm{B}_{2}}^{-}\left(\mathrm{l}_{1} \mathrm{l}_{2}\right) \\
\mathrm{T}_{\left(\mathrm{B}_{1} \boxtimes \mathrm{~B}_{2}\right)}^{+}\left(\mathrm{kl}_{1}\right)\left(\mathrm{kl}_{2}\right) & =\mathrm{T}_{\mathrm{A}_{1}}^{+}(\mathrm{k}) \wedge \mathrm{T}_{\mathrm{B}_{2}}^{+}\left(\mathrm{l}_{1} \mathrm{l}_{2}\right) \\
\mathrm{I}_{\left(\mathrm{B}_{1} \boxtimes \mathrm{~B}_{2}\right)}\left(\mathrm{kl}_{1}\right)\left(\mathrm{kl}_{2}\right) & =\mathrm{I}_{\mathrm{A}_{1}}^{+}(\mathrm{k}) \wedge \mathrm{I}_{\mathrm{B}_{2}}^{\left(\mathrm{l}_{1} \mathrm{l}_{2}\right)} \\
\mathrm{F}_{\left(\mathrm{B}_{1} \boxtimes \mathrm{~B}_{2}\right)}^{+}\left(\mathrm{kl}_{1}\right)\left(\mathrm{kl}_{2}\right) & =\mathrm{F}_{\mathrm{A}_{1}}^{+}(\mathrm{k}) \vee \mathrm{F}_{\mathrm{B}_{2}}^{+}\left(\mathrm{l}_{1} \mathrm{l}_{2}\right),
\end{aligned}
$$

for all $k \in R_{1}, l_{1} l_{2} \in S_{2}$.

$$
\begin{aligned}
& \text { (iii) } \begin{aligned}
\mathrm{T}_{1_{1} \boxtimes \mathrm{~B}_{2}}^{-} & \left(\mathrm{k}_{1} \mathrm{l}\right)\left(\mathrm{k}_{2} \mathrm{l}\right)
\end{aligned}=\mathrm{T}_{\mathrm{A}_{2}}^{-}(\mathrm{l}) \wedge \mathrm{T}_{\mathrm{B}_{2}}^{-}\left(\mathrm{k}_{1} \mathrm{k}_{2}\right) \\
& \mathrm{B}_{\mathrm{B}_{1} \boxtimes \mathrm{~B}_{2}}\left(\mathrm{k}_{1} \mathrm{l}\right)\left(\mathrm{k}_{2} \mathrm{l}\right)=\mathrm{I}_{\mathrm{A}_{2}}^{-}(\mathrm{l}) \wedge \mathrm{I}_{\mathrm{B}_{2}}^{-}\left(\mathrm{k}_{1} \mathrm{k}_{2}\right) \\
& \mathrm{F}_{\mathrm{B}_{1} \boxtimes \mathrm{~B}_{2}}\left(\mathrm{k}_{1} \mathrm{l}\right)\left(\mathrm{k}_{2} \mathrm{l}\right)=\mathrm{F}_{\mathrm{A}_{2}}^{-}(\mathrm{l}) \vee \mathrm{F}_{\mathrm{B}_{2}}^{-}\left(\mathrm{k}_{1} \mathrm{k}_{2}\right) \\
& \mathrm{T}_{\mathrm{B}_{1} \boxtimes \mathrm{~B}_{2}}^{+}\left(\mathrm{k}_{1} \mathrm{l}\right)\left(\mathrm{k}_{2} \mathrm{l}\right)\left.=\mathrm{T}_{\mathrm{A}_{2}}^{+} \mathrm{l}\right) \wedge \mathrm{T}_{\mathrm{B}_{2}}^{+}\left(\mathrm{k}_{1} \mathrm{k}_{2}\right) \\
& \mathrm{I}_{\mathrm{B}_{1} \boxtimes \mathrm{~B}_{2}}\left(\mathrm{k}_{1} \mathrm{l}\right)\left(\mathrm{k}_{2} \mathrm{l}\right)=\mathrm{I}_{\mathrm{A}_{2}}^{+}(\mathrm{l}) \wedge \mathrm{I}_{\mathrm{B}_{2}}^{(}\left(\mathrm{k}_{1} \mathrm{k}_{2}\right) \\
& \mathrm{F}_{\mathrm{B}_{1} \boxtimes \mathrm{~B}_{2}}^{+}\left(\mathrm{k}_{1} \mathrm{l}\right)\left(\mathrm{k}_{2} \mathrm{l}\right)=\mathrm{F}_{\mathrm{A}_{2}}^{+}(\mathrm{l}) \vee \mathrm{F}_{\mathrm{B}_{2}}^{+}\left(\mathrm{k}_{1} \mathrm{k}_{2}\right),
\end{aligned}
$$

for all $k_{1} k_{2} \in S_{1}, l \in R_{2}$.

$$
\begin{gathered}
\text { (iv) } \mathrm{T}_{\left(\mathrm{B}_{1} \boxtimes \mathrm{~B}_{2}\right)}^{-}\left(\mathrm{k}_{1} \mathrm{l}_{1}\right)\left(\mathrm{k}_{2} \mathrm{l}_{2}\right)=\mathrm{T}_{\mathrm{B}_{1}}^{-}\left(\mathrm{k}_{1} \mathrm{k}_{2}\right) \wedge \mathrm{T}_{\mathrm{B}_{2}}^{-}\left(\mathrm{l}_{1} \mathrm{l}_{2}\right) \\
\mathrm{I}_{\left(\mathrm{B}_{1} \boxtimes \mathrm{~B}_{2}\right)}^{-}\left(\mathrm{k}_{1} \mathrm{l}_{1}\right)\left(\mathrm{k}_{2} \mathrm{l}_{2}\right)=\mathrm{I}_{\mathrm{B}_{1}}^{-}\left(\mathrm{k}_{1} \mathrm{k}_{2}\right) \wedge \mathrm{I}_{\mathrm{B}_{2}}^{-}\left(\mathrm{l}_{1} \mathrm{l}_{2}\right) \\
\mathrm{F}_{\left(\mathrm{B}_{1} \boxtimes \mathrm{~B}_{2}\right)}^{-}\left(\mathrm{k}_{1} \mathrm{l}_{1}\right)\left(\mathrm{k}_{2} \mathrm{l}_{2}\right)=\mathrm{F}_{\mathrm{B}_{1}}^{-}\left(\mathrm{k}_{1} \mathrm{k}_{2}\right) \vee \mathrm{F}_{\mathrm{B}_{2}}^{-}\left(\mathrm{l}_{1} \mathrm{l}_{2}\right) \\
\mathrm{T}_{\left(\mathrm{B}_{1} \boxtimes \mathrm{~B}_{2}\right)}\left(\mathrm{k}_{1} \mathrm{l}_{1}\right)\left(\mathrm{k}_{2} \mathrm{l}_{2}\right)=\mathrm{T}_{\mathrm{B}_{1}}^{+}\left(\mathrm{k}_{1} \mathrm{k}_{2}\right) \wedge \mathrm{T}_{\mathrm{B}_{2}}^{+}\left(\mathrm{l}_{1} \mathrm{l}_{2}\right) \\
\mathrm{I}_{\left(\mathrm{B}_{1} \boxtimes \mathrm{~B}_{2}\right)}\left(\mathrm{k}_{1} \mathrm{l}_{1}\right)\left(\mathrm{k}_{2} \mathrm{l}_{2}\right)=\mathrm{I}_{\mathrm{B}_{1}}^{\left.\left(\mathrm{k}_{1} \mathrm{k}_{2}\right) \wedge \mathrm{I}_{\mathrm{B}_{2}}^{(} \mathrm{l}_{1} \mathrm{l}_{2}\right)} \\
\mathrm{F}_{\left(\mathrm{B}_{1} \boxtimes \mathrm{~B}_{2}\right)}^{+}\left(\mathrm{k}_{1} \mathrm{l}_{1}\right)\left(\mathrm{k}_{2} \mathrm{l}_{2}\right)=\mathrm{F}_{\mathrm{B}_{1}}^{+}\left(\mathrm{k}_{1} \mathrm{k}_{2}\right) \vee \mathrm{F}_{\mathrm{B}_{2}}^{\mathrm{N}}\left(\mathrm{l}_{1} \mathrm{l}_{2}\right),
\end{gathered}
$$

for all $\mathrm{k}_{1} \mathrm{k}_{2} \in \mathrm{~S}_{1}, \mathrm{l}_{1} \mathrm{l}_{2} \in \mathrm{~S}_{2}$.
Example 3.11 The strong product of NVG $G_{1}=\left(R_{1}, S_{1}\right)$ and $G_{2}=\left(R_{2}, S_{2}\right)$ shown in Figure 2 is defined as $G_{1} \boxtimes G_{2}=\left(S_{1} \boxtimes S_{2}, T_{1} \boxtimes T_{2}\right)$ and is presented in Figure 6.

Figure 6: STRONG PRODUCT OF NEUTROSOPHIC VAGUE GRAPH

Theorem 3.12 The strong product $G_{1} \boxtimes G_{2}=\left(R_{1} \boxtimes R_{2}, S_{1} \boxtimes S_{2}\right)$ of two NVG G_{1} and G_{2} is a NVG of $G_{1} \boxtimes G_{2}$.
Proof. There are three cases:
Case 1: for $\mathrm{k} \in \mathrm{R}_{1}, \mathrm{l}_{1} \mathrm{l}_{2} \in \mathrm{~S}_{2}$,

$$
\begin{aligned}
\widehat{\mathrm{T}}_{\left(\mathrm{B}_{1} \boxtimes \mathrm{~B}_{2}\right)}\left(\left(\mathrm{kl}_{1}\right)\left(\mathrm{kl}_{2}\right)\right) & =\widehat{\mathrm{T}}_{\mathrm{A}_{1}}(\mathrm{k}) \wedge \widehat{\mathrm{T}}_{\mathrm{B}_{2}}\left(\mathrm{l}_{1} \mathrm{l}_{2}\right) \\
& \leq \widehat{\mathrm{T}}_{\mathrm{A}_{1}}(\mathrm{k}) \wedge\left[\widehat{\mathrm{T}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{1}\right) \wedge \widehat{\mathrm{T}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{2}\right)\right] \\
& =\left[\widehat{\mathrm{T}}_{\mathrm{A}_{1}}(\mathrm{k}) \wedge \widehat{\mathrm{T}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{1}\right)\right] \wedge\left[\widehat{\mathrm{T}}_{\mathrm{A}_{1}}(\mathrm{k}) \wedge \widehat{\mathrm{T}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{2}\right)\right] \\
& \left.=\widehat{\mathrm{T}}_{\left(\mathrm{A}_{1} \boxtimes \mathrm{~A}_{2}\right)}\left(\mathrm{k}, \mathrm{l}_{1}\right) \wedge \widehat{\mathrm{T}}_{\left(\mathrm{A}_{1} \boxtimes \mathrm{~A}_{2}\right)}\right) \\
& \left.\mathrm{k}, \mathrm{l}_{2}\right)
\end{aligned}
$$

$$
\hat{\mathrm{I}}_{\left(\mathrm{B}_{1} \boxtimes \mathrm{~B}_{2}\right)}\left(\left(\mathrm{kl}_{1}\right)\left(\mathrm{kl}_{2}\right)\right)=\hat{\mathrm{I}}_{\mathrm{A}_{1}}(\mathrm{k}) \wedge \hat{\mathrm{I}}_{\mathrm{B}_{2}}\left(\mathrm{l}_{1} \mathrm{l}_{2}\right)
$$

$$
\leq \hat{\mathrm{I}}_{\mathrm{A}_{1}}(\mathrm{k}) \wedge\left[\hat{\mathrm{I}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{1}\right) \wedge \hat{\mathrm{I}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{2}\right)\right]
$$

$$
=\left[\hat{\mathrm{I}}_{\mathrm{A}_{1}}(\mathrm{k}) \wedge \hat{\mathrm{I}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{1}\right)\right] \wedge\left[\hat{\mathrm{I}}_{\mathrm{A}_{1}}(\mathrm{k}) \wedge \hat{\mathrm{I}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{2}\right)\right]
$$

$$
=\hat{\mathrm{I}}_{\left(\mathrm{A}_{1} \boxtimes \mathrm{~A}_{2}\right)}\left(\mathrm{k}, \mathrm{l}_{1}\right) \wedge \hat{\mathrm{I}}_{\left(\mathrm{A}_{1} \boxtimes \mathrm{~A}_{2}\right)}\left(\mathrm{k}, \mathrm{l}_{2}\right)
$$

$$
\begin{aligned}
\hat{\mathrm{F}}_{\left(\mathrm{B}_{1} \boxtimes \mathrm{~B}_{2}\right)}\left(\left(\mathrm{kl}_{1}\right)\left(\mathrm{kl}_{2}\right)\right) & =\widehat{\mathrm{F}}_{\mathrm{A}_{1}}(\mathrm{k}) \vee \hat{\mathrm{F}}_{\mathrm{B}_{2}}\left(\mathrm{l}_{1} \mathrm{l}_{2}\right) \\
& \leq \widehat{\mathrm{F}}_{\mathrm{A}_{1}}(\mathrm{k}) \vee\left[\hat{\mathrm{F}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{1}\right) \vee \hat{\mathrm{F}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{2}\right)\right] \\
& =\left[\hat{\mathrm{F}}_{\mathrm{A}_{1}}(\mathrm{k}) \vee \widehat{\mathrm{F}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{1}\right)\right] \vee\left[\hat{\mathrm{F}}_{\mathrm{A}_{1}}(\mathrm{k}) \vee \hat{\mathrm{F}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{2}\right)\right] \\
& =\widehat{\mathrm{F}}_{\left(\mathrm{A}_{1} \boxtimes \mathrm{~A}_{2}\right)}\left(\mathrm{k}, \mathrm{l}_{1}\right) \vee \widehat{\mathrm{F}}_{\left(\mathrm{A}_{1} \boxtimes \mathrm{~A}_{2}\right)}\left(\mathrm{k}, \mathrm{l}_{2}\right),
\end{aligned}
$$

for all $\mathrm{kl}_{1}, \mathrm{kl}_{2} \in \mathrm{R}_{1} \boxtimes \mathrm{R}_{2}$.
Case 2: for $k \in R_{2}, l_{1} l_{2} \in S_{1}$,

$$
\widehat{\mathrm{T}}_{\left(\mathrm{B}_{1} \boxtimes \mathrm{~B}_{2}\right)}\left(\left(\mathrm{l}_{1} \mathrm{k}\right)\left(\mathrm{l}_{2} \mathrm{k}\right)\right)=\widehat{\mathrm{T}}_{\mathrm{A}_{2}}(\mathrm{k}) \wedge \widehat{\mathrm{T}}_{\mathrm{B}_{1}}\left(\mathrm{l}_{1} \mathrm{l}_{2}\right)
$$

$$
\begin{aligned}
& \leq \widehat{\mathrm{T}}_{\mathrm{A}_{2}}(\mathrm{k}) \wedge\left[\widehat{\mathrm{T}}_{\mathrm{A}_{1}}\left(\mathrm{l}_{1}\right) \wedge \widehat{\mathrm{T}}_{\mathrm{A}_{1}}\left(\mathrm{l}_{2}\right)\right] \\
& =\left[\widehat{T}_{\mathrm{A}_{2}}(\mathrm{k}) \wedge \widehat{\mathrm{T}}_{\mathrm{A}_{1}}\left(\mathrm{l}_{1}\right)\right] \wedge\left[\widehat{\mathrm{T}}_{\mathrm{A}_{2}}(\mathrm{k}) \wedge \widehat{\mathrm{T}}_{\mathrm{A}_{1}}\left(\mathrm{l}_{2}\right)\right] \\
& =\widehat{T}_{\left(A_{1} \boxtimes A_{2}\right)}\left(\mathrm{l}_{1}, \mathrm{k}\right) \wedge \widehat{\mathrm{T}}_{\left(\mathrm{A}_{1} \boxtimes \mathrm{~A}_{2}\right)}\left(\mathrm{l}_{2}, \mathrm{k}\right) \\
& \left.\hat{\mathrm{I}}_{\left(\mathrm{B}_{1} \boxtimes \mathrm{~B}_{2}\right)}\left(\mathrm{l}_{1} \mathrm{k}\right)\left(\mathrm{l}_{2} \mathrm{k}\right)\right)=\hat{\mathrm{I}}_{\mathrm{A}_{2}}(\mathrm{k}) \wedge \hat{\mathrm{I}}_{\mathrm{B}_{1}}\left(\mathrm{l}_{1} \mathrm{l}_{2}\right) \\
& \leq \hat{I}_{A_{2}}(\mathrm{k}) \wedge\left[\hat{I}_{A_{1}}\left(\mathrm{l}_{1}\right) \wedge \hat{\mathrm{I}}_{\mathrm{A}_{1}}\left(\mathrm{l}_{2}\right)\right] \\
& =\left[\hat{\mathrm{I}}_{\mathrm{A}_{2}}(\mathrm{k}) \wedge \hat{\mathrm{I}}_{\mathrm{A}_{1}}\left(\mathrm{l}_{1}\right)\right] \wedge\left[\hat{\mathrm{I}}_{\mathrm{A}_{2}}(\mathrm{k}) \wedge \hat{\mathrm{I}}_{\mathrm{A}_{1}}\left(\mathrm{l}_{2}\right)\right] \\
& =\hat{I}_{\left(A_{1} \boxtimes A_{2}\right)}\left(\mathrm{l}_{1}, \mathrm{k}\right) \wedge \hat{\mathrm{I}}_{\left(\mathrm{A}_{1} \boxtimes \mathrm{~A}_{2}\right)}\left(\mathrm{l}_{2}, \mathrm{k}\right) \\
& \hat{\mathrm{F}}_{\left(\mathrm{B}_{1} \boxtimes \mathrm{~B}_{2}\right)}\left(\left(\mathrm{l}_{1} \mathrm{k}\right)\left(\mathrm{l}_{2} \mathrm{k}\right)\right)=\hat{\mathrm{F}}_{\mathrm{A}_{2}}(\mathrm{k}) \vee \hat{\mathrm{F}}_{\mathrm{B}_{1}}\left(\mathrm{l}_{1} 1_{2}\right) \\
& \leq \hat{\mathrm{F}}_{\mathrm{A}_{2}}(\mathrm{k}) \vee\left[\hat{\mathrm{F}}_{\mathrm{A}_{1}}\left(\mathrm{l}_{1}\right) \vee \hat{\mathrm{F}}_{\mathrm{A}_{1}}\left(\mathrm{l}_{2}\right)\right] \\
& =\left[\hat{\mathrm{F}}_{\mathrm{A}_{2}}(\mathrm{k}) \vee \hat{\mathrm{F}}_{\mathrm{A}_{1}}\left(\mathrm{I}_{1}\right)\right] \vee\left[\hat{\mathrm{F}}_{\mathrm{A}_{2}}(\mathrm{k}) \vee \hat{\mathrm{F}}_{\mathrm{A}_{1}}\left(\mathrm{I}_{2}\right)\right] \\
& =\hat{F}_{\left(\mathrm{A}_{1} \boxtimes A_{2}\right)}\left(\mathrm{l}_{1}, \mathrm{k}\right) \vee \hat{\mathrm{F}}_{\left(\mathrm{A}_{1} \boxtimes \mathrm{~A}_{2}\right)}\left(\mathrm{l}_{2}, \mathrm{k}\right)
\end{aligned}
$$

for all $l_{1} k, l_{2} k \in R_{1} \boxtimes R_{2}$.
Case 3: for $\mathrm{k}_{1}, \mathrm{k}_{2} \in \mathrm{~S}_{1}, \mathrm{l}_{1} \mathrm{l}_{2} \in \mathrm{~S}_{2}$

$$
\begin{aligned}
& \widehat{T}_{\left(\mathrm{B}_{1} \boxtimes \mathrm{~B}_{2}\right)}\left(\left(\mathrm{k}_{1} \mathrm{l}_{1}\right)\left(\mathrm{k}_{2} \mathrm{l}_{2}\right)\right)=\widehat{\mathrm{T}}_{\mathrm{B}_{1}}\left(\mathrm{k}_{1} \mathrm{k}_{2}\right) \wedge \widehat{\mathrm{T}}_{\mathrm{B}_{2}}\left(\mathrm{l}_{1} \mathrm{l}_{2}\right) \\
& \leq\left[\widehat{T}_{A_{1}}\left(k_{1}\right) \wedge \widehat{T}_{A_{1}}\left(\mathrm{k}_{2}\right)\right] \wedge\left[\widehat{T}_{A_{2}}\left(\mathrm{l}_{1}\right) \wedge \widehat{T}_{A_{2}}\left(\mathrm{l}_{2}\right)\right] \\
& =\left[\widehat{T}_{A_{1}}\left(\mathrm{k}_{1}\right) \wedge \widehat{\mathrm{T}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{1}\right)\right] \wedge\left[\widehat{\mathrm{T}}_{\mathrm{A}_{1}}\left(\mathrm{k}_{2}\right) \wedge \widehat{\mathrm{T}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{2}\right)\right] \\
& =\widehat{T}_{\left(A_{1} \boxtimes A_{2}\right)}\left(k_{1} l_{1}\right) \wedge \widehat{T}_{\left(A_{1} \boxtimes A_{2}\right)}\left(k_{2}, l_{2}\right) \\
& \hat{\mathrm{I}}_{\left(\mathrm{B}_{1} \boxtimes \mathrm{~B}_{2}\right)}\left(\left(\mathrm{k}_{1} \mathrm{l}_{1}\right)\left(\mathrm{k}_{2} \mathrm{l}_{2}\right)\right)=\hat{\mathrm{I}}_{\mathrm{B}_{1}}\left(\mathrm{k}_{1} \mathrm{k}_{2}\right) \wedge \hat{\mathrm{I}}_{\mathrm{B}_{2}}\left(\mathrm{l}_{1} \mathrm{l}_{2}\right) \\
& \leq\left[\hat{\mathrm{A}}_{\mathrm{A}_{1}}\left(\mathrm{k}_{1}\right) \wedge \hat{\mathrm{I}}_{\mathrm{A}_{1}}\left(\mathrm{k}_{2}\right)\right] \wedge\left[\hat{\mathrm{I}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{1}\right) \wedge \hat{\mathrm{I}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{2}\right)\right] \\
& =\left[\hat{\mathrm{I}}_{\mathrm{A}_{1}}\left(\mathrm{k}_{1}\right) \wedge \hat{\mathrm{I}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{1}\right)\right] \wedge\left[\hat{\mathrm{I}}_{\mathrm{A}_{1}}\left(\mathrm{k}_{2}\right) \wedge \hat{\mathrm{I}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{2}\right)\right] \\
& =\hat{\mathrm{I}}_{\left(\mathrm{A}_{1} \boxtimes A_{2}\right)}\left(\mathrm{k}_{1} \mathrm{l}_{1}\right) \wedge \hat{\mathrm{I}}_{\left(\mathrm{A}_{1} \boxtimes \mathrm{~A}_{2}\right)}\left(\mathrm{k}_{2}, \mathrm{l}_{2}\right) \\
& \hat{\mathrm{F}}_{\left(\mathrm{B}_{1} \boxtimes \mathrm{~B}_{2}\right)}\left(\left(\mathrm{k}_{1} \mathrm{l}_{1}\right)\left(\mathrm{k}_{2} \mathrm{l}_{2}\right)\right)=\hat{\mathrm{F}}_{\mathrm{B}_{1}}\left(\mathrm{k}_{1} \mathrm{k}_{2}\right) \vee \hat{\mathrm{F}}_{\mathrm{B}_{2}}\left(\mathrm{l}_{1} \mathrm{l}_{2}\right) \\
& \leq\left[\hat{\mathrm{F}}_{\mathrm{A}_{1}}\left(\mathrm{k}_{1}\right) \vee \hat{\mathrm{F}}_{\mathrm{A}_{1}}\left(\mathrm{k}_{2}\right)\right] \vee\left[\hat{\mathrm{F}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{1}\right) \vee \hat{\mathrm{F}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{2}\right)\right] \\
& =\left[\hat{\mathrm{F}}_{\mathrm{A}_{1}}\left(\mathrm{k}_{1}\right) \vee \hat{\mathrm{F}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{1}\right)\right] \vee\left[\hat{\mathrm{F}}_{\mathrm{A}_{1}}\left(\mathrm{k}_{2}\right) \vee \hat{\mathrm{F}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{2}\right)\right] \\
& =\hat{\mathrm{F}}_{\left(\mathrm{A}_{1} \boxtimes A_{2}\right)}\left(\mathrm{k}_{1} \mathrm{l}_{1}\right) \vee \hat{\mathrm{F}}_{\left(\mathrm{A}_{1} \boxtimes \mathrm{~A}_{2}\right)}\left(\mathrm{k}_{2}, \mathrm{l}_{2}\right) \text {, }
\end{aligned}
$$

for all $l_{1} k_{1}, l_{2} k_{1} \in R_{1} \boxtimes R_{2}$.
Definition 3.13 The composition of two NVG G_{1} and G_{2} is denoted by the pair $G_{1} \circ G_{2}=\left(R_{1} \boxtimes\right.$ $\mathrm{R}_{2}, \mathrm{~S}_{1} \circ \mathrm{~S}_{2}$) and defined as

$$
\begin{aligned}
& \text { (i) } \mathrm{T}_{\left(A_{1} \circ A_{2}\right)}^{-}(\mathrm{kl})=\mathrm{T}_{\mathrm{A}_{1}}^{-}(\mathrm{k}) \wedge \mathrm{T}_{\mathrm{A}_{2}}^{-}(\mathrm{l}) \\
& \mathrm{I}_{\left(\mathrm{A}_{1}{ }^{-} \mathrm{A}_{2}\right)}^{-}(\mathrm{kl})=\mathrm{I}_{\mathrm{A}_{1}}^{-}(\mathrm{k}) \wedge \mathrm{I}_{\mathrm{A}_{2}}^{-}(\mathrm{l}) \\
& \mathrm{F}_{\left(\mathrm{A}_{1} \mathrm{~A}_{2}\right)}^{-}(\mathrm{kl})=\mathrm{F}_{\mathrm{A}_{1}}^{-}(\mathrm{k}) \vee \mathrm{F}_{\mathrm{A}_{2}}^{-}(\mathrm{l}) \\
& \mathrm{T}_{\left(\mathrm{A}_{1}{ }^{\circ} \mathrm{A}_{2}\right)}^{+}(\mathrm{kl})=\mathrm{T}_{\mathrm{A}_{1}}^{+}(\mathrm{k}) \wedge \mathrm{T}_{\mathrm{A}_{2}}^{+}(\mathrm{l}) \\
& \mathrm{I}_{\left(\mathrm{A}_{1}{ }^{\circ} \mathrm{A}_{2}\right)}^{+}(\mathrm{kl})=\mathrm{I}_{\mathrm{A}_{1}}^{+}(\mathrm{k}) \wedge \mathrm{I}_{\mathrm{A}_{2}}^{+}(\mathrm{l}) \\
& \mathrm{F}_{\left(\mathrm{A}_{1} \circ \mathrm{~A}_{2}\right)}^{+}(\mathrm{kl})=\mathrm{F}_{\mathrm{A}_{1}}^{+}(\mathrm{k}) \vee \mathrm{F}_{\mathrm{A}_{2}}^{+}(\mathrm{l})
\end{aligned}
$$

for all $\mathrm{kl} \in \mathrm{R}_{1} \circ \mathrm{R}_{2}$.

$$
\text { (ii) } \mathrm{T}_{\left(\mathrm{B}_{1} \circ \mathrm{~B}_{2}\right)}\left(\mathrm{kl}_{1}\right)\left(\mathrm{kl}_{2}\right)=\mathrm{T}_{\mathrm{A}_{1}}^{-}(\mathrm{k}) \wedge \mathrm{T}_{\mathrm{B}_{2}}^{-}\left(\mathrm{l}_{1} \mathrm{l}_{2}\right)
$$

$$
\begin{gathered}
\mathrm{I}_{\left(\mathrm{B}_{1} \circ \mathrm{~B}_{2}\right)}^{-}\left(\mathrm{kl}_{1}\right)\left(\mathrm{kl}_{2}\right)=\mathrm{I}_{\mathrm{A}_{1}}^{-}(\mathrm{k}) \wedge \mathrm{I}_{\mathrm{B}_{2}}^{-}\left(\mathrm{l}_{1} \mathrm{l}_{2}\right) \\
\mathrm{F}_{\left(\mathrm{B}_{1} \circ \mathrm{~B}_{2}\right)}^{-}\left(\mathrm{kl}_{1}\right)\left(\mathrm{kl}_{2}\right)=\mathrm{F}_{\mathrm{A}_{1}}^{-}(\mathrm{k}) \vee \mathrm{F}_{\mathrm{B}_{2}}^{-}\left(\mathrm{l}_{1} \mathrm{l}_{2}\right) \\
\mathrm{T}_{\left(\mathrm{B}_{1} \circ \mathrm{~B}_{2}\right)}\left(\mathrm{kl}_{1}\right)\left(\mathrm{kl}_{2}\right)=\mathrm{T}_{\mathrm{A}_{1}}^{+}(\mathrm{k}) \wedge \mathrm{T}_{\mathrm{B}_{2}}\left(\mathrm{l}_{1} \mathrm{l}_{2}\right) \\
\mathrm{I}_{\left(\mathrm{B}_{1} \circ \mathrm{~B}_{2}\right)}\left(\mathrm{kl}_{1}\right)\left(\mathrm{kl}_{2}\right)=\mathrm{I}_{\mathrm{A}_{1}}^{+}(\mathrm{k}) \wedge \mathrm{I}_{\mathrm{B}_{2}}^{\left(\mathrm{l}_{1} \mathrm{l}_{2}\right)} \\
\mathrm{F}_{\left(\mathrm{B}_{1} \circ \mathrm{~B}_{2}\right)}\left(\mathrm{kl}_{1}\right)\left(\mathrm{kl}_{2}\right)=\mathrm{F}_{\mathrm{A}_{1}}^{+}(\mathrm{k}) \vee \mathrm{F}_{\mathrm{B}_{2}}^{+}\left(\mathrm{l}_{1} \mathrm{l}_{2}\right),
\end{gathered}
$$

for all $k \in R_{1}, l_{1} l_{2} \in S_{2}$.

$$
\begin{gathered}
(\text { iii }) \mathrm{T}_{\mathrm{B}_{1} \circ \mathrm{~B}_{2}}^{-}\left(\mathrm{k}_{1} \mathrm{l}\right)\left(\mathrm{k}_{2} \mathrm{l}\right)=\mathrm{T}_{\mathrm{A}_{2}}^{-}(\mathrm{l}) \wedge \mathrm{T}_{\mathrm{B}_{2}}^{-}\left(\mathrm{k}_{1} \mathrm{k}_{2}\right) \\
\mathrm{I}_{\mathrm{B}_{1} \circ \mathrm{~B}_{2}}\left(\mathrm{k}_{1}, \mathrm{l}\right)\left(\mathrm{k}_{2}, \mathrm{l}\right)=\mathrm{I}_{\mathrm{A}_{2}}^{-}(\mathrm{l}) \wedge \mathrm{I}_{\mathrm{B}_{2}}^{-}\left(\mathrm{k}_{1} \mathrm{k}_{2}\right) \\
\mathrm{F}_{\mathrm{B}_{1} \circ \mathrm{~B}_{2}}^{-}\left(\mathrm{k}_{1}, \mathrm{l}\right)\left(\mathrm{k}_{2}, \mathrm{l}\right)=\mathrm{F}_{\mathrm{A}_{2}}^{-}(\mathrm{l}) \vee \mathrm{F}_{\mathrm{B}_{2}}^{-}\left(\mathrm{k}_{1} \mathrm{k}_{2}\right) \\
\mathrm{T}_{\mathrm{B}_{1} \circ \mathrm{~B}_{2}}^{-}\left(\mathrm{k}_{1}, \mathrm{l}\right)\left(\mathrm{k}_{2}, \mathrm{l}\right)=\mathrm{T}_{\mathrm{A}_{2}}^{+}(\mathrm{l}) \wedge \mathrm{T}_{\mathrm{B}_{2}}^{+}\left(\mathrm{k}_{1} \mathrm{k}_{2}\right) \\
\mathrm{I}_{\mathrm{B}_{1} \circ \mathrm{~B}_{2}}\left(\mathrm{k}_{1}, \mathrm{l}\right)\left(\mathrm{k}_{2}, \mathrm{l}\right)=\mathrm{I}_{\mathrm{A}_{2}}^{+}(\mathrm{l}) \wedge \mathrm{I}_{\mathrm{B}_{2}}\left(\mathrm{k}_{1} \mathrm{k}_{2}\right) \\
\mathrm{F}_{\mathrm{B}_{1} \circ{ }^{\circ} \mathrm{B}_{2}}\left(\mathrm{k}_{1}, \mathrm{l}\right)\left(\mathrm{k}_{2}, \mathrm{l}\right)=\mathrm{F}_{\mathrm{A}_{2}}^{+}(\mathrm{l}) \vee \mathrm{F}_{\mathrm{B}_{2}}^{+}\left(\mathrm{k}_{1} \mathrm{k}_{2}\right),
\end{gathered}
$$

for all $k_{1} k_{2} \in S_{1}, l \in R_{2}$.

$$
\begin{aligned}
& \text { (iv) } \mathrm{T}_{\left(\mathrm{B}_{1} \circ \mathrm{~B}_{2}\right)}^{-}\left(\mathrm{k}_{1} \mathrm{l}_{1}\right)\left(\mathrm{k}_{2} \mathrm{l}_{2}\right)=\mathrm{T}_{\mathrm{B}_{1}}^{-}\left(\mathrm{k}_{1} \mathrm{k}_{2}\right) \wedge \mathrm{T}_{\mathrm{A}_{2}}^{-}\left(\mathrm{l}_{1}\right) \wedge \mathrm{T}_{\mathrm{A}_{2}}^{-}\left(\mathrm{l}_{2}\right) \\
& \mathrm{I}_{\left(\mathrm{B}_{1} \circ \mathrm{~B}_{2}\right)}\left(\mathrm{k}_{1} \mathrm{l}_{1}\right)\left(\mathrm{k}_{2} \mathrm{l}_{2}\right)=\mathrm{I}_{\mathrm{B}_{1}}^{-}\left(\mathrm{k}_{1} \mathrm{k}_{2}\right) \wedge \mathrm{I}_{\mathrm{A}_{2}}^{-}\left(\mathrm{l}_{1}\right) \wedge \mathrm{I}_{\mathrm{A}_{2}}^{-}\left(\mathrm{l}_{2}\right) \\
& \mathrm{F}_{\left(\mathrm{B}_{1} \circ \mathrm{~B}_{2}\right)}\left(\mathrm{k}_{1} \mathrm{l}_{1}\right)\left(\mathrm{k}_{2} \mathrm{l}_{2}\right)=\mathrm{F}_{\mathrm{B}_{1}}^{-}\left(\mathrm{k}_{1} \mathrm{k}_{2}\right) \vee \mathrm{F}_{\mathrm{A}_{2}}^{-}\left(\mathrm{l}_{1}\right) \vee \mathrm{F}_{\mathrm{A}_{2}}^{-}\left(\mathrm{l}_{2}\right) \\
& \mathrm{T}_{\left(\mathrm{B}_{1} \circ \mathrm{~B}_{2}\right)}\left(\mathrm{k}_{1} \mathrm{l}_{1}\right)\left(\mathrm{k}_{2} \mathrm{l}_{2}\right)=\mathrm{T}_{\mathrm{B}_{1}}^{-}\left(\mathrm{k}_{1} \mathrm{k}_{2}\right) \wedge \mathrm{T}_{\mathrm{A}_{2}}^{+}\left(\mathrm{l}_{1}\right) \wedge \mathrm{T}_{\mathrm{A}_{2}}^{+}\left(\mathrm{l}_{2}\right) \\
& \mathrm{I}_{\left(\mathrm{B}_{1} \circ \mathrm{~B}_{2}\right)}\left(\mathrm{k}_{1} \mathrm{l}_{1}\right)\left(\mathrm{k}_{2} \mathrm{l}_{2}\right)=\mathrm{I}_{\mathrm{B}_{1}}^{\left(\mathrm{k}_{1} \mathrm{k}_{2}\right) \wedge \mathrm{I}_{\mathrm{A}_{2}}^{+}\left(\mathrm{l}_{1}\right) \wedge \mathrm{I}_{\mathrm{A}_{2}}^{+}\left(\mathrm{l}_{2}\right)} \\
& \mathrm{F}_{\left(\mathrm{B}_{1} \circ \circ_{2}\right)}^{+}\left(\mathrm{k}_{1} \mathrm{l}_{1}\right)\left(\mathrm{k}_{2} \mathrm{l}_{2}=\mathrm{F}_{\mathrm{B}_{1}}^{+}\left(\mathrm{k}_{1} \mathrm{k}_{2}\right) \vee \mathrm{F}_{\mathrm{A}_{2}}^{+}\left(\mathrm{l}_{1}\right) \vee \mathrm{F}_{\mathrm{A}_{2}}^{+}\left(\mathrm{l}_{2}\right),\right.
\end{aligned}
$$

for all $k_{1} k_{2} \in S_{1}, l_{1} l_{2} \in S_{2}$.
Example 3.14 The composition of NVG $G_{1}=\left(R_{1}, S_{1}\right)$ and $G_{2}=\left(R_{2}, S_{2}\right)$ shown in Figure 2 is defined as $G_{1} \circ G_{2}=\left(R_{1} \circ R_{2}, S_{1} \circ S_{2}\right)$ and is presented in Figure 7.

Figure 7: COMPOSITION OF NEUTROSOPHIC VAGUE GRAPH
Theorem 3.15 Composition $G_{1} \circ G_{2}=\left(R_{1} \circ R_{2}, S_{1} \circ S_{2}\right)$ of two NVG G_{1} and G_{2} is the NVG of $G_{1} \circ$ G_{2}.
Proof. We divide the proof into three cases:
Case: 1 For $k \in R_{1}, l_{1} l_{2} \in S_{2}$,

$$
\begin{aligned}
\widehat{\mathrm{T}}_{\left(\mathrm{B}_{1} \circ \mathrm{~B}_{2}\right)}\left(\left(\mathrm{kl}_{1}\right)\left(\mathrm{kl}_{2}\right)\right) & =\widehat{\mathrm{T}}_{\mathrm{A}_{1}}(\mathrm{k}) \wedge \widehat{\mathrm{T}}_{\mathrm{B}_{2}}\left(\mathrm{l}_{1} \mathrm{l}_{2}\right) \\
& \leq \widehat{\mathrm{T}}_{\mathrm{A}_{1}}(\mathrm{k}) \wedge\left[\widehat{\mathrm{T}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{1}\right) \wedge \widehat{\mathrm{T}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{2}\right)\right] \\
& =\left[\widehat{\mathrm{T}}_{\mathrm{A}_{1}}(\mathrm{k}) \wedge \widehat{\mathrm{T}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{1}\right)\right] \wedge\left[\widehat{\mathrm{T}}_{\mathrm{A}_{1}}(\mathrm{k}) \wedge \widehat{\mathrm{T}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{2}\right)\right] \\
& =\widehat{\mathrm{T}}_{\left(\mathrm{A}_{1} \circ \mathrm{~A}_{2}\right)}\left(\mathrm{k}, \mathrm{l}_{1}\right) \wedge \widehat{\mathrm{T}}_{\left(\mathrm{A}_{1} \circ \mathrm{~A}_{2}\right)}\left(\mathrm{k}, \mathrm{l}_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
\hat{\mathrm{I}}_{\left(\mathrm{B}_{1} \circ \mathrm{~B}_{2}\right)}\left(\left(\mathrm{kl}_{1}\right)\left(\mathrm{kl}_{2}\right)\right) & =\hat{\mathrm{I}}_{\mathrm{A}_{1}}(\mathrm{k}) \wedge \hat{\mathrm{I}}_{\mathrm{B}_{2}}\left(\mathrm{l}_{1} \mathrm{l}_{2}\right) \\
& \leq \hat{\mathrm{I}}_{\mathrm{A}_{1}}(\mathrm{k}) \wedge\left[\hat{\mathrm{I}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{1}\right) \wedge \hat{\mathrm{I}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{2}\right)\right] \\
& =\left[\hat{\mathrm{I}}_{\mathrm{A}_{1}}(\mathrm{k}) \wedge \hat{\mathrm{I}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{1}\right)\right] \wedge\left[\hat{\mathrm{I}}_{\mathrm{A}_{1}}(\mathrm{k}) \wedge \hat{\mathrm{I}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{2}\right)\right] \\
& =\hat{\mathrm{I}}_{\left(\mathrm{A}_{1} \circ \mathrm{~A}_{2}\right)}\left(\mathrm{k}, \mathrm{l}_{1}\right) \wedge \hat{\mathrm{I}}_{\left(\mathrm{A}_{1} \circ \mathrm{~A}_{2}\right)}\left(\mathrm{k}, \mathrm{l}_{2}\right)
\end{aligned}
$$

$$
\hat{\mathrm{F}}_{\left(\mathrm{B}_{1} \circ \mathrm{~B}_{2}\right)}\left(\left(\mathrm{kl}_{1}\right)\left(\mathrm{kl}_{2}\right)\right)=\hat{\mathrm{F}}_{\mathrm{A}_{1}}(\mathrm{k}) \vee \hat{\mathrm{F}}_{\mathrm{B}_{2}}\left(\mathrm{l}_{1} \mathrm{l}_{2}\right)
$$

$$
\leq \hat{\mathrm{F}}_{\mathrm{A}_{1}}(\mathrm{k}) \vee\left[\hat{\mathrm{F}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{1}\right) \vee \hat{\mathrm{F}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{2}\right)\right]
$$

$$
=\left[\hat{\mathrm{F}}_{\mathrm{A}_{1}}(\mathrm{k}) \vee \hat{\mathrm{F}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{1}\right)\right] \vee\left[\hat{\mathrm{F}}_{\mathrm{A}_{1}}(\mathrm{k}) \vee \hat{\mathrm{F}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{2}\right)\right]
$$

$$
=\hat{\mathrm{F}}_{\left(\mathrm{A}_{1} \circ \mathrm{~A}_{2}\right)}\left(\mathrm{k}, \mathrm{l}_{1}\right) \vee \hat{\mathrm{F}}_{\left(\mathrm{A}_{1} \circ \mathrm{~A}_{2}\right)}\left(\mathrm{k}, \mathrm{l}_{2}\right)
$$

for all $\mathrm{kl}_{1}, \mathrm{kl}_{2} \in \mathrm{R}_{1} \circ \mathrm{R}_{2}$.
Case 2: for $k \in R_{2}, l_{1} l_{2} \in S_{1}$,

$$
\begin{aligned}
\widehat{\mathrm{T}}_{\left(\mathrm{B}_{1} \circ \mathrm{~B}_{2}\right)}\left(\left(\mathrm{l}_{1} \mathrm{k}\right)\left(\mathrm{l}_{2} \mathrm{k}\right)\right) & =\widehat{\mathrm{T}}_{\mathrm{A}_{2}}(\mathrm{k}) \wedge \widehat{\mathrm{T}}_{\mathrm{B}_{1}}\left(\mathrm{l}_{1} \mathrm{l}_{2}\right) \\
& \leq \widehat{\mathrm{T}}_{\mathrm{A}_{2}}(\mathrm{k}) \wedge\left[\widehat{\mathrm{T}}_{\mathrm{A}_{1}}\left(\mathrm{l}_{1}\right) \wedge \widehat{\mathrm{T}}_{\mathrm{A}_{1}}\left(\mathrm{l}_{2}\right)\right] \\
& =\left[\widehat{\mathrm{T}}_{\mathrm{A}_{2}}(\mathrm{k}) \wedge \widehat{\mathrm{T}}_{\mathrm{A}_{1}}\left(\mathrm{l}_{1}\right)\right] \wedge\left[\widehat{\mathrm{T}}_{\mathrm{A}_{2}}(\mathrm{k}) \wedge \widehat{\mathrm{T}}_{\mathrm{A}_{1}}\left(\mathrm{l}_{2}\right)\right] \\
& =\widehat{\mathrm{T}}_{\left(\mathrm{A}_{1} \circ \mathrm{~A}_{2}\right)}\left(\mathrm{l}_{1}, \mathrm{k}\right) \wedge \widehat{\mathrm{T}}_{\left(\mathrm{A}_{1} \circ \mathrm{~A}_{2}\right)}\left(l_{2}, \mathrm{k}\right)
\end{aligned}
$$

$$
\begin{aligned}
\hat{\mathrm{I}}_{\left(\mathrm{B}_{1} \circ \mathrm{~B}_{2}\right)}\left(\left(\mathrm{l}_{1} \mathrm{k}\right)\left(\mathrm{l}_{2} \mathrm{k}\right)\right) & =\hat{\mathrm{I}}_{\mathrm{A}_{2}}(\mathrm{k}) \wedge \hat{\mathrm{I}}_{\mathrm{B}_{1}}\left(\mathrm{l}_{1} \mathrm{l}_{2}\right) \\
& \leq \hat{\mathrm{I}}_{\mathrm{A}_{2}}(\mathrm{k}) \wedge\left[\hat{\mathrm{I}}_{\mathrm{A}_{1}}\left(\mathrm{l}_{1}\right) \wedge \hat{\mathrm{I}}_{\mathrm{A}_{1}}\left(\mathrm{l}_{2}\right)\right] \\
& =\left[\hat{\mathrm{I}}_{\mathrm{A}_{2}}(\mathrm{k}) \wedge \hat{\mathrm{I}}_{\mathrm{A}_{1}}\left(\mathrm{l}_{1}\right)\right] \wedge\left[\mathrm{I}_{\mathrm{A}_{2}}(\mathrm{k}) \wedge \hat{\mathrm{I}}_{\mathrm{A}_{1}}\left(\mathrm{l}_{2}\right)\right] \\
& =\hat{\mathrm{I}}_{\left(\mathrm{A}_{1} \circ A_{2}\right)}\left(\mathrm{l}_{1}, \mathrm{k}\right) \wedge \hat{\mathrm{I}}_{\left(\mathrm{A}_{1} \circ A_{2}\right)}\left(\mathrm{l}_{2}, \mathrm{k}\right) \\
\hat{\mathrm{F}}_{\left(\mathrm{B}_{1} \circ \mathrm{~B}_{2}\right)}\left(\left(\mathrm{l}_{1} \mathrm{k}\right)\left(\mathrm{l}_{2} \mathrm{k}\right)\right) & =\hat{\mathrm{F}}_{\mathrm{A}_{2}}(\mathrm{k}) \vee \hat{\mathrm{F}}_{\mathrm{B}_{1}}\left(\mathrm{l}_{1} \mathrm{l}_{2}\right) \\
& \leq \hat{\mathrm{F}}_{\mathrm{A}_{2}}(\mathrm{k}) \vee\left[\hat{\mathrm{F}}_{\mathrm{A}_{1}}\left(\mathrm{l}_{1}\right) \vee \hat{\mathrm{F}}_{\mathrm{A}_{1}}\left(\mathrm{l}_{2}\right)\right] \\
& =\left[\hat{\mathrm{F}}_{\mathrm{A}_{2}}(\mathrm{k}) \vee \hat{\mathrm{F}}_{\mathrm{A}_{1}}\left(\mathrm{l}_{1}\right)\right] \vee\left[\hat{\mathrm{F}}_{\mathrm{A}_{2}}(\mathrm{k}) \vee \hat{\mathrm{F}}_{\mathrm{A}_{1}}\left(\mathrm{l}_{2}\right)\right] \\
& =\hat{\mathrm{F}}_{\left(\mathrm{A}_{1}{ }_{2} A_{2}\right)}\left(\mathrm{l}_{1}, \mathrm{k}\right) \vee \hat{\mathrm{F}}_{\left(\mathrm{A}_{1} \circ A_{2}\right)}\left(\mathrm{l}_{2}, \mathrm{k}\right), \text { for all } \mathrm{l}_{1} \mathrm{k}, \mathrm{l}_{2} \mathrm{k} \in \mathrm{R}_{1} \circ \mathrm{R}_{2} .
\end{aligned}
$$

Case 3: For $k_{1} k_{2} \in S_{1}, l_{1}, l_{2} \in R_{2}$ such that $l_{1} \neq l_{2}$,

$$
\begin{aligned}
\widehat{\mathrm{T}}_{\left(\mathrm{B}_{1} \circ \mathrm{~B}_{2}\right)}\left(\left(\mathrm{k}_{1} \mathrm{l}_{1}\right)\left(\mathrm{k}_{2} \mathrm{l}_{2}\right)\right) & =\widehat{\mathrm{T}}_{\mathrm{B}_{1}}\left(\mathrm{k}_{1}, \mathrm{k}_{2}\right) \wedge \widehat{\mathrm{T}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{1}\right) \wedge \widehat{\mathrm{T}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{2}\right) \\
& \leq\left[\widehat{T}_{\mathrm{A}_{1}}\left(\mathrm{k}_{1}\right) \wedge \widehat{\mathrm{T}}_{\mathrm{A}_{1}}\left(\mathrm{k}_{2}\right)\right] \wedge\left[\widehat{T}_{\mathrm{A}_{2}}\left(\mathrm{l}_{1}\right) \wedge \widehat{\mathrm{T}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{2}\right)\right] \\
& =\left[\widehat{\mathrm{T}}_{\mathrm{A}_{1}}\left(\mathrm{k}_{1}\right) \wedge \widehat{\mathrm{T}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{1}\right)\right] \wedge\left[\widehat{\mathrm{T}}_{\mathrm{A}_{1}}\left(\mathrm{k}_{2}\right) \wedge \widehat{\mathrm{T}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{2}\right)\right] \\
& =\widehat{\mathrm{T}}_{\left(\mathrm{A}_{1} \circ A_{2}\right)}\left(\mathrm{k}_{1} \mathrm{l}_{1}\right) \wedge \widehat{\mathrm{T}}_{\left(\mathrm{A}_{1}{ }_{1} \mathrm{~A}_{2}\right)}\left(\mathrm{k}_{2} \mathrm{l}_{2}\right)
\end{aligned}
$$

$$
\hat{\mathrm{I}}_{\left(\mathrm{B}_{1}{ }^{\circ} \mathrm{B}_{2}\right)}\left(\left(\mathrm{k}_{1} \mathrm{l}_{1}\right)\left(\mathrm{k}_{2} \mathrm{l}_{2}\right)\right)=\hat{\mathrm{I}}_{\mathrm{B}_{1}}\left(\mathrm{k}_{1}, \mathrm{k}_{2}\right) \wedge \hat{\mathrm{I}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{1}\right) \wedge \hat{\mathrm{I}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{2}\right)
$$

$$
\leq\left[\hat{\mathrm{I}}_{\mathrm{A}_{1}}\left(\mathrm{k}_{1}\right) \wedge \hat{\mathrm{I}}_{\mathrm{A}_{1}}\left(\mathrm{k}_{2}\right)\right] \wedge\left[\hat{\mathrm{I}}_{2}\left(\mathrm{l}_{1}\right) \wedge \hat{\mathrm{I}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{2}\right)\right]
$$

$$
=\left[\hat{\mathrm{I}}_{\mathrm{A}_{1}}\left(\mathrm{k}_{1}\right) \wedge \hat{\mathrm{I}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{1}\right)\right] \wedge\left[\hat{\mathrm{I}}_{\mathrm{A}_{1}}\left(\mathrm{k}_{2}\right) \wedge \hat{\mathrm{I}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{2}\right)\right]
$$

$$
=\hat{\mathrm{I}}_{\left(\mathrm{A}_{1} \circ A_{2}\right)}\left(\mathrm{k}_{1} \mathrm{l}_{1}\right) \wedge \hat{\mathrm{I}}_{\left(\mathrm{A}_{1} \circ A_{2}\right)}\left(\mathrm{k}_{2} \mathrm{l}_{2}\right)
$$

$$
\hat{\mathrm{F}}_{\left(\mathrm{B}_{1} \circ \mathrm{~B}_{2}\right)}\left(\left(\mathrm{k}_{1} \mathrm{l}_{1}\right)\left(\mathrm{k}_{2} \mathrm{l}_{2}\right)\right)=\hat{\mathrm{F}}_{\mathrm{B}_{1}}\left(\mathrm{k}_{1}, \mathrm{k}_{2}\right) \vee \hat{\mathrm{F}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{1}\right) \vee \hat{\mathrm{F}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{2}\right)
$$

$$
\leq\left[\hat{\mathrm{F}}_{\mathrm{A}_{1}}\left(\mathrm{k}_{1}\right) \vee \hat{\mathrm{F}}_{\mathrm{A}_{1}}\left(\mathrm{k}_{2}\right)\right] \vee\left[\hat{\mathrm{F}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{1}\right) \vee \hat{\mathrm{F}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{2}\right)\right]
$$

$$
=\left[\hat{\mathrm{F}}_{\mathrm{A}_{1}}\left(\mathrm{k}_{1}\right) \vee \hat{\mathrm{F}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{1}\right)\right] \vee\left[\hat{\mathrm{F}}_{\mathrm{A}_{1}}\left(\mathrm{k}_{2}\right) \vee \hat{\mathrm{F}}_{\mathrm{A}_{2}}\left(\mathrm{l}_{2}\right)\right]
$$

$$
=\hat{\mathrm{F}}_{\left(\mathrm{A}_{1} \circ A_{2}\right)}\left(\mathrm{k}_{1} \mathrm{l}_{1}\right) \vee \hat{\mathrm{F}}_{\left(\mathrm{A}_{1} \circ A_{2}\right)}\left(\mathrm{k}_{2} \mathrm{l}_{2}\right), \text { for all } \mathrm{k}_{1} 1_{1}, \mathrm{k}_{2} \mathrm{l}_{2} \in \mathrm{R}_{1} \circ \mathrm{R}_{2} .
$$

Conclusion

Graph theory is an extremely useful tool in studying and modeling several applications in computer science, engineering, genetics, decision-making, economics, etc. An extension of intuitionistic fuzzy graph is regarded as a single-valued neutrosophic graph which is very useful to formulate the appropriate real life situation. In this research article, the operations on neutrosophic vague graphs have been established. Moreover, Cartesian product, lexicographic product, cross product, strong product and composition of neutrosophic vague graph have been investigated and the given concepts are demonstrated through examples. Furthermore, in future, we are able to investigate the domination number and isomorphic properties of the NVGs.

References

[1] Abdel-Basset M., Mohamed R., Zaied A. E. N. H and Smarandache F, A hybrid plithogenic decision-making approach with quality function deployment for selecting supply chain sustainability metrics. Symmetry, 11(7) (2019), 903.
[2] Abdel-Basset M., Manogaran G., Gamal A and Smarandache F, A group decision making framework based on neutrosophic TOPSIS approach for smart medical device selection. Journal of medical systems, 43(2) (2019), 38.
[3] Abdel-Basset M., Atef A and Smarandache F, A hybrid Neutrosophic multiple criteria group decision making approach for project selection. Cognitive Systems Research, 57 (2019), 216-227.
[4] Abdel-Basset M et al, Solving the supply chain problem using the best-worst method based on a novel Plithogenic model, Optimization Theory Based on Neutrosophic and Plithogenic Sets. Academic Press, 2020. 1-19.
[5] Abdel-Basset M and Mohamed R. A, novel plithogenic TOPSIS-CRITIC model for sustainable supply chain risk management., Journal of Cleaner Production, 247(2020), 119586.
[6] Akram M and Shahzadi G, Operations on single-valued neutrosophic graphs, Journal of Uncertain Systems, 11(1) (2017), 1-26.
[7] Al-Quran A and Hassan N, Neutrosophic vague soft expert set theory, Journal of Intelligent \& Fuzzy Systems, 30(6) (2016), 3691-3702.
[8] Ali M and Smarandache F, Complex neutrosophic set, Neural Computing and Applications, 28 (7) (2017), 1817-1834.
[9] Ali M Deli I and Smarandache F, The theory of neutrosophic cubic sets and their applications in pattern recognition. Journal of Intelligent and Fuzzy Systems, 30(4) (2016), 1957-1963.
[10] Akram M, Malik H.M, Shahzadi S and Smarandache F, Neutrosophic Soft Rough Graphs with Application. Axioms 7(1)4(2018).
[11] Alkhazaleh S, Neutrosophic vague set theory, Critical Review, 10 (2015), 29-39.
[12] Borzooei A R and Rashmanlou H, Degree of vertices in vague graphs, Journal of Applied Mathematics and Informatics, 33(2015), 545-557.
[13] Borzooei A R and Rashmanlou H, Domination in vague graphs and its applications, Journal of Intelligent \& Fuzzy Systems 29(2015), 1933-1940.
[14] Borzooei A R, Rashmanlou H, Samanta S and Pal M, Regularity of vague graphs, Journal of Intelligent \& Fuzzy Systems, 30(2016), 3681-3689.
[15] Broumi S, Deli I and Smarandache F, Neutrosophic refined relations and their properties: Neutrosophic Theory and Its Applications. Collected Papers, (1) (2014), 228-248.
[16] Broumi S and Smarandache F, Intuitionistic neutrosophic soft set, Journal of Information and Computer Science, 8(2) (2013), 130-140.
[17] Broumi S, Smarandache F, Talea M and Bakali, Single-valued neutrosophic graphs: Degree, Order and Size, 2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 2016.
[18] Broumi S, Mohamed T, Assia B and Smarandache F, Single-valued neutrosophic graphs, The Journal of New Theory, 2016(10), 861-101.
[19] Darabian E, Borzooei R. A, Rashmanlou H and Azadi, M. New concepts of regular and (highly) irregular vague graphs with applications, Fuzzy Information and Engineering, 9(2) (2017), 161-179.
[20] Deli I and Broumi S, Neutrosophic soft relations and some properties, Annals of Fuzzy Mathematics and Informatics, 9(1) (2014), 169-182.
[21] Deli I., npn-Soft Sets Theory and Applications, Annals of Fuzzy Mathematics and Informatics, 10/6 (2015) 847-862.
[22] Dhavaseelan R, Vikramaprasad R and Krishnaraj V, Certain types of neutrosophic graphs, International Journal of Mathematical Sciences and Applications, 5(2)(2015), 333-339.
[23] Dhavaseelan R, Jafari S, Farahani M. R and Broumi S, On single-valued co-neutrosophic graphs, Neutrosophic Sets and Systems, An International Book Series in Information Science and Engineering, 22, 2018.
[24] Molodtsov D, Soft set theory-first results, Computers and Mathematics with Applications, 37(2) (1999), 19-31.
[25] Mordeson J. N., and Nair P. S, Fuzzy graphs and fuzzy hypergraphs. Physica (Vol. 46)(2012).
[26] Hussain S. S, Hussain R. J, Jun Y. B and Smarandache F, Neutrosophic bipolar vague set and its application to neutrosophic bipolar vague graphs. Neutrosophic Sets and Systems, 28 (2019), 69-86.
[27] Hussain S. S, Hussain R. J and Smarandache F, On neutrosophic vague graphs, Neutrosophic Sets and Systems, 28 (2019), 245-258.
[28] Hussain S. S, Broumi S, Jun Y. B and Durga N, Intuitionistic bipolar neutrosophic set and its application to intuitionistic bipolar neutrosophic graphs, Annals of Communication in Mathematics, 2 (2) (2019), 121-140.
[29] Hussain, S. S., Hussain, R. J., and Smarandache F, Domination Number in Neutrosophic Soft Graphs, Neutrosophic Sets and Systems, 28(1) (2019), 228-244.
[30] Hussain R. J, Hussain S. S, Sahoo S, Pal M, Pal A, Domination and Product Domination in Intuitionistic Fuzzy Soft Graphs, International Journal of Advanced Intelligence Paradigms, 2020 (In Press), DOI:10.1504/IJAIP.2019.10022975.
[31] Smarandache F, A Unifying Field in Logics. Neutrosophy: Neutrosophic Probability, Set and Logic. Rehoboth: American Research Press, 1999.
[32] Smarandache F, Neutrosophy, Neutrosophic Probability, Set, and Logic, Amer../ Res. Press, Rehoboth, USA, 105 pages, (1998) http://fs.gallup.unm.edu/eBookneutrosophics4.pdf(4th edition).
[33] Smarandache F, Neutrosophic Graphs, in his book Symbolic Neutrosophic Theory, Europa, Nova. (2015)
[34] Smarandache F, Neutrosophic set, a generalisation of the intuitionistic fuzzy sets, International Journal of Pure and Applied Mathematics, 24, (2010), 289-297.
[35] Wang H, Smarandache F, Zhang Y and Sunderraman R, Single-valued neutrosophic sets, Multispace and Multistructure, 4 (2010), 410-413.
[36] Gau W. L, Buehrer D. J, Vague sets, IEEE Transactions on Systems. Man and Cybernetics, 23 (2) (1993), 610-614.

Received: Apr 10, 2020. Accepted: July 22020

Partner selection in Virtual enterprises using the Interval Neutrosophic fuzzy approach

Hanieh Shambayati ${ }^{1}$, Mohsen Shafiei Nikabadi ${ }^{*, 2}$, Seyed Mohammad Ali Khatami Firouzabadi ${ }^{3}$ and Mohammad Rahmanimanesh ${ }^{4}$
1 Ph.D. candidate in Industrial Management, Faculty of Economics, Management and Administrative Sciences, Semnan University, IRAN. h.shambayati@semnan.ac.ir
2 Associate Professor, Faculty of Economic, Management and Administrative Sciences, Semnan University, IRAN. shafiei@semnan.ac.ir
${ }^{3}$. Professor, Dept. of Industrial Management, Faculty of Management and Accounting, Allameh Tabataba'i University, Tehran, IRAN. a.khatami@atu.ac.ir
4. Assistant Professor, Electrical \& Computer Engineering Faculty, Semnan University, IRAN. rahmanimanesh@semnan.ac.ir
* Correspondence: shafiei@semnan.ac.ir; Tel.: (0982331532579)

Abstract

With the rapid development of the Internet, information technology, and globalization of the economy, Some small and medium-sized companies know that they cannot compete with their limited capacity alone. As a result, they are beginning to seek collaboration and a collective approach to meet the dynamic needs of customers and increase their power for competition in the market. Virtual enterprise is a temporary platform for working with different companies that share their core tasks to meet customer's demand. Partner selection is a major issue in the formation of a virtual organization. This is especially difficult due to the uncertainties regarding information, market dynamics, customer expectations, and rapidly changing technology, with highly random decision making. As a generalization of fuzzy sets and intuitionistic fuzzy sets, Neutrosophic sets are created to show the uncertain, and inconsistent information available in the real world. The main purpose of this paper is to identify and select partners in the formation of Virtual Enterprises under uncertainty and contradictory factors using the extended VIKOR group decision making technique using the Interval Neutrosophic fuzzy approach. For this purpose, after identifying the factors affecting partner selection, the factors are weighted using the Maximizing deviation method and the partners are ranked using this method. Finally, a sensitivity analysis for assessing the validity of the method is also presented. The results show that the Willingness to share information criterion is the most important partner selection criterion in this enterprise.

Keywords: Virtual Enterprise, Partner Selection, Interval Neutrosophic Numbers, Group Decision Making, Uncertainty, VIKOR.

1. Introduction

With the globalization of the market and the economy, the rapid development of the use of the Internet and information technologies, faster product updates and market needs have become more uncertain and personalized [1]. Globally, companies are increasingly in need of the competence of other companies to meet growing customers' demands [2]. Therefore, it is difficult to adapt the traditional business model to the new market environment. At the same time, companies need to maintain lower costs and shorter delivery cycles, that this challenges old organizational form [3]. In fact, a enterprise cannot meet the rapid market changes by integrating internal resources and
competencies alone [1]. As such, many companies are attracting partners to absorb opportunities in emerging markets to share costs, reduce development time, and utilize the effectiveness of design, production, and marketing skills within and outside companies [4]. With the rapid growth of competition in the global industry, a dynamic virtual enterprise (VE) approach will be needed to meet market needs for quality, responsiveness and customer satisfaction [5]. VE is created to address a specific opportunity in a fast-paced and simultaneous market, creating a collaborative work environment for managing and using a set of resources provided by companies. Business partners are all connected to share their skills, and take advantage of the rapidly changing opportunities in a dynamic network [6]. In fact, through the VE framework, each VE partner brings its expertise for implementing the original project, [7] and each partner focuses on its own core competence. This increases the ability of the organization to meet the unpredictable demands of customers [8]. Therefore, by maintaining the agility of the entire structure, this collaboration will deliver high quality products based on customer's specific needs [7]. In this alliance, the links are made easier by computer technology, [4] and eventually when the market opportunity is over, the VE will be dissolved [5].
Compared to the traditional organizational form, VE is considered a low cost, high responsive and adaptive organization and members of this alliance can share cost, risk, technology, and key competition with each other, through which members can gain win-win policy. However, many issues arise throughout the life cycle of a VE, including how we can find the right partners, which is a key issue for the core enterprise in the VE development phase, and this issue has been considered by many researchers [3]. As the VE environment continues to grow in size and complexity, the importance of managing such complexities increases [5]. In a virtual enterprise (VE), choosing a partner is very important because of the short life of these organizations (temporary alliances) and the absence of formal mechanisms (contracts) to ensure participants' responsibility [9].
The complexity of the partner selection process is reinforced by the fact that there are several centralized internal and external organizational factors that have both tangible and intangible characteristics and should be incorporated into the decision analysis for this selection process [8]. Like all decision-making issues, partner selection involves tangible and intangible paradox specifications under conflicting or incomplete information [10]. Therefore, it is important to select the most appropriate companies while there may be dozens of volunteer companies involved in the project [7]. The multitude of factors that are considered when choosing partners for a business opportunity such as cost, quality, trust and delivery time cannot be expressed by the same size or scale [11]. In practice, partner selection should consider higher levels of uncertainty and risk as a way of addressing uncontrolled factors: such as price or demand fluctuations, lack of enough knowledge sharing among VE members, resource constraints, and incomplete information about candidates and their performance [12].
The multi-attribute group decision making (MAGDM) approach is to provide a comprehensive solution by evaluating and ranking alternatives based on contrasting features based on decision makers' (DM) preferences [13]. Decision-making is often about the optimal choice between a set of options, considering the impact of many criteria. In the past five decades, Multi criteria decision making method (MCDM) has become one of the most important and key ways of solving complex decision problems, despite of various criteria and options. In MCDM problems, the characteristics of
dependence, opposition, and interaction are ambiguous between decision criteria, which obscures the degree of membership [14]. In fact, it is difficult for DMs due to the uncertainty of the information and the many constraints such as time pressure, lack of awareness, and problems of data extraction and so on to express their preferences numerically in many complex realities [15]. The fuzzy set theories or the intuitionistic fuzzy theories are used to overcome this obstacle. However, these sets are not always suitable [14]. The fuzzy set (FS) has only one member and cannot display complex information and the intuitionistic fuzzy set, which includes membership and non-membership degree, can only manage incomplete information, and cannot deal with inconsistent information, and degree of indeterminate membership at IFS has always been ignored [16]. Smarandache recommended Neutrosophic set (NS) by adding an indefinite membership function based on IFS. In NS, the degree of accuracy, lack of reliability, and the degree of inaccuracy are completely independent [17].

The Neutrosophic set is becoming a scientific tool and has attracted the attention of many scientists and academic researchers to develop and improve the Neutrosophic method [14]. Abdel-Basset et al. (2020) considered inventory location problem, They applied the best-worst method (BWM) to find the weight of these criteria and propose a combination of plithogenic aggregation operations, and the BWM to solve MCDM problems [18]. Veerappan et al (2020) considered Multi-Aspect Decision-Making Process in Equity Investment Using Neutrosophic Soft Matrices [19]. Abdel-Basset and Mohamed (2020) proposed a combination of plithogenic multi-criteria decision-making approach based on the TOPSIS and Criteria Importance Through Inter-criteria Correlation (CRITIC) methods for sustainable supply chain risk management [20]. Abdel-Basset et al. (2020) provided a new hybrid neutrosophic MCDM framework that employs a collection of neutrosophic ANP, and TOPSIS under bipolar neutrosophic numbers for professional selection [21]. Edalatpanah and Smarandache proposed an input-oriented DEA model with simplified neutrosophic numbers and present a new strategy to solve it [22]. Abdel-Basset et al. (2020) applied a combination of quality function deployment (QFD) with plithogenic aggregation operations for Selecting Supply Chain Sustainability Metrics [23].
In this paper, we combine the Interval Neutrosophic Numbers (NS) set and the VIKOR method to select a partner in a virtual enterprise. One of the best ways to solve decision problems with inconsistent and unbelievable criteria is the VIKOR approach. VIKOR can be an effective tool for decision making when the decision maker is unable to identify and express the superiority of a problem at the time it is started and designed [24]. For this purpose, the criteria for selecting the partner were first identified by the experts and then their opinions about each of the candidate partners were collected according to the effective factors. Finally, partner rating and selection are performed using the VIKOR method, which is based on the concurrent planning of multivariate decision problems and evaluates issues with inappropriate, and incompatible criteria, in the Interval Neutrosophic environment. The innovation of this paper is that the Interval Neutrosophic set is used to express the evaluation of information, and partner selection in virtual enterprise will be implemented under an Interval Neutrosophic environment. Since the weight of the criteria varies with the mental state, and no specific information is available, in this paper the weight of the criteria is determined using the Maximizing deviation method under the Interval Neutrosophic environment.

2. Research literature and Related studies

The widespread development of Internet technologies in the late twentieth century has led to the dramatic formation and enhancement of the virtual environment in the employment sector, and virtual enterprises, virtual sectors and a series of virtual businesses have expanded. Information on so-called virtual companies was first provided in the early 1990s by Steven L. Goldman, Rocer N. Nagel and David B. Greenberger, and William H. Davidow and Michael S. Malone. The innovative technology market enables companies to form temporary partnerships, and the creation of such links through the Internet leads to the formation of Virtual Enterprises [25]. Member companies in such a virtual enterprise, rather than being independent companies and focusing on their own business goals, work together to share their information about their capabilities, programs and cost structures, to improve their technical, logistical, financial and other activities in order to compete [4]. The short-term goal of a VE is primarily to increase productivity, reduce inventory and total cycle time. The long-term goal is to increase customer satisfaction, market share, and profit levels for all members. Failure to cooperate may result in a delay in delivery, poor customer service, and inventory creation, and so on [26]. The success of this mission depends on all the organizations that work together as a unit. Because everyone gives its own core strengths or competencies to the virtual enterprise. In other words, the competitive advantage gained by a virtual enterprise depends on each other and their ability to integrate with each other. The key factor in forming a virtual enterprise is choosing agile, competent and consistent partners [27]. The life cycle of a VE consists of four stages: creation, operation, evolution, and dissolution [28]. In the creation phase, when an organization wins a large contract project and is unable to complete it with its proper capacity, it seeks out potential partners and negotiates with them through its information infrastructures and VE will be created. At the operation stage, after signing contracts between the partners, VE manages the process of production or execution of the project. At the development stage, the VE is configured to meet the resource requirements when the project is changed, and at the dissolution stage, when the project is completed, the VE will be eventually dissolved [29]. Obviously, the first step, namely the selection of partners, is crucial to the success of the VE [30]. The main difference between a regular supplier selection issue and a partner selection issue in a VE is the expected duration of the relationship. In fact, companies in a VE rarely have the time to implement, and develop all the features needed for successful relationships. They therefore emphasize on the fact that partner selection is definitely an important step in VE development [12]. Determining the right criteria and evaluating all of the influencing factors in partner selection is difficult. There are many factors that must be considered during decision making. Some are qualitative, such as friendship, credibility, and reliability, and others are quantitative, such as cost, and delivery time. It is very costly and time-consuming to evaluate each partner and identify the most desirable ones [26].
There is an extensive literature on partner selection in VE, each offering a new approach for evaluating and selecting the most appropriate partners among the set of organizations. Sha and Che (2004) develop a partner selection and production distribution planning problem with a new partner selection Model based on Analytical Hierarchy Process (AHP), multi-attribute utility theory (MAUT), and integer programming (IP), for Virtual integration (VI) with multiple criteria. The AHP and MAUT methods are used to evaluate and weight each partner's candidate, and the IP model
applies this weigh to find the best potential partners and provide the right distribution plan for the selected partners [31]. Sarkis et al. (2007) present a practical paradigm that can be used by organizations to help form agile virtual companies using ANP method [8]. Ye and Li (2009) proposed two group decision models for spatial decision making to solve the problem of partner selection under incomplete information. The first model is a technique for preferring the order with similarity with ideal Solution (TOPSIS) for group decision making based on degree of deviation. The second approach is TOPSIS group decision-making based on risk factor [28]. Crispim and Sousa (2009) propose an exploratory process to help the decision maker to acquire knowledge about the network in order to identify the criteria and companies that provide the needs of a project very well. This process involves a multi-objective meta-heuristic search algorithm designed to find a good approximation of the PARETO front and a fuzzy TOPSIS algorithm to rank the configuration of VE options. Preliminary computational results clearly showed the potential of this approach for practical applications [9]. Ye (2010) investigated the problem of partner selection in partial and uncertain information environments and used the extended TOPSIS technique for group decision making with intuitive fuzzy numbers with interval values for problem solving [32].
Liu et al (2016) proposed a partner selection method based on distance multipliers preferences with approximate compatibility. In this paper, using a (n-1) pairwise comparison, a new partner selection method is proposed, which introduces a new concept of approximate compatibility for multidimensional preferential relationships [27]. Nikghadam et al. (2016) designed a customer-based algorithm to select a partner in a virtual enterprise. In this study, customers were classified into three categories: passive, standard and assertive. Three different approaches; fuzzy logic-FAHP TOPSIS and ideal programming were used for each type of customer, respectively. The results confirm that adopting this algorithm not only helps VE to select the most appropriate partners based on customer preferences, but also adapts its model to each customer's attitude. As a result, the overall flexibility of the system significantly improves [7]. Polyantchikov et al. (2017) performed virtual enterprise formation in the context of a sustainable partner network using methodologies such as Analytical Hierarchy Process (AHP), fuzzy AHP approach and TOPSIS method [33]. Huang et al. (2018) studied the problem of partner selection for virtual production companies facing an uncertain environment and using the gray system theory studied uncertainty at the start of a project, in the completion time, in shipping time, and also studied the cost. They used the chaotic particle swarm optimization (CPSO) algorithm to solve the problem [30].

Meng et al. (2019) in their paper presented Interval Neutrosophic Preferred Relations and examined its application with numerical examples in virtual partner selection. The algorithm presented in this paper is based on group decision-making based on INPRs which can be applied to address incomplete and inconsistent INPRs [3]. Chen and Goh (2019) sought a cooperative partner selection mechanism from the perspective of dual-factor theory. They proposed a new framework for problem solving and cooperative partner selection. This framework uses the degree of compatibility of the triangular fuzzy soft set (TFSS) to measure the level of participation, and a broad TODIM based on TFSS to measure the degree of influence on the individual level [34]. Ionescu (2020) reviews the most prominent approaches to solving partner selection problems and discuss some of the most documented methods and algorithms for VO creation and reconfiguration [35]. Zhao et al. (2020) studied a multi-objective virtual enterprise partner selection model with relative superiority
parameter in fuzzy environment. In this paper, the completion time and delivery time were fuzzily processed [36] . Wan and Dong (2020) applied the group decision making (GDM) problems with interval-valued Atanassov intuitionistic fuzzy preference relations (IV-AIFPRs) and developed a novel method for solving a virtual enterprise partner selection problem [37].

These papers use different methods and techniques to select partners in virtual enterprises. Many of these studies make use of fixed weights of the criteria, and consider a limited set of uncertainties. They do not make sensitivity analysis to examine solutions, and are, in general, very time-consuming or too complex to be understood by the DM. However, in practice, there are multiple uncertainties in the VE partner selection problem and to assign precise weights to criteria becoming more critical when the number of criteria increases and when the VE life cycle is rather short. In this paper, the weight of the criteria is determined using the maximizing deviation method under the Interval Neutrosophic environment. and combine the Interval Neutrosophic Numbers (NS) set and the VIKOR method have considerable potential to this problem. Neutrosophic sets are very powerful and successful in overcoming situations and cases in uncertainty, vagueness, and imprecision. This model is easy to understand and use, and flexible, and tolerant with inconsistent and inaccurate information. Additionally, the procedure proposed in this work overcomes some of the shortcomings of decision-support tools and provides automatic sensitivity analysis on the results.
On the other hand, many factors should be taken into consideration when selecting partners of a VE By studying the research literature, the most important factors influencing partner selection in Virtual Enterprises can be classified according to Table 1. These factors are the most popular and most influential factors in choosing a partner in a virtual enterprise.

Table 1. Criteria for partner selection

Criteria	Reference
Cost	$[28],[9],[32],[12],[4],[27],[30],[10],[38],[2],[39]$
Time	$[28],[32],[12],[10],[2]$
Trust	$[28],[32],[10],[34],[3]$
Risk	$[28],[32],[12],[9],[10],[40]$
Quality	$[28],[9],[33],[27],[10],[26],[38],[39],[6]$
[9], [33], [7], [26], [2]	
Productivity \& Performance history	$[9],[12]$
Market entrance capability	$[9],[33],[34]$
Knowledge and managerial experience	$[9],[12]$
Age of the organisation	$[9],[33],[3]$
Competency \& technical expertise	$[33]$
Information and communication	$[12],[33],[7],[26],[6]$
technology resources	$[12],[7],[27],[26],[38],[2],[6]$
Price	$[33],[26],[34]$
Delivery	$[27],[34],[38],[6]$
Customer service	
Geographical location	
The financial stability	

Willingness to share information	$[12],[34]$
Tardiness penalty	$[4],[27]$
Technology capability	$[34],[26],[38],[34]$,
Reputation and position in industry	$[3],[26],[38],[33]$
IT infrastructure	$[38],[26]$

3. Methedology

This research is applied in terms of purpose and quantitative in terms of variables. In the partner selection process, decision makers are usually unsure of their preferences [41]. Because information about candidates and their performance is incomplete and unclear. In terms of data collection, selecting and evaluating partners is difficult due to the complex interactions between different entities, and because of their preferences they may be inaccessible based on incomplete or partial information. To address this issue under a multi-criteria perspective, several types of information (numerical, interval, qualitative and binary) are used to facilitate the expression of preferences or the evaluation of stakeholders in decision making [12]. In this paper, Interval Neutrosophic numbers are used to express the preferences of experts. In this regard, First, the effective criteria influencing the choice of partner are selected, and then experts express their opinion about candidates with the competence of linguistic terms according to the effectiveness criteria. After converting the experts' opinions to Interval Neutrosophic numbers, the weight of the criteria is calculated using the maximum deviation method. In the second step, expert opinions on each company integrate using the interval neutrosophic weighted average operator. Finally, rankings of companies perform by using the Vikor fuzzy interval neutrosophic method. The general framework of proposed method presented in Fig 1.

Fig 1. A general framework of proposed method

3.1. Interval Neutrosophic fuzzy set

In the real world, decision information is often incomplete, uncertain, and inconsistent. In order to process this type of information, Smarandache introduced Neutrosophic set (NS) from a philosophical perspective by adding independent indeterminacy-membership, which is an
extension of the fuzzy set (FS), the fuzzy set with interval values, the intuitionistic fuzzy set, and so on [42]. Smarandache believed that these types of sets not only had the degree of membership and the degree of non-membership, but also consider the degree of non-determination and lack of compatibility [16]. The new theory of Neutrosophic sets allows to work with the "Knowledge of neural thought". In fact, Neutrosophic sets are generalizations of fuzzy logic and allow to deal with more complex uncertainty models. In "classical" fuzzy sets, each element is defined by a degree of membership, and the available methods are controlled by fuzzy sets [43]. The fuzzy set cannot express neutral state, meaning neither support nor opposition. To overcome this defect, Atanassov introduced the concept of the Intuitionistic Fuzzy Set (IFS). Compared to The fuzzy set, the intuitionistic fuzzy set can simultaneously express three modes of support, opposition, and neutrality. Although the FS and IFS have been developed and publicized, they cannot address the uncertain and inconsistent issues of real decision-making. To solve this problem, Neutrosophic (NS) sets have been suggested [44]. Unlike The intuitionistic fuzzy sets, which depend on the degree of uncertainty on membership and non-membership, by the Neutrosophic logic the value of the indeterminate membership is independent of the degree of truth and falsehood [43]. Neutrosophic logic is flexible and tolerant with inconsistent and inaccurate data. This logic is based on natural language and is made up of specialized knowledge. The concept of the Neutrosophic set provides an alternative approach in the case of inaccuracies in the decisions made by deterministic sets or traditional fuzzy sets, and where the information provided is inadequate for finding it inaccurate [45]. Neutrosophic sets are powerful and successful in overcoming situations and in an inadequate information environment, uncertainty, ambiguity and inaccuracy [14]. A Neutrosophic set A with an A value in X is expressed by 1 .

$$
\begin{equation*}
A=\left\{x\left(T_{A}(x), I_{A}(x), F_{A}(x)\right) \mid x \in X\right\} \tag{1}
\end{equation*}
$$

With Neutrosophic set logic, every aspect of the problem is represented by the degree of the truth membership $\left(\mathrm{T}_{\mathrm{A}}(\mathrm{x})\right.$), the degree of the indeterminate membership $\left(\mathrm{I}_{\mathrm{A}}(\mathrm{x})\right)$ and the degree of the false membership $\left(\mathrm{F}_{\mathrm{A}}(\mathrm{x})\right)$ according to 1.
For each $x, T_{A}(x)+I_{A}(x)+F_{A}(x) \in[0,1]$ and the sum of these memberships is less than or equal to three [46]. Thus, Neutrosophic sets provide a means of expressing DM preferences and priorities, and fully determine membership performance in situations where DM comments are subject to the indeterminate membership or lack of information [14].

$$
\begin{equation*}
0 \leq T_{A}(x)+I_{A}(x)+F_{A}(x) \leq 3 \tag{2}
\end{equation*}
$$

Sometimes the degree of truth, falsehood, and uncertainty of a particular sentence is not precisely defined in real terms, but is determined by several possible interval values [47]. Thus, the Interval Neutrosophic Set (INS) was introduced by Wang et al (2005). [48]. As a special case of Neutrosophic sets, the Interval Neutrosophic Set (INS) can be used to address uncertain and inconsistent information in decision making [3]. Wang et al showed Interval Neutrosophic (INS) assemblages with distance membership, the degree of non-membership, and degree of hesitant (The indeterminate membership) as follows.

$$
\begin{equation*}
\boldsymbol{x}=\left(\left[\boldsymbol{T}^{L}, \boldsymbol{T}^{u}\right],\left[\boldsymbol{I}^{L}, \boldsymbol{I}^{u}\right],\left[\boldsymbol{F}^{\boldsymbol{L}}, \boldsymbol{F}^{u}\right]\right) \tag{3}
\end{equation*}
$$

The Interval Neutrosophic set can be simpler to express incomplete, uncertain, and contradictory information [49], and is flexible and practical for dealing with decision problems. Compared to other
fuzzy set expansions, INS has the following advantages. (A) Compared to The fuzzy set, INS can simultaneously express positive, negative, and hesitant judgments of DM using membership degree, non-membership degree, and degree of hesitation. (B) Compared with The Intuitionistic fuzzy sets, INS independently express the degree of positive, negative, and uncertain judgments. That DMs have more flexibility to express their uncertain and contradictory information [3].

3.2. Interval Neutrosophic Fuzzy VIKOR Method

VIKOR is an effective decision making method that selects the optimal option with group utility maximization and individual regret minimization. And it is used as one of the applied MCDM techniques to solve a discrete decision problem with disproportionate criteria with different and conflicting units of measurement [50]. This method was proposed by Opricovic (1998) to solve the problem of multi-criteria decision making in an incompatible and inconsistent criteria environment [43]. VIKOR is an efficient tool for finding the compromise solution from a set of conflicting criteria. Where compromise means an agreement made with mutual concessions [51]. That can help decision makers to make a final decision [52]. The VIKOR method is based on the specific property of being close to the ideal solution. One of the features of this method is that the options are evaluated according to all defined criteria (performance matrix) and the stability analysis of the intervals shows the stability of the weight [53]. The effectiveness of this approach becomes more apparent when the decision maker is not able to express his/her preferences and uses agreed solutions to solve the problems. An agreed solution is a justified solution that is close to the ideal solution and that decision makers accept because of the maximum utility of the group [50].
Suppose the rating of options $P_{i}=\left\{p_{1}, p_{2}, \ldots, p_{m}\right\}$ is given as $f_{i j}$ with respect to criteria of $C_{j}=$ $\left\{\mathrm{c}_{1}, \mathrm{c}_{2}, \ldots, \mathrm{c}_{\mathrm{n}}\right\} . w_{j}=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ is the weight vector of the criteria. The formula for measuring distance on P_{i} options is based on equation (4).

$$
\begin{equation*}
L_{\alpha, i}=\left(\sum_{j=1}^{n}\left(w_{j} \frac{f_{j}^{*}-f_{i j}}{f_{j}^{*}-f_{j}^{-}}\right)^{\alpha}\right)^{\frac{1}{\alpha}}, 1 \leq \alpha \leq \infty, \quad i=1,2, \ldots, m \tag{4}
\end{equation*}
$$

where $f_{j}^{*}=\max _{i} f_{i j}$ and $f_{j}^{-}=\min _{i} f_{i j}$ are the ideal and anti-ideal points, respectively [53].
Let $\mathrm{W}=\left\{\mathrm{w}_{1}, \mathrm{w}_{2}, \ldots, \mathrm{w}_{\mathrm{n}}\right\}$ be the weight of the criteria, $0 \leq \mathrm{W}_{\mathrm{j}} \leq 1$ and $\sum_{1}^{\mathrm{n}} \mathrm{W}_{\mathrm{j}}=1$. If the set of decision makers be $\mathrm{E}=\left\{\mathrm{E}_{1}, \mathrm{E}_{2}, \ldots, \mathrm{E}_{\mathrm{t}}\right\}$ and the weight of decision makers be $\sigma=\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{t}\right\}, 0 \leq$ $\sigma_{k} \leq 1$ and $\sum_{\mathrm{k}=1}^{\mathrm{t}} \sigma_{\mathrm{k}}=1$.

Suppose that $\widetilde{R}_{k}=\left(\widetilde{\mathrm{r}}_{\mathrm{ij}}^{\mathrm{k}}\right)_{\mathrm{m} \times \mathrm{n}}=\left(\left[\mathrm{T}_{\mathrm{ij}}^{\mathrm{L}(\mathrm{k})}, \mathrm{T}_{\mathrm{ij}}^{\mathrm{R}(\mathrm{k})}\right],\left[\mathrm{I}_{\mathrm{ij}}^{\mathrm{L}(\mathrm{k})}, \mathrm{I}_{\mathrm{ij}}^{\mathrm{R}(\mathrm{k})}\right],\left[\mathrm{F}_{\mathrm{ij}}^{\mathrm{L}(\mathrm{k})}, \mathrm{F}_{\mathrm{ij}}^{\mathrm{R}(\mathrm{k})}\right]\right)_{\mathrm{m} \times \mathrm{n}}$ is the Matrix of decision of Interval Neutrosophic Numbers, $\mathrm{e}_{\mathrm{k}} \in \mathrm{E}$.

$$
\begin{align*}
& {\left[T_{i j}^{L(k)}, T_{i j}^{R(k)}\right],\left[I_{i j}^{L(k)}, I_{i j}^{R(k)}\right],\left[F_{i j}^{L(k)}, F_{i j}^{R(k)}\right] \subseteq[0,1]} \tag{5}\\
& 0 \leq T_{i j}^{R(k)}+I_{i j}^{R(k)}+F_{i j}^{R(k)} \leq 3 \tag{6}\\
& i=1,2, \ldots, m, \quad j=1,2, \ldots, n, \quad k=1,2, \ldots, t \tag{7}
\end{align*}
$$

The steps of the VIKOR method for multi-criteria group decision-making problems of the Interval Neutrosophic set are as follows [13].
Step 1. Convert Evaluation Information to the Interval Neutrosophic Number Set

Step 2. Calculate the weight of the criteria
Since the weight of the benchmarks may be completely unknown, the benchmark weight is calculated using the Maximizing deviation method. According to this view, if the criterion values of all alternatives to a particular attribute are quantitative deviations, quantitative weight can be assigned to this criterion. Otherwise, the criterion that causes the deviation to be greater should be weightier. In particular, if the criterion values of all the different options are equal to a given property, the weight of such a criterion may be zero [49]. The weight of the criteria is thus calculated using the equation (8) [48].

$$
\begin{gather*}
w_{j}=\frac{\sum_{k=1}^{t} \sigma_{t} \sum_{i=1}^{m} \sum_{s=1}^{m}\left(\Delta_{u p v}\right)}{\sum_{j=1}^{n} \sum_{k=1}^{t} \sigma_{t} \sum_{i=1}^{m} \sum_{s=1}^{m}\left(\Delta_{u p v}\right)} \tag{8}\\
\Delta_{u p v}=\left|T_{i j}^{L}-T_{s j}^{L}\right|+\left|I_{i j}^{L}-I_{s j}^{L}\right|+\left|F_{i j}^{L}-F_{s j}^{L}\right|+\left|T_{i j}^{R}-T_{s j}^{R}\right|+\left|I_{i j}^{R}-I_{s j}^{R}\right|+\left|F_{i j}^{R}-F_{s j}^{R}\right| \tag{9}
\end{gather*}
$$

Step 3. Using $\widetilde{\mathrm{R}}_{\mathrm{k}}$ and calculating the interval neutrosophic number weighted averaging (INNWA) operator [47]
$\operatorname{INNWA}_{\sigma}\left(E_{1}, E_{2}, \ldots, E_{t}\right)=$
$\left\langle\left[1-\prod_{i=1}^{t}\left(1-T_{E_{i}}^{L}\right)^{\sigma_{i}}, 1-\prod_{i=1}^{t}\left(1-T_{E_{i}}^{R}\right)^{\sigma_{i}}\right]\right.$,
$\left.\left[\prod_{i=1}^{t}\left(I_{E_{i}}^{L}\right)^{\sigma_{i}}, \prod_{i=1}^{t}\left(I_{E_{i}}^{R}\right)^{\sigma_{i}}\right],\left[\prod_{i=1}^{t}\left(F_{E_{i}}^{L}\right)^{\sigma_{i}}, \prod_{i=1}^{t}\left(F_{E_{i}}^{R}\right)^{\sigma_{i}}\right]\right\rangle$
Step 4. Define the solution of positive and negative ideals (R^{+}and R^{-})

$$
\begin{gather*}
\tilde{R}^{+}=\left(\left[T_{j}^{L+}, T_{j}^{R+}\right],\left[I_{j}^{L+}, I_{j}^{R+}\right],\left[F_{j}^{L+}, F_{j}^{R+}\right]\right) \tag{11}\\
\tilde{R}^{-}=\left(\left[T_{j}^{L-}, T_{j}^{R-}\right],\left[I_{j}^{L-}, I_{j}^{R-}\right],\left[F_{j}^{L-}, F_{j}^{R-}\right]\right) \tag{12}
\end{gather*}
$$

For positive and incremental criteria

$$
\begin{align*}
& \left(\left[T_{j}^{L+}, T_{j}^{R+}\right],\left[I_{j}^{L+}, I_{j}^{R+}\right],\left[F_{j}^{L+}, F_{j}^{R+}\right]\right) \tag{13}\\
& \quad=\left(\left[\max _{i} T_{i j}^{L}, \max _{i} T_{i j}^{R}\right],\left[\min _{i} I_{i j}^{L}, \min _{i} I_{i j}^{R}\right],\left[\min _{i} F_{i j}^{L}, \min _{i} F_{i j}^{R}\right]\right) \\
& \begin{aligned}
\left(\left[T_{j}^{L-}, T_{j}^{R-}\right],\left[I_{j}^{L-}\right.\right. & \left.\left., I_{j}^{R-}\right],\left[F_{j}^{L-}, F_{j}^{R-}\right]\right) \\
& =\left(\left[\min _{i} T_{i j}^{L}, \min _{i} T_{i j}^{R}\right],\left[\max _{i} I_{i j}^{L}, \max _{i} I_{i j}^{R}\right],\left[\max _{i} F_{i j}^{L}, \max _{i} F_{i j}^{R}\right]\right)
\end{aligned} \tag{14}
\end{align*}
$$

For negative and decreasing criteria

$$
\begin{align*}
& \left(\left[T_{j}^{L+}, T_{j}^{R+}\right],\left[I_{j}^{L+}, I_{j}^{R+}\right],\left[F_{j}^{L+}, F_{j}^{R+}\right]\right) \tag{15}\\
& \quad=\left(\left[\min _{i} T_{i j}^{L}, \min _{i} T_{i j}^{R}\right],\left[\max _{i} I_{i j}^{L}, \max _{i} I_{i j}^{R}\right],\left[\max _{i} F_{i j}^{L}, \max _{i} F_{i j}^{R}\right]\right) \\
& \left(\left[T_{j}^{L-}, T_{j}^{R-}\right],\left[I_{j}^{L-},\right.\right. \tag{16}\\
& \left.\left.\quad, I_{j}^{R-}\right],\left[F_{j}^{L-}, F_{j}^{R-}\right]\right) \\
& \quad=\left(\left[\max _{i} T_{i j}^{L}, \max _{i} T_{i j}^{R}\right],\left[\min _{i} I_{i j}^{L}, \min _{i} I_{i j}^{R}\right],\left[\min _{i} F_{i j}^{L}, \min _{i} F_{i j}^{R}\right]\right)
\end{align*}
$$

Step 5. Calculate the indicators of maximum group utility $\left(\Gamma_{i}\right)$ and minimum individual regret $\left(Z_{i}\right)$

$$
\begin{equation*}
\Gamma_{i}=\sum_{j=1}^{n} \frac{w_{j} \times d\left(\left(\left[T_{j}^{L+}, T_{j}^{R+}\right],\left[I_{j}^{L+}, I_{j}^{R+}\right],\left[F_{j}^{L+}, F_{j}^{R+}\right]\right),\left(\left[T_{j}^{L}, T_{j}^{R}\right],\left[I_{j}^{L}, I_{j}^{R}\right],\left[F_{j}^{L}, F_{j}^{R}\right]\right)\right)}{d\left(\left(\left[T_{j}^{L+}, T_{j}^{R+}\right],\left[I_{j}^{L+}, I_{j}^{R+}\right],\left[F_{j}^{L+}, F_{j}^{R+}\right]\right),\left(\left[T_{j}^{L-}, T_{j}^{R-}\right],\left[I_{j}^{L-}, I_{j}^{R-}\right],\left[F_{j}^{L-}, F_{j}^{R-}\right]\right)\right)} \tag{17}
\end{equation*}
$$

$$
\begin{gather*}
\mathrm{Z}_{i}=\max _{j}\left\{\frac{w_{j} \times d\left(\left(\left[T_{j}^{L+}, T_{j}^{R+}\right],\left[I_{j}^{L+}, I_{j}^{R+}\right],\left[F_{j}^{L+}, F_{j}^{R+}\right]\right),\left(\left[T_{j}^{L}, T_{j}^{R}\right],\left[I_{j}^{L}, I_{j}^{R}\right],\left[F_{j}^{L}, F_{j}^{R}\right]\right)\right)}{d\left(\left(\left[T_{j}^{L+}, T_{j}^{R+}\right],\left[I_{j}^{L+}, I_{j}^{R+}\right],\left[F_{j}^{L+}, F_{j}^{R+}\right]\right),\left(\left[T_{j}^{L-}, T_{j}^{R-}\right],\left[I_{j}^{L-}, I_{j}^{R-}\right],\left[F_{j}^{L-}, F_{j}^{R-}\right]\right)\right)}\right\} \tag{18}\\
d(A, B)=\frac{1}{6}\left(\left|T_{A}^{L}-T_{B}^{L}\right|+\left|I_{A}^{L}-I_{B}^{L}\right|+\left|F_{A}^{L}-F_{B}^{L}\right|+\left|T_{A}^{R}-T_{B}^{R}\right|+\left|I_{A}^{R}-I_{B}^{R}\right|+\left|F_{A}^{R}-F_{B}^{R}\right|\right) \tag{19}
\end{gather*}
$$

Step 6. Calculate VIKOR Index $\left(\mathrm{Q}_{\mathrm{i}}\right)$

$$
\begin{gather*}
Q_{i}=\beta \frac{\left(\Gamma_{i}-\Gamma_{i}^{*}\right)}{\left(\Gamma_{i}^{-}-\Gamma_{i}^{*}\right)}+(1-\beta) \frac{\left(\mathrm{Z}_{i}-\mathrm{Z}_{i}^{*}\right)}{\left(\mathrm{Z}_{i}^{-}-\mathrm{Z}_{i}^{*}\right)} \tag{20}\\
\Gamma_{i}^{*}=\min _{i} \Gamma_{i}, \quad \Gamma_{i}^{-}=\max _{i} \Gamma_{i} \tag{21}\\
\mathrm{Z}_{i}^{*}=\min _{i} \mathrm{Z}_{i}, \quad \mathrm{Z}_{i}^{-}=\max _{i} \mathrm{Z}_{i} \tag{22}
\end{gather*}
$$

Step 7. Rank the options based on $\mathrm{Q}_{\mathrm{i}}, \Gamma_{\mathrm{i}}$ and Z_{i} in accordance with the classic VIKOR ranking rule
Step 8. The compromise solution must meet one of the following conditions:
(A) Acceptable advantage in the sense that a compromise solution must be significantly different from its next solution: $Q\left(A^{2}\right)-Q\left(A^{1}\right) \geq D Q=\frac{1}{m-1}$ Where A^{1} and A^{2} are the first and second choices in the ordered list and m is the number of options.
(B) Acceptable consistency in the decision-making process means that the adaptive solution chosen must have Group utility maximization and at least individual impact: A^{1} should be the best rank in Γ_{i} and Z_{i}. This is the compromise solution throughout the decision-making process.
If the above conditions for a compromise solution are not met, a set of adaptation strategies is provided instead of one.
Step 9. A set of compromise solutions is obtained if one of the conditions is not satisfied.
A^{1} and A^{2} are compromise solutions if only condition 2 is not met. Or A^{1}, A^{2} and $\ldots A^{M}$ are compromise solutions if condition 1 is not fulfilled, by the constraint $Q\left(A^{M}\right)-Q\left(A^{1}\right)<D Q$ decides for maximum M [54].

4. Case study

A company in the online sales of various products has been selected as the numerical example of this research. The company supplies products to various suppliers and sends them to its customers. Due to limited resources and limited resources, the company cannot independently complete the entire project. Therefore, the company intends to select an optimal partner from the project candidates for the transport sector of the company and create a dynamic virtual enterprise alliance to collectively complete the entire project. In the issue of partner selection, first by studying the research literature, the most important criteria affecting partner selection in different domains were identified in accordance with Table (1). Then, 8 experts from the company with expertise in virtual enterprise and partner selection and with over 5 years' experience were selected 13 criteria of the most important partner selection criteria in the transport sector of the company according to Table (2).

Table 2. Criteria linguistic assessments for partner selection by experts

Criteria		Partner 1				Partner 2			
		E1	E_{2}	E3	E4	E1	E_{2}	E3	E4
Cost	C_{1}	VH	H	VH	VH	H	VH	VH	VH
Delivery	C_{2}	H	L	H	M	L	M	L	M
Trust	C_{3}	VH	H	VH	M	H	H	VH	M
Risk	C_{4}	L	VL	M	VL	M	M	M	VL
Quality	C_{5}	H	H	H	VH	H	H	VH	H
Reputation and position in industry	C_{6}	H	VH	VH	H	VH	H	VH	VH
Customer service	C_{7}	H	M	M	VH	H	VH	M	VH
Knowledge and managerial experience	C8	H	H	M	H	H	L	M	L
Technology capability	C_{9}	M	VL	L	VL	M	VL	L	L
Information and communication technology resources	C_{10}	VH	H	VH	H	H	VH	VH	H
Willingness to share information	C_{11}	M	M	L	VL	M	VL	H	L
Competency \& technical expertise	C_{12}	M	H	M	M	VH	H	VH	H
IT infrastructure	C_{13}	VH	H	H	H	VH	M	H	M

After defining effective criteria in the Partner selection of the transport sector, 4 experts of the company expressed their opinion about the 4 candidates with the competence of linguistic terms according to the effective criteria. Table (2) gives some examples of expert opinions.

4.1. Findings

After gathering the experts' opinions in the form of linguistic terms, they first converted to Interval Neutrosophic numbers using Table 3.

Table 3. Transformations between numerical ratings and INSs

Linguistic terms	INSs
VH	$\{[0.9,1],[0,0.1],[0,0.1]$
H	$\{[0.75,0.85],[0.05,0.15],[0.15,0.25]\}$
M	$\{[0.55,0.65],[0.15,0.25],[0.35,0.45]\}$
L	$\{[0.35,0.45],[0.25,0.35],[0.55,0.65]\}$
VL	$\{[0.15,0.25],[0.35,0.45],[0.75,0.85]$

Next, using these observations, the weighting of the criteria was calculated using the maximum deviation and correlation technique (8) according to Table (4). The results show that the Willingness to share information criterion with a weight of 0.113 is the most important partner selection criterion in this company. This illustrates the importance of the quality of information shared. As such, it is important for Virtual Enterprises to collaborate effectively with the information sharing organization for optimal collaboration. And keeping in touch with other partners, such as finding
out where and when to deliver the goods, and keeping the customer informed of the delivery and planning process of the company to ship other products will ultimately lead to better overall company performance. Competency \& technical expertise is ranked second and reflects the importance of technical and practical expertise from the point of view of company experts in choosing a virtual partner. Reputation and position in the industry are of third importance for the company and the background, reputation and position of the company in the industry and among the competitors can be an effective choice. The notable point in this company is that the cost criterion (lowest-weighted) is the last priority. This indicates the importance of other criteria for cost, and the company tends to be more costly in choosing the optimal partner.

Table 4. Weight of criteria

Criteria	C_{1}	C_{2}	C_{3}	C_{4}	C_{5}	C_{6}	C_{7}	C_{8}	C_{9}	C_{10}	C_{11}	C_{12}	C_{13}
Weight	0.048	0.095	0.051	0.086	0.049	0.096	0.084	0.085	0.056	0.067	0.113	0.098	0.071

Given the group decision-making of choosing a virtual partner, it is necessary to integrate expert opinions on each company. For this purpose, using the Interval Neutrosophic Weighted Average Operator for each candidate company, the relation of 10 decision matrices of consensus of expert opinions is calculated. The Consensus Decision Matrix of Business Partner 1 is in the form of Interval Neutrosophic Numbers as shown in Table 5. The same applies to other business partners.

Table 5. The decision matrix \tilde{R}_{1}

	\mathbf{T}^{+}	\mathbf{T}^{-}	\mathbf{I}^{+}	\mathbf{I}^{-}	\mathbf{F}^{+}	\mathbf{F}^{-}
$\mathbf{C}_{\mathbf{1}}$	0.874257	1	0	0.110668	0	0.125743
$\mathbf{C}_{\mathbf{2}}$	0.632293	0.743461	0.098399	0.210643	0.256539	0.367707
\mathbf{C}_{3}	0.816858	1	0	0.139158	0	0.183142
\mathbf{C}_{4}	0.321982	0.426361	0.260341	0.364845	0.573639	0.678018
$\mathbf{C}_{\mathbf{5}}$	0.801182	1	0	0.13554	0	0.198818
\mathbf{C}_{6}	0.841886	1	0	0.122474	0	0.158114
\mathbf{C}_{7}	0.733258	1	0	0.174982	0	0.266742
\mathbf{C}_{8}	0.710427	0.81461	0.065804	0.170433	0.18539	0.289573
\mathbf{C}_{9}	0.321982	0.426361	0.260341	0.364845	0.573639	0.678018
\mathbf{C}_{10}	0.841886	1	0	0.122474	0	0.158114
\mathbf{C}_{11}	0.421652	0.525878	0.210643	0.314985	0.474122	0.578348
\mathbf{C}_{12}	0.611497	0.716813	0.113975	0.220028	0.283187	0.388503
\mathbf{C}_{13}	0.801182	1	0	0.13554	0	0.198818

Finally, the VIKOR fuzzy Interval Neutrosophic method and the equations of 10 to 23 rankings of the four transport companies were performed. After calculating the performance and distance from the ideal level of options and obtaining the indicators of maximum group utility $\left(\mathrm{G}_{\mathrm{i}}\right)$ and minimum individual regret $\left(\mathrm{Z}_{\mathrm{i}}\right)$ and the value of VIKOR index $\left(\mathrm{Q}_{\mathrm{i}}\right)$, the final ranking of options was done according to Table 5. Accordingly, the least Q value is chosen as the best option.

Table 6. Sorting results

Partner	Partner 1	Partner 2	Partner 3	Partner 4	The ranking order
$\Gamma_{\mathbf{i}}$	0.383959	0.355709	0.471911	0.666381	$\mathrm{P}_{2}>\mathrm{P}_{1}>\mathrm{P}_{3}>\mathrm{P}_{4}$
$\mathbf{Z}_{\mathbf{i}}$	0.100536	0.085379	0.113432	0.098186	$\mathrm{P}_{2}>\mathrm{P}_{4}>\mathrm{P}_{1}>\mathrm{P}_{3}$
$\mathbf{Q}_{\mathbf{i}}$	0.31562	0	0.687017	0.728261	$\mathrm{P}_{2}>\mathrm{P}_{1}>\mathrm{P}_{3}>\mathrm{P}_{4}$

Thus Business Partner 2 with $\mathrm{Q}_{2}=0$ is selected as the best virtual partner. This result is now examined by two conditions. $0.31562-0<\mathrm{DQ}=\frac{1}{4-1}=0.333$ Hence the first condition is not applicable. Since option A_{2} has the best rank in G_{i} and $Z_{i}(\beta=0.5)$, so the second condition holds. Since only the second condition is in place, the options are rated $\mathrm{P}_{2} \sim \mathrm{P}_{1}>\mathrm{P}_{3}>\mathrm{P}_{4}$, and both A_{2} and A_{1} are eventually selected and get top rankings.

In the relationships of the Neutrosophic fuzzy VIKOR method, β is defined as the weight of most criteria strategy, or most group utility, and is usually considered to be 0.5 . However, the β value may affect the value of the VIKOR index. For this purpose, calculations for different values of β are performed according to Table 7, and the applicability and stability of the proposed method are investigated.

Table 6. Sensitivity analysis of the value β

$\boldsymbol{\beta}$	$\boldsymbol{Q}_{\mathbf{1}}$	$\boldsymbol{Q}_{\mathbf{2}}$	$\boldsymbol{Q}_{\mathbf{3}}$	$\boldsymbol{Q}_{\mathbf{4}}$	Rank order
0	0.540309	0	1	0.456522	$\mathrm{P}_{2}>\mathrm{P}_{4}>\mathrm{P}_{1}>\mathrm{P}_{3}$
0.2	0.450433	0	0.874807	0.565217	$\mathrm{P}_{2}>\mathrm{P}_{1}>\mathrm{P}_{4}>\mathrm{P}_{3}$
0.4	0.360558	0	0.749613	0.673913	$\mathrm{P}_{2}>\mathrm{P}_{1}>\mathrm{P}_{4}>\mathrm{P}_{3}$
0.5	0.31562	0	0.687017	0.728261	$\mathrm{P}_{2}>\mathrm{P}_{1}>\mathrm{P}_{3}>\mathrm{P}_{4}$
0.6	0.270682	0	0.62442	0.782609	$\mathrm{P}_{2}>\mathrm{P}_{1}>\mathrm{P}_{3}>\mathrm{P}_{4}$
0.8	0.180807	0	0.499227	0.891304	$\mathrm{P}_{2}>\mathrm{P}_{1}>\mathrm{P}_{3}>\mathrm{P}_{4}$
1	0.090931	0	0.374034	1	$\mathrm{P}_{2}>\mathrm{P}_{1}>\mathrm{P}_{3}>\mathrm{P}_{4}$

Weight sensitivity analysis of the majority (β) strategy indicates that the firm manager can select the appropriate group (β) value to reflect the decision maker priority. If the manager prefers to eliminate Group utility maximization, it supports $\beta=1$ and uses the G marker. Conversely, if the decision maker pays more attention to regret thinking, then $\beta=0$ and the value of Z is accepted. Figure (2) shows the effect of changing β on Q_{i}. In different values of β, trading partner 2 and 1 are ranked first and second, respectively, with values below 0.5 third partner and values above 0.5 partner 4 last.

Fig 2. Sensitivity analysis of the value β for each alternative with INSs
Figure 3 shows the spider diagram of the sensitivity analysis and the effect of the β parameter change on the VIKOR index. Partner rankings in this chart are centered outward, and Partner 2 in the chart is ranked first in all β values, and Partner 2 is not second only to value $\beta=0$. This chart shows the gap between the partners. At point $\beta=0$, business partner 4 ranks second. While in other values of β the first partner is at this rank. The spider diagram shows that the distance between these two partners is very small at this point, and the Q value of Partner 1 is only slightly different from Partner 4, and the stability of this ratio can be confirmed. But for the third and fourth partner the subject is slightly different and when the β value is greater than 0.5 the rating changes and the distance between the two graphs is noticeable indicating the influence of individual views of the group. Accordingly, when the group views are more important, the third partner is ranked third and in the smaller values of β the individual opinions are more important. The fourth partner ranks third. The impact of the importance of group versus individual views on this ranking is clearly illustrated by the decrease and increase in the distance between the third and fourth partner graphs in Figure 3.

Fig 3. Spider chart of the value β for each alternative with INSs
Sensitivity analysis showed that the value of the parameter β did not significantly influence the results of the selection of the best partner. Therefore, the ranking results obtained using the proposed method for INS are reliable and effective.

5. Conclusions

In today's business environment, competition is focused on innovation, speed, and flexibility. A new business model is needed to help companies gain competitive benefit in the volatile market [55]. Increasing complexity has allowed any business to reconfigure itself to meet its needs, and opportunities and remain in a highly competitive environment, because they do not have all the skills and resources needed to meet new market demand. Virtual enterprise (VE) has been proposed as a new organizational approach to meet the requirements of low cost, high quality, fast responsiveness, and greater customer satisfaction to be adapted with this rapidly changing environment [56]. The criteria for choosing a partner in Virtual Enterprises vary depending on the type of activity. In this paper, firstly, by studying the research literature and using the experts' opinions, 13 criteria affecting the selection of a partner in the transport sector of virtual enterprise were identified. How to choose the right partners for success in Virtual Enterprises (VE) is very important and has received a great deal of attention from researchers and experts. Given the different types of uncertainty in the real environment, decision makers are usually not sure when choosing a partner because the information on the candidates is incomplete and unclear. In addition, some of the features of decision making are subjective and qualitative. In many cases decision makers are unable to express their decisions about candidates in precise quantities. For this purpose, in the second step, the partner selection problem with VIKOR method is used to form a VE under Interval Neutrosophic environment. The VIKOR method considers the boundary rationality of decision makers, and makes more rational decisions. Interval Neutrosophic Numbers are used to address problems with uncertain, incomplete and inconsistent information. This method helps to reduce the mentality of decision makers. In this paper, the method of weighting the maximum deviation in the Neutrosophic environment is used in the absence of benchmark information, which can be very useful in deciding issues with inconsistent and uncertain criteria. The Partner Selection Process In this paper, we have designed a new combination and comprehensive classification of partner evaluation criteria in the context of the virtual enterprise. The proposed approach can effectively reduce the subjectivity and uncertainty of the multi-criteria decision-making problem and rely on the underlying data to make the evaluation result more objective and reliable. Also, by improving the existing method of weight calculation, the Maximizing deviation method can effectively guarantee the consistency of the judgments and simplify the weighting function in cases where the information is incomplete or there is no metric weight information. Expanding the VIKOR method to Interval Neutrosophic numbers can effectively counteract uncertainty assessment information. Without increasing mental states, it retains more decision information and makes Partner selection in the virtual enterprise more scientific. The results of the weight sensitivity analysis of the group utility strategy (β) show that the business firm is selected as the best partner for all β values according to the identified effective factors. Ranked second in trading partner 1 for all values of β, with only zero for trading partner 4 . The β parameter is determined by the degree of agreement of the decision maker, and the larger the β, the greater the group's views (too much agreement) and the smaller the β, the greater the individual's opinions (little agreement). In this paper, the rankings are slightly different for the smaller β values as illustrated in Fig. 2, with the
trading partner 4 being ranked second and the trading partner 3 last. But one still remains the top partner.

In the actual decision making, there is much qualitative information that can be expressed by uncertain linguistic variables. Interval Neutrosophic numbers can easily express uncertain and contradictory information in the real world, and by combining multi-criteria decision-making techniques to make the paradoxical features more scientific and reasonable. In this paper, the VIKOR method is developed to deal with uncertain linguistic information in the Interval Neutrosophic environment. In this method, the criterion values are presented as Interval Neutrosophic numbers. Neutrosophic set with interval value is used to express incomplete knowledge of the expert group and to prevent loss of information. However, the approach proposed for selecting the best partner in Virtual Enterprises has advantages in terms of selection criteria. But the main limitation is the lack of quantitative data and the limited number of respondents in the study. With increasing awareness of Virtual Enterprises, effective benchmarks should be developed according to the field of business activity, and other weighting techniques such as AHP, ANP and artificial intelligence techniques can be used in combination with VIKOR. Other ranking methods such as AHP and TOPSIS can be used in combination with the Neutrosophic environment. Optimization techniques can also be applied to partner selection in Virtual Enterprises. The proposed model can be applied to other decision-making issues such as supplier selection, risk assessment. Also, comparison of model results with other uncertainty modeling techniques can be suggested. Finally, the robustness of the proposed model can be tested through scenario analysis and uncertainty analysis.

Funding: This research received no external funding
Conflicts of Interest: The authors declare no conflict of interest.

References

1. Zhang, Y., et al., Green partner selection in virtual enterprise based on Pareto genetic algorithms. The International Journal of Advanced Manufacturing Technology, 2012. 67(9-12): p. 2109-2125.
2. Musumba, G.W. and R.D. Wario, A hybrid technique for partner selection in virtual enterprises. African Journal of Science, Technology, Innovation and Development, 2019: p. 1-19.
3. Meng, F., N. Wang, and Y. Xu, Interval neutrosophic preference relations and their application in virtual enterprise partner selection. Journal of Ambient Intelligence and Humanized Computing, 2019.
4. Su, W., et al., Integrated partner selection and production-distribution planning for manufacturing chains. Computers \& Industrial Engineering, 2015. 84: p. 32-42.
5. Ip, W., et al., Genetic algorithm solution for a risk-based partner selection problem in a virtual enterprise. Computers \& Operations Research, 2003. 30(2): p. 213-231.
6. Mikhailov, L., Fuzzy analytical approach to partnership selection in formation of virtual enterprises. Omega, 2002. 30(5): p. 393-401.
7. Nikghadam, S., et al., Design of a Customer's Type Based Algorithm for Partner Selection Problem of Virtual Enterprise. Procedia Computer Science, 2016. 95: p. 467-474.
8. Sarkis, J., et al., A strategic model for agile virtual enterprise partner selection. International Journal of Operations \& Production Management, 2007. 27(11): p. 1213-1234.
9. Crispim, J.A. and J. Pinho de Sousa, Partner selection in virtual enterprises: a multi-criteria decision support approach. International Journal of Production Research, 2009. 47(17): p. 4791-4812.
10. Xiao, J., et al., An improved gravitational search algorithm for green partner selection in virtual enterprises. Neurocomputing, 2016. 217: p. 103-109.
11. Crispim, J.A. and J.P. de Sousa, Partner selection in virtual enterprises. International Journal of Production Research, 2008. 48(3): p. 683-707.
12. Crispim, J., N. Rego, and J. Pinho de Sousa, Stochastic partner selection for virtual enterprises: a chance-constrained approach. International Journal of Production Research, 2014. 53(12): p. 3661-3677.
13. Huang, Y.-H., G.-W. Wei, and C. Wei, VIKOR Method for Interval Neutrosophic Multiple Attribute Group Decision-Making. Information, 2017. 8(4).
14. Zaied, A.N.H., A. Gamal, and M. Ismail, An Integrated Neutrosophic and TOPSIS for Evaluating Airline Service Quality. Neutrosophic Sets and Systems, 2019: p. 30.
15. Wang, X., et al., Multiple attribute group decision making approach based on extended VIKOR and linguistic neutrosophic Set. Journal of Intelligent \& Fuzzy Systems, 2019. 36(1): p. 149-160.
16. Smarandache, F., Neutrosophic set-a generalization of the intuitionistic fuzzy set. International journal of pure and applied mathematics, 2005. 24(3): p. 287.
17. Tooranloo, H.S., S.M. Zanjirchi, and M. Tavangar, ELECTRE Approach for Multi-attribute Decision-making in Refined Neutrosophic Environment. Neutrosophic Sets and Systems, 2020. 31: p. 101-119.
18. Abdel-Basset, M., et al., Solving the supply chain problem using the best-worst method based on a novel Plithogenic model, in Optimization Theory Based on Neutrosophic and Plithogenic Sets. 2020. p. 1-19.
19. Veerappan, C., F. Smarandache, and B. Albert, Multi-Aspect Decision-Making Process in Equity Investment Using Neutrosophic Soft Matrices. Neutrosophic Sets and Systems, 2020. 31.
20. Abdel-Basset, M. and R. Mohamed, A novel plithogenic TOPSIS- CRITIC model for sustainable supply chain risk management. Journal of Cleaner Production, 2020. 247.
21. Abdel-Basset, M., et al., A Bipolar Neutrosophic Multi Criteria Decision Making Framework for Professional Selection. Applied Sciences, 2020. 10(4).
22. Edalatpanah, S. and F. Smarandache, Data Envelopment Analysis for Simplified Neutrosophic Sets. Neutrosophic Sets and Systems, 2019. 29: p. 215-226.
23. Abdel-Basset, M., et al., A Hybrid Plithogenic Decision-Making Approach with Quality Function Deployment for Selecting Supply Chain Sustainability Metrics. Symmetry, 2019. 11(7).
24. Abdel-Basset, M., et al., A group decision making framework based on neutrosophic VIKOR approach for e-government website evaluation. Journal of Intelligent \& Fuzzy Systems, 2018. 34(6): p. 4213-4224.
25. Mammadova, M. and Z. Jabrayilova, Techniques for Personnel Selection in Virtual Organization. Problems of Information Technology, 2018. 09(1): p. 15-24.
26. Huang, X.G., Y.S. Wong, and J.G. Wang, A two-stage manufacturing partner selection framework for virtual enterprises. International Journal of Computer Integrated Manufacturing, 2004. 17(4): p. 294-304.
27. Liu, F., L.-H. Pan, and Y.-N. Peng. A partner-selection method based on interval multiplicative preference relations with approximate consistency. in 2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). 2016. IEEE.
28. Ye, F. and Y.-N. Li, Group multi-attribute decision model to partner selection in the formation of virtual enterprise under incomplete information. Expert Systems with Applications, 2009. 36(5): p. 9350-9357.
29. Ravindran, A.R., et al., Risk adjusted multicriteria supplier selection models with applications. International Journal of Production Research, 2010. 48(2): p. 405-424.
30. Huang, B., et al., A multi-criterion partner selection problem for virtual manufacturing enterprises under uncertainty. International Journal of Production Economics, 2018. 196: p. 68-81.
31. Sha, D.Y. and Z.H. Che, Virtual integration with a multi-criteria partner selection model for the multi-echelon manufacturing system. The International Journal of Advanced Manufacturing Technology, 2004. 25(7-8): p. 793-802.
32. Ye, F., An extended TOPSIS method with interval-valued intuitionistic fuzzy numbers for virtual enterprise partner selection. Expert Systems with Applications, 2010. 37(10): p. 7050-7055.
33. Polyantchikov, I., et al., Virtual enterprise formation in the context of a sustainable partner network. Industrial Management \& Data Systems, 2017. 117(7): p. 1446-1468.
34. Chen, W. and M. Goh, Mechanism for cooperative partner selection: Dual-factor theory perspective. Computers \& Industrial Engineering, 2019. 128: p. 254-263.
35. Ionescu, A.-F., Methods and Algorithms for Creating and Reconfiguring Virtual Organizations, in Decision Making in Social Sciences: Between Traditions and Innovations. 2020, Springer. p. 49-63.
36. Zhao, J., et al. Multi-objective Enterprise Partner Selection Model with Different Relative Superiority Parameters Based on Particle Swarm Optimization. 2020. Singapore: Springer Singapore.
37. Wan, S. and J. Dong, A Novel Method for Group Decision Making with Interval-Valued Atanassov Intuitionistic Fuzzy Preference Relations, in Decision Making Theories and Methods Based on Interval-Valued Intuitionistic Fuzzy Sets. 2020, Springer Singapore: Singapore. p. 179-214.
38. Buyukozkan, G. and F. Gocer, A Novel Approach Integrating AHP and COPRAS Under Pythagorean Fuzzy Sets for Digital Supply Chain Partner Selection. IEEE Transactions on Engineering Management, 2019: p. 1-18.
39. Ben Salah, S., et al., An integrated Fuzzy ANP-MOP approach for partner selection problem and order allocation optimization: The case of virtual enterprise configuration. RAIRO - Operations Research, 2019. 53(1): p. 223-241.
40. Fuqing, Z., H. Yi, and Y. Dongmei, A multi-objective optimization model of the partner selection problem in a virtual enterprise and its solution with genetic algorithms. The International Journal of Advanced Manufacturing Technology, 2005. 28(11-12): p. 1246-1253.
41. Huang, B., C. Gao, and L. Chen, Partner selection in a virtual enterprise under uncertain information about candidates. Expert Systems with Applications, 2011. 38(9): p. 11305-11310.
42. Broumi, S., J. Ye, and F. Smarandache, An extended TOPSIS method for multiple attribute decision making based on interval neutrosophic uncertain linguistic variables. Neutrosophic Sets and Systems, 2015. 8.
43. Bausys, R. and E.-K. Zavadskas, Multicriteria decision making approach by VIKOR under interval neutrosophic set environment. 2015: Infinite Study.
44. Zhou, L.-P., J.-Y. Dong, and S.-P. Wan, Two New Approaches for Multi-Attribute Group Decision-Making With Interval-Valued Neutrosophic Frank Aggregation Operators and Incomplete Weights. IEEE Access, 2019. 7: p. 102727-102750.
45. Lyzbeth Kruscthalia Álvarez, G., et al., Use of neutrosophy for the detection of operational risk in corporate financial management for administrative excellence. Neutrosophic Sets and Systems, 2019. 26: p. 75-81.
46. Altun, F., R. Şahin, and C. Güler, Multi-criteria decision making approach based on PROMETHEE with probabilistic simplified neutrosophic sets. Soft Computing, 2019.
47. Zhang, H.Y., J.Q. Wang, and X.H. Chen, Interval neutrosophic sets and their application in multicriteria decision making problems. Scientific World Journal, 2014. 2014: p. 1-15.
48. Şahin, R. and P. Liu, Maximizing deviation method for neutrosophic multiple attribute decision making with incomplete weight information. Neural Computing and Applications, 2015. 27(7): p. 2017-2029.
49. Chi, P. and P. Liu, An extended TOPSIS method for the multiple attribute decision making problems based on interval neutrosophic set. Neutrosophic Sets and Systems, 2013. 1(1): p. 63-70.
50. Wu, Z., et al., Two MAGDM models based on hesitant fuzzy linguistic term sets with possibility distributions: VIKOR and TOPSIS. Information Sciences, 2019. 473: p. 101-120.
51. Liao, H., Z. Xu, and X.-J. Zeng, Hesitant Fuzzy Linguistic VIKOR Method and Its Application in Qualitative Multiple Criteria Decision Making. IEEE Transactions on Fuzzy Systems, 2015. 23(5): p. 1343-1355.
52. Zhang, N. and G. Wei, Extension of VIKOR method for decision making problem based on hesitant fuzzy set. Applied Mathematical Modelling, 2013. 37(7): p. 4938-4947.
53. Shafiei Nikabadi, M., b. Razavian, and f. mojallal, hesitant fuzzy decision making methods, ed. 1. 2019, semnan semnan university press. 320.
54. Pramanik, S. and R. Mallick, VIKOR based MAGDM Strategy with trapezoidal neutrosophic numbers. Neutrosophic Sets and Systems, 2018. 22: p. 118-129.
55. Lau, H.C. and E.T. Wong, Partner selection and information infrastructure of a virtual enterprise network. International Journal of Computer Integrated Manufacturing, 2001. 14(2): p. 186-193.
56. Ye, J., Multiple-attribute Decision-Making Method under a Single-Valued Neutrosophic Hesitant Fuzzy Environment. Journal of Intelligent Systems, 2014. 24(1): p. 23-36.

Received: Apr 25, 2020. Accepted: July 152020

Basic operations on hypersoft sets and hypersoft point

Mujahid Abbas ${ }^{1}$, Ghulam Murtaza ${ }^{2, *}$ and Florentin Smarandache ${ }^{3}$
1 Department of Mathematics, Government College University, Lahore 54000, Pakistan and Department of Mathematics and Applied Mathematics,, University of Pretoria, Lynnwood Road, Pretoria 0002, South Africa; abbas.mujahid@gmail.com,
${ }^{2}$ Department of Mathematics, University of Management Technology, Lahore, 54000, Pakistan; ghulammurtaza@umt.edu.pk
2 University of New Mexico, USA; fsmarandache@gmail.com; smarand@unm.edu
* Correspondence: ghulammurtaza@umt.edu.pk

Abstract

The aim of this paper is to initiat formal study of hypersoft sets. We first, present basic operations like union, intersection and difference of hypersoft sets; basic ingrediants for topological structures on the collection of hypersoft sets. Moreover we introduce hypersoft points in different envorinments like fuzzy hypersoft set, intuitionistic fuzzy hypersoft set, neutrosophic hypersoft, plithogenic hypersoft set, and give some basic properties of hypersoft points in these envorinments. We expect that this will constitue an appropriate framework of hypersoft functions and the study of hypersoft function spaces. Examples are provided to explain the newly defined concepts.

Keywords: soft set; hypersoft set; set operations on hypersoft sets; hypersoft point; fuzzy hypersoft set; intuitionistic fuzzy hypersoft set; neutrosophic hypersoft; plithogenic hypersoft set.

1. Introduction

Molodtsov [16] defined soft set as a mathematical tool to deal with uncertainties associated with real world problems. Soft set theory has application in decision making, demand analysis, forecasting, information sciences and other disciplines (see for example, [$13,14,15,17,18,19,20,21$, 22, 23]). Plithogenic and neutrosophic hypersoft sets theory is being applied successfully in decision making problems (see, [2, 3, 4, 5, 6, 7, 8, 9,10,11,12]).

By definition, a soft set can be identified by a pair (F, A), where F stands for a multivalued function defined on the set of parameters A.

Smarandache [1] extended the notion of a soft set to the hypersoft set by replacing the function F with a multi-argument function defined on the Cartesian product of n different set of parameters. This concept is more flexible than soft set and more suitable in the context of decision making problems.

We expect the notion of hypersoft set will attract the attention of researchers working on soft set theory and its diverse applications. The purpose of this paper is to initiate a formal investigation in this new area of research.

As a first step, we present the basic operations like union, intersection and difference of hypersoft sets. Moreover we introduce hypersoft points and some basic properties of these points
which may provide the foundation for the hypersoft functions and hence the hypersoft fixed point theory.

2. Operations on hypersoft sets

In this section, we define basic operations on hypersoft sets. Smarandache defined the hypersoft set in the following manner:

Definition 1 [1] Let U be a universe of discourse, $P(U)$ the power set U and $E_{1}, E_{2}, \ldots, E_{n}$ the pairwise disjoint sets of parameters. Let A_{i} be the nonempty subset of E_{i} for each $i=1,2, \ldots, n$. A hypersoft set can be identified by the pair ($F, A_{1} \times A_{2} \times \cdots \times A_{n}$), where:

$$
F: A_{1} \times A_{2} \times \cdots \times A_{n} \rightarrow P(U)
$$

For sake of simplicity, we write the symbols \mathbf{E} for $E_{1} \times E_{2} \times \cdots \times E_{n}$, \mathbf{A} for $A_{1} \times A_{2} \times \cdots \times A_{n}$ and $\boldsymbol{\alpha}$ for an element of the set \mathbf{A}. We also suppose that none of the set A_{i} is empty.
Definition 2 [1] A hypersoft set;
on a crisp universe of discourse U_{C} is called Crisp Hypersoft set (or simply "hypersoft set");
on a fuzzy universe of discourse U_{F} is called Fuzzy Hypersoft set.
on a Intuitionistic Fuzzy universe of discourse $U_{I F}$ is called Intuitionistic Fuzzy Hypersoft set;
on a Neutrosophic universe of discourse U_{N} is called Neutrosophic Hypersoft Set;
on a Plithogenic universe of discourse U_{P} is called Plithogenic Hypersoft Set.

The nature of $F(\boldsymbol{\alpha})$ is determined by the nature of universe of discourse. Therefore $P(U)$ depends upon the nature of universe. We denote $\mathcal{H}\left(U_{*}, \mathbf{E}\right)$ by the family of all *-hypersoft sets over $\left(U_{*}, \mathbf{E}\right)$, where $*$ can take any value in the set $\{C, F, I F, N, P\}$, where symbols $C, F, I F, N, P$ denote Crisp, Fuzzy, Intuitionistic Fuzzy, Neutrosophic, and Plithogenic sets, respectively.

The following are the basic operations on *-hypersoft set.
Definition 3 Let U_{*} be a universe of discourse and \boldsymbol{A} a subset of \boldsymbol{E}. Then $(\boldsymbol{F}, \boldsymbol{A})$ is called

1. a null ${ }^{*}$-hypersoft set if for each parameter $\boldsymbol{\alpha} \in \boldsymbol{A}, F(\boldsymbol{\alpha})$ is an 0_{*}. We will denote it by $\Phi_{\boldsymbol{A}}$.
2. an absolute *-hypersoft set if for each parameter $\boldsymbol{\alpha} \in \boldsymbol{A}, F(\boldsymbol{\alpha})=U_{*}$. We will denote it by $\widetilde{U}_{\boldsymbol{A}}$.

Remark 1 We consider $0_{C}=\varnothing$ for empty set, $0_{F}=\left\{\frac{x}{0}, x \in U_{F}\right\}$ for null fuzzy set, $0_{I F}=\left\{\frac{x}{<0,1>}, x \in U_{I F}\right\}$ for null intuitionistic fuzzy set, $0_{N}=\left\{\frac{x}{<0,1,1>}, x \in U_{N}\right\}$ for null neutrosophic set. However, in case of plithogenic set, we have the following notations:

- Null plithgenic crisp set

$$
0_{P C}=\left\{x(0,0, \ldots, 0), \text { forall } x \in U_{P}\right\} .
$$

- Universal plithgenic crisp set

$$
1_{P C}=\left\{x(1,1, \ldots, 1), \text { forall } x \in U_{P}\right\} .
$$

Note that null plithgenic fuzzy set will be same as null plithgenic crisp set and universal plithgenic fuzzy set will be the same as universal plithgenic crisp set.

- Null plithgenic intuitionistic fuzzy set

$$
0_{P I F}=\left\{x((0,1),(0,1), \ldots,(0,1)), \text { forall } x \in U_{P}\right\} .
$$

- Universal plithgenic intuitionistic fuzzy set

$$
1_{P I F}=\left\{x((1,0),(1,0), \ldots,(1,0)), \text { forall } x \in U_{P}\right\} .
$$

- Null plithgenic neutrosophic set

$$
0_{P N}=\left\{x((0,1,1),(0,1,1), \ldots,(0,1,1)), \text { forall } x \in U_{P}\right\} .
$$

- Universal plithgenic neutrosophic set

$$
1_{P N}=\{x((1,0,0),(1,0,0), \ldots,(1,0,0)), \text { forall } x \in U\}
$$

Definition 4 Let (F, \boldsymbol{A}) and (G, \boldsymbol{B}) be two ${ }^{*}$-hypersoft sets over U_{*}. Then union of (F, \boldsymbol{A}) and (G, \boldsymbol{B}) is denoted by $(H, \boldsymbol{C})=(F, \boldsymbol{A}) \widetilde{\cup}(G, \boldsymbol{B})$ with $\boldsymbol{C}=C_{1} \times C_{2} \times \cdots \times C_{n}$, where $C_{i}=A_{i} \cup B_{i}$ for $i=1,2, \ldots, n$, and H is defined by

$$
H(\boldsymbol{\alpha})=\left(\begin{array}{ll}
F(\boldsymbol{\alpha}), & \text { if } \boldsymbol{\alpha} \in \mathbf{A}-\mathbf{B} \\
G(\boldsymbol{\alpha}), & \text { if } \boldsymbol{\alpha} \in \mathbf{B}-\mathbf{A} \\
F(\boldsymbol{\alpha}) \cup_{*} G(\boldsymbol{\alpha}), & \text { if } \boldsymbol{\alpha} \in \mathbf{A} \cap \mathbf{B}, \\
0_{*}, & \text { else, }
\end{array}\right.
$$

where $\boldsymbol{\alpha}=\left(c_{1}, c_{2}, \ldots, c_{n}\right) \in C$.

Remark 2 Note that, in the case of union of two hypersoft sets the set of parameters is a Cartesian product of sets of parameters whereas in the case of union of two soft sets the set of parameter is just the union of sets of parameters.

Definition 5 Let (F, \boldsymbol{A}) and (G, \boldsymbol{B}) be two ${ }^{*}$-hypersoft sets over U_{*}. Then intersection of (F, \boldsymbol{A}) and (G, \boldsymbol{B}) is denoted by $(H, \boldsymbol{C})=(F, \boldsymbol{A}) \widetilde{\cap}(G, \boldsymbol{B})$, where $\boldsymbol{C}=C_{1} \times C_{2} \times \cdots \times C_{n}$ is such that $C_{i}=A_{i} \cap B_{i}$ for $i=$ $1,2, \ldots, n$ and H is defined as

$$
H(\boldsymbol{\alpha})=F(\boldsymbol{\alpha}) \cap_{*} G(\boldsymbol{\alpha}),
$$

where $\boldsymbol{\alpha}=\left(c_{1}, c_{2}, \ldots, c_{n}\right) \in \boldsymbol{C}$. If C_{i} is an empty set for some i, then $(F, \boldsymbol{A}) \widetilde{\cap}(G, \boldsymbol{B})$ is defined to be a null ${ }^{*}$-hypersoft set.
Definition 6 Let (F, \boldsymbol{A}) and (G, \boldsymbol{B}) be two *-hypersoft sets over U_{*}. Then (F, \boldsymbol{A}) is called a ${ }^{*}$-hypersoft subset of (G, \boldsymbol{B}) if $\boldsymbol{A} \subseteq \boldsymbol{B}$, and $F(\boldsymbol{\alpha}) \subseteq_{*} G(\boldsymbol{\alpha})$ for all $\boldsymbol{\alpha} \in \boldsymbol{A}$. We denote this by $(F, \boldsymbol{A}) \widetilde{\subseteq}(G, \boldsymbol{B})$. Thus (F, \boldsymbol{A}) and (G, \boldsymbol{B}) are said to equal if $(F, \boldsymbol{A}) \cong(G, \boldsymbol{B})$ and $(F, \boldsymbol{A}) \cong(G, \boldsymbol{B})$.
Definition 7 Let (F, \boldsymbol{A}) and (G, \boldsymbol{B}) be two ${ }^{*}$-hypersoft sets over U_{*}. Then ${ }^{*}$-hypersoft difference of (F, \boldsymbol{A}) and (G, \boldsymbol{B}), denoted by $(H, \boldsymbol{C})=(F, \boldsymbol{A}) \widetilde{\}(G, \boldsymbol{B})$, where $\boldsymbol{C}=C_{1} \times C_{2} \times \cdots \times C_{n}$ is such that $C_{i}=A_{i} \cap B_{i}$ for $i=1,2, \ldots, n$, and H is defined by

$$
H(\boldsymbol{\alpha})=F(\boldsymbol{\alpha}) \backslash_{*} G(\boldsymbol{\alpha}),
$$

where $\boldsymbol{\alpha}=\left(c_{1}, c_{2}, \ldots, c_{n}\right) \in \mathbf{C}$. If C_{i} is an empty set for some i then $(F, \mathbf{A}) \tilde{\backslash}(G, \mathbf{B})$ is defined to be (F, \mathbf{A}).

Definition 8 The complement of a^{*}-hypersoft set (F, \boldsymbol{A}) is denoted as $(F, \boldsymbol{A})^{c}$ and is defined by $(F, \boldsymbol{A})^{c}=$ $\left(F^{c}, \boldsymbol{A}\right)$ where $F^{c}(\boldsymbol{\alpha})$ is the ${ }^{*}$-complemet of $F(\boldsymbol{\alpha})$ for each $\boldsymbol{\alpha} \in \boldsymbol{A}$.

Example 1 Let $\mathrm{U}=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}\right\}$. Define the attributes sets by:

$$
E_{1}=\left\{a_{11}, a_{12}\right\}, E_{2}=\left\{a_{21}, a_{22}\right\}, E_{3}=\left\{a_{31}, a_{32}\right\} .
$$

Suppose that

$$
\begin{aligned}
& A_{1}=\left\{a_{11}, a_{12}\right\}, A_{2}=\left\{a_{21}, a_{22}\right\}, A_{3}=\left\{a_{31}\right\}, \text { and } \\
& B_{1}=\left\{a_{11}\right\}, B_{2}=\left\{a_{21}, a_{22}\right\}, B_{3}=\left\{a_{31}, a_{32}\right\}
\end{aligned}
$$

that is,. $A_{i}, B_{i} \subseteq E_{i}$ for each $i=1,2,3$.
Let the crisp hypersoft sets (F, \mathbf{A}) and (G, \mathbf{B}) be defined by

$$
\begin{aligned}
& (F, \mathbf{A})=\left\{\left(\left(a_{11}, a_{21}, a_{31}\right),\left\{x_{1}, x_{2}\right\}\right),\left(\left(a_{11}, a_{22}, a_{31}\right),\left\{x_{2}\right\}\right),\right. \\
& \left.\left(\left(a_{12}, a_{21}, a_{31}\right),\left\{x_{3}, x_{4}\right\}\right),\left(\left(a_{12}, a_{22}, a_{31}\right),\left\{x_{1}, x_{4}\right\}\right)\right\} .
\end{aligned}
$$

and

$$
\begin{aligned}
& (G, \mathbf{B})=\left\{\left(\left(a_{11}, a_{21}, a_{31}\right),\left\{x_{2}, x_{3}\right\}\right),\left(\left(a_{11}, a_{22}, a_{31}\right),\left\{x_{2}\right\}\right),\right. \\
& \left.\left(\left(a_{11}, a_{21}, a_{32}\right),\left\{x_{1}, x_{4}\right\}\right),\left(\left(a_{11}, a_{22}, a_{32}\right),\left\{x_{3}, x_{4}\right\}\right)\right\} .
\end{aligned}
$$

We have excluded those $\boldsymbol{\alpha} \in \mathbf{A}$ for which $F(\boldsymbol{\alpha})$ is an empty set (similarly for those $\boldsymbol{\beta} \in \mathbf{B}$ for which $G(\boldsymbol{\beta})$ is an empty set).

Then the union and intersections of (F, \mathbf{A}) and (G, \mathbf{B}) are given by:

$$
\begin{aligned}
& (F, \mathbf{A}) \widetilde{u}(G, \mathbf{B})=\left\{\left(\left(a_{11}, a_{21}, a_{31}\right),\left\{x_{1}, x_{2}, x_{3}\right\}\right),\left(\left(a_{11}, a_{22}, a_{31}\right),\left\{x_{2}\right\}\right)\right. \\
& \left(\left(a_{12}, a_{21}, a_{31}\right),\left\{x_{3}, x_{4}\right\}\right),\left(\left(a_{12}, a_{22}, a_{31}\right),\left\{x_{1}, x_{4}\right\}\right) \\
& \left(\left(a_{11}, a_{21}, a_{32}\right),\left\{x_{1}, x_{4}\right\}\right),\left(\left(a_{11}, a_{22}, a_{32}\right),\left\{x_{3}, x_{4}\right\}\right) \\
& \left.\left(\left(a_{12}, a_{21}, a_{32}\right), 0_{C}\right),\left(\left(a_{12}, a_{22}, a_{32}\right), 0_{C}\right)\right\} ;
\end{aligned}
$$

and

$$
(F, \mathbf{A}) \widetilde{\cap}(G, \mathbf{B})=\left\{\left(\left(a_{11}, a_{21}, a_{31}\right),\left\{x_{2}\right\}\right),\left(\left(a_{11}, a_{22}, a_{31}\right),\left\{x_{2}\right\}\right)\right\}
$$

The differences $(F, \mathbf{A}) \widetilde{\}(G, \mathbf{B})$ and $(G, \mathbf{B}) \widetilde{\}(F, \mathbf{A})$ are the following

$$
\begin{aligned}
& (F, \mathbf{A}) \tilde{\}(G, \mathbf{B})=\left\{\left(\left(a_{11}, a_{21}, a_{31}\right),\left\{x_{1}\right\}\right),\left(\left(a_{11}, a_{22}, a_{31}\right), 0_{C}\right)\right\} ; \\
& (G, \mathbf{B}) \tilde{\}(F, \mathbf{A})=\left\{\left(\left(a_{11}, a_{21}, a_{31}\right),\left\{x_{3}\right\}\right),\left(\left(a_{11}, a_{22}, a_{31}\right), 0_{C}\right)\right\} .
\end{aligned}
$$

Example 2 Let $U=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$. Define the attributes sets by:

$$
E_{1}=\left\{a_{11}, a_{12}\right\}, E_{2}=\left\{a_{21}, a_{22}\right\}, E_{3}=\left\{a_{31}, a_{32}\right\}
$$

Suppose that

$$
\begin{aligned}
& A_{1}=\left\{a_{11}, a_{12}\right\}, A_{2}=\left\{a_{21}, a_{22}\right\}, A_{3}=\left\{a_{31}\right\}, \text { and } \\
& B_{1}=\left\{a_{11}\right\}, B_{2}=\left\{a_{21}, a_{22}\right\}, B_{3}=\left\{a_{31}, a_{32}\right\}
\end{aligned}
$$

are subsets of E_{i} for each $i=1,2,3$, that is,. $A_{i}, B_{i} \subseteq E_{i}$ for each i.
Let the fuzzy hypersoft sets (F, \mathbf{A}) and (G, \mathbf{B}) be defined by

$$
\begin{aligned}
& (F, \mathbf{A})=\left\{\left(\left(a_{11}, a_{21}, a_{31}\right),\left\{\frac{x_{1}}{0.5}, \frac{x_{2}}{0.7}\right\}\right),\left(\left(a_{11}, a_{22}, a_{31}\right),\left\{\frac{x_{2}}{0.3}\right\}\right),\right. \\
& \left.\left(\left(a_{12}, a_{21}, a_{31}\right),\left\{\frac{x_{3}}{0.8}, \frac{x_{4}}{0.9}\right\}\right),\left(\left(a_{12}, a_{22}, a_{31}\right),\left\{\frac{x_{1}}{0.5}, \frac{x_{4}}{0.4}\right\}\right)\right\} .
\end{aligned}
$$

and

$$
\begin{aligned}
& (G, \mathbf{B})=\left\{\left(\left(a_{11}, a_{21}, a_{31}\right),\left\{\frac{x_{2}}{0.2}, \frac{x_{3}}{0.9}\right\}\right),\left(\left(a_{11}, a_{22}, a_{31}\right),\left\{\frac{x_{2}}{0.6}\right\}\right),\right. \\
& \left(\left(a_{11}, a_{21}, a_{32}\right),\left\{\frac{x_{1}}{0.4}, \frac{x_{4}}{0.7}\right\}\right),\left(\left(a_{11}, a_{22}, a_{32}\right),\left\{\left\{\frac{x_{3}}{0.2}, \frac{x_{4}}{0.8}\right\}\right)\right\} .
\end{aligned}
$$

We have excluded those $\boldsymbol{\alpha} \in \mathbf{A}$ for which $F(\boldsymbol{\alpha})$ is a null fuzzy set (similarly for those $\boldsymbol{\beta} \in \mathbf{B}$ for which $G(\boldsymbol{\beta})$ is a null fuzzy set).

Then the union and intersections of (F, \mathbf{A}) and (G, \mathbf{B}) are given by:

$$
\begin{aligned}
& (F, \mathbf{A}) \widetilde{U}(G, \mathbf{B})=\left\{\left(\left(a_{11}, a_{21}, a_{31}\right),\left\{\frac{x_{1}}{0.5}, \frac{x_{2}}{0.7}, \frac{x_{3}}{0.9}\right\}\right),\left(\left(a_{11}, a_{22}, a_{31}\right),\left\{\frac{x_{2}}{0.6}\right\}\right),\right. \\
& \left(\left(a_{12}, a_{21}, a_{31}\right),\left\{\frac{x_{3}}{0.8}, \frac{x_{4}}{0.9}\right\}\right),\left(\left(a_{12}, a_{22}, a_{31}\right),\left\{\frac{x_{1}}{0.5}, \frac{x_{4}}{0.4}\right\}\right), \\
& \left(\left(a_{11}, a_{21}, a_{32}\right),\left\{\frac{x_{1}}{0.4}, \frac{x_{4}}{0.7}\right\}\right),\left(\left(a_{11}, a_{22}, a_{32}\right),\left\{\frac{x_{3}}{0.2}, \frac{x_{4}}{0.8}\right\}\right), \\
& \left.\left(\left(a_{12}, a_{21}, a_{32}\right), 0_{F}\right),\left(\left(a_{12}, a_{22}, a_{32}\right), 0_{F}\right)\right\} ;
\end{aligned}
$$

and

$$
(F, \mathbf{A}) \widetilde{\cap}(G, \mathbf{B})=\left\{\left(\left(a_{11}, a_{21}, a_{31}\right),\left\{\frac{x_{2}}{0.2}\right\}\right),\left(\left(a_{11}, a_{22}, a_{31}\right),\left\{\frac{x_{2}}{0.3}\right\}\right)\right\} .
$$

The differences $(F, \mathbf{A}) \widetilde{\}(G, \mathbf{B})$ and $(G, \mathbf{B}) \widetilde{\}(F, \mathbf{A})$ are the following

$$
\begin{aligned}
& (F, \mathbf{A}) \tilde{\}(G, \mathbf{B})=\left\{\left(\left(a_{11}, a_{21}, a_{31}\right),\left\{\frac{x_{1}}{0.5}, \frac{x_{2}}{0.5}\right\}\right),\left(\left(a_{11}, a_{22}, a_{31}\right), 0_{F}\right)\right\} ; \\
& (G, \mathbf{B}) \tilde{\}(F, \mathbf{A})=\left\{\left(\left(a_{11}, a_{21}, a_{31}\right),\left\{\frac{x_{3}}{0.9}\right\}\right),\left(\left(a_{11}, a_{22}, a_{31}\right),\left\{\frac{x_{2}}{0.3}\right\}\right)\right\} .
\end{aligned}
$$

Example 3 Let $\mathrm{U}=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}\right\}$. Define the attributes sets by:

$$
E_{1}=\left\{a_{11}, a_{12}\right\}, E_{2}=\left\{a_{21}, a_{22}\right\}, E_{3}=\left\{a_{31}, a_{32}\right\} .
$$

Suppose that

$$
\begin{aligned}
& A_{1}=\left\{a_{11}, a_{12}\right\}, A_{2}=\left\{a_{21}, a_{22}\right\}, A_{3}=\left\{a_{31}\right\}, \text { and } \\
& B_{1}=\left\{a_{11}\right\}, B_{2}=\left\{a_{21}, a_{22}\right\}, B_{3}=\left\{a_{31}, a_{32}\right\}
\end{aligned}
$$

that is,. $A_{i}, B_{i} \subseteq E_{i}$ for each $i=1,2,3$.
Let the intuitionistic fuzzy hypersoft sets (F, \mathbf{A}) and (G, \mathbf{B}) be defined by

$$
\begin{aligned}
& (F, \mathbf{A})=\left\{\left(\left(a_{11}, a_{21}, a_{31}\right),\left\{\frac{x_{1}}{<0.5,0.3>}, \frac{x_{2}}{<0.7,0.2>}\right\}\right),\left(\left(a_{11}, a_{22}, a_{31}\right),\left\{\frac{x_{2}}{<0.3,0.5>}\right\}\right),\right. \\
& \left.\left(\left(a_{12}, a_{21}, a_{31}\right),\left\{\frac{x_{3}}{<0.8,0.1>}, \frac{x_{4}}{<0.1,0.5>}\right\}\right),\left(\left(a_{12}, a_{22}, a_{31}\right),\left\{\frac{x_{1}}{<0.5,0.3>}, \frac{x_{4}}{<0.4,0.2>}\right\}\right)\right\} .
\end{aligned}
$$

and

$$
\begin{aligned}
& (G, \mathbf{B})=\left\{\left(\left(a_{11}, a_{21}, a_{31}\right),\left\{\frac{x_{2}}{<0.2,0.6>}, \frac{x_{3}}{<0.8,0.1>}\right\}\right),\left(\left(a_{11}, a_{22}, a_{31}\right),\left\{\frac{x_{2}}{<0.6,0.3>}\right\}\right),\right. \\
& \left.\left(\left(a_{11}, a_{21}, a_{32}\right),\left\{\frac{x_{1}}{<0.4,0.5>}, \frac{x_{4}}{<0.7,0.2>}\right\}\right),\left(\left(a_{11}, a_{22}, a_{32}\right),\left\{\frac{x_{3}}{<0.4,0.2>}, \frac{x_{4}}{<0.1,0.8>}\right\}\right)\right\} .
\end{aligned}
$$

We have excluded all those $\boldsymbol{\alpha} \in \mathbf{A}$ for which $F(\boldsymbol{\alpha})$ is a null intuitionistic fuzzy set (similarly for those $\boldsymbol{\beta} \in \mathbf{B}$ for which $G(\boldsymbol{\beta})$ is a null intuitionistic fuzzy set).

The union and intersections of (F, \mathbf{A}) and (G, \mathbf{B}) are given by:

$$
\begin{aligned}
& (F, \mathbf{A}) \widetilde{U}(G, \mathbf{B}) \\
& =\left\{\left(\left(a_{11}, a_{21}, a_{31}\right),\left\{\frac{x_{1}}{<0.5,0.3>}, \frac{x_{2}}{<0.7,0.2>}, \frac{x_{3}}{<0.8,0.1>}\right\}\right),\left(\left(a_{11}, a_{22}, a_{31}\right),\left\{\frac{x_{2}}{<0.6,0.3>}\right\}\right),\right. \\
& \left(\left(a_{12}, a_{21}, a_{31}\right),\left\{\frac{x_{3}}{<0.8,0.1>}, \frac{x_{4}}{<0.1,0.5>}\right\}\right),\left(\left(a_{12}, a_{22}, a_{31}\right),\left\{\frac{x_{1}}{<0.5,0.3>}, \frac{x_{4}}{<0.4,0.2>}\right\}\right), \\
& \left(\left(a_{11}, a_{21}, a_{32}\right),\left\{\frac{x_{1}}{<0.4,0.5>}, \frac{x_{4}}{<0.7,0.2>}\right\}\right),\left(\left(a_{11}, a_{22}, a_{32}\right),\left\{\frac{x_{3}}{<0.4,0.2>}, \frac{x_{4}}{<0.1,0.8>}\right\}\right), \\
& \left.\left(\left(a_{12}, a_{21}, a_{32}\right), 0_{I F}\right),\left(\left(a_{12}, a_{22}, a_{32}\right), 0_{I F}\right)\right\} ;
\end{aligned}
$$

and

$$
(F, \mathbf{A}) \widetilde{\cap}(G, \mathbf{B})=\left\{\left(\left(a_{11}, a_{21}, a_{31}\right),\left\{\frac{x_{2}}{<0.2,0.6>}\right\}\right),\left(\left(a_{11}, a_{22}, a_{31}\right),\left\{\frac{x_{2}}{<0.3,0.5>}\right\}\right)\right\}
$$

The differences $(F, \mathbf{A}) \widetilde{\}(G, \mathbf{B})$ and $(G, \mathbf{B}) \widetilde{\}(F, \mathbf{A})$ are the following

$$
\begin{aligned}
& (F, \mathbf{A}) \tilde{\backslash}(G, \mathbf{B})=\left\{\left(\left(a_{11}, a_{21}, a_{31}\right),\left\{\frac{x_{1}}{<0.5,0.3>}, \frac{x_{2}}{<0.6,0.2\rangle}\right\}\right),\left(\left(a_{11}, a_{22}, a_{31}\right),\left\{\frac{x_{2}}{<0.3,0.6>}\right\}\right)\right\} ; \\
& (G, \mathbf{B}) \tilde{\backslash}(F, \mathbf{A})=\left\{\left(\left(a_{11}, a_{21}, a_{31}\right),\left\{\frac{x_{2}}{<0.2,0.7>}, \frac{x_{3}}{<0.8,0.1\rangle}\right\}\right),\left(\left(a_{11}, a_{22}, a_{31}\right),\left\{\frac{x_{2}}{<0.5,0.3\rangle}\right\}\right)\right\} .
\end{aligned}
$$

Example 4 Let $U=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$. Define the attributes sets by:

$$
E_{1}=\left\{a_{11}, a_{12}\right\}, E_{2}=\left\{a_{21}, a_{22}\right\}, E_{3}=\left\{a_{31}, a_{32}\right\} .
$$

Suppose that

$$
\begin{aligned}
& A_{1}=\left\{a_{11}, a_{12}\right\}, A_{2}=\left\{a_{21}, a_{22}\right\}, A_{3}=\left\{a_{31}\right\}, \text { and } \\
& B_{1}=\left\{a_{11}\right\}, B_{2}=\left\{a_{21}, a_{22}\right\}, B_{3}=\left\{a_{31}, a_{32}\right\}
\end{aligned}
$$

that is,. $A_{i}, B_{i} \subseteq E_{i}$ for each $i=1,2,3$.
Let the neutrosophic hypersoft sets (F, \mathbf{A}) and (G, \mathbf{B}) be defined by

$$
\begin{aligned}
& (F, \mathbf{A})=\left\{\left(\left(a_{11}, a_{21}, a_{31}\right),\left\{\frac{x_{1}}{<0.5,0.2,0.3>}, \frac{x_{2}}{<0.7,0.3,0.2>}\right\}\right),\left(\left(a_{11}, a_{22}, a_{31}\right),\left\{\frac{x_{2}}{<0.3,0.2,0.5>}\right\}\right),\right. \\
& \left.\left(\left(a_{12}, a_{21}, a_{31}\right),\left\{\frac{x_{3}}{\langle 0.8,0.4,0.1>}, \frac{x_{4}}{<0.1,0.5,0.5>}\right\}\right),\left(\left(a_{12}, a_{22}, a_{31}\right),\left\{\frac{x_{1}}{<0.5,0.2,0.3>}, \frac{x_{4}}{<0.4,0.3,0.2>}\right\}\right)\right\} .
\end{aligned}
$$

and

$$
\begin{aligned}
& (G, \mathbf{B})=\left\{\left(\left(a_{11}, a_{21}, a_{31}\right),\left\{\frac{x_{2}}{<0.2,0.5,0.6>}, \frac{x_{3}}{<0.8,0.6,0.1>}\right\}\right),\left(\left(a_{11}, a_{22}, a_{31}\right),\left\{\frac{x_{2}}{<0.6,0.2,0.3>}\right\}\right)\right. \\
& \left.\left(\left(a_{11}, a_{21}, a_{32}\right),\left\{\frac{x_{1}}{<0.4,0.3,0.5>}, \frac{x_{4}}{<0.7,0.3,0.2>}\right\}\right),\left(\left(a_{11}, a_{22}, a_{32}\right),\left\{\frac{x_{3}}{<0.4,0.4,0.2>}, \frac{x_{4}}{<0.1,0.3,0.8>}\right\}\right)\right\}
\end{aligned}
$$

We have excluded those $\boldsymbol{\alpha} \in \mathbf{A}$ for which $F(\boldsymbol{\alpha})$ is a null intuitionistic fuzzy set (similarly for those $\boldsymbol{\beta} \in \mathbf{B}$ for which $G(\boldsymbol{\beta})$ is a null intuitionistic fuzzy set).

The union and intersections of (F, \mathbf{A}) and (G, \mathbf{B}) are given by:

$$
\begin{aligned}
& (F, \mathbf{A}) \widetilde{U}(G, \mathbf{B}) \\
& =\left\{\left(\left(a_{11}, a_{21}, a_{31}\right),\left\{\frac{x_{1}}{<0.5,0.2,0.3>}, \frac{x_{2}}{<0.7,0.3,0.2>}, \frac{x_{3}}{<0.8,0.6,0.1>}\right\}\right),\left(\left(a_{11}, a_{22}, a_{31}\right),\left\{\frac{x_{2}}{<0.6,0.2,0.3>}\right\}\right),\right. \\
& \left(\left(a_{12}, a_{21}, a_{31}\right),\left\{\frac{x_{3}}{<0.8,0.4,0.1>}, \frac{x_{4}}{<0.1,0.5,0.5>}\right\}\right),\left(\left(a_{12}, a_{22}, a_{31}\right),\left\{\frac{x_{1}}{<0.5,0.2,0.3>}, \frac{x_{4}}{<0.4,0.3,0.2>}\right\}\right), \\
& \left(\left(a_{11}, a_{21}, a_{32}\right),\left\{\frac{x_{1}}{<0.4,0.3,0.5>}, \frac{x_{4}}{<0.7,0.3,0.2>}\right\}\right),\left(\left(a_{11}, a_{22}, a_{32}\right),\left\{\frac{x_{3}}{<0.4,0.4,0.2>}, \frac{x_{4}}{<0.1,0.3,0.8>}\right\}\right), \\
& \left.\left(\left(a_{12}, a_{21}, a_{32}\right), 0_{N}\right),\left(\left(a_{12}, a_{22}, a_{32}\right), 0_{N}\right)\right\} ;
\end{aligned}
$$

and

$$
\begin{aligned}
& (F, \mathbf{A}) \widetilde{\sim}(G, \mathbf{B}) \\
& =\left\{\left(\left(a_{11}, a_{21}, a_{31}\right),\left\{\frac{x_{2}}{<0.2,0.5,0.6>}\right\}\right),\left(\left(a_{11}, a_{22}, a_{31}\right),\left\{\frac{x_{2}}{<0.3,0.2,0.5>}\right\}\right)\right\} .
\end{aligned}
$$

The differences $(F, \mathbf{A}) \widetilde{ }(G, \mathbf{B})$ and $(G, \mathbf{B}) \widetilde{(F, \mathbf{A})}$ are the following

$$
(F, \mathbf{A}) \tilde{\}(G, \mathbf{B})
$$

$$
\begin{aligned}
& =\left\{\left(\left(a_{11}, a_{21}, a_{31}\right),\left\{\frac{x_{1}}{<0.5,0.2,0.3>}, \frac{x_{2}}{<0.6,0.15,0.2>}\right\}\right),\left(\left(a_{11}, a_{22}, a_{31}\right),\left\{\frac{x_{2}}{<0.3,0.4,0.6>}\right\}\right)\right\} \\
& (G, \mathbf{B}) \tilde{\sim}(F, \mathbf{A}) \\
& =\left\{\left(\left(a_{11}, a_{21}, a_{31}\right),\left\{\frac{x_{2}}{<0.2,0.15,0.7>}, \frac{x_{3}}{<0.8,0.6,0.1>}\right\}\right),\left(\left(a_{11}, a_{22}, a_{31}\right),\left\{\frac{x_{2}}{<0.5,0.4,0.3>}\right\}\right)\right\}
\end{aligned}
$$

Remark 3 There are four types of plithogenic hypersoft sets namely: plithogenic crisp hypersoft set, plithogenic fuzzy hypersoft set, plithogenic intuitionistic fuzzy hypersoft set, plithogenic neutrosophic hypersoft set. Here we discuss only plithogenic crisp hypersoft point whereas examples for other types of sets can be constructed in the similar way.

Example 5 Let $U=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$. Define the attributes sets by:

$$
E_{1}=\left\{a_{11}, a_{12}\right\}, E_{2}=\left\{a_{21}, a_{22}\right\}, E_{3}=\left\{a_{31}, a_{32}\right\} .
$$

Suppose that

$$
\begin{aligned}
& A_{1}=\left\{a_{11}, a_{12}\right\}, A_{2}=\left\{a_{21}, a_{22}\right\}, A_{3}=\left\{a_{31}\right\}, \text { and } \\
& B_{1}=\left\{a_{11}\right\}, B_{2}=\left\{a_{21}, a_{22}\right\}, B_{3}=\left\{a_{31}, a_{32}\right\}
\end{aligned}
$$

that is,. $A_{i}, B_{i} \subseteq E_{i}$ for each $i=1,2,3$.
Let the plithogenic crisp hypersoft sets (F, \mathbf{A}) and (G, \mathbf{B}) be defined by

$$
\begin{aligned}
& (F, \mathbf{A})=\left\{\left(\left(a_{11}, a_{21}, a_{31}\right),\left\{x_{1}(1,0,1), x_{2}(1,1,1)\right\}\right),\left(\left(a_{11}, a_{22}, a_{31}\right),\left\{x_{2}(0,0,1)\right\}\right),\right. \\
& \left.\left(\left(a_{12}, a_{21}, a_{31}\right),\left\{x_{3}(1,1,0), x_{4}(1,1,1)\right\}\right),\left(\left(a_{12}, a_{22}, a_{31}\right),\left\{x_{1}(1,0,1), x_{4}(0,1,0)\right\}\right)\right\} .
\end{aligned}
$$

and

$$
\begin{aligned}
& (G, \mathbf{B})=\left\{\left(\left(a_{11}, a_{21}, a_{31}\right),\left\{x_{2}(1,1,1), x_{3}(1,1,0)\right\}\right),\left(\left(a_{11}, a_{22}, a_{31}\right),\left\{x_{2}(0,1,0)\right\}\right),\right. \\
& \left.\left(\left(a_{11}, a_{21}, a_{32}\right),\left\{x_{1}(0,1,1), x_{4}(1,1,1)\right\}\right),\left(\left(a_{11}, a_{22}, a_{32}\right),\left\{x_{3}(1,1,1), x_{4}(1,1,1)\right\}\right)\right\} .
\end{aligned}
$$

We have excluded all those $\boldsymbol{\alpha} \in \mathbf{A}$ for which $F(\boldsymbol{\alpha})$ is a null plithogenic crisp set (similarly for those $\boldsymbol{\beta} \in \mathbf{B}$ for which $G(\boldsymbol{\beta})$ is a null plithogenic crisp set).

The union and intersections of (F, \mathbf{A}) and (G, \mathbf{B}) are given by:

$$
\begin{aligned}
& (F, \mathbf{A}) \widetilde{U}(G, \mathbf{B})=\left\{\left(\left(a_{11}, a_{21}, a_{31}\right),\left\{x_{1}(1,0,1), x_{2}(1,1,1), x_{3}(1,1,0)\right\}\right)\right. \\
& \left(\left(a_{11}, a_{22}, a_{31}\right),\left\{x_{2}(0,1,1)\right\}\right),\left(\left(a_{12}, a_{21}, a_{31}\right),\left\{x_{3}(1,1,0), x_{4}(1,1,1)\right\}\right), \\
& \left(\left(a_{12}, a_{22}, a_{31}\right),\left\{x_{1}(1,0,1), x_{4}(0,1,0)\right\}\right) \\
& \left(\left(a_{11}, a_{21}, a_{32}\right),\left\{x_{1}(0,1,1), x_{4}(1,1,1)\right\}\right),\left(\left(a_{11}, a_{22}, a_{32}\right),\left\{x_{3}(1,1,1), x_{4}(1,1,1)\right\}\right), \\
& \left.\left(\left(a_{12}, a_{21}, a_{32}\right), 0_{P C}\right),\left(\left(a_{12}, a_{22}, a_{32}\right), 0_{P C}\right)\right\} ;
\end{aligned}
$$

and

$$
(F, \mathbf{A}) \widetilde{\cap}(G, \mathbf{B})=\left\{\left(\left(a_{11}, a_{21}, a_{31}\right),\left\{x_{2}(1,1,1)\right\}\right),\left(\left(a_{11}, a_{22}, a_{31}\right), 0_{P C}\right)\right\} .
$$

The differences $(F, \mathbf{A}) \widetilde{\}(G, \mathbf{B})$ and $(G, \mathbf{B}) \widetilde{\}(F, \mathbf{A})$ are the following

$$
\begin{aligned}
& (F, \mathbf{A}) \tilde{\lceil }(G, \mathbf{B})=\left\{\left(\left(a_{11}, a_{21}, a_{31}\right),\left\{x_{1}(1,0,1)\right\}\right),\left(\left(a_{11}, a_{22}, a_{31}\right),\left\{x_{2}(0,0,1)\right\}\right)\right\} ; \\
& (G, \mathbf{B}) \tilde{\lceil }(F, \mathbf{A})=\left\{\left(\left(a_{11}, a_{21}, a_{31}\right),\left\{x_{3}(1,1,0)\right\}\right),\left(\left(a_{11}, a_{22}, a_{31}\right),\left\{x_{2}(0,1,0)\right\}\right)\right\} .
\end{aligned}
$$

Proposition 1 Let (F, \boldsymbol{A}) be a *-hypersoft set over U_{*}. Then the following holds;

$$
\text { 1. }(F, \mathbf{A}) \widetilde{\cup} \Phi_{\mathbf{A}}=(F, \mathbf{A}) \text {; }
$$

2. $(F, \mathbf{A}) \widetilde{\cap} \Phi_{\mathbf{A}}=\Phi_{\mathbf{A}}$;
3. $(F, \mathbf{A}) \widetilde{U} \widetilde{U}_{\mathbf{A}}=\widetilde{U}_{\mathbf{A}}$;
4. $(F, \mathbf{A}) \widetilde{\cap} \widetilde{U}_{\mathbf{A}}=(F, \mathbf{A})$;
5. $\left.\widetilde{U}_{\mathbf{A}} \widetilde{ } \widetilde{(F}, \mathbf{A}\right)=(F, \mathbf{A})^{c}$;
6. $(F, \mathbf{A}) \widetilde{U}(F, \mathbf{A})^{c}=\widetilde{U}_{\mathbf{A}}$;
7. $(F, \mathbf{A}) \widetilde{\cap}(F, \mathbf{A})^{c}=\Phi_{\mathbf{A}}$.

Proof. We will prove only (i), (ii) and (v) and proofs of remaining are similar.
(i) By the definition of union, we have

$$
(F, \mathbf{A}) \widetilde{\cup} \Phi_{\mathbf{A}}=(H, \mathbf{C}),
$$

where $\mathbf{C}=\mathbf{A}$ and $H(\boldsymbol{\alpha})=F(\boldsymbol{\alpha}) U_{*} 0_{*}=F(\boldsymbol{\alpha})$ for all $\boldsymbol{\alpha} \in \mathbf{C}$. Hence $(H, \mathbf{C})=(F, \mathbf{A})$.
(ii) By the definition of intersection, we obtain that

$$
(F, \mathbf{A}) \widetilde{\cap} \Phi_{\mathbf{A}}=(H, \mathbf{C}),
$$

where $\mathbf{C}=\mathbf{A}$ and $H(\boldsymbol{\alpha})=F(\boldsymbol{\alpha}) \cap_{*} 0_{*}=0_{*}$ for all $\boldsymbol{\alpha} \in \mathbf{C}$. Hence $(H, \mathbf{C})=\Phi_{\mathbf{A}}$.
(v) By the definition of difference, we get

$$
\widetilde{U}_{\mathbf{A}} \widetilde{\lceil }(F, \mathbf{A})=(H, \mathbf{C})
$$

where $\mathbf{C}=\mathbf{A}$ and $H(\boldsymbol{\alpha})=U \backslash_{*} F(\boldsymbol{\alpha})=F^{c}(\boldsymbol{\alpha})$ for all $\boldsymbol{\alpha} \in \mathbf{C}$. Hence $(H, \mathbf{C})=(F, \mathbf{A})^{c}$.

3. Hypersoft point

In this section, we define hypersoft point in different frameworks and study some basic properties of such points in each setup.

3.1 Crisp hypersoft point

Definition 9 Let $\boldsymbol{A} \subseteq \boldsymbol{E}, \boldsymbol{\alpha} \in \boldsymbol{A}$, and $x \in U$. A hypersoft set (F, \boldsymbol{A}) is said to be a hypersoft point if $F(\boldsymbol{\alpha})$ is an empty set for every $\boldsymbol{\alpha}^{\prime} \in \boldsymbol{A} \backslash\{\boldsymbol{\alpha}\}$ and $F(\boldsymbol{\alpha})$ is a singleton set. We will denote hypersoft point (F, \boldsymbol{A}) simply by $P^{(\alpha, x)}$.
Definition 10 A hypersoft set (F, \boldsymbol{A}) is said to be an empty hypersoft point if $F(\boldsymbol{\alpha})$ is an empty set for each $\boldsymbol{\alpha} \in \boldsymbol{A}$. We will denote an empty hypersoft set, corresponding to $\boldsymbol{\alpha}$, by $P^{(\alpha, \boldsymbol{\alpha})}$.

As a matter of fact if (F, \mathbf{A}) is a null hypersoft set then for every $\boldsymbol{\alpha} \in \mathbf{A}$ it may be regarded as empty hypersoft set $P^{(\boldsymbol{\alpha}, \boldsymbol{\varnothing})}$.

Definition 11 A hypersoft point $P^{(\boldsymbol{\alpha}, x)}$ is said to belong to a hypersoft set (G, \boldsymbol{A}) if $P^{(\boldsymbol{\alpha}, x)} \widetilde{\subseteq}(G, \boldsymbol{A})$. We write it as $P^{(\boldsymbol{\alpha}, x)} \widetilde{\in}(G, \boldsymbol{A})$.

It is straightforward to check that the hypersoft union of hypersoft points of a hypersoft set (G, \mathbf{A}) returns the hypersoft set (G, \mathbf{A}), that is,

$$
(G, \mathbf{A})=\widetilde{\mathrm{U}}\left\{P^{(\boldsymbol{\alpha}, x)}: P^{(\boldsymbol{\alpha}, x)} \widetilde{\in}(G, \mathbf{A})\right\} .
$$

We illustrate the above observation through the following example.

Example 6 Let $U=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$, and (F, A) be as given in the example 1. Then the hypersoft points of (F, A) are the following:

$$
\begin{aligned}
& P_{1}^{\left(\left(a_{11}, a_{21}, a_{31}\right), x_{1}\right)}=\left\{\left(\left(a_{11}, a_{21}, a_{31}\right),\left\{x_{1}\right\}\right)\right\} \\
& P_{2}^{\left(\left(a_{11}, a_{21}, a_{31}\right), x_{2}\right)}=\left\{\left(\left(a_{11}, a_{21}, a_{31}\right),\left\{x_{2}\right\}\right)\right\} \\
& P_{3}^{\left(\left(a_{11}, a_{22}, a_{31}\right), x_{2}\right)}=\left\{\left(\left(a_{11}, a_{22}, a_{31}\right),\left\{x_{2}\right\}\right)\right\} \\
& P_{4}^{\left(\left(a_{12}, a_{21}, a_{31}\right), x_{3}\right)}=\left\{\left(\left(a_{12}, a_{21}, a_{31}\right),\left\{x_{3}\right\}\right)\right\} ; \\
& P_{5}^{\left(\left(a_{12}, a_{21}, a_{31}\right), x_{4}\right)}=\left\{\left(\left(a_{12}, a_{21}, a_{31}\right),\left\{x_{4}\right\}\right)\right\} ; \\
& P_{6}^{\left(\left(a_{12}, a_{22}, a_{31}\right), x_{1}\right)}=\left\{\left(\left(a_{12}, a_{22}, a_{31}\right),\left\{x_{1}\right\}\right)\right\} ; \\
& P_{7}^{\left(\left(a_{12}, a_{22}, a_{31}\right), x_{4}\right)}=\left\{\left(\left(a_{12}, a_{22}, a_{31}\right),\left\{x_{4}\right\}\right)\right\}
\end{aligned}
$$

Moreover

$$
\begin{aligned}
& (F, \mathbf{A})=P_{1}^{\left(\left(a_{11}, a_{21}, a_{31}\right), x_{1}\right)} \widetilde{\mathrm{U}} P_{2}^{\left(\left(a_{11}, a_{21}, a_{31}\right), x_{2}\right)} \widetilde{\mathrm{U}} P_{3}^{\left(\left(a_{11}, a_{22}, a_{31}\right), x_{2}\right)} \\
& \widetilde{\mathrm{U}} P_{4}^{\left(\left(a_{12}, a_{21}, a_{31}\right), x_{3}\right)} \widetilde{\mathrm{U}} P_{5}^{\left(\left(a_{12}, a_{21}, a_{31}\right), x_{4}\right)} \widetilde{\mathrm{U}} P_{6}^{\left(\left(a_{12}, a_{22}, a_{31}\right), x_{1}\right)} \widetilde{\mathrm{U}} P_{7}^{\left(\left(a_{12}, a_{22}, a_{31}\right), x_{4}\right)}
\end{aligned}
$$

Proposition 2 Let $(F, \boldsymbol{A}),\left(F_{1}, \boldsymbol{A}\right)$ and $\left(F_{2}, \boldsymbol{A}\right)$ be hypersoft sets over U. Then the following hold:

1. If (F, \boldsymbol{A}) is not a null hypersoft set, then $(\boldsymbol{F}, \boldsymbol{A})$ contains at least one nonempty hypersoft point.
2. $\left(F_{1}, \boldsymbol{A}\right) \widetilde{\subseteq}\left(F_{2}, \boldsymbol{A}\right)$ if and only if $P^{(\boldsymbol{\alpha}, x)} \widetilde{\in}\left(F_{1}, \boldsymbol{A}\right)$ implies that $P^{(\boldsymbol{\alpha}, x)} \widetilde{\in}\left(F_{2}, \boldsymbol{A}\right)$.
3. $P^{(\boldsymbol{\alpha}, x)} \widetilde{\in}\left(F_{1}, \boldsymbol{A}\right) \widetilde{U}\left(F_{2}, \boldsymbol{A}\right)$ if and only if $P^{(\boldsymbol{\alpha}, x)} \widetilde{\in}\left(F_{1}, \boldsymbol{A}\right)$ or $P^{(\boldsymbol{\alpha}, x)} \widetilde{\in}\left(F_{2}, \boldsymbol{A}\right)$.
4. $P^{(\boldsymbol{\alpha}, x)} \widetilde{\in}\left(F_{1}, \boldsymbol{A}\right) \widetilde{\cap}\left(F_{2}, \boldsymbol{A}\right)$ if and only if $P^{(\boldsymbol{\alpha}, x)} \widetilde{\in}\left(F_{1}, \boldsymbol{A}\right)$ and $P^{(\boldsymbol{\alpha}, x)} \widetilde{\in}\left(F_{2}, \boldsymbol{A}\right)$.
5. $P^{(\alpha, x)} \widetilde{\in}\left(F_{1}, \boldsymbol{A}\right) \widetilde{\wedge}\left(F_{2}, \boldsymbol{A}\right)$ if and only if $P^{(\alpha, x)} \widetilde{\in}\left(F_{1}, \boldsymbol{A}\right)$ and $P^{(\alpha, x)} \widetilde{\not}\left(F_{2}, \boldsymbol{A}\right)$.

Proof. We will prove (1), (2) and (3). Proofs of (4) and (5) are similar to that of (3).
(1) Suppose that (F, \mathbf{A}) is not a null hypersoft set, that is, $F(\boldsymbol{\alpha}) \neq \varnothing$ for some $\boldsymbol{\alpha} \in \mathbf{A}$. Now if $\boldsymbol{\alpha}_{0} \in \mathbf{A}$ is such that $F\left(\boldsymbol{\alpha}_{0}\right) \neq \varnothing$, then for $x \in F\left(\boldsymbol{\alpha}_{0}\right)$, there will be a hypersoft point $P^{\left(\boldsymbol{\alpha}_{0}, x\right)}$ such that $P^{\left(\boldsymbol{\alpha}_{0}, x\right)} \widetilde{\epsilon}(F, \mathbf{A})$.
(2) Suppose that $\left(F_{1}, \mathbf{A}\right) \widetilde{\subseteq}\left(F_{2}, \mathbf{A}\right)$ and $P^{(\boldsymbol{\alpha}, x)} \widetilde{\in}\left(F_{1}, \mathbf{A}\right)$. By the definition 11, we have

$$
P^{(\boldsymbol{\alpha}, x)} \widetilde{\subseteq}\left(F_{1}, \mathbf{A}\right) .
$$

Thus

$$
P^{(\boldsymbol{\alpha}, x)} \widetilde{\subseteq}\left(F_{1}, \mathbf{A}\right) \widetilde{\subseteq}\left(F_{2}, \mathbf{A}\right)
$$

implies that $P^{(\alpha, x)} \widetilde{\in}\left(F_{2}, \mathbf{A}\right)$.
Conversely suppose that $P^{(\alpha, x)} \widetilde{\epsilon}\left(F_{1}, \mathbf{A}\right)$ which implies that $P^{(\alpha, x)} \widetilde{\in}\left(F_{2}, \mathbf{A}\right)$. By the definition 11, we obtain that

$$
P^{(\boldsymbol{\alpha}, x)} \widetilde{\subseteq}\left(F_{2}, \mathbf{A}\right) \text { forall } P^{(\boldsymbol{\alpha}, x)} \widetilde{\in}\left(F_{1}, \mathbf{A}\right)
$$

Thus we have

$$
\left(F_{1}, \mathbf{A}\right)=\widetilde{U}\left\{P^{(\boldsymbol{\alpha}, x)}: P^{(\boldsymbol{\alpha}, x)} \widetilde{\in}(G, \mathbf{A})\right\} \widetilde{\subseteq}\left(F_{2}, \mathbf{A}\right)
$$

(3) Suppose that $P^{(\boldsymbol{\alpha}, x)} \widetilde{\in}\left(F_{1}, \mathbf{A}\right) \widetilde{U}\left(F_{2}, \mathbf{A}\right)$. It follows from the definition 11 that

$$
P^{(\boldsymbol{\alpha}, x)} \widetilde{\subseteq}\left(F_{1}, \mathbf{A}\right) \widetilde{U}\left(F_{2}, \mathbf{A}\right),
$$

which implies that $x \in F_{1}(\boldsymbol{\alpha}) U_{C} F_{2}(\boldsymbol{\alpha})$. Thus $x \in F_{1}(\boldsymbol{\alpha})$ or $F_{2}(\boldsymbol{\alpha})$. Hence we have

$$
P^{(\alpha, x)} \widetilde{\epsilon}\left(F_{1}, \mathbf{A}\right) \operatorname{or} P^{(\boldsymbol{\alpha}, x)} \widetilde{\epsilon}\left(F_{2}, \mathbf{A}\right) .
$$

Conversely suppose that $P^{(\boldsymbol{\alpha}, x)} \widetilde{\in}\left(F_{1}, \mathbf{A}\right)$ or $P^{(\boldsymbol{\alpha}, x)} \widetilde{\in}\left(F_{2}, \mathbf{A}\right)$. This implies that $x \in F_{1}(\boldsymbol{\alpha})$ or $F_{2}(\boldsymbol{\alpha})$. Thus $x \in F_{1}(\boldsymbol{\alpha}) \cup_{C} F_{2}(\boldsymbol{\alpha})$ and so we have

$$
P^{(\boldsymbol{\alpha}, x)} \widetilde{\subseteq}\left(F_{1}, \mathbf{A}\right) \widetilde{U}\left(F_{2}, \mathbf{A}\right) .
$$

3.2 Fuzzy hypersoft point

Definition 12 Let $\boldsymbol{A} \subseteq \boldsymbol{E}, \boldsymbol{\alpha} \in \boldsymbol{A}$, and $x \in U_{F}$. A fuzzy hypersoft set (F, \boldsymbol{A}) is said to be a fuzzy hypersoft point if $F\left(\boldsymbol{\alpha} \boldsymbol{\alpha}^{\prime}\right)$ is a null fuzzy set for every $\boldsymbol{\alpha}^{\prime} \in \boldsymbol{A} \backslash\{\boldsymbol{\alpha}\}$ and $F(\boldsymbol{\alpha})(y)=0$ for all $y \neq x$. We will denote (F, \boldsymbol{A}) simply by $F P^{(\alpha, x)}$.
Definition 13 A fuzzy hypersoft set (F, \boldsymbol{A}) is said to be a null fuzzy hypersoft point if $F(\boldsymbol{\alpha})$ is a null fuzzy set for each $\boldsymbol{\alpha} \in \boldsymbol{A}$. We denote a null fuzzy hypersoft set, corresponding to $\boldsymbol{\alpha}$, by $F P^{\left(\boldsymbol{\alpha}, 0_{F}\right)}$.

Note that if (F, \mathbf{A}) is a null fuzzy hypersoft set then for every $\boldsymbol{\alpha} \in \mathbf{A}$, it can be regarded as null fuzzy hypersoft set $F P^{\left(\boldsymbol{\alpha}, 0_{F}\right)}$.
Definition 14 A fuzzy hypersoft point $F P^{(\alpha, x)}$ is said to belong to a fuzzy hypersoft set (G, \boldsymbol{A}) if $F P^{(\boldsymbol{\alpha}, x)} \widetilde{\subseteq}(G, \boldsymbol{A})$. We write it as $F P^{(\boldsymbol{\alpha}, x)} \widetilde{\in}(G, \boldsymbol{A})$.

It is straightforward to check that the fuzzy hypersoft union of fuzzy hypersoft points of a fuzzy hypersoft set (G, \mathbf{A}) returns the fuzzy hypersoft set (G, \mathbf{A}), that is,

$$
(G, \mathbf{A})=\widetilde{U}\left\{F P^{(\boldsymbol{\alpha}, x)}: F P^{(\boldsymbol{\alpha}, x)} \widetilde{\in}(G, \mathbf{A})\right\} .
$$

We illustrate this observation through the following example.
Example 7 Let $U=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$, and (F, A) be as given in the example 2. Then some of the fuzzy hypersoft points of (F, \mathbf{A}) are given as:

$$
\begin{aligned}
& F P_{1}^{\left(\left(a_{11}, a_{21}, a_{31}\right), x_{1}\right)}=\left\{\left(\left(a_{11}, a_{21}, a_{31}\right),\left\{\frac{x_{1}}{0.5}\right\}\right)\right\} ; \\
& F P_{2}^{\left(\left(a_{11}, a_{21}, a_{31}\right), x_{1}\right)}=\left\{\left(\left(a_{11}, a_{21}, a_{31}\right),\left\{\frac{x_{1}}{0.2}\right\}\right)\right\} ; \\
& F P_{3}^{\left(\left(a_{11}, a_{21}, a_{31}\right), x_{2}\right)}=\left\{\left(\left(a_{11}, a_{21}, a_{31}\right),\left\{\frac{x_{2}}{0.7}\right\}\right)\right\} ; \\
& F P_{4}^{\left(\left(a_{11}, a_{22}, a_{31}\right), x_{2}\right)}=\left\{\left(\left(a_{11}, a_{22}, a_{31}\right),\left\{\frac{x_{2}}{0.3}\right\}\right)\right\} ; \\
& F P_{5}^{\left(\left(a_{12}, a_{21}, a_{31}\right), x_{3}\right)}=\left\{\left(\left(a_{12}, a_{21}, a_{31}\right),\left\{\frac{x_{3}}{0.8}\right\}\right)\right\} ; \\
& F P_{6}^{\left(\left(a_{12}, a_{21}, a_{31}\right), x_{4}\right)}=\left\{\left(\left(a_{12}, a_{21}, a_{31}\right),\left\{\frac{x_{4}}{0.6}\right\}\right)\right\} ; \\
& F P_{7}^{\left(\left(a_{12}, a_{21}, a_{31}\right), x_{4}\right)}=\left\{\left(\left(a_{12}, a_{21}, a_{31}\right),\left\{\frac{x_{4}}{0.9}\right\}\right)\right\} ; \\
& F P_{8}^{\left(\left(a_{12}, a_{22}, a_{31}\right), x_{1}\right)}=\left\{\left(\left(a_{12}, a_{22}, a_{31}\right),\left\{\frac{x_{1}}{0.5}\right\}\right)\right\} ; \\
& F P_{9}^{\left(\left(a_{12}, a_{22}, a_{31}\right), x_{4}\right)}=\left\{\left(\left(a_{12}, a_{22}, a_{31}\right),\left\{\frac{x_{4}}{0.4}\right\}\right)\right\} .
\end{aligned}
$$

Moreover we have

$$
\begin{aligned}
& (F, \mathbf{A})=F P_{1}^{\left(\left(a_{11}, a_{21}, a_{31}\right), x_{1}\right)} \widetilde{u} F P_{2}^{\left(\left(a_{11}, a_{21}, a_{31}\right), x_{1}\right)} \widetilde{\cup} F P_{3}^{\left(\left(a_{11}, a_{21}, a_{31}\right), x_{2}\right)} \\
& \widetilde{U} F P_{4}^{\left(\left(a_{11}, a_{22}, a_{31}\right), x_{2}\right)} \widetilde{\cup} F P_{5}^{\left(\left(a_{12}, a_{21}, a_{31}\right), x_{3}\right)} \widetilde{\cup} F P_{6}^{\left(\left(a_{12}, a_{21}, a_{31}\right), x_{4}\right)} \\
& \widetilde{U} F P_{7}^{\left(\left(a_{12}, a_{21}, a_{31}\right), x_{4}\right)} \widetilde{\cup} F P_{8}^{\left(\left(a_{12}, a_{22}, a_{31}\right), x_{1}\right)} \widetilde{\cup} F P_{9}^{\left(\left(a_{12}, a_{22}, a_{31}\right), x_{4}\right)} .
\end{aligned}
$$

Proposition 3 Let $(F, \boldsymbol{A}),\left(F_{1}, \boldsymbol{A}\right)$ and $\left(F_{2}, \boldsymbol{A}\right)$ be fuzzy hypersoft sets over U. Then the following hold:

1. If (F, \mathbf{A}) is not a null fuzzy hypersoft set, then (F, \mathbf{A}) contains at least one nonnull fuzzy hypersoft point.
2. $\left(F_{1}, \mathbf{A}\right) \widetilde{\subseteq}\left(F_{2}, \mathbf{A}\right)$ if and only if $F P^{(\boldsymbol{\alpha}, x)} \widetilde{\epsilon}\left(F_{1}, \mathbf{A}\right)$ implies that $F P^{(\boldsymbol{\alpha}, x)} \widetilde{\in}\left(F_{2}, \mathbf{A}\right)$.
3. $F P^{(\boldsymbol{\alpha}, x)} \widetilde{\in}\left(F_{1}, \mathbf{A}\right) \widetilde{U}\left(F_{2}, \mathbf{A}\right)$ if and only if $F P^{(\boldsymbol{\alpha}, x)} \widetilde{\in}\left(F_{1}, \mathbf{A}\right)$ or $F P^{(\boldsymbol{\alpha}, x)} \widetilde{\in}\left(F_{2}, \mathbf{A}\right)$.
4. $F P^{(\boldsymbol{\alpha}, x)} \widetilde{\in}\left(F_{1}, \mathbf{A}\right) \widetilde{\cap}\left(F_{2}, \mathbf{A}\right)$ if and only if $F P^{(\boldsymbol{\alpha}, x)} \widetilde{\in}\left(F_{1}, \mathbf{A}\right)$ and $F P^{(\boldsymbol{\alpha}, x)} \widetilde{\in}\left(F_{2}, \mathbf{A}\right)$.
5. $\quad F P^{(\boldsymbol{\alpha}, x)} \widetilde{\in}\left(F_{1}, \mathbf{A}\right) \widetilde{\}\left(F_{2}, \mathbf{A}\right)$ if and only if $F P^{(\boldsymbol{\alpha}, x)} \widetilde{\in}\left(F_{1}, \mathbf{A}\right)$ and $F P^{(\alpha, x)} \widetilde{\notin}\left(F_{2}, \mathbf{A}\right)$.

The proof of above proposition is similar as in the case of crisp hypersoft point.

3.3 Intuitionistic fuzzy hypersoft point

Definition 15 Let $\boldsymbol{A} \subseteq \boldsymbol{E}, \boldsymbol{\alpha} \in \boldsymbol{A}$, and $x \in U_{I F}$. An intuitionistic fuzzy hypersoft set (F, \boldsymbol{A}) is said to be an intuitionistic fuzzy hypersoft point if $F\left(\boldsymbol{\alpha}^{\prime}\right)$ is a null intuitionistic fuzzy set for every $\boldsymbol{\alpha} ' \in \boldsymbol{A} \backslash\{\boldsymbol{\alpha}\}$ and $F(\boldsymbol{\alpha})(y)=<0,1>$ for all $y \neq x$. We will denote (F, \boldsymbol{A}) simply by $\operatorname{IF} P^{(\boldsymbol{\alpha}, x)}$.
Definition 16 An intuitionistic fuzzy hypersoft set (F, \boldsymbol{A}) is said to be a null intuitionistic fuzzy hypersoft point if $F(\boldsymbol{\alpha})$ is a null intuitionistic fuzzy set for each $\boldsymbol{\alpha} \in \boldsymbol{A}$. We will denote a null intuitionistic fuzzy hypersoft set, corresponding to $\boldsymbol{\alpha}$, by $\operatorname{IF} P^{\left(\boldsymbol{\alpha}, 0_{I F}\right)}$.

If (F, \mathbf{A}) is a null intuitionistic fuzzy hypersoft set, then for every $\boldsymbol{\alpha} \in \mathbf{A}$ it can be regarded as null intuitionistic fuzzy hypersoft set $I F P^{\left(\alpha, 0_{I F}\right)}$.
Definition 17 An intuitionistic fuzzy hypersoft point IFP $P^{(\alpha, x)}$ is said to belong to an intuitionistic fuzzy hypersoft set (G, \boldsymbol{A}) if $\operatorname{IFP} P^{(\boldsymbol{\alpha}, x)} \widetilde{\subseteq}(G, \boldsymbol{A})$. We write it as $\operatorname{IF} P^{(\boldsymbol{\alpha}, x)} \widetilde{\in}(G, \boldsymbol{A})$.

It is straightforward to check that the intuitionistic fuzzy hypersoft union of intuitionistic fuzzy hypersoft points of an intuitionistic fuzzy hypersoft set (G, \mathbf{A}) gives the intuitionistic fuzzy hypersoft set (G, \mathbf{A}), that is,

$$
(G, \mathbf{A})=\widetilde{U}\left\{I F P^{(\boldsymbol{\alpha}, x)}: \operatorname{IF} P^{(\boldsymbol{\alpha}, x)} \widetilde{\in}(G, \mathbf{A})\right\} .
$$

We illustrate this observation through the following example.
Example 8 Let $U=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$, and (F, A) be as given in the example 3 . Then some of the intuitionistic fuzzy hypersoft points of (F, A) are the following:

$$
\begin{aligned}
& \operatorname{IF} P_{1}^{\left(\left(a_{11}, a_{21}, a_{31}\right), x_{1}\right)}=\left\{\left(\left(a_{11}, a_{21}, a_{31}\right),\left\{\frac{x_{1}}{<0.5,0.3>}\right\}\right)\right\} ; \\
& \operatorname{IF} P_{2}^{\left(\left(a_{11}, a_{21}, a_{31}\right), x_{1}\right)}=\left\{\left(\left(a_{11}, a_{21}, a_{31}\right),\left\{\frac{x_{1}}{<0.2,0.3>}\right\}\right)\right\} ; \\
& \operatorname{IF} P_{3}^{\left(\left(a_{11}, a_{21}, a_{31}\right), x_{2}\right)}=\left\{\left(\left(a_{11}, a_{21}, a_{31}\right),\left\{\frac{x_{2}}{<0.7,0.2>}\right\}\right)\right\} ; \\
& \operatorname{IF} P_{4}^{\left(\left(a_{11}, a_{22}, a_{31}\right), x_{2}\right)}=\left\{\left(\left(a_{11}, a_{22}, a_{31}\right),\left\{\frac{x_{2}}{<0.3,0.5>}\right\}\right)\right\} ; \\
& \operatorname{IF} P_{5}^{\left(\left(a_{12}, a_{21}, a_{31}\right), x_{3}\right)}=\left\{\left(\left(a_{12}, a_{21}, a_{31}\right),\left\{\frac{x_{3}}{<0.8,0.1>}\right\}\right)\right\} ; \\
& \operatorname{IF} P_{6}^{\left(\left(a_{12}, a_{21}, a_{31}\right), x_{4}\right)}=\left\{\left(\left(a_{12}, a_{21}, a_{31}\right),\left\{\frac{x_{4}}{<0.1,0.6>}\right\}\right)\right\} ; \\
& I F P \sim{ }_{7}^{\left.\left(a_{12}, a_{21}, a_{31}\right), x_{4}\right)}=\left\{\left(\left(a_{12}, a_{21}, a_{31}\right),\left\{\frac{x_{4}}{<0.1,0.5>}\right\}\right)\right\} ; \\
& \operatorname{IF} P_{8}^{\left(\left(a_{12}, a_{22}, a_{31}\right), x_{1}\right)}=\left\{\left(\left(a_{12}, a_{22}, a_{31}\right),\left\{\frac{x_{1}}{<0.5,0.3>}\right\}\right)\right\} ; \\
& \operatorname{IFP} P_{9}^{\left(\left(a_{12}, a_{22}, a_{31}\right), x_{4}\right)}=\left\{\left(\left(a_{12}, a_{22}, a_{31}\right),\left\{\frac{x_{4}}{<0.4,0.2>}\right\}\right)\right\} .
\end{aligned}
$$

Moreover we have

$$
\begin{aligned}
& (F, \mathbf{A})=I F P_{1}^{\left(\left(a_{11}, a_{21}, a_{31}\right), x_{1}\right)} \widetilde{\cup} I F P_{2}^{\left(\left(a_{11}, a_{21}, a_{31}\right), x_{1}\right)} \widetilde{\cup} I F P_{3}^{\left(\left(a_{11}, a_{21}, a_{31}\right), x_{2}\right)} \\
& \widetilde{U} I F P_{4}^{\left(\left(a_{11}, a_{22}, a_{31}\right), x_{2}\right)} \widetilde{\cup} I F P_{5}^{\left(\left(a_{12}, a_{21}, a_{31}\right), x_{3}\right)} \widetilde{U} I F P_{6}^{\left(\left(a_{12}, a_{21}, a_{31}\right), x_{4}\right)} \\
& \widetilde{\cup} I F P_{7}^{\left(\left(a_{12}, a_{21}, a_{31}\right), x_{4}\right)} \widetilde{\cup} I F P_{8}^{\left(\left(a_{12}, a_{22}, a_{31}\right), x_{1}\right)} \widetilde{U} I F P_{9}^{\left(\left(a_{12}, a_{22}, a_{31}\right), x_{4}\right)} .
\end{aligned}
$$

Proposition 4 Let $(F, \boldsymbol{A}),\left(F_{1}, \boldsymbol{A}\right)$ and $\left(F_{2}, \boldsymbol{A}\right)$ be intuitionistic fuzzy hypersoft sets over U. Then the following hold:

1. If (F, \mathbf{A}) is not a null intuitionistic fuzzy hypersoft set then (F, \mathbf{A}) contains at least one nonnull intuitionistic fuzzy hypersoft point.
2. ($\left.F_{1}, \boldsymbol{A}\right) \widetilde{\subseteq}\left(F_{2}, \boldsymbol{A}\right)$ if and only if IFP ${ }^{(\boldsymbol{\alpha}, x)} \widetilde{\in}\left(F_{1}, \boldsymbol{A}\right)$ implies that $\operatorname{IF} P^{(\boldsymbol{\alpha}, x)} \widetilde{\in}\left(F_{2}, \boldsymbol{A}\right)$.
3. IFP $P^{(\boldsymbol{\alpha}, x)} \widetilde{\in}\left(F_{1}, \boldsymbol{A}\right) \widetilde{U}\left(F_{2}, \boldsymbol{A}\right)$ if and only if $\operatorname{IFP} P^{(\boldsymbol{\alpha}, x)} \widetilde{\in}\left(F_{1}, \boldsymbol{A}\right)$ or $\operatorname{IFP} P^{(\boldsymbol{\alpha}, x)} \widetilde{\in}\left(F_{2}, \boldsymbol{A}\right)$.
4. $\operatorname{IFP} P^{(\boldsymbol{\alpha}, x)} \widetilde{\in}\left(F_{1}, \boldsymbol{A}\right) \widetilde{\cap}\left(F_{2}, \boldsymbol{A}\right)$ if and only if $\operatorname{IF} P^{(\boldsymbol{\alpha}, x)} \widetilde{\in}\left(F_{1}, \boldsymbol{A}\right)$ and $\operatorname{IF} P^{(\alpha, x)} \widetilde{\in}\left(F_{2}, \boldsymbol{A}\right)$.
5. $\operatorname{IF} P^{(\boldsymbol{\alpha}, x)} \widetilde{\in}\left(F_{1}, \boldsymbol{A}\right) \widetilde{(}\left(F_{2}, \boldsymbol{A}\right)$ if and only if $\operatorname{IF} P^{(\boldsymbol{\alpha}, x)} \widetilde{\in}\left(F_{1}, \boldsymbol{A}\right)$ and $\operatorname{IF} P^{(\boldsymbol{\alpha}, x)} \widetilde{\not}\left(F_{2}, \boldsymbol{A}\right)$.

The proof of above proposition is similar as in the case of crisp hypersoft point.

3.4 Neutrosophic hypersoft point

Definition 18 Let $\boldsymbol{A} \subseteq \boldsymbol{E}$ and $\boldsymbol{\alpha} \in \boldsymbol{A}, x \in U_{N}$. A neutrosophic hypersoft set (F, \boldsymbol{A}) is said to be a neutrosophic fuzzy hypersoft point if $F\left(\boldsymbol{\alpha}^{\prime}\right)$ is a null neutrosophic set for every $\boldsymbol{\alpha}^{\prime} \in \boldsymbol{A} \backslash\{\boldsymbol{\alpha}\}$ and $F(\boldsymbol{\alpha})(y)=<$ $0,1,1>$ for all $y \neq x$. We will denote (F, \boldsymbol{A}) simply by $N P^{(\boldsymbol{\alpha}, x)}$.
Definition 19 A neutrosophic hypersoft set (F, \boldsymbol{A}) is said to be a null neutrosophic hypersoft point if $F(\boldsymbol{\alpha})$ is a null neutrosophic set for each $\boldsymbol{\alpha} \in \boldsymbol{A}$. We will denote a null neutrosophic hypersoft set, corresponding to $\boldsymbol{\alpha}$, by $N P^{\left(\boldsymbol{\alpha}, 0_{N}\right)}$.

Its a matter of fact that if (F, \mathbf{A}) is a null neutrosophic hypersoft set then for every $\boldsymbol{\alpha} \in \mathbf{A}$ it can be regarded as null neutrosophic hypersoft set $N P^{\left(\alpha, 0_{N}\right)}$.
Definition 20 A neutrosophic hypersoft point $N P^{(\boldsymbol{\alpha}, x)}$ is said to belong to a neutrosophic hypersoft set (G, \boldsymbol{A}) if $N P^{(\boldsymbol{\alpha}, x)} \widetilde{\subseteq}(G, \boldsymbol{A})$. We write it as $N P^{(\boldsymbol{\alpha}, x)} \widetilde{\in}(G, \boldsymbol{A})$.

It is straightforward to check that the neutrosophic hypersoft union of neutrosophic hypersoft points of a neutrosophic hypersoft set (G, \mathbf{A}) returns the neutrosophic hypersoft set (G, \mathbf{A}), that is,

$$
(G, \mathbf{A})=\widetilde{\mathrm{U}}\left\{N P^{(\boldsymbol{\alpha}, x)}: N P^{(\boldsymbol{\alpha}, x)} \widetilde{\in}(G, \mathbf{A})\right\} .
$$

We illustrate this observation through the following example.
Example 9 Let $U=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$, and (F, A) be as given in the example 4 . Some of the neutrosophic hypersoft points of (F, \mathbf{A}) are the following:

$$
\begin{aligned}
& N P_{1}^{\left(\left(a_{11}, a_{21}, a_{31}\right), x_{1}\right)}=\left\{\left(\left(a_{11}, a_{21}, a_{31}\right),\left\{\frac{x_{1}}{<0.5,0.2,0.3>}\right\}\right)\right\} ; \\
& N P_{2}^{\left(\left(a_{11}, a_{21}, a_{31}\right), x_{1}\right)}=\left\{\left(\left(a_{11}, a_{21}, a_{31}\right),\left\{\frac{x_{1}}{<0.2,0.2,0.3>}\right\}\right)\right\} ; \\
& N P_{3}^{\left(\left(a_{11}, a_{21}, a_{31}\right), x_{2}\right)}=\left\{\left(\left(a_{11}, a_{21}, a_{31}\right),\left\{\frac{x_{2}}{<0.7,0.3,0.2>}\right\}\right)\right\} ; \\
& N P_{4}^{\left(\left(a_{11}, a_{22}, a_{31}\right), x_{2}\right)}=\left\{\left(\left(a_{11}, a_{22}, a_{31}\right),\left\{\frac{x_{2}}{<0.3,0.2,0.5>}\right\}\right)\right\} ;
\end{aligned}
$$

$$
\begin{aligned}
& N P_{5}^{\left(\left(a_{12}, a_{21}, a_{31}\right), x_{3}\right)}=\left\{\left(\left(a_{12}, a_{21}, a_{31}\right),\left\{\frac{x_{3}}{<0.8,0.4,0.1>}\right\}\right)\right\} ; \\
& N P_{6}^{\left(\left(a_{12}, a_{21}, a_{31}\right), x_{4}\right)}=\left\{\left(\left(a_{12}, a_{21}, a_{31}\right),\left\{\frac{x_{4}}{<0.1,0.5,0.5>}\right\}\right)\right\} ; \\
& N P_{7}^{\left(\left(a_{12}, a_{22}, a_{31}\right), x_{1}\right)}=\left\{\left(\left(a_{12}, a_{22}, a_{31}\right),\left\{\frac{x_{1}}{<0.5,0.2,0.3>}\right\}\right)\right\} ; \\
& N P_{8}^{\left(\left(a_{12}, a_{22}, a_{31}\right), x_{4}\right)}=\left\{\left(\left(a_{12}, a_{22}, a_{31}\right),\left\{\frac{x_{4}}{<0.4,0.3,0.2\rangle}\right\}\right)\right\} .
\end{aligned}
$$

Moreover we have

$$
\begin{aligned}
& (F, \mathbf{A})=N P_{1}^{\left(\left(a_{11}, a_{21}, a_{31}\right), x_{1}\right)} \widetilde{\mathrm{U}} N P_{2}^{\left(\left(a_{11}, a_{21}, a_{31}\right), x_{1}\right)} \widetilde{\mathrm{U}} N P_{3}^{\left(\left(a_{11}, a_{21}, a_{31}\right), x_{2}\right)} \\
& \widetilde{\mathrm{U}} N P_{4}^{\left(\left(a_{11}, a_{22}, a_{31}\right), x_{2}\right)} \widetilde{\mathrm{U}} N P_{5}^{\left(\left(a_{12}, a_{21}, a_{31}\right), x_{3}\right)} \widetilde{\mathrm{U}} N P_{6}^{\left(\left(a_{12}, a_{21}, a_{31}\right), x_{4}\right)} \\
& \widetilde{\mathrm{U}} N P_{7}^{\left(\left(a_{12}, a_{22}, a_{31}\right), x_{1}\right)} \widetilde{\mathrm{U}} N P_{8}^{\left(\left(a_{12}, a_{22}, a_{31}\right), x_{4}\right)} .
\end{aligned}
$$

Proposition $5 \operatorname{Let}(F, \boldsymbol{A}),\left(F_{1}, \boldsymbol{A}\right)$ and $\left(F_{2}, \boldsymbol{A}\right)$ be neutrosophic hypersoft sets over U. Then the following hold:

1. If (F, \boldsymbol{A}) is not a null neutrosophic hypersoft set then (F, \boldsymbol{A}) contains at least one nonnull neutrosophic hypersoft point.
2. $\left(F_{1}, \boldsymbol{A}\right) \widetilde{\subseteq}\left(F_{2}, \boldsymbol{A}\right)$ if and only if $N P^{(\boldsymbol{\alpha}, x)} \widetilde{\in}\left(F_{1}, \boldsymbol{A}\right)$ implies that $N P^{(\boldsymbol{\alpha}, x)} \widetilde{\in}\left(F_{2}, \boldsymbol{A}\right)$.
3. $\quad N P^{(\boldsymbol{\alpha}, x)} \widetilde{\in}\left(F_{1}, \boldsymbol{A}\right) \widetilde{U}\left(F_{2}, \boldsymbol{A}\right)$ if and only if $N P^{(\boldsymbol{\alpha}, x)} \widetilde{\in}\left(F_{1}, \boldsymbol{A}\right)$ or $N P^{(\boldsymbol{\alpha}, x)} \widetilde{\in}\left(F_{2}, \boldsymbol{A}\right)$.
4. $N P^{(\boldsymbol{\alpha}, x)} \widetilde{\in}\left(F_{1}, \boldsymbol{A}\right) \widetilde{\cap}\left(F_{2}, \boldsymbol{A}\right)$ if and only if $N P^{(\boldsymbol{\alpha}, x)} \widetilde{\in}\left(F_{1}, \boldsymbol{A}\right)$ and $N P^{(\boldsymbol{\alpha}, x)} \widetilde{\in}\left(F_{2}, \boldsymbol{A}\right)$.
5. $N P^{(\boldsymbol{\alpha}, x)} \widetilde{\in}\left(F_{1}, \boldsymbol{A}\right) \widetilde{\}\left(F_{2}, \boldsymbol{A}\right)$ if and only if $N P^{(\boldsymbol{\alpha}, x)} \widetilde{\in}\left(F_{1}, \boldsymbol{A}\right)$ and $N P^{(\boldsymbol{\alpha}, x)} \widetilde{\notin}\left(F_{2}, \boldsymbol{A}\right)$.

The proof of above proposition is similar as in the case of crisp hypersoft point.

3.5 Plithogenic hypersoft point

There may be four types of plithogenic hypersoft points namely: plithogenic crisp hypersoft point, plithogenic fuzzy hypersoft point, plithogenic intuitionistic fuzzy hypersoft point, plithogenic neutrosophic hypersoft point. But in this section we discuss only plithogenic crisp hypersoft point whereas other concepts and examples can be given in the similar way.

Definition 21 Let $\boldsymbol{A} \subseteq \boldsymbol{E}, \boldsymbol{\alpha} \in \boldsymbol{A}$, and $x \in U_{P}$. A plithogenic crisp hypersoft set (F, \boldsymbol{A}) is said to be a plithogenic crisp hypersoft point if $F\left(\boldsymbol{\alpha}^{\prime}\right)$ is a null plithogenic crisp set for every $\boldsymbol{\alpha}^{\prime} \in \boldsymbol{A} \backslash\{\boldsymbol{\alpha}\}$ and $F(\boldsymbol{\alpha})(y)(\mathbf{0})$ for all $y \neq x$. We will denote (F, \boldsymbol{A}) simply by $P_{c} P^{(\boldsymbol{\alpha}, x)}$.

Definition 22 A plithogenic crisp hypersoft set $(\boldsymbol{F}, \boldsymbol{A})$ is said to be a null plithogenic crisp hypersoft point if $F(\boldsymbol{\alpha})$ is a null plithogenic crisp set for each $\boldsymbol{\alpha} \in \boldsymbol{A}$. We will denote a null plithogenic crisp hypersoft set, corresponding to $\boldsymbol{\alpha}$, by $P_{c} P^{\left(\alpha, 0_{P C}\right)}$.

Note that if (F, \mathbf{A}) is a null plithogenic crisp hypersoft set, then for every $\boldsymbol{\alpha} \in \mathbf{A}$ it can be regarded as a null plithogenic crisp hypersoft set $P_{c} P^{\left(\alpha, 0_{P C}\right)}$.
Definition 23 A plithogenic crisp hypersoft point $P_{c} P^{(\boldsymbol{\alpha}, x)}$ is said to belong to a plithogenic crisp hypersoft set (G, \boldsymbol{A}) if $P_{c} P^{(\boldsymbol{\alpha}, x)} \widetilde{\subseteq}(G, \boldsymbol{A})$. We write it as $P_{c} P^{(\boldsymbol{\alpha}, x)} \widetilde{\in}(G, \boldsymbol{A})$.

It is straightforward to check that the plithogenic crisp hypersoft union of plithogenic crisp hypersoft points of a plithogenic crisp hypersoft set (G, \mathbf{A}) gives back the plithogenic crisp hypersoft set (G, \mathbf{A}), that is,

$$
(G, \mathbf{A})=\widetilde{\mathrm{U}}\left\{P_{c} P^{(\boldsymbol{\alpha}, x)}: P_{c} P^{(\boldsymbol{\alpha}, x)} \widetilde{\epsilon}(G, \mathbf{A})\right\} .
$$

We illustrate this observation through the following example.
Example 10 Let $U=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$, and (F, A) be as given in the example 5 . Then some of the plithogenic crisp hypersoft points of (F, A) are the following:

$$
\begin{aligned}
& P_{c} P_{1}^{\left(\left(a_{11}, a_{21}, a_{31}\right), x_{1}\right)}=\left\{\left(\left(a_{11}, a_{21}, a_{31}\right),\left\{x_{1}(1,0,1)\right\}\right)\right\} ; \\
& P_{c} P_{2}^{\left(\left(a_{11}, a_{21}, a_{31}\right), x_{2}\right)}=\left\{\left(\left(a_{11}, a_{21}, a_{31}\right),\left\{x_{2}(1,1,1)\right\}\right)\right\} ; \\
& P_{c} P_{3}^{\left(\left(a_{11}, a_{22}, a_{31}\right), x_{2}\right)}=\left\{\left(\left(a_{11}, a_{22}, a_{31}\right),\left\{x_{2}(0,0,1)\right\}\right)\right\} ; \\
& P_{c} P_{4}^{\left(\left(a_{12}, a_{21}, a_{31}\right), x_{3}\right)}=\left\{\left(\left(a_{12}, a_{21}, a_{31}\right),\left\{x_{3}(1,1,0)\right\}\right)\right\} ; \\
& P_{c} P_{5}^{\left(\left(a_{12}, a_{21}, a_{31}\right), x_{4}\right)}=\left\{\left(\left(a_{12}, a_{21}, a_{31}\right),\left\{x_{4}(1,1,1)\right\}\right)\right\} ; \\
& P_{c} P_{6}^{\left(\left(a_{12}, a_{22}, a_{31}\right), x_{1}\right)}=\left\{\left(\left(a_{12}, a_{22}, a_{31}\right),\left\{x_{1}(1,0,1)\right\}\right)\right\} ; \\
& P_{c} P_{7}^{\left(\left(a_{12}, a_{22}, a_{31}\right), x_{4}\right)}=\left\{\left(\left(a_{12}, a_{22}, a_{31}\right),\left\{x_{4}(0,1,0)\right\}\right)\right\} .
\end{aligned}
$$

Moreover we have

$$
\begin{aligned}
& (F, \mathbf{A})=P_{c} P_{1}^{\left(\left(a_{11}, a_{21}, a_{31}\right), x_{1}\right)} \widetilde{\mathrm{U}} P_{c} P_{2}^{\left(\left(a_{11}, a_{21}, a_{31}\right), x_{2}\right)} \\
& \widetilde{\mathrm{U}} P_{c} P_{3}^{\left(\left(a_{11}, a_{22}, a_{31}\right), x_{2}\right)} \widetilde{\mathrm{U}} P_{c} P_{4}^{\left(\left(a_{12}, a_{21}, a_{31}\right), x_{3}\right)} \widetilde{\mathrm{U}} P_{c} P_{5}^{\left(\left(a_{12}, a_{21}, a_{31}\right), x_{4}\right)} \\
& \widetilde{\mathrm{U}} P_{c} P_{6}^{\left(\left(a_{12}, a_{22}, a_{31}\right), x_{1}\right)} \widetilde{\mathrm{U}} P_{c} P_{7}^{\left(\left(a_{12}, a_{22}, a_{31}\right), x_{4}\right)} .
\end{aligned}
$$

Proposition 6 Let $(F, \boldsymbol{A}),\left(F_{1}, \boldsymbol{A}\right)$ and $\left(F_{2}, \boldsymbol{A}\right)$ be plithogenic crisp hypersoft sets over U. Then the following hold:

1. If (F, \boldsymbol{A}) is not a null plithogenic crisp hypersoft set then (F, \boldsymbol{A}) contains at least one nonnull plithogenic crisp hypersoft point.
2. ($\left.F_{1}, \boldsymbol{A}\right) \widetilde{\subseteq}\left(F_{2}, \boldsymbol{A}\right)$ if and only if $P_{c} P^{(\boldsymbol{\alpha}, x)} \widetilde{\in}\left(F_{1}, \boldsymbol{A}\right)$ implies that $P_{c} P^{(\boldsymbol{\alpha}, x)} \widetilde{\in}\left(F_{2}, \boldsymbol{A}\right)$.
3. $P_{c} P^{(\boldsymbol{\alpha}, x)} \widetilde{\in}\left(F_{1}, \boldsymbol{A}\right) \widetilde{\cup}\left(F_{2}, \boldsymbol{A}\right)$ if and only if $P_{c} P^{(\boldsymbol{\alpha}, x)} \widetilde{\in}\left(F_{1}, \boldsymbol{A}\right)$ or $P_{c} P^{(\boldsymbol{\alpha}, x)} \widetilde{\in}\left(F_{2}, \boldsymbol{A}\right)$.
4. $P_{c} P^{(\boldsymbol{\alpha}, x)} \widetilde{\in}\left(F_{1}, \boldsymbol{A}\right) \widetilde{\cap}\left(F_{2}, \boldsymbol{A}\right)$ if and only if $P_{c} P^{(\boldsymbol{\alpha}, x)} \widetilde{\in}\left(F_{1}, \boldsymbol{A}\right)$ and $P_{c} P^{(\boldsymbol{\alpha}, x)} \widetilde{\in}\left(F_{2}, \boldsymbol{A}\right)$.
5. $P_{c} P^{(\boldsymbol{\alpha}, x)} \widetilde{\in}\left(F_{1}, \boldsymbol{A}\right) \widetilde{\}\left(F_{2}, \boldsymbol{A}\right)$ if and only if $P_{c} P^{(\boldsymbol{\alpha}, x)} \widetilde{\in}\left(F_{1}, \boldsymbol{A}\right)$ and $P_{c} P^{(\boldsymbol{\alpha}, x)} \widetilde{\notin}\left(F_{2}, \boldsymbol{A}\right)$.

The proof of above proposition is similar as in the case of crisp hypersoft point.

4. Conclusions

In this paper, we have initiated the concept of hypersoft point that will lead to define Cartesian product and then function on *-hypersoft sets. As a future work, one may carry out the study of *-hypersoft topological spaces. Once the functions on *-hypersoft sets are defined, this may lead to the study of fixed point results in this new framework.

Funding: This research received no external funding.
Conflicts of Interest: The authors declare no conflict of interest.

References

1. Smarandache, F., 2018. Extension of Soft Set to Hypersoft Set, and then to Plithogenic Hypersoft Set. Neutrosophic Sets and Systems, p. 168.
2. Rana, S., Qayyum, M., Saeed, M., \& Smarandache, F. (2019). Plithogenic Fuzzy Whole Hypersoft Set: Construction of Operators and their Application in Frequency Matrix Multi Attribute Decision Making Technique. Neutrosophic Sets and Systems, 28(1), 5.
3. Gayen, S., Smarandache, F., Jha, S., Singh, M. K., Broumi, S., \& Kumar, R. (2020). Introduction to Plithogenic Subgroup. In Neutrosophic Graph Theory and Algorithms (pp. 213-259). IGI Global.
4. Abdel-Basset, M., \& Mohamed, R. (2020). A novel plithogenic TOPSIS-CRITIC model for sustainable supply chain risk management. Journal of Cleaner Production, 247, 119586.
5. Abdel-Basset, M., Mohamed, R., Zaied, A. E. N. H., \& Smarandache, F. (2019). A Hybrid Plithogenic Decision-Making Approach with Quality Function Deployment for Selecting Supply Chain Sustainability Metrics. Symmetry, 11(7), 903
6. Abdel-Basset, M., Nabeeh, N. A., El-Ghareeb, H. A., \& Aboelfetouh, A. (2019). Utilising neutrosophic theory to solve transition difficulties of IoT-based enterprises. Enterprise Information Systems, 1-21.
7. Nabeeh, N. A., Abdel-Basset, M., El-Ghareeb, H. A., \& Aboelfetouh, A. (2019). Neutrosophic multi-criteria decision making approach for iot-based enterprises. IEEE Access, 7, 59559-59574.
8. Abdel-Basset, M., Saleh, M., Gamal, A., \& Smarandache, F. (2019). An approach of TOPSIS technique for developing supplier selection with group decision making under type-2 neutrosophic number. Applied Soft Computing, 77, 438-452.
9. Abdel-Basset, M., Manogaran, G., Gamal, A., \& Smarandache, F. (2019). A group decision making framework based on neutrosophic TOPSIS approach for smart medical device selection. Journal of medical systems, 43(2), 38.
10. Saqlain, M., Jafar, N., Moin, S., Saeed, M., \& Broumi, S. (2020). Single and Multi-valued Neutrosophic Hypersoft set and Tangent Similarity Measure of Single valued Neutrosophic Hypersoft Sets. Neutrosophic Sets and Systems, 32(1), 20.
11. Saqlain, M., Moin, S., Jafar, M. N., Saeed, M., \& Smarandache, F. (2020). Aggregate Operators of Neutrosophic Hypersoft Set. Neutrosophic Sets and Systems, 32(1), 18.
12. Saqlain, M., Jafar, M. N., \& Riaz, M. (2020). A New Approach of Neutrosophic Soft Set with Generalized Fuzzy TOPSIS in Application of Smart Phone Selection. Neutrosophic Sets and Systems, 32(1), 19.
13. F. Feng, Y. B. Jun, X.Y. Liu, L.F. Li, An adjustable approach to fuzzy soft set based decision making, J. Comput. Appl. Math. 234.1 (2009)10-20
14. F. Feng, Y. B. Jun, X. Zhao, Soft semirings. Comput. Math. Appl. 56 (10), 2621-2628 (2008).
15. F. Feng, X. Liu, Soft rough sets with applications to demand analysis. In: Int. Workshop Intell. Syst. Appl., ISA 2009, 23-24 May 2009, Wuhan, China. IEEE, pp. 1-4 (2009).
16. T. Herawan, M.M. Deris, On multi-soft sets construction in information systems. In: Emerging Intelligent Computing Technology and Applications with Aspects of Artificial Intelligence: 5th Int. Conf. Intell. Comput., ICIC 2009 Ulsan, South Korea, September 16-19, 2009. Springer, U. T. H. O. Malaysia, (2009) 101-110.
17. T. Herawan, A.N.M. Rose, M.M. Deris, Soft set theoretic approach for dimensionality reduction. In: Database Theory and Application: International Conference, DTA 2009, Jeju Island, Korea, December 10-12, 2009. Springer, (2009) 171-178.
18. Y. K. Kim, W. K. Min, Full soft sets and full soft decision systems. J. Int. Fuzzy Syst. 26.2 (2014) 925-933.
19. D. Molodtsov, Soft set theory - First results, Comput. Math. Appl. 37.4-5 (1999) 19-31.
20. M. M. Mushrif, S. Sengupta, A. K. Ray, Texture classification using a novel, soft-set theory based classification algorithm. Lect. Notes Comput. Sci. 3851 (2006) 246-254
21. A. R. Roy, P.K. Maji, A fuzzy soft set theoretic approach to decision making problems, J. Comput. Appl. Math. 203.2 (2007) 412-418.
22. P. Zhu, Q. Wen, Probabilistic soft sets. In: 2010 IEEE international conference on granular computing, pp. 635-638.
23. Y. Zou, Z. Xiao, Data analysis approaches of soft sets under incomplete information. Knowl.-Based Syst. 21.8 (2008) 941-945.

Neutrosophic \boldsymbol{N}-bi-ideals in semigroups

K. Porselvi ${ }^{1}$, B. Elavarasan ${ }^{2 *}$, F. Smarandache ${ }^{3}$ and Y. B. Jun ${ }^{4}$
1,2Department of Mathematics, Karunya Institute of Technology and Sciences, Coimbatore - 641 114, Tamilnadu, India. E-mail: porselvi94@yahoo.co.in; porselvi@karunya.edu.
E-mail: belavarasan@gmail.com;elavarasan@karunya.edu.
${ }^{3}$ Mathematics Department, University of New Mexico, 705 Gurley Ave., Gallup, NM 87301, USA.
E-mail:fsmarandache@gmail.com; smarand@unm.edu.
${ }^{4}$ Department of Mathematics, Gyeongsang National University, Jinju 52828, Korea. E-mail: skywine@gmail.com
* Correspondence: belavarasan@gmail.com

Abstract

In this paper, we introduce the notion of neutrosophic κ-bi-ideal for a semigroup. We infer different semigroups using neutrosophic \mathcal{N}-bi-ideal structures. Moreover, for regular semigroups, neutrosophic \aleph-product and intersection of neutrosophic \aleph-ideals are identical.

Keywords: Semigroup, ideal, bi-ideal, neutrosophic \aleph - ideals, neutrosophic \aleph-bi-ideals, neutrosophic $\boldsymbol{\aleph}$-product.

1. Introduction

In 1965, Zadeh [16] introduced the idea of fuzzy sets for modeling the ambiguous theories in the globe. In 1986, Atanassov [1] generalized fuzzy set and named as intuitionistic fuzzy set, and discussed it. Also from his view point, there are two degrees for any object in the world. They are degree of membership to a vague subset and degree of non-membership to that given subset.

Smarandache generalized fuzzy and intuitionistic fuzzy set, and referred as Neutrosophic set (see [2, 3, 6, 13-15]). It is identified by a truth, a falsity and an indeterminacy membership function. These sets are applied to many branches of mathematics to overcome the complexities arising from uncertain data. Neutrosophic set can distinguish between absolute membership and relative membership. Smarandache used this in non-standard analysis such as result of sport games (winning/defeating/tie), decision making and control theory, etc. This area has been studied by several authors (see [5, 10-12]).

In [8], M. Khan et al. presented and discussed the concepts of neutrosophic $\boldsymbol{\kappa}$-subsemigroup of semigroup. In [5], Gulistan et al. have studied the idea of complex neutrosophic subsemigroups. They have introduced the notion of characteristic function of complex neutrosophic sets, direct product of complex neutrosophic sets.

In [4], B. Elavarasan et al. introduced the concepts of neutrosophic $\mathbb{\aleph}$-ideal of semigroup and explored its properties. Also, the conditions are given for neutrosophic $\boldsymbol{\aleph}$-structure becomes neutrosophic $\mathbb{\aleph}$-ideal. Further, presented the notion of characteristic neutrosophic $\mathbb{\aleph}$-structure over semigroup.

Throughout this article, X denotes a semigroup. Recall that for any subsets A and B of X, $A B=\{u w \mid u \in A$ and $w \in B\}$, the multiplication of A and B.

For a semigroup X,
(i) $\varnothing \neq U \subseteq X$ is a subsemigroup of X if $U^{2} \subseteq U$.
(ii) A subsemigroup U of X is left (resp., right) ideal if $X U \subseteq U$ (resp., $U X \subseteq U$). U is an ideal of X if U is both left and right ideal of X.
(iii) X is left (resp., right) regular if for each $s \in X$, there exists $x \in X$ such that $s=x s^{2}$ (resp., $s=$ $\left.s^{2} x\right)$ [7].
(iv) X is regular if for each $s \in X$, there exists $x \in X$ such that $s=s x s$ [9].
(v) X is intra-regular if for everys $\in X$, there exist $x, y \in X$ such that $s=x s^{2} y$ [9].
(vi) A subsemigroup Y of X is bi-ideal if $Y X Y \subseteq Y$. For any $r^{\prime} \in X, B\left(r^{\prime}\right)=\left\{r^{\prime}, r^{\prime 2}, r^{\prime} X r^{\prime}\right\}$ is the principal bi-ideal of X generated by r^{\prime}.

2. Basics of neutrosophic \mathbb{N} - structures

In this section, we present the required basic definitions of neutrosophic κ-structures of X that we need in the sequel.

The collection of functions from a set X to $[-1,0]$ is denoted by $\mathfrak{J}(X,[-1,0])$. Note that $f \in \mathfrak{J}(X,[-1,0])$ is a negative-valued function from X to $[-1,0]$ (briefly, \aleph-function on X). Here N -structure means (X, f) of X.

Definition 2.1. [8] A neutrosophic $\mathrm{\aleph}$ - structure of X is defined to be the structure:

$$
X_{N}:=\frac{x}{\left(T_{N}, I_{N}, F_{N}\right)}=\left\{\left.\frac{x}{T_{N}(x), I_{N}(x), F_{N}(x)} \right\rvert\, x \in X\right\}
$$

where T_{N} is the negative truth membership function on X, I_{N} is the negative indeterminacy membership function on X and F_{N} is the negative falsity membership function on X.

Note that for any $x \in X, X_{N}$ satisfies the condition $-3 \leq T_{N}(x)+I_{N}(x)+F_{N}(x) \leq 0$.

Definition 2.2. [8] A neutrosophic $\boldsymbol{\kappa}$-structure X_{N} of X is called a neutrosophic $\mathfrak{\aleph}$-subsemigroup of X if the below condition is valid:

$$
\left(\forall g_{i}, h_{j} \in X\right)\left(\begin{array}{c}
T_{N}\left(g_{i} h_{j}\right) \leq T_{N}\left(g_{i}\right) \vee T_{N}\left(h_{j}\right) \\
I_{N}\left(g_{i} h_{j}\right) \geq I_{N}\left(g_{i}\right) \wedge I_{N}\left(h_{j}\right) \\
F_{N}\left(g_{i} h_{j}\right) \leq F_{N}\left(g_{i}\right) \vee F_{N}\left(h_{j}\right)
\end{array}\right)
$$

Let X_{N} be a neutrosophic $\aleph-$ structure of X and let $\lambda, \delta, \varepsilon \in[-1,0]$ with $-3 \leq \lambda+\delta+\varepsilon \leq$ 0 . Then the set $X_{N}(\lambda, \delta, \varepsilon):=\left\{x \in X \mid T_{N}(x) \leq \lambda, I_{N}(x) \geq \delta, F_{N}(x) \leq \varepsilon\right\}$ is called a $(\lambda, \delta, \varepsilon)$ - level set of X.

Definition 2.3. [4] A neutrosophic κ-structure X_{N} of X is called a neutrosophic \aleph-left (resp., right) ideal of X if it satisfies:

$$
\left(\forall g_{i}, h_{j} \in X\right)\left(\begin{array}{c}
T_{N}\left(g_{i} h_{j}\right) \leq T_{N}\left(h_{j}\right)\left(\text { resp. }, T_{N}\left(g_{i} h_{j}\right) \leq T_{N}\left(g_{i}\right)\right) \\
I_{N}\left(g_{i} h_{j}\right) \geq I_{N}\left(h_{j}\right)\left(\text { resp., } I_{N}\left(g_{i} h_{j}\right) \geq I_{N}\left(g_{i}\right)\right) \\
F_{N}\left(g_{i} h_{j}\right) \leq F_{N}\left(h_{j}\right)\left(\text { resp., } F_{N}\left(g_{i} h_{j}\right) \leq F_{N}\left(g_{i}\right)\right)
\end{array}\right) .
$$

If X_{N} is both neutrosophic \aleph-left and neutrosophic \aleph-right ideal of X, then it is called a neutrosophic $\boldsymbol{\aleph}$-ideal of X .

Definition 2.4. A neutrosophic κ-subsemigroup X_{N} of X is a neutrosophic κ-bi-ideal of X if the following condition is valid:

$$
(\forall r, s, t \in X)\left(\begin{array}{rl}
T_{N}(r s t) & \leq T_{N}(r) \vee T_{N}(t) \\
I_{N}(r s t) & \geq I_{N}(r) \wedge I_{N}(t) \\
F_{N}(r s t) & \leq F_{N}(r) \vee F_{N}(t)
\end{array}\right)
$$

Clearly any neutrosophic $\mathbb{\aleph}$-left (resp., right) ideal is neutrosophic \aleph-bi-ideal, but the neutrosophic \mathcal{N}-bi-ideal is not necessary to be a neutrosophic \mathbb{K}-left (resp., right) ideal.

Example 2.5. Consider the semigroup $X=\{0, a, b, c\}$ with binary operation as follows:

.	0	a	b	c
0	0	0	0	0
a	0	0	0	b
b	0	0	0	b
c	b	b	b	c

Then $\quad X_{N}=\left\{\frac{0}{(-0.9,-0.1,-0.7)}, \frac{a}{(-0.8,-0.2,-0.5)}, \frac{b}{(-0.7,-0.3,-0.3)}, \frac{c}{(-0.5,-0.4,-0.1)}\right\}$ is a neutrosophic \aleph-bi-ideal of X, but X_{N} is not neutrosophic \aleph-left ideal as well as neutrosophic $\mathfrak{\kappa}$-right ideal of X.

Definition 2.6. [8] For $\Phi \neq A \subseteq X$, the characteristic neutrosophic $\mathbb{\aleph}$-structure of X is denoted by $\chi_{A}\left(X_{N}\right)$ and is defined to be neutrosophic \aleph-structure

$$
\chi_{A}\left(X_{N}\right)=\frac{X}{\left(\chi_{A}(T)_{N}, \chi_{A}(I)_{N}, \chi_{A}(F)_{N}\right)}
$$

where

$$
\begin{aligned}
& \chi_{A}(T)_{N}: X \rightarrow[-1,0], x \rightarrow\left\{\begin{array}{l}
-1 \text { if } x \in A \\
0 \text { otherwise },
\end{array}\right. \\
& \chi_{A}(I)_{N}: X \rightarrow[-1,0], x \rightarrow\left\{\begin{array}{c}
0 \text { if } x \in A \\
-1 \text { otherwise }
\end{array}\right. \\
& \chi_{A}(F)_{N}: X \rightarrow[-1,0], x \rightarrow\left\{\begin{array}{l}
-1 \text { if } x \in A \\
0 \text { otherwise } .
\end{array}\right.
\end{aligned}
$$

Definition 2.7. [8] Let $X_{N}:=\frac{X}{\left(T_{N}, I_{N}, F_{N}\right)}$ and $X_{M}:=\frac{X}{\left(T_{M}, I_{M}, F_{M}\right)}$.
(i) $\quad X_{M}$ is called a neutrosophic $\aleph-$ substructure of X_{N} over X, denoted by $X_{N} \subseteq X_{M}$, if

$$
T_{N}(t) \geq T_{M}(t), I_{N}(t) \leq I_{M}(t), F_{N}(t) \geq F_{M}(t) \forall t \in X
$$

If $X_{N} \subseteq X_{M}$ and $X_{M} \subseteq X_{N}$, then we say that $X_{N}=X_{M}$.
(ii) The neutrosophic $\boldsymbol{\kappa}$ - product of X_{N} and X_{M} is defined to be a neutrosophic \aleph-structure of X,

$$
X_{N} \odot X_{M}:=\frac{X}{\left(T_{N \circ M}, I_{N \circ M}, F_{N \circ M}\right)}=\left\{\left.\frac{h}{T_{N \circ M}(h), I_{N \circ M}(h), F_{N \circ M}(h)} \right\rvert\, h \in X\right\},
$$

where

$$
\begin{aligned}
& \left(T_{N} \circ T_{M}\right)(h)=T_{N \circ M}(h)= \begin{cases}\bigwedge_{h=r s}\left\{T_{N}(r) \vee T_{M}(s)\right\} & \text { if } \exists r, s \in X \text { such that } h=r s\end{cases} \\
& \left(I_{N} \circ I_{M}\right)(h)=I_{N \circ M}(h)=\left\{\begin{array}{cc}
\bigvee_{h=r s}\left\{I_{N}(r) \wedge I_{M}(s)\right\} & \text { if } \exists r, s \in X \text { such that } h=r s \\
-1 & \text { otherwise },
\end{array}\right. \\
& \left(F_{N} \circ F_{M}\right)(h)=F_{N \circ M}(h)=\left\{\bigwedge_{h=r s}\left\{F_{N}(r) \vee F_{M}(s)\right\} \text { if } \exists r, s \in X \text { such that } h=r s\right. \\
& 0 \quad
\end{aligned}
$$

(iii) For $t \in X$, the element $\frac{t}{\left(T_{N \circ M}(t), I_{N \circ M}(t), F_{N \circ M}(t)\right)}$ is simply denoted by

$$
\left(X_{N} \odot X_{M}\right)(t)=\left(T_{N \circ M}(t), I_{N \circ M}(t), \quad F_{N \circ M}(t)\right) \text { for the sake of convenience. }
$$

(iv) The union of X_{N} and X_{M} is a neutrosophic κ-structure over X is defined as

$$
X_{N} \cup X_{M}=X_{N \cup M}=\left(X ; T_{N \cup M}, I_{N \cup M}, F_{N \cup M}\right)
$$

where

$$
\begin{aligned}
\left(T_{N} \cup T_{M}\right)\left(h_{i}\right) & =T_{N \cup M}\left(h_{i}\right)=T_{N}\left(h_{i}\right) \wedge T_{M}\left(h_{i}\right), \\
\left(I_{N} \cup I_{M}\right)\left(h_{i}\right) & =I_{N \cup M}\left(h_{i}\right)=I_{N}\left(h_{i}\right) \vee I_{M}\left(h_{i}\right), \\
\left(F_{N} \cup F_{M}\right)\left(h_{i}\right) & =F_{N \cup M}\left(h_{i}\right)=F_{N}\left(h_{i}\right) \wedge F_{M}\left(h_{i}\right) \forall h_{i} \in X .
\end{aligned}
$$

(v) The intersection of X_{N} and X_{M} is a neutrosophic \mathcal{N}-structure over X is defined as

$$
X_{N} \cap X_{M}=X_{N \cap M}=\left(X ; T_{N \cap M}, I_{N \cap M}, F_{N \cap M}\right)
$$

where

$$
\begin{aligned}
\left(T_{N} \cap T_{M}\right)\left(h_{i}\right) & =T_{N \cap M}\left(h_{i}\right)=T_{N}\left(h_{i}\right) \vee T_{M}\left(h_{i}\right), \\
\left(I_{N} \cap I_{M}\right)\left(h_{i}\right) & =I_{N \cap M}\left(h_{i}\right)=I_{N}\left(h_{i}\right) \wedge I_{M}\left(h_{i}\right), \\
\left(F_{N} \cap F_{M}\right)\left(h_{i}\right) & =F_{N \cap M}\left(h_{i}\right)=F_{N}\left(h_{i}\right) \vee F_{M}\left(h_{i}\right) \forall h_{i} \in X .
\end{aligned}
$$

3. Neutrosophic κ-bi-ideals of semigroups

In this section, we examine different properties of neutrosophic κ-bi-ideals of X.

Theorem 3.1. For $\Phi \neq B \subseteq X$, the following assertions are equivalent:
(i) $\quad \chi_{B}\left(X_{N}\right)$ is a neutrosophic \aleph-bi-ideal of X,
(ii) B is a bi-ideal of X.

Proof: Suppose $\chi_{B}\left(X_{N}\right)$ is a neutrosophic $\mathbb{\aleph}$-bi-ideal of X . Let $\mathrm{r}, \mathrm{t} \in B$ and $s \in X$. Then

$$
\begin{aligned}
& \chi_{B}(T)_{N}(r s t) \leq \chi_{B}(T)_{N}(r) \vee \chi_{B}(T)_{N}(t)=-1 \\
& \chi_{B}(I)_{N}(r s t) \geq \chi_{B}(I)_{N}(r) \wedge \chi_{B}(I)_{N}(t)=0 \\
& \chi_{B}(F)_{N}(r s t) \leq \chi_{B}(F)_{N}(r) \vee \chi_{B}(F)_{N}(t)=-1 .
\end{aligned}
$$

Thus $r s t \in B$ and hence B is a bi-ideal of X ,
Conversely, assume B is a bi-ideal of X. Let $r, s, t \in X$.
If $r \in B$ and $t \in B$, then $r s t \in B$. Now

$$
\begin{aligned}
\chi_{B}(T)_{N}(r s t) & =-1=\chi_{B}(T)_{N}(r) \vee \chi_{B}(T)_{N}(t), \\
\chi_{B}(I)_{N}(r s t) & =0=\chi_{B}(I)_{N}(r) \wedge \chi_{B}(I)_{N}(t), \\
\chi_{B}(F)_{N}(r s t) & =-1=\chi_{B}(F)_{N}(r) \vee \chi_{B}(F)_{N}(t) .
\end{aligned}
$$

If $r \notin B$ or $\mathrm{t} \notin B$, then

$$
\begin{gathered}
\chi_{B}(T)_{N}(r s t) \leq 0=\chi_{B}(T)_{N}(r) \vee \chi_{B}(T)_{N}(t), \\
\chi_{B}(I)_{N}(r s t) \geq-1=\chi_{B}(I)_{N}(r) \wedge \chi_{B}(I)_{N}(t) \\
\chi_{B}(F)_{N}(r s t) \leq 0=\chi_{B}(F)_{N}(r) \vee \chi_{B}(F)_{N}(t) .
\end{gathered}
$$

Therefore $\chi_{B}\left(X_{N}\right)$ is a neutrosophic κ-bi-ideal of X.

Theorem 3.2. Let $\lambda, \delta, \varepsilon \in[-1,0]$ be such that $-3 \leq \lambda+\delta+\varepsilon \leq 0$. If X_{N} is a neutrosophic $\mathbb{N}-$ biideal, then $(\lambda, \delta, \varepsilon)$-level set of X_{N} is a neutrosophic bi- ideal of X whenever $X_{N}(\lambda, \delta, \varepsilon) \neq \emptyset$.

Proof: Suppose $X_{N}(\lambda, \delta, \varepsilon) \neq \varnothing$ for $\lambda, \delta, \varepsilon \in[-1,0]$ with $-3 \leq \lambda+\delta+\varepsilon \leq 0$. Let X_{N} be a neutrosophic $\boldsymbol{\kappa}$-bi-ideal and let $x, y, z \in X_{N}(\lambda, \delta, \varepsilon)$. Then

$$
\begin{aligned}
& T_{N}(x y z) \leq T_{N}(x) \vee T_{N}(z) \leq \lambda \\
& I_{N}(x y z) \geq I_{N}(x) \wedge I_{N}(z) \geq \delta
\end{aligned}
$$

$$
F_{N}(x y z) \leq F_{N}(x) \vee F_{N}(z) \leq \varepsilon
$$

which imply $x y z \in X_{N}(\lambda, \delta, \varepsilon)$. Therefore $X_{N}(\lambda, \delta, \varepsilon)$ is a neutrosophic κ-bi-ideal of X.
Theorem 3.3. Let X_{M} be a neutrosophic $\mathcal{\aleph}$ - structure of X. Then the equivalent assertions are:
(i) $\quad X_{M} \odot X_{M} \subseteq X_{M}$ and $X_{M} \odot \chi_{X}\left(X_{N}\right) \odot X_{M} \subseteq X_{M}$ for any neutrosophic $\boldsymbol{\kappa}-$ structure X_{N},
(ii) X_{M} is a neutrosophic $\mathcal{\aleph}$-bi-ideal of X.

Proof: Suppose (i) holds. Then X_{M} is neutrosophic κ - subsemigroup of X by Theorem 4.6 of [8]. Let $r, s, t \in X$ and let $a=r s t$. Then

$$
\begin{aligned}
& \left(T_{M}\right)(r s t) \leq\left(T_{M} \circ \chi_{X}(T)_{N} \circ T_{M}\right)(r s t)=\bigwedge_{a=r s t}\left\{\left(T_{M} \circ \chi_{X}(T)_{N}\right)(r s) \vee T_{M}(t)\right\} \\
& =\bigwedge_{a=b t}\left\{\bigwedge_{b=r s}\left\{\left(T_{M}(r) \vee \chi_{X}(T)_{N}(s)\right\} \vee T_{M}(t)\right\}\right. \\
& \leq \bigwedge\left\{T_{M}(r) \vee T_{M}(t)\right\} \leq T_{M}(r) \vee T_{M}(t), \\
& I_{M}(r s t) \geq\left(I_{M} \circ \chi_{X}(I)_{N} \circ I_{M}\right)(r s t)=\bigvee_{a=r s t}\left\{\left(I_{M} \circ \chi_{X}(I)_{N}\right)(r s) \wedge I_{M}(t)\right\} \\
& =\bigvee_{a=b t}^{a=r s t}\left\{\bigvee_{b=r s}\left\{I_{M}(r) \wedge \chi_{X}(I)_{N}(s)\right\} \wedge I_{M}(t)\right\} \\
& \geq \bigvee_{a=r s t}\left\{I_{M}(r) \wedge I_{M}(t)\right\} \geq I_{M}(r) \wedge I_{M}(t), \\
& \left(F_{M}\right)(r s t) \leq\left(F_{M} \circ \chi_{X}(F)_{N} \circ F_{M}\right)(r s t)=\bigwedge_{a=r s t}^{a=r s t}\left\{\left(F_{M} \circ \chi_{X}(F)_{N}\right)(r s) \vee F_{M}(t)\right\} \\
& =\bigwedge_{a=b t}\left\{\bigwedge_{b=r s}\left\{\left(F_{M}(r) \vee \chi_{X}(F)_{N}(s)\right\} \vee F_{M}(t)\right\}\right. \\
& \leq \bigwedge_{a=r s t}\left\{F_{M}(r) \vee F_{M}(t)\right\} \leq F_{M}(r) \vee F_{M}(t) .
\end{aligned}
$$

Therefore X_{M} is a neutrosophic κ - bi-ideal of X.
For converse, suppose (ii) holds. Then $X_{M} \odot X_{M} \subseteq X_{M}$ by Theorem 4.6 of [8].
Let $x \in X$. If $x=r b$ and $\mathrm{r}=s t$ for some $\mathrm{r}, b, s, t \in X$, then

$$
\begin{aligned}
\left(T_{M} \circ \chi_{X}(T)_{N} \circ T_{M}\right)(x) & =\bigwedge_{x=r b}\left\{\left(T_{M} \circ \chi_{X}(T)_{N}\right)(r) \vee T_{M}(b)\right\} \\
& =\bigwedge_{x=r b}\left\{\bigwedge_{r=s t}\left\{T_{M}(s) \vee \chi_{X}(T)_{N}(t)\right\} \vee T_{M}(b)\right\} \\
& =\bigwedge_{x=r b}\left\{\bigwedge_{r=s t}\left\{\left(T_{M}(s)\right\} \vee T_{M}(b)\right\}\right. \\
& =\bigwedge_{x=r b}\left\{T_{M}\left(s_{i}\right) \vee T_{M}(b)\right\} \text { for some } s_{i} \in X \text { and } \mathrm{r}=s_{i} t_{i} \\
& \geq \bigwedge_{x=s_{i} t_{i} b} T_{M}\left(s_{i} t_{i} b\right)=T_{M}(x) \\
\left(I_{M} \circ \chi_{X}(I)_{N} \circ I_{M}\right)(x)= & \bigvee_{x=r b}\left\{\left(I_{M} \circ \chi_{X}(I)_{N}\right)(r) \wedge I_{M}(b)\right\}
\end{aligned}
$$

$$
\begin{gathered}
=\bigvee_{x=r b}\left\{\bigvee_{r=p q}\left\{I_{M}(s) \wedge \chi_{X}(I)_{N}(t)\right\} \wedge I_{M}(b)\right\} \\
=\bigvee_{x=r b}\left\{\bigvee_{r=s t}\left\{I_{M}(s)\right\} \wedge I_{M}(b)\right\} \\
=V_{x=a b}\left\{I_{M}\left(s_{i}\right) \wedge I_{M}(b)\right\}, \text { for some } s_{i} \in X \text { and } r=s_{i} t_{i} \\
\leq \\
\begin{aligned}
\left(F_{M} \circ \chi_{X}(F)_{N} \circ F_{M}\right)(x) & =\bigwedge_{x=s_{i} t_{i} b} I_{M}\left(s_{i} t_{i} b\right)=I_{M}(x), \\
& \left.=\bigwedge_{x=r b}\left\{\bigwedge_{M} \circ \chi_{X}(F)_{N}\right)(r) \vee F_{M}(b)\right\} \\
& =\bigwedge_{x=r b}\left\{\bigwedge_{r=s t}\left\{\left(F_{M}(s) \vee \chi_{X}(s)\right\} \vee F_{M}(b)\right\}\right. \\
& \left.=\bigwedge_{x=r b}\left\{F_{M}\left(s_{i}\right) \vee F_{M}(b)\right\} \text { for some } s_{i} \in X \text { and } a=s_{M}(b)\right\} \\
& \geq \bigwedge_{x=s_{i} t_{i} b} F_{M}\left(s_{i} t_{i} b\right)=F_{M}(x) .
\end{aligned}
\end{gathered}
$$

Otherwise $x \neq r b$ or $a \neq s t$ for all $r, b, s, t \in X$. Then

$$
\begin{aligned}
& \left(T_{M} \circ \chi_{X}(T)_{N} \circ T_{M}\right)(x)=0 \geq T_{M}(x), \\
& \left(I_{M} \circ \chi_{X}(I)_{N} \circ I_{M}\right)(x)=-1 \leq I_{M}(x), \\
& \left(F_{M} \circ \chi_{X}(F)_{N} \circ F_{M}\right)(x)=0 \geq F_{M}(x) .
\end{aligned}
$$

Therefore $X_{M} \odot \chi_{X}\left(X_{N}\right) \odot X_{M} \subseteq X_{M}$ for any neutrosophic $\mathbb{\aleph}-$ structure X_{N} over X.

Definition 3.4. A semigroup X is called neutrosophic \aleph-left (resp., right) duo if every neutrosophic \mathbb{K}-left (resp., right) ideal is neutrosophic \mathbb{K}-ideal of X.

If X is both neutrosophic \mathcal{N}-left duo and neutrosophic \mathcal{N}-right duo, then X is called neutrosophic $\boldsymbol{\aleph}$-duo

Theorem 3.5. If X is regular left duo (resp., duo, right duo), then the equivalent assertions are:
(i) X_{M} in X is neutrosophic κ-bi- ideal,
(ii) X_{M} in X is neutrosophic $א$-right ideal (resp., ideal, left ideal).

Proof: $(\boldsymbol{i}) \Longrightarrow(\boldsymbol{i i})$ Suppose X_{M} is a neutrosophic \mathbb{N}-bi- ideal and $g, h \in X$. As X is regular, we get $g=g t g \in g X \cap X g$ for some $t \in X$ which gives $g h \in(g X \cap X g) X \subseteq g X \cap X g$ as X is left duo. So $g h=g s$ and $g h=s^{\prime} g$ for some $s, s^{\prime} \in X$. As X is regular, $\exists r \in X: g h=g h r g h=g s r s^{\prime} g=$ $g\left(s r s^{\prime}\right) g$. Since X_{M} is neutrosophic $\mathbb{\aleph}$-bi- ideal, we have

$$
\begin{aligned}
T_{M}(g h)=T_{M}\left(g\left(s r s^{\prime}\right) g\right) & \leq T_{M}(g) \vee T_{M}(g)=T_{M}(g), \\
I_{M}(g h)=I_{M}\left(g\left(s r s^{\prime}\right) g\right) & \geq I_{M}(g) \wedge I_{M}(g)=I_{M}(g) \\
F_{M}(g h)=F_{M}\left(g\left(s r s^{\prime}\right) g\right) & \leq F_{M}(g) \vee F_{M}(g)=F_{M}(g)
\end{aligned}
$$

Therefore X_{M} is neutrosophic $\mathbb{\aleph}$-right ideal.
$(i \boldsymbol{i}) \Rightarrow(\boldsymbol{i})$ Suppose X_{M} is neutrosophic $\mathbb{\aleph}$-right ideal and let $x, y, z \in X$. Then

$$
\begin{aligned}
& T_{M}(x y z) \leq T_{M}(x) \leq T_{M}(x) \vee T_{M}(z) \\
& I_{M}(x y z) \geq I_{M}(x) \geq I_{M}(x) \wedge I_{M}(z)
\end{aligned}
$$

$$
F_{M}(x y z) \leq F_{M}(x) \leq F_{M}(x) \vee F_{M}(z)
$$

Therefore X_{M} is a neutrosophic N -bi-ideal.

Theorem 3.6. If X is regular, then the equivalent assertions are:
(i) X is left duo (resp., right duo, duo),
(ii) X is neutrosophic κ-left duo (resp., right duo, duo).

Proof: $(\boldsymbol{i}) \Rightarrow(\boldsymbol{i i})$ Let $\mathrm{r}, \mathrm{s} \in X$, we have $r s \in(r X r) s \subseteq r(X r) X \subseteq X r$ as $X r$ is left ideal. Since X is regular, we have $r s=t r$ for some $t \in X$.

If X_{M} is neutrosophic \aleph-left ideal, then $T_{M}(r s)=T_{M}(t r) \leq T_{M}(r), I_{M}(r s)=I_{M}(t r) \geq I_{M}(r)$ and $F_{M}(r s)=F_{M}(t r) \leq F_{M}(r)$. Thus X_{M} is neutrosophic \mathcal{N}-right ideal and therefore X is neutrosophic N -left duo.
$(\boldsymbol{i i}) \Longrightarrow(\boldsymbol{i})$ Let A be a left ideal of X. Then $\chi_{A}\left(X_{M}\right)$ is a neutrosophic \aleph-left ideal by Theorem 3.5 of [4]. By assumption, $\chi_{A}\left(X_{M}\right)$ is neutrosophic \aleph-ideal. Thus A is a right ideal of X.

Theorem 3.7. If X is regular, then the equivalent assertions are:
(i) Every neutrosophic \mathcal{K}-bi-ideal is a neutrosophic κ-right (resp., left ideal, ideal) ideal,
(ii) Every bi-ideal of X is a right ideal (resp., left ideal, ideal).

Proof: $(\boldsymbol{i}) \Longrightarrow(\boldsymbol{i i})$ Let A be a bi-ideal of X. Then by Theorem $3.1 \chi_{A}\left(X_{M}\right)$ is neutrosophic \aleph-bi-ideal for a neutrosophic κ-structure X_{M}. Now by assumption, $\chi_{A}\left(X_{M}\right)$ is neutrosophic $\boldsymbol{\kappa}$-right ideal. So by Theorem 3.5 of [4], A is right ideal.
$(\boldsymbol{i i}) \Rightarrow(\boldsymbol{i})$ Let X_{M} be a neutrosophic \mathcal{N}-bi-ideal and let $r, s \in X$. Then we get $\mathrm{r} X r$ is a bi-ideal of X. By hypothesis, we can have $\mathrm{r} X r$ is right ideal. Since X is regular, we can get $\mathrm{r} \in r X r$. So $r s \in$ $(r X r) X \subseteq r X r$ implies $r s=r x r$ for some $x \in X$. Now,

$$
\begin{gathered}
T_{M}(r s)=T_{M}(r x r) \leq T_{M}(r) \vee T_{M}(r)=T_{M}(r), \\
I_{M}(r s)=I_{M}(r x r) \geq I_{M}(r) \wedge I_{M}(r)=I_{M}(r) \\
F_{M}(r s)=F_{M}(r x r) \leq F_{M}(r) \vee F_{M}(r)=F_{M}(r) .
\end{gathered}
$$

Thus X_{M} is a neutrosophic \aleph-right ideal of X.
Theorem 3.8. For any X, the equivalent conditions are:
(i) X is regular,
(ii) $X_{M} \cap X_{N}=X_{M} \odot X_{N} \odot X_{M}$ for every neutrosophic $\boldsymbol{\kappa}$-bi-ideal X_{M} and neutrosophic \aleph ideal X_{N} of X.

Proof: $(\boldsymbol{i}) \Rightarrow(\boldsymbol{i i})$ Suppose X is regular, X_{M} is a neutrosophic \boldsymbol{N} - bi-ideal and X_{N} is a neutrosophic κ - ideal of X. Then by Theorem 3.3, we have $X_{M} \odot X_{N} \odot X_{M} \subseteq X_{M}$ and $X_{M} \odot X_{N} \odot X_{M} \subseteq X_{N}$. So $X_{M} \odot X_{N} \odot X_{M} \subseteq X_{M} \cap X_{N}$.

Let $r^{\prime} \in X$. As X is regular, there is $p \in X$ such that $r^{\prime}=r^{\prime} p r^{\prime}=r^{\prime} p r^{\prime} p r^{\prime}$. Now

$$
\begin{aligned}
T_{M \circ N \circ M}\left(r^{\prime}\right) & =\bigwedge_{r^{\prime}=d e}\left\{T_{M}(d) \vee T_{N \circ M}(e)\right\} \\
& =\bigwedge_{r^{\prime}=r^{\prime} e}\left\{T_{M}\left(r^{\prime}\right) \vee\left\{\bigwedge_{v=p r^{\prime} p r^{\prime}}\left\{T_{N}\left(p r^{\prime} p\right) \vee T_{M}\left(r^{\prime}\right)\right\}\right\}\right. \\
& \leq \bigwedge_{r^{\prime}=r \prime e}\left\{T_{M}\left(r^{\prime}\right) \vee T_{N}\left(r^{\prime}\right)\right\} \leq T_{M}\left(r^{\prime}\right) \vee T_{N}\left(r^{\prime}\right)=T_{M \cap N}\left(r^{\prime}\right), \\
I_{M \circ N \circ M}\left(r^{\prime}\right) & =\vee_{r^{\prime}=d e}\left\{I_{M}(d) \wedge I_{N \circ M}(e)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =\bigvee_{r \prime=r \prime e}\left\{I_{M}\left(r^{\prime}\right) \wedge\left\{\bigvee_{v=p r^{\prime} p r^{\prime}}\left\{I_{N}\left(p r^{\prime} p\right) \wedge I_{M}\left(r^{\prime}\right)\right\}\right\}\right. \\
& \geq \bigvee_{r^{\prime}=r^{\prime} e}\left\{I_{M}\left(r^{\prime}\right) \wedge I_{N}\left(r^{\prime}\right)\right\} \geq I_{M}\left(r^{\prime}\right) \wedge I_{N}\left(r^{\prime}\right)=I_{M \cap N}\left(r^{\prime}\right), \\
F_{M \circ N \circ M}\left(r^{\prime}\right) & =\bigwedge_{r^{\prime}=d e}\left\{F_{M}(d) \vee F_{N \circ M}(e)\right\} \\
& =\bigwedge_{r^{\prime}=r^{\prime} e}\left\{F_{M}\left(r^{\prime}\right) \vee\left\{\bigwedge_{v=p r^{\prime} p r^{\prime}}\left\{F_{N}\left(p r^{\prime} p\right) \vee F_{M}\left(r^{\prime}\right)\right\}\right\}\right. \\
& \leq \bigwedge_{r^{\prime}=r^{\prime} e}\left\{F_{M}\left(r^{\prime}\right) \vee F_{N}\left(r^{\prime}\right)\right\} \leq F_{M}\left(r^{\prime}\right) \vee F_{N}\left(r^{\prime}\right)=F_{M \cap N}\left(r^{\prime}\right)
\end{aligned}
$$

Thus $X_{M \cap N} \subseteq X_{M} \odot X_{N} \odot X_{M}$ and hence $X_{M \cap N}=X_{M} \odot X_{N} \odot X_{M}$.
(ii) \Rightarrow (i) Suppose (ii) holds. Then $X_{M} \cap \chi_{X}\left(X_{N}\right)=X_{M} \odot \chi_{X}\left(X_{N}\right) \odot X_{M}$. But $X_{M} \cap \chi_{X}\left(X_{N}\right)=$ X_{M}, so $X_{M}=X_{M} \odot \chi_{X}\left(X_{N}\right) \odot X_{M}$ for every neutrosophic κ - bi-ideal X_{M} of X.

Let $u^{\prime} \in X$. Then $\chi_{B\left(u^{\prime}\right)}\left(X_{M}\right)$ is neutrosophic $\mathbb{\aleph}-$ bi-ideal by Theorem 3.1.
By assumption, we have

$$
\begin{aligned}
& \chi_{B\left(u^{\prime}\right)}(T)_{M}=\chi_{B\left(u^{\prime}\right)}(T)_{M} \circ \chi_{X}(T)_{N} \circ \chi_{B\left(u^{\prime}\right)}(T)_{M}=\chi_{B\left(u^{\prime}\right) X B\left(u^{\prime}\right)}(T)_{M}, \\
& \chi_{B\left(u^{\prime}\right)}(I)_{M}=\chi_{B\left(u^{\prime}\right)}(I)_{M} \circ \chi_{X}(I)_{N} \circ \chi_{B\left(u^{\prime}\right)}(I)_{M}=\chi_{B\left(u^{\prime}\right) X B\left(u^{\prime}\right)}(I)_{M}, \\
& \chi_{B\left(u^{\prime}\right)}(F)_{M}=\chi_{B\left(u^{\prime}\right)}(F)_{M} \circ \chi_{X}(F)_{N} \circ \chi_{B\left(u^{\prime}\right)}(F)_{M}=\chi_{B\left(u^{\prime}\right) X B\left(u^{\prime}\right)}(F)_{M} .
\end{aligned}
$$

Since $u^{\prime} \in B\left(u^{\prime}\right)$, we have

$$
\begin{gathered}
\chi_{B\left(u^{\prime}\right) X B\left(u^{\prime}\right)}(T)_{M}\left(u^{\prime}\right)=\chi_{B(u \prime)}(T)_{M}\left(u^{\prime}\right)=-1, \\
\chi_{B(u \prime) X B\left(u^{\prime}\right)}(I)_{M}\left(u^{\prime}\right)=\chi_{B\left(u^{\prime}\right)}(I)_{M}\left(u^{\prime}\right)=0, \\
\chi_{B\left(u^{\prime}\right) X B\left(u^{\prime}\right)}(F)_{M}\left(u^{\prime}\right)=\chi_{B\left(u^{\prime}\right)}(F)_{M}\left(u^{\prime}\right)=-1
\end{gathered}
$$

Thus $u^{\prime} \in B\left(u^{\prime}\right) X B\left(u^{\prime}\right)$ and hence X is regular.

Theorem 3.9. For any X, the below statements are equivalent:
(i) X is regular,
(ii) $X_{M} \cap X_{N}=X_{M} \odot X_{N}$ for every neutrosophic $\mathfrak{\aleph}-$ bi-ideal X_{M} and neutrosophic $\mathfrak{\aleph}$ - left ideal X_{N} of X.

Proof: $(\boldsymbol{i}) \Rightarrow(\boldsymbol{i i})$ Let X_{M} and X_{N} be neutrosophic κ - bi-ideal and neutrosophic κ-left ideal of X respectively. Let $\mathrm{r} \in X$. Then $\exists x \in X: \mathrm{r}=r x r$. Now

$$
\begin{gathered}
T_{M \circ N}(r)=\bigwedge_{r=u v}\left\{T_{M}(u) \vee T_{N}(v)\right\} \leq T_{M}(r) \vee T_{N}(x r) \leq T_{M}(r) \vee T_{N}(r)=T_{M \cap N}(r), \\
I_{M \circ N}(r)=\bigvee_{r=u v}\left\{I_{M}(u) \wedge I_{N}(v)\right\} \geq I_{M}(r) \wedge I_{N}(x r) \geq I_{M}(r) \wedge I_{N}(r)=I_{M \cap N}(r), \\
F_{M \circ N}(r)=\bigwedge_{r=u v}\left\{F_{M}(u) \vee F_{N}(v)\right\} \leq F_{M}(r) \vee F_{N}(x r) \leq F_{M}(r) \vee F_{N}(r)=F_{M \cap N}(r) .
\end{gathered}
$$

Therefore $X_{M \cap N} \subseteq X_{M} \odot X_{N}$.
(ii) \Rightarrow (i) Suppose (ii) holds, and let X_{M} and X_{N} be neutrosophic \mathcal{N} - right ideal and neutrosophic \aleph - left ideal of X respectively. Since every neutrosophic $\mathbb{\aleph}$ - right ideal is neutrosophic \mathcal{N} - bi-ideal, X_{M} is neutrosophic $\mathcal{N}-$ bi-ideal. Then by assumption, $X_{M \cap N} \subseteq$ $X_{M} \odot X_{N}$. By Theorem 3.8 and Theorem 3.9 of [4], we can get $X_{M} \odot X_{N} \subseteq X_{N}$ and $X_{M} \odot X_{N} \subseteq X_{M}$ and so $X_{M} \odot X_{N} \subseteq X_{M} \cap X_{N}=X_{M \cap N}$. Therefore $X_{M} \odot X_{N}=X_{M \cap N}$.

Let K and L be right and left ideals of X respectively, and $r \in K \cap L$. Then $\chi_{K}\left(X_{M}\right) \odot \chi_{L}\left(X_{M}\right)=\chi_{K}\left(X_{M}\right) \cap \chi_{L}\left(X_{M}\right)$ which implies $\chi_{K L}\left(X_{M}\right)=\chi_{K \cap L}\left(X_{M}\right)$. Since $\mathrm{r} \in K \cap L$, we have
$\chi_{K \cap L}(T)_{M}(r)=-1=\chi_{K L}(T)_{M}(r), \chi_{K \cap L}(I)_{M}(r)=0=\chi_{K L}(I)_{M}(r) \quad$ and $\quad \chi_{K \cap L}(F)_{M}(r)=-1=$ $\chi_{K L}(F)_{M}(r)$ which imply $r \in K L$.Thus $K \cap L \subseteq K L \subseteq K \cap L$. So $K \cap L=K L$. Thus X is regular.

Theorem 3.10. For any X, the equivalent conditions are:
(i) X is regular,
(ii) $\quad X_{M} \cap X_{N} \subseteq X_{M} \odot X_{N}$ for every neutrosophic $\mathbb{\aleph}$ - right ideal X_{N} and neutrosophic $\mathbb{\aleph}$ -bi-ideal X_{M} of X.

Proof: It is same as Theorem 3.9.
Theorem 3.11. For any X, the equivalent assertions are:
(i) X is regular,
(ii) $\quad X_{L} \cap X_{M} \cap X_{N} \subseteq X_{L} \odot X_{M} \odot X_{N}$ for every neutrosophic爪 - right ideal X_{L}, neutrosophic $\mathbb{\aleph}$ -bi-ideal X_{M} and neutrosophic $\aleph-$ left ideal X_{N} of X.

Proof: $(\boldsymbol{i}) \Rightarrow(\boldsymbol{i i})$ Suppose X is regular, and let X_{L}, X_{M}, X_{N} be neutrosophic κ - right, bi-ideal, left ideals of X respectively. Let $\mathrm{r} \in X$. Then there is $x \in X$ with $\mathrm{r}=r x r=r x r x r$. Now

$$
\begin{aligned}
T_{L \circ M \circ N}(r) & =\bigwedge_{r=u v}\left\{T_{L}(u) \vee T_{M \circ N}(v)\right\} \leq T_{L}(r x) \vee T_{M \circ N}(r x r) \leq T_{L}(r) \vee\left\{T_{M}(r) \vee T_{N}(x r)\right\} \\
& \leq T_{L}(r) \vee T_{M}(r) \vee T_{N}(r)=T_{L \cap M \cap N}(r), \\
I_{L \circ M \circ N}(r) & =\bigvee_{r=u v}\left\{I_{L}(u) \wedge I_{M \circ N}(v)\right\} \geq I_{L}(r x) \wedge I_{M \circ N}(r x r) \geq I_{L}(r) \wedge\left\{I_{M}(r) \wedge I_{N}(x r)\right\} \\
& \geq I_{L}(r) \wedge I_{M}(r) \wedge I_{N}(r)=I_{L \cap M \cap N}(r), \\
F_{L \circ M \circ N}(r) & =\bigwedge_{r=u v}\left\{F_{L}(u) \vee F_{M \circ N}(v)\right\} \leq F_{L}(r x) \vee F_{M \circ N}(r x r) \leq F_{L}(r) \vee F_{M}(r) \vee F_{N}(x r) \\
& \leq F_{L}(r) \vee F_{M}(r) \vee F_{N}(r)=F_{L \cap M \cap N}(r) .
\end{aligned}
$$

(ii) \Rightarrow (i) Suppose (ii) holds, and let X_{L} and X_{N} be neutrosophic N - right and neutrosophic $\boldsymbol{\kappa}$ - left ideal of X respectively, and X_{M} a neutrosophic $\boldsymbol{\kappa}$-bi-ideal of X. Then $\chi_{X}\left(X_{M}\right)$ is a neutrosophic $\kappa-$ bi-ideal by Theorem 3.1. Now $X_{L} \cap X_{N}=X_{L} \cap \chi_{X}\left(X_{M}\right) \cap X_{N} \subseteq X_{L} \odot \chi_{X}\left(X_{M}\right) \odot X_{N} \subseteq$ $X_{L} \odot X_{N}$. Again by Theorem 3.8 and Theorem 3.9 of [4], we can get $X_{L} \odot X_{N} \subseteq X_{L} \cap X_{N}$ and so $X_{L} \odot X_{N}=$ $X_{L} \cap X_{N}$.

Let K and L be right and left ideals of X respectively. Then $\chi_{K}\left(X_{M}\right) \odot \chi_{L}\left(X_{M}\right)=\chi_{K}\left(X_{M}\right) \cap$ $\chi_{L}\left(X_{M}\right)$. By Theorem 3.6 of [4], we have $\chi_{K L}\left(X_{M}\right)=\chi_{K \cap L}\left(X_{M}\right)$. Let $\mathrm{r} \in K \cap L$. Then

$$
\begin{gathered}
\chi_{K L}(T)_{M}(r)=\chi_{K \cap L}(T)_{M}(r)=-1 \\
\chi_{K L}(I)_{M}(r)=\chi_{K \cap L}(I)_{M}(r)=0 \\
\chi_{K L}(F)_{M}(r)=\chi_{K \cap L}(F)_{M}(r)=-1
\end{gathered}
$$

So $\mathrm{r} \in K L$. Thus $K \cap L \subseteq K L \subseteq K \cap L$. Hence $K \cap L=K L$. Therefore X is regular.
Theorem 3.12. For any X, the equivalent conditions are:
(i) X is regular and intra- regular,
(ii) $X_{M} \cap X_{N} \subseteq X_{M} \odot X_{N}$ for every neutrosophic $\aleph-$ bi-ideals X_{M}, X_{N} of X.

Proof: $(\boldsymbol{i}) \Rightarrow(\boldsymbol{i i})$ Let X_{M} and X_{N} be neutrosophic $\mathbb{\aleph}-$ bi-ideals. Let $h \in X$. Then by regularity of $X, \mathrm{~h}=h x h=h x h x h$ for some $\mathrm{x} \in X$. Since X is intra-regular, $\exists y, z \in X: \mathrm{h}=y h^{2} z$. Then $h=h x y h h z x h$. Now

$$
\begin{aligned}
& T_{M \circ N}(h)=\bigwedge_{h=r t}\left\{T_{M}(r) \vee T_{N}(t)\right\} \leq T_{M}(h x y h) \vee T_{N}(h z x h) \leq T_{M}(h) \vee T_{N}(h) \quad=T_{M \cap N}(h), \\
& I_{M \circ N}(h)=\bigvee_{h=r t}\left\{I_{M}(r) \wedge I_{N}(t)\right\} \geq I_{M}(h x y h) \wedge I_{N}(h z x h) \geq I_{M}(h) \wedge I_{N}(h)=I_{M \cap N}(h), \\
& F_{M \circ N}(h)=\bigwedge_{h=r t}\left\{F_{M}(r) \vee F_{N}(t)\right\} \leq F_{M}(h x y h) \vee F_{N}(h z x h) \leq F_{M}(h) \vee F_{N}(h)=F_{M \cap N}(h) .
\end{aligned}
$$

Therefore $X_{M} \cap X_{N} \subseteq X_{M} \odot X_{N}$ for every neutrosophic \aleph - bi-ideals X_{M} and X_{N}.
(ii) $\Rightarrow(\boldsymbol{i})$ Suppose (ii) holds, and let X_{M} and X_{N} be neutrosophic $\mathbb{\aleph}$ - right and left ideal of X respectively. Then X_{M} and X_{N} are neutrosophic $\kappa-$ bi-ideals. By assumption, $X_{M \cap N} \subseteq X_{M} \odot X_{N}$. By Theorem 3.8 and Theorem 3.9 of [4], we can get $X_{M} \odot X_{N} \subseteq X_{N}$ and $X_{M} \odot X_{N} \subseteq X_{M}$ and so $X_{M} \odot X_{N} \subseteq X_{M} \cap X_{N}=X_{M \cap N}$. Therefore $X_{M} \odot X_{N}=X_{M \cap N}$.

Let K, L be right, left ideals of X respectively. Then $\chi_{K}\left(X_{M}\right) \odot \chi_{L}\left(X_{M}\right)=\chi_{K}\left(X_{M}\right) \cap \chi_{L}\left(X_{M}\right)$.
By Theorem 3.6 of [4], $\chi_{K L}\left(X_{M}\right)=\chi_{K \cap L}\left(X_{M}\right)$. Let $r \in K \cap L$. Then $\chi_{K \cap L}(T)_{M}(r)=-1=$ $\chi_{K L}(T)_{M}(r), \chi_{K \cap L}(I)_{M}(r)=0=\chi_{K L}(I)_{M}(r)$ and $\chi_{K \cap L}(F)_{M}(r)=-1=\chi_{K L}(F)_{M}(r)$ which imply $r \in$ $K L$. Thus $K \cap L \subseteq K L \subseteq K \cap L$ and hence $K \cap L=K L$. Therefore X is regular.

Also, for $r \in X, \chi_{B(r)}\left(X_{M}\right) \cap \chi_{B(r)}\left(X_{M}\right)=\chi_{B(r)}\left(X_{M}\right) \odot \chi_{B(r)}\left(X_{M}\right)$. By Theorem 3.8 and Theorem 3.9 of [4], we get $\chi_{B(r)}\left(X_{M}\right)=\chi_{B(r) B(r)}\left(X_{M}\right)$.since $\chi_{B(r)}(T)_{M}(r)=-1=\chi_{B(r)}(F)_{M}(r)$ and $\chi_{B(r)}(I)_{M}(r)=$ 0 , we get $\chi_{B(r) B(r)}(T)_{M}(r)=-1=\chi_{B(r) B(r)}(F)_{M}(r)$ and $\chi_{B(r) B(r)}(I)_{M}(r)=0$ which imply $r \in$ $B(r) B(r)$. Thus X is intra-regular.

Theorem 3.13. For any X, the equivalent conditions are:
(i) X is intra-regular and regular,
(ii) $X_{M} \cap X_{N} \subseteq\left(X_{M} \odot X_{N}\right) \cap\left(X_{N} \odot X_{M}\right)$ for every neutrosophic κ - bi-ideals X_{M} and X_{N} of X.

Proof: $(\boldsymbol{i}) \Rightarrow$ (ii) Suppose X is regular and intra- regular, and let X_{M} and X_{N} be neutrosophic $\boldsymbol{\kappa}$ -bi-ideals of X. Then by Theorem 3.12, $X_{M} \odot X_{N} \supseteq X_{M} \cap X_{N}$. Similarly we can prove that $X_{N} \odot X_{M} \supseteq$ $X_{N} \cap X_{M}$. Therefore $\left(X_{M} \odot X_{N}\right) \cap\left(X_{N} \odot X_{M}\right) \supseteq X_{M} \cap X_{N}$ for every neutrosophic $\boldsymbol{\kappa}-$ bi-ideals X_{M} and X_{N} of X.
(ii) $\Rightarrow(\boldsymbol{i})$ Let X_{M} and X_{N} be neutrosophic κ - bi-ideals of X. Then $X_{M} \cap X_{N} \subseteq X_{M} \odot X_{N}$ gives X is intra-regular and regular by Theorem 3.12.

Theorem 3.14. For any X, the equivalent assertions are:
(i) X is intra-regular and regular,
(ii) $X_{M} \cap X_{N} \subseteq X_{M} \odot X_{N} \odot X_{M}$ for every neutrosophic $\aleph-$ bi-ideals X_{M} and X_{N} of X.

Proof: $(\boldsymbol{i}) \Rightarrow(\boldsymbol{i i})$ Let X_{M} and X_{N} be neutrosophic $\aleph-$ bi-ideals, and $a \in X$. As X is regular, $a=$ $a x a=$ axaxaxa for some $x \in X$. Since X is intra-regular, $a=y a^{2} z$ for some $y, z \in X$. Then $a=$ (axya)(azxya)(azxa). Now

$$
\begin{aligned}
T_{M \circ N \circ M}(a) & =\bigwedge_{a=k m}\left\{T_{M}(k) \vee T_{N \circ M}(m)\right\} \\
& =\bigwedge_{a=(\text { axya) } v}\left\{T_{M}(\text { axya }) \vee\left\{\bigwedge_{v=r t}\left\{T_{N}(r) \vee T_{M}(t)\right\}\right\}\right. \\
& \leq T_{M}(\text { axya }) \vee T_{N}(\text { azxya }) \vee T_{M}(\text { azxa }) \\
& \leq T_{M}(a) \vee T_{N}(a) \vee T_{M}(a)=T_{M \cap N}(a), \\
I_{M \circ N \circ M}(a) & =\bigvee_{a=k m}\left\{I_{M}(k) \wedge I_{N \circ M}(m)\right\} \\
& =\bigvee_{a=(\text { axya }) v}\left\{I_{M}(\text { axya }) \wedge\left\{\bigvee_{v=r t}\left\{I_{N}(r) \wedge I_{M}(t)\right\}\right\}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \geq I_{M}(a x y a) \wedge I_{N}(a z x y a) \wedge I_{M}(a z x a) \\
& \geq I_{M}(a) \wedge I_{N}(a) \wedge I_{M}(a)=I_{M \cap N}(a),
\end{aligned}
$$

and

$$
\begin{aligned}
F_{M \circ N \circ M}(a) & =\bigwedge_{a=k m}\left\{F_{M}(k) \vee F_{N \circ M}(m)\right\} \\
& =\bigwedge_{a=(\text { axya) }}\left\{F_{M}(\text { axya }) \vee\left\{\bigwedge_{v=r t}\left\{F_{N}(r) \vee F_{M}(t)\right\}\right\}\right. \\
& \leq F_{M}(\text { axya }) \vee F_{N}(\text { azxya }) \vee F_{M}(\text { azxa }) \\
& \leq F_{M}(a) \vee F_{N}(a) \vee F_{M}(a)=F_{M \cap N}(a) .
\end{aligned}
$$

Therefore $X_{M} \cap X_{N} \subseteq X_{M} \odot X_{N} \odot X_{M}$ for every neutrosophic \aleph - bi-ideals X_{M} and X_{N} of X.
(ii) \Rightarrow (i) Let $h_{j} \in X$. Then

$$
\chi_{B\left(h_{j}\right)}\left(X_{M}\right) \subseteq \chi_{B\left(h_{j}\right)}\left(X_{M}\right) \cap \chi_{B\left(h_{j}\right)}\left(X_{M}\right) \subseteq \chi_{B\left(h_{j}\right)}\left(X_{M}\right) \odot \chi_{B\left(h_{j}\right)}\left(X_{M}\right) \odot \chi_{B\left(h_{j}\right)}\left(X_{M}\right)
$$

So

$$
\begin{gathered}
\chi_{B\left(h_{j}\right)}(T)_{M}\left(h_{j}\right) \geq \chi_{B\left(h_{j}\right) B\left(h_{j}\right) B\left(h_{j}\right)}(T)_{M}\left(h_{j}\right), \\
\chi_{B\left(h_{j}\right)}(I)_{M}\left(h_{j}\right) \leq \chi_{B\left(h_{j}\right) B\left(h_{j}\right) B\left(h_{j}\right)}(I)_{M}\left(h_{j}\right), \\
\left.\chi_{B\left(h_{j}\right)}\right)(F)_{M}\left(h_{j}\right) \geq \chi_{B\left(h_{j}\right) B\left(h_{j}\right) B\left(h_{j}\right)}(F)_{M}\left(h_{j}\right) .
\end{gathered}
$$

Since $\quad \chi_{B\left(h_{j}\right)}(T)_{M}\left(h_{j}\right)=-1=\chi_{B\left(h_{j}\right)}(F)_{M}\left(h_{j}\right) \quad$ and $\quad \chi_{B\left(h_{j}\right)}(I)_{M}\left(h_{j}\right)=0$, we get $\chi_{B\left(h_{j}\right) B\left(h_{j}\right) B\left(h_{j}\right)}(T)_{M}\left(h_{j}\right)=-1=\chi_{B\left(h_{j}\right) B\left(h_{j}\right) B\left(h_{j}\right)}(F)_{M}\left(h_{j}\right) \quad$ and $\quad \chi_{B\left(h_{j}\right) B\left(h_{j}\right) B\left(h_{j}\right)}(I)_{M}\left(h_{j}\right)=0 \quad$ which imply $h_{j} \in B\left(h_{j}\right) B\left(h_{j}\right) B\left(h_{j}\right)$. Therefore X is intra-regular and regular.

Theorem 3.15. For any X, the equivalent assertions are:
(i) X is intra-regular,
(ii) For each neutrosophic $\boldsymbol{\aleph}$-ideal X_{M} of $X, X_{M}(a)=X_{M}\left(a^{2}\right) \forall a \in X$.

Proof: $(i) \Rightarrow(i i)$ Let $a \in X$. Then $a=y a^{2} z$ for some $y, z \in X$. For a neutrosophic κ-ideal X_{M}, we have

$$
\begin{gathered}
T_{M}(a)=T_{M}\left(y a^{2} z\right) \leq T_{M}\left(a^{2} z\right) \leq T_{M}\left(a^{2}\right) \leq T_{M}(a), \\
I_{M}(a)=I_{M}\left(y a^{2} z\right) \geq I_{M}\left(a^{2} z\right) \geq I_{M}\left(a^{2}\right) \geq I_{M}(a) \\
F_{M}(a)=F_{M}\left(y a^{2} z\right) \leq F_{M}\left(a^{2} z\right) \leq F_{M}\left(a^{2}\right) \leq F_{M}(a)
\end{gathered}
$$

so $T_{M}(a)=T_{M}\left(a^{2}\right) ; I_{M}(a)=I_{M}\left(a^{2}\right)$ and $F_{M}(a)=F_{M}\left(a^{2}\right)$ for all $a \in X$. Therefore $X_{M}(a)=X_{M}\left(a^{2}\right)$
$(\boldsymbol{i i}) \Rightarrow(\boldsymbol{i})$ Let $a \in X$. Then $I\left(a^{2}\right)$ is an ideal of X. Thus $\chi_{I\left(a^{2}\right)}\left(X_{M}\right)$ is neutrosophic $\boldsymbol{\kappa}$-ideal by Theorem 3.5 of [4]. By assumption, $\chi_{I\left(a^{2}\right)}\left(X_{M}\right)(a)=\chi_{I\left(a^{2}\right)}\left(X_{M}\right)\left(a^{2}\right)$. Since $\chi_{I\left(a^{2}\right)}(T)_{M}\left(a^{2}\right)=$ $-1=\chi_{I\left(a^{2}\right)}(F)_{M}\left(a^{2}\right)$ and $\chi_{I\left(a^{2}\right)}(I)_{M}\left(a^{2}\right)=0$, we get $\chi_{I\left(a^{2}\right)}(T)_{M}(a)=-1=\chi_{I\left(a^{2}\right)}(F)_{M}(a)$ and $\chi_{I\left(a^{2}\right)}(I)_{M}(a)=0$ imply $a \in I\left(a^{2}\right)$. Thus X is intra-regular.

Theorem 3.16. For any X, the equivalent assertions are:
(i) X is left (resp., right) regular,
(ii) For each neutrosophic κ-left (resp., right) ideal X_{M} of $X, X_{M}(a)=X_{M}\left(a^{2}\right) \quad \forall a \in X$.

Proof: $(\boldsymbol{i}) \Rightarrow$ (ii) Suppose X is left regular. Then $a=y a^{2}$ for some $y \in X$ Let X_{M} be neutrosophic κ - left ideal. Then $T_{M}(a)=T_{M}\left(y a^{2}\right) \leq T_{M}\left(\mathrm{a}^{2}\right)$ and so $T_{M}(a)=T_{M}\left(a^{2}\right), I_{M}(a)=$
$I_{M}\left(y a^{2}\right) \geq I_{M}(a)$ and so $I_{M}(a)=I_{M}\left(a^{2}\right)$, and $F_{M}(a)=F_{M}\left(y a^{2}\right) \leq F_{M}(a)$ and so $F_{M}(a)=F_{M}\left(a^{2}\right)$. Therefore $X_{M}(a)=X_{M}\left(a^{2}\right)$ for all $a \in X$.
(ii) $\Rightarrow(\boldsymbol{i})$ Let X_{M} be neutrosophic \mathbb{x}-left ideal. Then for any $a \in X$, we have $\chi_{L\left(a^{2}\right)}(T)_{M}(a)=$ $\chi_{L\left(a^{2}\right)}(T)_{M}\left(a^{2}\right)=-1, \chi_{L\left(a^{2}\right)}(I)_{M}(a)=\chi_{L\left(a^{2}\right)}(I)_{M}\left(a^{2}\right)=0$ and $\chi_{L\left(a^{2}\right)}(F)_{M}(a)=\chi_{L\left(a^{2}\right)}(F)_{M}\left(a^{2}\right)=-1$ imply $a \in L\left(a^{2}\right)$. Thus X is left regular.

Corollary 3.17. Let X be a regular right duo (resp., left duo). Then the equivalent conditions are:
(i) X is left regular,
(ii) For each neutrosophic $\mathcal{\kappa}$-bi- ideal X_{M} of X, we have $X_{M}(a)=X_{M}\left(a^{2}\right)$ for all $a \in X$.

Proof: It is evident from Theorem 3.5 and Theorem 3.16.

Conclusions

In this paper, we have presented the concept of neutrosophic κ-bi-ideals of semigroups and explored their properties, and characterized regular semigroups, intra-regular semigroups and semigroups using neutrosophic κ-bi-ideal structures. We have also shown that the neutrosophic κ-product of ideals and the intersection of neutrosophic κ-ideals are identical for a regular semigroup. In future, we will focus on the idea of neutrosophic $\boldsymbol{\kappa}$-prime ideals of semigroups and its properties.

Acknowledgments: The authors express their gratitude to the referees for valuable comments and suggestions which improve the article a lot.

Reference

1. Atanassov, K. T. Intuitionistic fuzzy sets. Fuzzy Sets and Systems 1986, 20, 87-96.
2. Abdel-Baset, M.; Chang, V.; Gamal, A.; Smarandache, F. An integrated neutrosophic ANP and VIKOR method for achieving sustainable supplier selection: A case study in importing field. Computers in Industry 2019, 106, 94-110.
3. Abdel-Basset, M.; Saleh, M.; Gamal, A.; Smarandache, F. An approach of TOPSIS technique for developing supplier selection with group decision making under type-2 neutrosophic number. Applied Soft Computing 2019, 77, 438-452.
4. Elavarasan, B.; Smarandache, F.; Jun, Y. B. Neutrosophic \mathbb{K} - ideals in semigroups. Neutrosophic Sets and Systems 2019, 28, 273-280.
5. Gulistan, M.; Khan, A.; Abdullah, A.; Yaqoob, N. Complex Neutrosophic subsemigroups and ideals. International J. Analysis and Applications 2018, 16, 97-116.
6. Jun, Y. B.; Lee, K. J.; Song, S. Z. א -Ideals of BCK/BCI-algebras. J. Chungcheong Math. Soc. 2009, 22, 417-437.
7. Kehayopulu, N. A note on strongly regular ordered semigroups. Sci. Math. 1998, 1, 33-36.
8. Khan, M. S.; Anis; Smarandache, F.; Jun, Y. B. Neutrosophic \mathbb{N}-structures and their applications in semigroups. Annals of Fuzzy Mathematics and Informatics, reprint.
9. Mordeson, J.N.; Malik, D. S.; Kuroki. N. Regular semigroups. Fuzzy Smigroups 2003, 59-100.
10. Muhiuddin, G.; Ahmad, N.; Al-Kenani; Roh, E. H.; Jun, Y. B. Implicative neutrosophic quadruple BCK-algebras and ideals, Symmetry 2019, 11, 277.
11. Muhiuddin, G.; Bordbar, H.; Smarandache, F.; Jun, Y. B. Further results on (2; 2)-neutrosophic subalgebras and ideals in BCK/BCI- algebras, Neutrosophic Sets and Systems 2018, Vol. 20, 36-43
12. Muhiuddin, G.; Kim, S. J.; Jun, Y. B. Implicative N-ideals of BCK-algebras based on neutrosophic N-structures, Discrete Mathematics, Algorithms and Applications 2019, Vol. 11, No. 01, 1950011.
13. Muhiuddin, G.; Smarandache, F.; Jun, Y. B. Neutrosophic quadruple ideals in neutrosophic quadruple BCI-algebras, Neutrosophic Sets and Systems 2019, 25, 161-173 (2019).
14. Smarandache, F. A. Unifying Field in Logics: Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Neutrosophic Probability. American Research Press 1999, Rehoboth, NM.
15. Smarandache, F. Neutrosophic set-a generalization of the intuitionistic fuzzy set. Int. J. Pure Appl. Math. 2005, 24(3), 287-297.
16. Zadeh, L. A. Fuzzy sets. Information and Control 1965, 8, 338-353.

A Novel Approach for Pairwise Separation Axioms on Bi-Soft Topology Using Neutrosophic Sets and An Output Validation in Real Life Application

Chinnadurai $\mathbf{V}^{\mathbf{1}}$, Sindhu M $\mathbf{P}^{\mathbf{2}}$
1 Department of Mathematics, Annamalai University, Annamalainagar, Tamilnadu, India; kv.chinnaduraimaths@gmail.com
2 Department of Mathematics, Karpagam College of Engineering, Coimbatore, Tamilnadu, India; sindhu.mp@kce.ac.in

Correspondence: kv.chinnaduraimaths@gmail.com

Abstract

The set that lightens the vagueness stage more energetically than fuzzy sets are neutrosophic sets. Bi-soft topological space is a space which goes for two different topologies with certain parameters. This work carries out, construction of such type of topology on neutrosophic. Besides by means of this, separation axioms are extended to pairwise separation axioms by using neutrosophic and to analyze the relationship among the class of such spaces. Here some of their properties are discussed with illustrative examples. In addition to it, we initiate the matrix form of neutrosophic soft sets in such space. Here problems deal to take a decision in life by the choice of two different groups. The aim of this decision making problem is to determine the unique thing or person from the universe by giving marks depending on parameters. Step by step process of solving the problem is explained in algorithm, also formulae given to determine their values with illustrative examples.

Keywords: Neutrosophic sets (NSs); neutrosophic soft sets (NSSs); neutrosophic soft topological spaces (NSTSs); neutrosophic soft $T_{i=0,1,2,3,4}$-spaces (NS $T_{i=0,1,2,3,4}$-spaces); neutrosophic bitopological spaces (NBTSs); neutrosophic bi-soft topological spaces (NBSTSs); pairwise neutrosophic soft $T_{i=0,1,2,3,4}$-spaces (pairwise NS $T_{i=0,1,2,3,4}$-spaces); decision making (DM).

1. Introduction

Zadeh [54], evaluated a fuzzy set (1965) to explore the situations like risky, unclear, erratic and distortion occurs in our life cycle. Fuzzy sets simplify classical sets and are unique cases of the membership functions. It has been used in a spacious collection of domains. This set extended to develop intuitionistic fuzzy set (IFS) theory (1986) by Atanassov [47]. Smarandache [7] originated a set which forecast the indeterminancy part along with truth and false statements, called NS (1998), such as blending of network arises to unpredictable states. It is a dynamic structure which postulates the concept of all other sets introduced before. Later, he generalized the NS on IFS [8] and recently proposed his work on attributes valued set, plithogenic set (PS) [9]. In day-to-day life decisions taken to diagnostic the problems either positive or negative even not both. Such types of problems are key role in all fields and so most of the researchers studied DM problem. In recent times various works

[^32]have been done on these sets by Salma and Alblowi [33] and on extension of neutrosophic analysis on DM by Abdel et al. [1-6].

Soft set (1999) is a broad mathematical gadget which accord with a group of objects based on fairly accurate descriptions with orientation to elements of a parameter set was projected by Molodtsov [46]. Topological structure on this set explored by Shabir \& Naz [38] as soft topological spaces (2011). Anon this thought were developed by Ali et al. [35, 40], Bayramov and Gunduz [22, 29], Cagman et al. [37], Chen [43], Feng et al. [41], Hussain and Ahmad [36], Maji et al. [44, 45], Min [39], Nazmul and Samanta [32], Pie and Miao [42], Tantawy et al. [26], Varol and Aygun [31], Zorlutuna et al. [34]. Maji [30] presented the binding of neutrosophic with soft set termed as NSSs (2013). Bera \& Mahapatra [23] defined such type of set on topological structure, named as NSTSs (2017). Using these concepts, Deli \& Broumi [27], Bera \& Mahapatra [10, 24], on separation axioms by Cigdem et al. [20,21] have done some research works. Mostly DM applied on these sets related to fuzzy with multicriteria by Chinnadurai et al. [13, 14 \& 19], Abishek et al. [12], Muhammad et al. [16], Mehmood et al. [17], Evanzalin Ebenanjar et al. [18] and Faruk [25].

Kelly [55] imported the approach of a set equipped with two topologies, named as bitopological space (BTS) (1963), which is the generic system of topological space. Also it was carried out by Lane [53], Patty [52], Kalaiselvi and Sindhu [15] and pairwise concepts by Kim [51], Singal and Asha [50], Lal [48], Reilly [49]. Naz, Shabir and Ali [28] introduced bi-soft topological spaces (BSTSs) (2015) and studied the separation axioms on it. Taha and Alkan [11] presented BTS on neutrosophic structure as NBTSs (2019) which is engaged with two neutrosophic topologies (NTs).

The intension of this paper is to initiate the idea of NS on BSTS and to study some essential properties of such spaces. Also, the pairwise concept on separation axioms implemented in NBSTS. In addition, the NSSs referred as matrix form on NBSTS. As real life application, decisions made to select the one among the universe based on its parameters by considering two different groups as neutrosophic soft topologies (NSTs).

The arrangements made in this paper are as follows. Some basic definitions related to NS are in segment 2 . The results of NBSTS are proved and disproved by counter examples in segment 3 . The bonding among the pairwise separation axioms on NBSTS are stated with illustrative examples in segment 4 . In segment 5 , the method of evaluating DM problems are described in algorithm and formula specified to calculate the scores of universe set, to choose the best among them with illustrative examples. Finally, concluded with future work in segment 6 .

2. Preamble

In this segment, we evoke few primary definitions associated to NSS, NSTS, BSTS and NBSTS.

Definition 2.1 [30] Let V be the set of universe and E be a set of parameters. Let $N S(V)$ denote the set of all NSs of V. Then a estimated function of NSS K over V is a set defined by a mapping $f_{K}: E \rightarrow N S(V)$. The NSS is a parameterized family of the set $N S(V)$ which can be written as a set of ordered pairs,

$$
K=\left\{\left(e,\left\{\left\langle v, T_{f_{K}(e)}(v), I_{f_{K}(e)}(v), F_{f_{K}(e)}(v)\right\rangle: v \in V\right\}\right): e \in E\right\}
$$

where $\quad T_{f_{K}(e)}(v), I_{f_{K}(e)}(v), F_{f_{K}(e)}(v) \in[0,1] \quad$ respectively called \quad the \quad truth-membership, indeterminacy-membership and false-membership functions of $f_{K}(e)$ and the inequality $0 \leq T_{f_{K}(e)}(v)+I_{f_{K}(e)}(v)+F_{f_{K_{K}}(e)}(v) \leq 3$ is obvious.

Definition 2.2 [23] Let $\operatorname{NSS}(V)$ denote the set of all NSSs of V through all $e \in E$ and $\tau_{u} \subset \operatorname{NSS}(V, E)$. Then τ_{u} is called NST on (V, E) if the following conditions are satisfied.
(i) $\phi_{u}, 1_{u} \in \tau_{u}$, where null NSS $\left.\phi_{u}=\{(e,\{\langle v, 0,0,1)\rangle: v \in V\}): e \in E\right\}$ and absolute NSS $\left.1_{u}=\{(e,\{\langle v, 1,1,0)\rangle: v \in V\}): e \in E\right\}$.
(ii) the intersection of any finite number of members of τ_{u} belongs to τ_{u}.
(iii) the union of any collection of members of τ_{u} belongs to τ_{u}.

Then the triplet (V, E, τ_{u}) is called a NSTS.
Every member of τ_{u} is called τ_{u}-open NSS, whose complement is τ_{u}-closed NSS.

Definition 2.3 [21] Let $\operatorname{NSS}(V, E)$ denote the family of all NSSs over V. The NSS $u_{e}^{(\alpha, \beta, \gamma)}$ is called a NSP, for every $u \in V, 0<\alpha, \beta, \gamma \leq 1, e \in E$ and is defined as follows:

$$
u_{(e)}^{(\alpha, \beta, \gamma)}\left(e^{\prime}\right)(v)=\left\{\begin{array}{l}
(\alpha, \beta, \gamma), \text { if } e^{\prime}=\text { e and } v=u \\
(0,0,1), \text { if } e^{\prime} \neq \text { eand } v \neq u
\end{array}\right.
$$

Obviously, every NSS is the union of its NSPs.

Definition $2.4[11]$ Let $\left(V, \tau_{u 1}\right)$ and $\left(V, \tau_{u 2}\right)$ be the two different NTs on V. Then $\left(V, \tau_{u 1}, \tau_{u 2}\right)$ is called a NBTS.

3. NBSTS

In this segment, the conception of NBSTS is defined and some key resources of topology are studied on it. The theoretical results are supported by some significant descriptive examples.

Definition 3.1 The quadruple ($V, E, \tau_{u 1}, \tau_{u 2}$) is called a NBSTS over (V, E), where $\tau_{u 1}$ and $\tau_{u 2}$ are NSTs independently satisfy the axioms of NSTS.
The elements of $\tau_{u 1}$ are $\tau_{u 1}$-neutrosophic soft open sets ($\tau_{u 1}$-NSOSs) and the complement of it are $\tau_{u 1}$-neutrosophic soft closed sets ($\tau_{u 1}$-NSOSs).

Example 3.2 Let $V=\left\{v_{1}, v_{2}\right\}, E=\left\{e_{1}, e_{2}\right\}$ and $\tau_{u 1}=\left\{\phi_{u}, 1_{u}, K_{1}\right\}$ and $\tau_{u 2}=\left\{\phi_{u}, 1_{u}, L_{1}, L_{2}\right\}$ where K_{1}, L_{1}, L_{2} are NSSs over (V, E), defined as follows

$$
\begin{aligned}
& f_{K_{1}}\left(e_{1}\right)=\left\{\left\langlev_{1},(1,1,0)>,\left\langle v_{2},(0,0,1)>\right\},\right.\right. \\
& f_{K_{1}}\left(e_{2}\right)=\left\{<v_{1},(0,0,1)>,\left\langle v_{2},(1,0,1)>\right\}\right.
\end{aligned}
$$

and
$\left.f_{L_{1}}\left(e_{1}\right)=\left\{<v_{1},(1,0,1)\right\rangle,\left\langle v_{2},(0,0,1)\right\rangle\right\}$,

$$
\begin{aligned}
& f_{L_{1}}\left(e_{2}\right)=\left\{\left\langlev_{1},(0,1,0)>,\left\langle v_{2},(1,1,0)>\right\} ;\right.\right. \\
& f_{L_{2}}\left(e_{1}\right)=\left\{<v_{1},(0,1,0)>,<v_{2},(1,1,0)>\right\}, \\
& f_{L_{2}}\left(e_{2}\right)=\left\{<v_{1},(1,0,1)>,<v_{2},(0,0,1)>\right\} .
\end{aligned}
$$

Thus $\tau_{u 1}$ and $\tau_{u 2}$ are NSTs on (V, E) and so $\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ is a NBSTS over (V, E).

Example 3.3 Let the neutrosophic soft indiscrete (trivial) topology $\tau_{u 1}=\left\{\phi_{u}, 1_{u}\right\}$ and neutrosophic soft discrete topology $\tau_{u 2}=\operatorname{NSS}(V, E)$.
Then $\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ is a NBSTS over (V, E).

Definition 3.4 Let $\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ be a NBSTS over (V, E), where $\tau_{u 1}$ and $\tau_{u 2}$ are NSTs on (V, E) and $P, Q \in \operatorname{NSS}(V, E) \quad$ be any two arbitrary NSSs. Suppose $\tau_{v 1}=\left\{P \cap K_{i} / K_{i} \in \tau_{u 1}\right\}$ and $\tau_{v 2}=\left\{Q \bigcap L_{i} / L_{i} \in \tau_{u 2}\right\}$. Then $\tau_{v 1}$ and $\tau_{v 2}$ are also NSTs on (V, E). Thus $\left(V, E, \tau_{v 1}, \tau_{v 2}\right)$ is a NBST subspace of $\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$.

Theorem 3.5 Let $\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ be a NBSTS over (V, E), where $\tau_{u 1}(e)$ and $\tau_{u 2}(e)$ are defined as

$$
\begin{aligned}
& \tau_{u 1}(e)=\left\{f_{K}(e) / K \in \tau_{u 1}\right\} \\
& \tau_{u 2}(e)=\left\{f_{L}(e) / L \in \tau_{u 2}\right\} \text { for each } e \in E .
\end{aligned}
$$

Then $\left(V, E, \tau_{u 1}(e), \tau_{u 2}(e)\right)$ is a NBTS over (V, E).
Proof. Follows from the fact that $\tau_{u 1}$ and $\tau_{u 2}$ are NTs on V.

Example 3.6 Let $V=\left\{v_{1}, v_{2}, v_{3}\right\}, E=\left\{e_{1}, e_{2}\right\}$ and $\tau_{u 1}=\left\{\phi_{u}, 1_{u}, K_{1}, K_{2}\right\}$ and $\tau_{u 2}=\left\{\phi_{u}, 1_{u}, L_{1}, L_{2}, L_{3}, L_{4}\right\}$ where $K_{1}, K_{2}, L_{1}, L_{2}, L_{3}, L_{4}$ are NSSs over (V, E), defined as follows

$$
\begin{aligned}
& f_{K_{1}}\left(e_{1}\right)=\left\{<v_{1},(1, .5, .4)>,<v_{2},(.6, .6, .6)>,<v_{3},(.3, .4, .9)>\right\}, \\
& \left.f_{K_{1}}\left(e_{2}\right)=\left\{<v_{1},(.8, .4, .5)>,<v_{2},(.7, .7, .3)>,<v_{3},(.7, .5, .6)\right\rangle\right\} ; \\
& \left.\left.\left.f_{K_{2}}\left(e_{1}\right)=\left\{<v_{1},(.8, .5, .1)\right\rangle,<v_{2},(.8, .6, .5)\right\rangle,<v_{3},(.5, .6, .4)\right\rangle\right\}, \\
& \left.f_{K_{2}}\left(e_{2}\right)=\left\{<v_{1},(.9, .7, .1)>,<v_{2},(.9, .9, .2)>,<v_{3},(.8, .6, .3)\right\rangle\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
& f_{L_{1}}\left(e_{1}\right)=\left\{<v_{1},(.3, .7, .6)>,<v_{2},(.4, .3, .8)>,<v_{3},(.6, .4, .5)>\right\}, \\
& f_{L_{1}}\left(e_{2}\right)=\left\{<v_{1},(.4, .6, .8)>,<v_{2},(.3, .7, .2)>,<v_{3},(.3, .3, .7)>\right\} ; \\
& f_{L_{2}}\left(e_{1}\right)=\left\{<v_{1},(.6, .6, .8)>,<v_{2},(.2, .9, .3)>,<v_{3},(.1, .2, .4)>\right\},
\end{aligned}
$$

$$
\begin{aligned}
& f_{L_{2}}\left(e_{2}\right)=\left\{<v_{1},(.7, .9, .5)>,<v_{2},(.4, .2, .3)>,<v_{3},(.5, .5, .4)>\right\} ; \\
& f_{L_{3}}\left(e_{1}\right)=\left\{<v_{1},(.6, .7, .6)>,<v_{2},(.4, .9, .3)>,<v_{3},(.6, .4, .4)>\right\} ; \\
& f_{L_{3}}\left(e_{2}\right)=\left\{<v_{1},(.7, .9, .5)>,<v_{2},(.4, .7, .2)>,<v_{3},(.5, .5, .4)>\right\} ; \\
& f_{L_{4}}\left(e_{1}\right)=\left\{<v_{1},(.3, .6, .8)>,<v_{2},(.2, .3, .8)>,<v_{3},(.1, .2, .5)>\right\} ; \\
& f_{L_{4}}\left(e_{2}\right)=\left\{<v_{1},(.4, .6, .8)>,<v_{2},(.3, .2, .3)>,<v_{3},(.3, .3, .7)>\right\}
\end{aligned}
$$

Thus $\tau_{u 1}$ and $\tau_{u 2}$ are NSTs on (V, E) and so $\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ is a NBSTS over (V, E).
Now,

$$
\begin{gathered}
\tau_{u 1}\left(e_{1}\right)=\left\{\begin{array}{l}
\phi_{u}, 1_{u},\left\{<v_{1},(1, .5, .4)>,<v_{2},(.6, .6, .6)>,<v_{3},(.3, .4, .9)>\right\}, \\
\left\{<v_{1},(.8, .5, .1)>,<v_{2},(.8, .6, .5)>,<v_{3},(.5, .6, .4)>\right\}
\end{array}\right\}, \\
\tau_{u 2}\left(e_{1}\right)=\left\{\begin{array}{l}
\phi_{u}, 1_{u},\left\{<v_{1},(.3, .7, .6)>,<v_{2},(.4, .3, .8)>,<v_{3},(.6, .4, .5)>\right\}, \\
\left\{<v_{1},(.6, .6, .8)>,<v_{2},(.2, .9, .3)>,<v_{3},(.1, .2, .4)>\right\}, \\
\left\{<v_{1},(.6, .7, .6)>,<v_{2},(.4, .9, .3)>,<v_{3},(.6, .4, .4)>\right\}, \\
\left\{<v_{1},(.3, .6, .8)>,<v_{2},(.2, .3, .8)>,<v_{3},(.1, .2, .5)>\right\}
\end{array}\right\}
\end{gathered}
$$

and

$$
\begin{aligned}
& \tau_{u 1}\left(e_{2}\right)=\left\{\begin{array}{l}
\phi_{u}, 1_{u},\left\{<v_{1},(.8, .4, .5)>,<v_{2},(.7, .7, .3)>,<v_{3},(.7, .5, .6)>\right\}, \\
\left\{<v_{1},(.9, .7, .1)>,<v_{2},(.9, .9, .2)>,<v_{3},(.8, .6, .3)>\right\}
\end{array}\right\}, \\
& \tau_{u 2}\left(e_{2}\right)=\left\{\begin{array}{l}
\phi_{u}, 1_{u},\left\{<v_{1},(.4, .6, .8)>,<v_{2},(.3, .7, .2)>,<v_{3},(.3, .3, .7)>\right\}, \\
\left\{<v_{1},(.7, .9, .5)>,<v_{2},(.4, .2, .3)>,<v_{3},(.5, .5, .4)>\right\}, \\
\left\langle<v_{1},(.7, .9, .5)>,<v_{2},(.4, .7, .2)>,<v_{3},(.5, .5, .4)>\right\}, \\
\left\{<v_{1},(.4, .6, .8)>,<v_{2},(.3, .2, .3)>,<v_{3},(.3, .3, .7)>\right\}
\end{array}\right\}
\end{aligned}
$$

are NTs on V.
Thus $\left(V, E, \tau_{u 1}(e), \tau_{u 2}(e)\right)$ is a NBTS over (V, E).

Definition 3.7 Let $\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ be a NBSTS over (V, E). Then the supremum NST is $\tau_{u 1} \vee \tau_{u 2}$, which is the smallest NST on V that contains $\tau_{u 1} \cup \tau_{u 2}$.

Example 3.8 Let us consider 3.5 example, where $\tau_{u 1}$ and $\tau_{u 2}$ are NSTs on (V, E).
Then,

$$
K_{1} \cup L_{1}=P=\left\{\begin{array}{l}
f_{P}\left(e_{1}\right)=\left\{<v_{1},(.3, .7, .4)>,<v_{2},(.6, .6, .6)>,\left\langle v_{3},(.6, .4, .5)>\right\}\right. \\
f_{P}\left(e_{2}\right)=\left\{<v_{1},(.8, .6, .5)>,\left\langle v_{2},(.7, .7, .2)>,\left\langle v_{3},(.7, .5, .6)>\right\}\right.\right.
\end{array}\right.
$$

and

$$
K_{1} \vee L_{1}=Q=\left\{\begin{array}{l}
f_{Q}\left(e_{1}, e_{1}\right)=\left\{<v_{1},(.3, .7, .4)>,<v_{2},(.6, .6, .6)>,<v_{3},(.6, .4, .5)>\right\} \\
f_{Q}\left(e_{1}, e_{2}\right)=\left\{<v_{1},(.8, .4, .5)>,<v_{2},(.7, .7, .3)>,<v_{3},(.7, .5, .4)>\right\} \\
f_{Q}\left(e_{2}, e_{1}\right)=\left\{<v_{1},(1, .6, .4)>,<v_{2},(.6, .7, .2)>,<v_{3},(.3, .4, .7)>\right\} \\
f_{Q}\left(e_{2}, e_{2}\right)=\left\{<v_{1},(.8, .6, .5)>,<v_{2},(.7, .7, .2)>,<v_{3},(.7, .5, .6)>\right\}
\end{array}\right.
$$

Thus $K_{1} \vee L_{1}$ is the smallest NSS on V that contains $K_{1} \cup L_{1}$.

Theorem 3.9 If $\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ is a NBSTS over (V, E), then $\tau_{u 1} \cap \tau_{u 2}$ is a NST over (V, E).
Proof. Let $\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ be a NBSTS over (V, E).
(i) Since $\phi_{u}, 1_{u} \in \tau_{u 1}$ and $\phi_{u}, 1_{u} \in \tau_{u 1}$, it follows that $\phi_{u}, 1_{u} \in \tau_{u 1} \cap \tau_{u 2}$.
(ii) Suppose that $\left\{K_{i} / i \in I\right\}$ is a family of NSSs in $\tau_{u 1} \cap \tau_{u 2}$.

Then $K_{i} \in \tau_{u 1}$ and $K_{i} \in \tau_{u 2}$ for all $i \in I$.
Thus $\bigcup_{i \in I} K_{i} \in \tau_{u 1}$ and $\bigcup_{i \in I} K_{i} \in \tau_{u 2}$.

Therefore $\bigcup_{i \in I} K_{i} \in \tau_{u 1} \cap \tau_{u 2}$.
(iii) Let $K, L \in \tau_{u 1} \cap \tau_{u 2}$.

Then $K, L \in \tau_{u 1}$ and $K, L \in \tau_{u 2}$.
Since $K \bigcap L \in \tau_{u 1}$ and $K \bigcap L \in \tau_{u 2}$, we have $K \bigcap L \in \tau_{u 1} \cap \tau_{u 2}$.
Hence $\tau_{u 1} \cap \tau_{u 2}$ is a NST over (V, E).

Remark 3.10 If $\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ is a NBSTS over (V, E), then $\tau_{u 1} \cup \tau_{u 2}$ need not be a NST over (V, E).

Example 3.11 Let us consider 3.5 example where $\tau_{u 1}$ and $\tau_{u 2}$ are NSTs on (V, E).
Then,

$$
K_{1} \cup L_{1}=P=\left\{\begin{array}{l}
\left.\left.f_{P}\left(e_{1}\right)=\left\{<v_{1},(0.3,0.7,0.4)>,<v_{2},(0.6,0.6,0.6)\right\rangle,<v_{3},(0.6,0.4,0.5)\right\rangle\right\} \\
f_{P}\left(e_{2}\right)=\left\{<v_{1},(0.8,0.6,0.5)>,<v_{2},(0.7,0.7,0.2)>,<v_{3},(0.7,0.5,0.6)>\right\}
\end{array}\right.
$$

Thus $K_{1} \cup L_{1} \notin \tau_{u 1} \cup \tau_{u 2}$.
Hence $\tau_{u 1} \cup \tau_{u 2}$ is not a NST over (V, E).

4. Neutrosophic bi-soft separation axioms

In this segment, the separation of NBSTS is explored. The pairwise NS $T_{i=0,1,2,3,4}$-spaces on NBSTS are introduced and the relationships among them are examined with relevant examples.

Definition 4.1 A NBSTS $\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ over (V, E) is called a pairwise NS T_{0}-space, if $u_{(e)}^{(\alpha, \beta, \gamma)}$ and
$v_{\left(e^{\prime}\right)}^{(\alpha, \beta, \gamma)}$ are distinct NSPs then there exist $\tau_{u 1}$-NSOS K and $\tau_{u 2}$-NSOS L such that

$$
u_{(e)}^{(\alpha, \beta, \gamma)} \in K \quad ; u_{(e)}^{(\alpha, \beta, \gamma)} \cap L=\phi_{u}
$$

or $v_{\left(e^{\prime}\right)}^{(\alpha, \beta, \gamma)} \in L ; v_{\left(e^{\prime}\right)}^{(\alpha, \beta, \gamma)} \cap K=\phi_{u}$.

Example 4.2 Consider neutrosophic soft indiscrete (trivial) topology $\tau_{u 1}=\left\{\phi_{u}, 1_{u}\right\}$ and neutrosophic soft discrete topology $\tau_{u 2}=\operatorname{NSS}(U, E)$.
Thus $\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ is a pairwise NS T_{0}-space.

Theorem 4.3 Let $\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ be a NBSTS over (V, E). If $\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ is a pairwise NS T_{0}-space then $\left(V, E, \tau_{u 1} \vee \tau_{u 2}\right)$ is a NS T_{0}-space.
Proof. Let $\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ be a NBSTS over (V, E).
Suppose that $\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ is a pairwise NS T_{0}-space.
Let $u_{(e)}^{(\alpha, \beta, \gamma)}$ and $v_{\left(e^{e}\right)}^{(\alpha, \beta, \gamma)}$ be any two distinct NSPs.
Then there exist $\tau_{u 1}$-NSOS K and $\tau_{u 2}$-NSOS L such that

$$
u_{(e)}^{(\alpha, \beta, \gamma)} \in K \quad ; \quad u_{(e)}^{(\alpha, \beta, \gamma)} \cap L=\phi_{u}
$$

$$
\text { or } v_{\left(e^{\prime}\right)}^{(\alpha, \beta, \gamma)} \in L \quad ; \quad v_{\left(e^{\prime}\right)}^{(\alpha, \beta, \gamma)} \cap K=\phi_{u}
$$

In either case $K, L \in \tau_{u 1} \vee \tau_{u 2}$.
Hence $\left(V, E, \tau_{u 1} \vee \tau_{u 2}\right)$ is a NS T_{0}-space.

Theorem 4.4 Let $\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ be a NBSTS over (V, E). If $\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ is a pairwise NS T_{0}-space then $\left(V, E, \tau_{v 1}, \tau_{v 2}\right)$ is also a pairwise NS T_{0}-space.
Proof. Let $\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ be a NBSTS over (V, E).
Let $u_{(e)}^{(\alpha, \beta, \gamma)}$ and $v_{\left(e^{\prime}\right)}^{(\alpha, \beta, \gamma)}$ be any two distinct NSPs and $P, Q \in \operatorname{NSS}(U, E)$.
Suppose that ($V, E, \tau_{u 1}, \tau_{u 2}$) is a pairwise NS T_{0}-space.
Then there exist $\tau_{u 1}$-NSOS K and $\tau_{u 2}$-NSOS L such that

$$
\begin{array}{r}
u_{(e)}^{(\alpha, \beta, \gamma)} \in K \quad ; \quad u_{(e)}^{(\alpha, \beta, \gamma)} \cap L=\phi_{u} \\
\text { or } v_{\left(e^{\prime}\right)}^{(\alpha, \beta, \gamma)} \in L \quad ; \quad v_{\left(e^{\prime}\right)}^{(\alpha, \beta, \gamma)} \cap K=\phi_{u}
\end{array}
$$

Now $u_{(e)}^{(\alpha, \beta, \gamma)} \in P$ and $u_{(e)}^{(\alpha, \beta, \gamma)} \in K$.

Then $u_{(e)}^{(\alpha, \beta, \gamma)} \in P \bigcap K$, where $K \in \tau_{u 1}$.

Consider $u_{(e)}^{(\alpha, \beta, \gamma)} \cap L=\phi_{u}$.

$$
\begin{aligned}
& \Rightarrow u_{(e)}^{(\alpha, \beta, \gamma)} \cap L \cap Q=\phi_{u} \cap Q . \\
& \Rightarrow u_{(e)}^{(\alpha, \beta, \gamma)} \cap(Q \cap L)=\phi_{u} .
\end{aligned}
$$

Thus $u_{(e)}^{(\alpha, \beta, \gamma)} \in P \bigcap K$; $u_{(e)}^{(\alpha, \beta, \gamma)} \cap(Q \bigcap L)=\phi_{u}$, where $P \bigcap K \in \tau_{v 1}, Q \bigcap L \in \tau_{v 2}$.

Or if $v_{\left(e^{\prime}\right)}^{(\alpha, \beta, \gamma)} \in L ; v_{\left(e^{\prime}\right)}^{(\alpha, \beta, \gamma)} \cap K=\phi_{u}$, it can be proved that
$v_{\left(e^{\prime}\right)}^{(\alpha, \beta, \gamma)} \in Q \bigcap L ; v_{\left(e^{\prime}\right)}^{(\alpha, \beta, \gamma)} \bigcap(Q \bigcap L)=\phi_{u}$, where $P \bigcap K \in \tau_{v 1}, Q \bigcap L \in \tau_{v 2}$.
Hence $\left(V, E, \tau_{v 1}, \tau_{v 2}\right)$ is also a pairwise NS T_{0}-space.

Definition 4.5 A NBSTS $\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ over (V, E) is called pairwise NS T_{1}-space, if $u_{(e)}^{(\alpha, \beta, \gamma)}$ and $v_{\left(e^{\prime}\right)}^{(\alpha, \beta, \gamma)}$ are distinct NSPs then there exist $\tau_{u 1}$-NSOS K and $\tau_{u 2}$-NSOS L such that

$$
u_{(e)}^{(\alpha, \beta, \gamma)} \in K \quad ; \quad u_{(e)}^{(\alpha, \beta, \gamma)} \cap L=\phi_{u}
$$

and $v_{\left(e^{\prime}\right)}^{(\alpha, \beta, \gamma)} \in L ; \quad v_{\left(e^{\prime}\right)}^{(\alpha, \beta, \gamma)} \cap K=\phi_{u}$.

Example 4.6 Let $V=\left\{v_{1}, v_{2}\right\}, E=\{e\}$, and $v_{1(e)}^{(.2,3,7)}$ and $v_{2(e)}^{(.9,4,1)}$ be NSPs. Let $\tau_{u 1}=\left\{\phi_{u}, 1_{u}, K\right\}$ and $\tau_{u 2}=\left\{\phi_{u}, 1_{u}, L\right\}$ where K and L are NSSs over (V, E), defined as

$$
K=v_{1(e)}^{(.2,3,7)}=f_{K}(e)=\left\{<v_{1},(.2, .3, .7)>,\left\langle v_{2},(0,0,1)>\right\}\right.
$$

and

$$
L=v_{2(e)}^{(.9,4,4)}=f_{L}(e)=\left\{<v_{1},(0,0,1)>,<v_{2},(.9, .4, .1)>\right\} .
$$

Thus $\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ is a NBSTS over (V, E).
Hence $\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ is a pairwise NS T_{1}-space, also a pairwise NS T_{0}-space.

Theorem 4.7 Every pairwise NS T_{1}-space is also a pairwise NS T_{0}-space.
Proof. Follows from the Definitions 4.1 and 4.3.

Remark 4.8 The converse of the 4.7 theorem is not true, which is shown in the following example.

Example 4.9 Let $V=\left\{v_{1}, v_{2}\right\}, E=\left\{e_{1}, e_{2}\right\}$, and $v_{1\left(e_{1}\right)}^{(2, .5,7)}, v_{1\left(e_{2}\right)}^{(.2,8,2)}, v_{2\left(e_{1}\right)}^{(.2,7,5)}$ and $v_{2\left(e_{2}\right)}^{(.1,1,9)}$ be NSPs. Let $\tau_{u 1}=\left\{\phi_{u}, 1_{u}, K_{1}, K_{2}, K_{3}\right\}$ and $\tau_{u 2}=\left\{\phi_{u}, 1_{u}, L_{1}, L_{2}\right\}$ where $K_{1}, K_{2}, K_{3}, L_{1}, L_{2}$ are NSSs over (V, E), defined as

$$
K_{1}=v_{1\left(e_{1}\right)}^{(2,5,7)}=\left\{\begin{array}{l}
f_{K_{1}}\left(e_{1}\right)=\left\{<v_{1},(.2, .5, .7)>,<v_{2},(0,0,1)>\right\} \\
f_{K_{1}}\left(e_{2}\right)=\left\{<v_{1},(0,0,1)>,<v_{2},(0,0,1)>\right\}
\end{array} ;\right.
$$

$$
\begin{aligned}
& K_{2}=v_{2\left(e_{2}\right)}^{(.1,1,9)}=\left\{\begin{array}{l}
f_{K_{2}}\left(e_{1}\right)=\left\{\left\langle v_{1},(0,0,1)\right\rangle,\left\langle v_{2},(0,0,1)\right\rangle\right\} \\
f_{K_{2}}\left(e_{2}\right)=\left\{\left\langle v_{1},(0,0,1)>,\left\langle v_{2},(.1, .1, .9)\right\rangle\right\}\right.
\end{array} ;\right. \\
& K_{3}=K_{1} \cup K_{2}
\end{aligned}
$$

and

$$
\begin{aligned}
& L_{1}=v_{2\left(e_{1}\right)}^{(.2,7,5)}=\left\{\begin{array}{l}
f_{L_{1}}\left(e_{1}\right)=\left\{\left\langle v_{1},(0,0,1)>,<v_{2},(.2, .7, .5)>\right\}\right. \\
f_{L_{1}}\left(e_{2}\right)=\left\{<v_{1},(0,0,1)>,<v_{2},(0,0,1)>\right\}
\end{array} ;\right. \\
& L_{2}=\left\{v_{1\left(e_{1}\right)}^{(.2,5,7)}, v_{1\left(e_{2}\right)}^{1.2, .8,2)}, v_{2\left(e_{1}\right)}^{(.2,7,5)}, v_{2\left(e_{2}\right)}^{(.1,1,9)}\right\}=\left\{\begin{array}{l}
f_{L_{2}}\left(e_{1}\right)=\left\{<v_{1},(.2, .5, .7)>,<v_{2},(.2, .7, .5)>\right\} \\
f_{L_{2}}\left(e_{2}\right)=\left\{<v_{1},(.2, .8, .2)>,<v_{2},(.1, .1, .9)>\right\}
\end{array}\right.
\end{aligned}
$$

Thus $\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ is a NBSTS over (V, E).
Hence $\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ is a pairwise NS T_{0}-space, but not a pairwise NS T_{1}-space since for NSPs $v_{1\left(e_{1}\right)}^{(\cdot ., 5,7)}$ and $v_{2\left(e_{2}\right)}^{(.1,1,9)},\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ is not a pairwise NS T_{1}-space.

Theorem 4.10 Let $\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ be a NBSTS over (V, E). If $\left(V, E, \tau_{u 1}\right)$ or $\left(V, E, \tau_{u 2}\right)$ is not a NS T_{0}-space, then $\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ is a pairwise NS T_{0}-space but not a pairwise NS T_{1}-space.

Proof. Let $K \in \tau_{u 1}$ and $L \in \tau_{u 2}$, also $u_{(e)}^{(\alpha, \beta, \gamma)}$ and $v_{\left(e^{e}\right)}^{(\alpha, \beta, \gamma)}$ be any two distinct NSPs.
Suppose $\left(V, E, \tau_{u 1}\right)$ is a NS T_{0}-space and $\left(V, E, \tau_{u 2}\right)$ is not a NS T_{0}-space.
Then, $u_{(e)}^{(\alpha, \beta, \gamma)} \in K ; u_{(e)}^{(\alpha, \beta, \gamma)} \cap L=\phi_{u}$
and $v_{\left(e^{\prime}\right)}^{(\alpha, \beta, \gamma)} \in L ; \quad v_{\left(e^{\prime}\right)}^{(\alpha, \beta, \gamma)} \bigcap K \neq \phi_{u}$
Thus by Definitions 4.1 and 4.3,
$\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ is a pairwise NS T_{0}-space but not a pairwise NS T_{1}-space.

Theorem 4.11 Let $\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ be a NBSTS over (V, E). Then $\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ is a pairwise NS T_{1}-space if and only if $\left(V, E, \tau_{u 1}\right)$ and $\left(V, E, \tau_{u 2}\right)$ are NS T_{1}-spaces.
Proof. Let $\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ be a NBSTS over (V, E).
Let $u_{(e)}^{(\alpha, \beta, \gamma)}$ and $v_{\left(e^{e}\right)}^{(\alpha, \beta, \gamma)}$ be any two distinct NSPs.
Suppose that $\left(V, E, \tau_{u 1}\right)$ and $\left(V, E, \tau_{u 2}\right)$ are NS T_{1}-spaces.
Then there exist $\tau_{u 1}$-NSOS K and $\tau_{u 2}$-NSOS L such that

$$
\begin{array}{r}
u_{(e)}^{(\alpha, \beta, \gamma)} \in K \quad ; \quad u_{(e)}^{(\alpha, \beta, \gamma)} \cap L=\phi_{u} \\
\text { and } \quad v_{\left(e^{\prime}\right)}^{(\alpha, \beta, \gamma)} \in L \quad ; \quad v_{\left(e^{\prime}\right)}^{(\alpha, \beta, \gamma)} \cap K=\phi_{u}
\end{array}
$$

In either case the result follows immediately.
Thus ($V, E, \tau_{u 1}, \tau_{u 2}$) is a pairwise NS T_{1}-space.
Conversely, assume that $\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ is a pairwise NS T_{1}-space.

Then there exist some $\tau_{u 1}$-NSOS K_{1} and $\tau_{u 2}$-NSOS L_{1} such that

$$
u_{(e)}^{(\alpha, \beta, \gamma)} \in K_{1} ; u_{(e)}^{(\alpha, \beta, \gamma)} \cap L_{1}=\phi_{u}
$$

and $v_{\left(e^{\prime}\right)}^{(\alpha, \beta, \gamma)} \in L_{1} ; v_{\left(e^{\prime}\right)}^{(\alpha, \beta, \gamma)} \cap K_{1}=\phi_{u}$
Also there exist some $\tau_{u 1}$-NSOS K_{2} and $\tau_{u 2}$-NSOS L_{2} such that

$$
u_{(e)}^{(\alpha, \beta, \gamma)} \in K_{2} ; u_{(e)}^{(\alpha, \beta, \gamma)} \cap L_{2}=\phi_{u}
$$

and $v_{\left(e^{\prime}\right)}^{(\alpha, \beta, \gamma)} \in L_{2} ; v_{\left(e^{\prime}\right)}^{(\alpha, \beta, \gamma)} \cap K_{2}=\phi_{u}$
Hence $\left(V, E, \tau_{u 1}\right)$ and $\left(V, E, \tau_{u 2}\right)$ are NS T_{1}-spaces.

Theorem 4.12 Let $\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ be a NBSTS over (V, E). If $\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ is a pairwise NS T_{1}-space then $\left(V, E, \tau_{u 1} \vee \tau_{u 2}\right)$ is a NS T_{1}-space.
Proof. Let $\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ be a NBSTS over (V, E).
Suppose that $\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ is a pairwise NS T_{1}-space.
Let $u_{(e)}^{(\alpha, \beta, \gamma)}$ and $v_{\left(e^{\prime}\right)}^{(\alpha, \beta, \gamma)}$ be any two distinct NSPs.
Then there exist $\tau_{u 1}$-NSOS K and $\tau_{u 2}-$ NSOS L such that

$$
u_{(e)}^{(\alpha, \beta, \gamma)} \in K \quad ; \quad u_{(e)}^{(\alpha, \beta, \gamma)} \cap L=\phi_{u}
$$

and $v_{\left(e^{\prime}\right)}^{(\alpha, \beta, \gamma)} \in L ; v_{\left(e^{\prime}\right)}^{(\alpha, \beta, \gamma)} \cap K=\phi_{u}$
In either case $K, L \in \tau_{u 1} \vee \tau_{u 2}$.
Hence $\left(V, E, \tau_{u 1} \vee \tau_{u 2}\right)$ is a NS T_{1}-space.

Theorem 4.13 Let $\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ be a NBSTS over (V, E). If $\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ is a pairwise NS T_{1}-space then $\left(V, E, \tau_{v 1}, \tau_{v 2}\right)$ is also a pairwise NS T_{1}-space.
Proof. Let $\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ be a NBSTS over (V, E).
Let $u_{(e)}^{(\alpha, \beta, \gamma)}$ and $v_{\left(e^{\prime}\right)}^{(\alpha, \beta, \gamma)}$ be any two distinct NSPs and $P, Q \in \operatorname{NSS}(U, E)$.
Suppose that ($V, E, \tau_{u 1}, \tau_{u 2}$) is a pairwise NS T_{1}-space.
Then there exist $\tau_{u 1}$-NSOS K and $\tau_{u 2}$-NSOS L such that

$$
\begin{array}{r}
u_{(e)}^{(\alpha, \beta, \gamma)} \in K \quad ; u_{(e)}^{(\alpha, \beta, \gamma)} \cap L=\phi_{u} \\
\text { and } v_{\left(e^{\prime}\right)}^{(\alpha, \beta, \gamma)} \in L ; v_{\left(e^{\prime}\right)}^{(\alpha, \beta, \gamma)} \cap K=\phi_{u}
\end{array}
$$

Now $u_{(e)}^{(\alpha, \beta, \gamma)} \in P$ and $u_{(e)}^{(\alpha, \beta, \gamma)} \in K$.

Then $u_{(e)}^{(\alpha, \beta, \gamma)} \in P \bigcap K$, where $K \in \tau_{u 1}$.

Consider $u_{(e)}^{(\alpha, \beta, \gamma)} \cap L=\phi_{u}$.

$$
\begin{aligned}
& \Rightarrow u_{(e)}^{(\alpha, \beta, \gamma)} \cap L \cap Q=\phi_{u} \cap Q . \\
& \Rightarrow u_{(e)}^{(\alpha, \beta, \gamma)} \cap(Q \cap L)=\phi_{u} .
\end{aligned}
$$

Thus $u_{(e)}^{(\alpha, \beta, \gamma)} \in P \bigcap K$; $u_{(e)}^{(\alpha, \beta, \gamma)} \cap(Q \bigcap L)=\phi_{u}$, where $P \bigcap K \in \tau_{v 1}, Q \bigcap L \in \tau_{v 2}$.

Further if $v_{\left(e^{\prime}\right)}^{(\alpha, \beta, \gamma)} \in L ; v_{\left(e^{\prime}\right)}^{(\alpha, \beta, \gamma)} \cap K=\phi_{u}$, it can be proved that

$$
v_{\left(e^{\prime}\right)}^{(\alpha, \beta, \gamma)} \in Q \bigcap L ; v_{\left(e^{\prime}\right)}^{(\alpha, \beta, \gamma)} \bigcap(Q \bigcap L)=\phi_{u}, \text { where } P \bigcap K \in \tau_{v 1}, Q \bigcap L \in \tau_{v 2} .
$$

Hence $\left(V, E, \tau_{v 1}, \tau_{v 2}\right)$ is also a pairwise NS T_{1}-space.

Theorem 4.14 Let $\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ be a NBSTS over (V, E). For each pair of distinct NSPs $u_{(e)}^{(\alpha, \beta, \gamma)}$ and $v_{\left(e^{\prime}\right)}^{(\alpha, \beta, \gamma)}, u_{(e)}^{(\alpha, \beta, \gamma)}$ is a $\tau_{u 2}-\mathrm{NSCS}$ and $v_{\left(e^{\prime}\right)}^{(\alpha, \beta, \gamma)}$ is a $\tau_{u 1}-\mathrm{NSCS}$, then $\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ is a pairwise NS T_{1}-space.
Proof. Let $\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ be a NBSTS over (V, E).
Suppose that for each pair of distinct NSPs $u_{(e)}^{(\alpha, \beta, \gamma)}$ and $v_{\left(e^{\prime}\right)}^{(\alpha, \beta, \gamma)}, u_{(e)}^{(\alpha, \beta, \gamma)}$ is a $\tau_{u 2}$-NSCS.
Then $\left(u_{(e)}^{(\alpha, \beta, \gamma)}\right)^{c}$ is a $\tau_{u 2}$-NSOS.

Let $u_{(e)}^{(\alpha, \beta, \gamma)}$ and $v_{\left(e^{e}\right)}^{(\alpha, \beta, \gamma)}$ be any two distinct NSPs.
(i.e.,) $u_{(e)}^{(\alpha, \beta, \gamma)} \cap v_{\left(e^{\prime}\right)}^{(\alpha, \beta, \gamma)}=\phi_{u}$.

Thus

$$
\begin{equation*}
v_{\left(e^{\prime}\right)}^{(\alpha, \beta, \gamma)} \in\left(u_{(e)}^{(\alpha, \beta, \gamma)}\right)^{c} \text { and } u_{(e)}^{(\alpha, \beta, \gamma)} \cap\left(u_{(e)}^{(\alpha, \beta, \gamma)}\right)^{c}=\phi_{u} \tag{1}
\end{equation*}
$$

Similarly assume that for each NSP, $v_{\left(e^{\prime}\right)}^{(\alpha, \beta, \gamma)}$ is a $\tau_{u 1}$-NSCS.
Then $\left(v_{\left(e^{\prime}\right)}^{(\alpha, \beta, \gamma)}\right)^{c}$ is a $\tau_{u 1}$-NSOS such that

$$
\begin{equation*}
u_{(e)}^{(\alpha, \beta, \gamma)} \in\left(v_{\left(e^{\prime}\right)}^{(\alpha, \beta, \gamma)}\right)^{c} \text { and } v_{\left(e^{\prime}\right)}^{(\alpha, \beta, \gamma)} \cap\left(v_{\left(e^{\prime}\right)}^{(\alpha, \beta, \gamma)}\right)^{c}=\phi_{u} \tag{2}
\end{equation*}
$$

From (1) and (2),

$$
\begin{array}{r}
u_{(e)}^{(\alpha, \beta, \gamma)} \in\left(v_{\left(e^{\prime}\right)}^{(\alpha, \beta, \gamma)}\right)^{c} ; u_{(e)}^{(\alpha, \beta, \gamma)} \cap\left(u_{(e)}^{(\alpha, \beta, \gamma)}\right)^{c}=\phi_{u} \\
\text { and } v_{\left(e^{\prime}\right)}^{(\alpha, \beta, \gamma)} \in\left(u_{(e)}^{(\alpha, \beta, \gamma))^{c}} ; v_{\left(e^{\prime}\right)}^{(\alpha, \beta, \gamma)} \cap\left(v_{\left(e^{\prime}\right)}^{(\alpha, \beta, \gamma)}\right)^{c}=\phi_{u}\right.
\end{array}
$$

Hence $\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ is a pairwise NS T_{1}-space.

Definition 4.15 A NBSTS $\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ over (V, E) is called pairwise NS T_{2}-space or pairwise NS Hausdorff space, if $u_{(e)}^{(\alpha, \beta, \gamma)}$ and $v_{\left(e^{\prime}\right)}^{(\alpha, \beta, \gamma)}$ are distinct NSPs then there exist $\tau_{u 1}$-NSOS K and $\tau_{u 2}$-NSOS L such that $\quad u_{(e)}^{(\alpha, \beta, \gamma)} \in K, v_{\left(e^{\prime}\right)}^{(\alpha, \beta, \gamma)} \in L$ and $K \bigcap L=\phi_{u}$.

Example 4.16 Let $V=\left\{v_{1}, v_{2}\right\}, E=\left\{e_{1}, e_{2}\right\}$, and $v_{1\left(e_{1}\right)}^{(.2,5, .7)}, v_{1\left(e_{2}\right)}^{(2, .8,2)}, v_{2\left(e_{1}\right)}^{(.2,7,5)}$ and $v_{2\left(e_{2}\right)}^{(.1,1,9)}$ be NSPs. Let $\tau_{u 1}=\left\{\phi_{u}, 1_{u}, K_{1}, K_{2}, K_{3}\right\}$ and $\tau_{u 2}=\left\{\phi_{u}, 1_{u}, L_{1}, L_{2}, L_{3}\right\}$ where $K_{1}, K_{2}, K_{3}, L_{1}, L_{2}, L_{3}$ are NSSs over (V, E), defined as follows

$$
\begin{aligned}
& K_{1}=v_{1\left(e_{1}\right)}^{(.2,5, .7)}=\left\{\begin{array}{l}
f_{K_{1}}\left(e_{1}\right)=\left\{<v_{1},(.2, .5, .7)>,<v_{2},(0,0,1)>\right\} \\
f_{K_{1}}\left(e_{2}\right)=\left\{\left\langle v_{1},(0,0,1)>,<v_{2},(0,0,1)>\right\}\right.
\end{array} ;\right. \\
& K_{2}=v_{2\left(e_{2}\right)}^{(.1 .1,1,9)}=\left\{\begin{array}{l}
f_{K_{2}}\left(e_{1}\right)=\left\{\left\langle v_{1},(0,0,1)>,<v_{2},(0,0,1)>\right\}\right. \\
f_{K_{2}}\left(e_{2}\right)=\left\{<v_{1},(0,0,1)>,<v_{2},(.1, .1, .9)>\right\}
\end{array} ;\right. \\
& K_{3}=K_{1} \cup K_{2}
\end{aligned}
$$

and

$$
\begin{aligned}
& L_{1}=v_{2\left(e_{1}\right)}^{(.2,7, .5)}=\left\{\begin{array}{l}
f_{L_{1}}\left(e_{1}\right)=\left\{<v_{1},(0,0,1)>,<v_{2},(.2, .7, .5)>\right\} \\
f_{L_{1}}\left(e_{2}\right)=\left\{<v_{1},(0,0,1)>,<v_{2},(0,0,1)>\right\}
\end{array} ;\right. \\
& L_{2}=v_{1\left(e_{2}\right)}^{(.2, .8, .2)}=\left\{\begin{array}{l}
f_{L_{2}}\left(e_{1}\right)=\left\{\left\langle v_{1},(0,0,1)>,<v_{2},(0,0,1)>\right\}\right. \\
f_{L_{2}}\left(e_{2}\right)=\left\{\left\langle v_{1},(.2, .8, .2)>,<v_{2},(0,0,1)>\right\}\right.
\end{array} ;\right. \\
& L_{3}=L_{1} \cup L_{2}
\end{aligned}
$$

Then $\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ is a NBSTS over (V, E).
Hence $\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ is a pairwise NS T_{2}-space.

Theorem 4.17 Let $\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ be a NBSTS over (V, E). If $\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ is a pairwise NS T_{2}-space then $\left(V, E, \tau_{u 1} \vee \tau_{u 2}\right)$ is a NS T_{2}-space.
Proof. Let $\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ be a NBSTS over (V, E).
Suppose that $\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ is a pairwise NS T_{2}-space.
Let $u_{(e)}^{(\alpha, \beta, \gamma)}$ and $v_{\left(e^{e}\right)}^{(\alpha, \beta, \gamma)}$ be any two distinct NSPs.
Then there exist $\tau_{u 1}$-NSOS K and $\tau_{u 2}$-NSOS L such that

$$
u_{(e)}^{(\alpha, \beta, \gamma)} \in K, \quad v_{\left(e^{\prime}\right)}^{(\alpha, \beta, \gamma)} \in L \text { and } K \cap L=\phi_{u} .
$$

In either case $K, L \in \tau_{u 1} \vee \tau_{u 2}$.
Hence $\left(V, E, \tau_{u 1} \vee \tau_{u 2}\right)$ is a NS T_{2}-space.

Theorem 4.18 Let $\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ be a NBSTS over (V, E). If $\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ is a pairwise NS T_{2}-space then $\left(V, E, \tau_{v 1}, \tau_{v 2}\right)$ is also a pairwise NS T_{2}-space.
Proof. Let $\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ be a NBSTS over (V, E).
Let $u_{(e)}^{(\alpha, \beta, \gamma)}$ and $v_{\left(e^{\prime}\right)}^{(\alpha, \beta, \gamma)}$ be any two distinct NSPs and $P, Q \in \operatorname{NSS}(U, E)$.
Suppose that ($V, E, \tau_{u 1}, \tau_{u 2}$) is a pairwise NS T_{2}-space.
Then there exist $\tau_{u 1}$-NSOS K and $\tau_{u 2}$-NSOS L such that
$u_{(e)}^{(\alpha, \beta, \gamma)} \in K, \quad v_{\left(e^{e}\right)}^{(\alpha, \beta, \gamma)} \in L$ and $K \bigcap L=\phi_{u}$.

Now $u_{(e)}^{(\alpha, \beta, \gamma)} \in P$ and $u_{(e)}^{(\alpha, \beta, \gamma)} \in K \quad ; \quad v_{\left(e^{\prime}\right)}^{(\alpha, \beta, \gamma)} \in Q$ and $v_{\left(e^{\prime}\right)}^{(\alpha, \beta, \gamma)} \in L$

Then $u_{(e)}^{(\alpha, \beta, \gamma)} \in P \bigcap K, v_{\left(e^{\prime}\right)}^{(\alpha, \beta, \gamma)} \in Q \bigcap L$ where $K \in \tau_{u 1}, L \in \tau_{u 2}$.
Consider $K \bigcap L=\phi_{u}$.

$$
\begin{aligned}
& \Rightarrow(P \cap K) \cap(L \cap Q)=P \cap \phi_{u} \cap Q . \\
& \Rightarrow(P \cap K) \cap(Q \cap L)=\phi_{u} .
\end{aligned}
$$

Thus $u_{(e)}^{(\alpha, \beta, \gamma)} \in P \bigcap K, v_{\left(e^{e}\right)}^{(\alpha, \beta, \gamma)} \in Q \bigcap L$ and $(P \bigcap K) \cap(Q \bigcap L)=\phi_{u}$.
Hence $\left(V, E, \tau_{v 1}, \tau_{v 2}\right)$ is also a pairwise NS T_{2}-space.

Theorem 4.19 Every pairwise NS T_{2}-space is also a pairwise NS T_{1}-space.
Proof. Follows from Definitions 4.3 and 4.15.

Theorem 4.20 Let $\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ be a NBSTS over $(V, E) .\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ is a pairwise NS T_{2}-space if and only if for any two distinct NSPs $u_{(e)}^{(\alpha, \beta, \gamma)}$ and $v_{\left(e^{\prime}\right)}^{(\alpha, \beta, \gamma)}$, there exist $\tau_{u 1}$-NSOS K containing
$u_{(e)}^{(\alpha, \beta, \gamma)}$ but not $v_{\left(e^{\prime}\right)}^{(\alpha, \beta, \gamma)}$ such that $v_{\left(e^{\prime}\right)}^{(\alpha, \beta, \gamma)} \notin \bar{K}$.
Proof. Let $\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ be a NBSTS over (V, E).
Let $u_{(e)}^{(\alpha, \beta, \gamma)}$ and $v_{\left(e^{e}\right)}^{(\alpha, \beta, \gamma)}$ be any two distinct NSPs.
Suppose that ($V, E, \tau_{u 1}, \tau_{u 2}$) is a pairwise NS T_{2}-space.
Then there exist $\tau_{u 1}$-NSOS K and $\tau_{u 2}$-NSOS L such that
$u_{(e)}^{(\alpha, \beta, \gamma)} \in K, \quad v_{\left(e^{\prime}\right)}^{(\alpha, \beta, \gamma)} \in L$ and $K \bigcap L=\phi_{u}$.

Since $u_{(e)}^{(\alpha, \beta, \gamma)} \cap v_{\left(e^{e}\right)}^{(\alpha, \beta, \gamma)}=\phi_{u}$ and $K \bigcap L=\phi_{u}, \quad v_{\left(e^{\prime}\right)}^{(\alpha, \beta, \gamma)} \notin K$.

Thus $v_{\left(e^{\prime}\right)}^{(\alpha, \beta, \gamma)} \notin \bar{K}$.

Conversely, assume that for any two distinct NSPs $u_{(e)}^{(\alpha, \beta, \gamma)}$ and $v_{\left(e^{e}\right)}^{(\alpha, \beta, \gamma)}$, there exist $\tau_{u 1}$-NSOS K containing $u_{(e)}^{(\alpha, \beta, \gamma)}$ but not $v_{\left(e^{\prime}\right)}^{(\alpha, \beta, \gamma)}$ such that $v_{\left(e^{\prime}\right)}^{(\alpha, \beta, \gamma)} \notin \bar{K}$.

Then $v_{\left(e^{\prime}\right)}^{(\alpha, \beta, \gamma)} \notin(\bar{K})^{c}$.

Thus \bar{K} and $(\bar{K})^{c}$ are disjoint $\tau_{u 1}$-NSOS and $\tau_{u 1}$-NSOS containing $u_{(e)}^{(\alpha, \beta, \gamma)}$ and $v_{\left(e^{\prime}\right)}^{(\alpha, \beta, \gamma)}$ respectively.

Theorem 4.21 Let $\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ be a NBSTS over (V, E) and $\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ be a pairwise NS T_{1}-space for every NSP $u_{(e)}^{(\alpha, \beta, \gamma)} \in K \in \tau_{u 1}$. If there exist $\tau_{u 2}$-NSOS L such that $u_{(e)}^{(\alpha, \beta, \gamma)} \in L \subseteq \bar{L} \subseteq K$, then $\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ is a pairwise NS T_{2}-space.
Proof. Let $\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ be a NBSTS over (V, E) and let it be a pairwise NS T_{1}-space
Suppose that $u_{(e)}^{(\alpha, \beta, \gamma)} \cap v_{\left(e^{\prime}\right)}^{(\alpha, \beta, \gamma)}=\phi_{u}$.

Let $u_{(e)}^{(\alpha, \beta, \gamma)}$ be a $\tau_{u 1}$-NSCS and $v_{\left(e^{\prime}\right)}^{(\alpha, \beta, \gamma)}$ be a $\tau_{u 2}$-NSCS.

Then $\left(v_{\left(e^{\prime}\right)}^{(\alpha, \beta, \gamma)}\right)^{c}$ is a $\tau_{u 2}$-NSOS such that

$$
u_{(e)}^{(\alpha, \beta, \gamma)} \in\left(v_{\left(e^{\prime}\right)}^{(\alpha, \beta, \gamma)}\right)^{c} \in \tau_{u 2}
$$

Then there exist a $\tau_{u 2}$-NSOS L such that

$$
u_{(e)}^{(\alpha, \beta, \gamma)} \in L \subseteq \bar{L} \subseteq\left(v_{\left(e^{\prime}\right)}^{(\alpha, \beta, \gamma)}\right)^{c}
$$

Hence $\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ is a pairwise NS T_{2}-space.

Remark 4.22 Let $\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ be a NBSTS over (V, E). For any NSS K over $(V, E),(\bar{K})^{\tau_{u 2}}$ denotes the NS closure of K with respect to $\tau_{u 2}-$ NST over (V, E).

Theorem 4.23 Let $\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ be a NBSTS over (V, E). Then the following are equilavent:
(1) $\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ is a pairwise NS Hausdorff space over (V, E).
(2) If $u_{(e)}^{(\alpha, \beta, \gamma)}$ and $v_{\left(e^{\prime}\right)}^{(\alpha, \beta, \gamma)}$ are distinct NSPs, there exist $\tau_{u 1}$-NSOS K such that

$$
u_{(e)}^{(\alpha, \beta, \gamma)} \in K \quad \text { and } \quad v_{\left(e^{\prime}\right)}^{(\alpha, \beta, \gamma)} \in\left((\bar{K})^{\tau_{u 2}}\right)^{c} .
$$

Proof. (1) \Rightarrow (2). Suppose that $\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ is a pairwise NS Hausdorff space over (V, E).
Then there exist $\tau_{u 1}$-NSOS K and $\tau_{u 2}$-NSOS L such that
$u_{(e)}^{(\alpha, \beta, \gamma)} \in K, \quad v_{\left(e^{\prime}\right)}^{(\alpha, \beta, \gamma)} \in L$ and $K \bigcap L=\phi_{u}$.
So that $K \subseteq L^{c}$.
Since $(\bar{K})^{\tau_{u 2}}$ is the smallest $\tau_{u 2}$-NSCS that contains K and L^{c} is a $\tau_{u 2}$-NSCS, then $(\bar{K})^{\tau_{u 2}} \subseteq L^{c}$

$$
\Rightarrow \quad L \subseteq\left((\bar{K})^{\tau_{u 2}}\right)^{c}
$$

Thus $v_{\left(e^{\prime}\right)}^{(\alpha, \beta, \gamma)} \in L \subseteq\left((\bar{K})^{\tau_{u 2}}\right)^{c}$.
Hence $v_{\left(e^{\prime}\right)}^{(\alpha, \beta, \gamma)} \in\left((\bar{K})^{\tau_{u 2}}\right)^{c}$.
(2) $\Rightarrow(1)$. Let $u_{(e)}^{(\alpha, \beta, \gamma)}$ and $v_{\left(e^{\prime}\right)}^{(\alpha, \beta, \gamma)}$ be any two distinct NSPs.

By assumption, there exist $\tau_{u 1}$-NSOS K such that $u_{(e)}^{(\alpha, \beta, \gamma)} \in K$ and $v_{\left(e^{\prime}\right)}^{(\alpha, \beta, \gamma)} \in\left((\bar{K})^{\tau_{u 2}}\right)^{c}$.
As $(\bar{K})^{\tau_{u 2}}$ is a $\tau_{u 2}$-NSCS so $L=\left((\bar{K})^{\tau_{u 2}}\right)^{c} \in \tau_{u 2}$.
Now $u_{(e)}^{(\alpha, \beta, \gamma)} \in K, \quad v_{\left(e^{\prime}\right)}^{(\alpha, \beta, \gamma)} \in L$ and

$$
\begin{aligned}
K \cap L & =K \cap(\bar{K})^{\tau_{u 2}} . \\
& \supseteq K \bigcap\left((\bar{K})^{\tau_{u 2}}\right)^{c} \quad\left(\because K \subseteq(\bar{K})^{\tau_{u 2}}\right) \\
& =\phi_{u} .
\end{aligned}
$$

Thus $K \bigcap L=\phi_{u}$.
Hence $\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ is a pairwise NS Hausdorff space over (V, E).

Definition 4.24 Let $N S S(V, E)$ be the family of all NSSs over the universe V and $u \in V$. Then $u_{E}^{(\alpha, \beta, \gamma)}$ denotes the NSS over (V, E) for which $u_{(e)}^{(\alpha, \beta, \gamma)}=\left\{u^{(\alpha, \beta, \gamma)}\right\}$, for all $e \in E$.

Corollary 4.25 Let $\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ be a pairwise NS T_{2}-space over (V, E). Then for each NSP $u_{(e)}^{(\alpha, \beta, \gamma)}$,

$$
u_{E}^{(\alpha, \beta, \gamma)}=\bigcap\left\{(\bar{K})^{\tau_{u 2}}: u_{(e)}^{(\alpha, \beta, \gamma)} \in K \in \tau_{u 1}\right\} .
$$

$\operatorname{Proof.~Let~}\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ be a pairwise NS T_{2}-space over (V, E) and $u_{(e)}^{(\alpha, \beta, \gamma)}$ be a NSP.

Then there exist a NSOS $u_{(e)}^{(\alpha, \beta, \gamma)} \in K \in \tau_{u 1}$.
If $u_{(e)}^{(\alpha, \beta, \gamma)}$ and $v_{\left(e^{\prime}\right)}^{(\alpha, \beta, \gamma)}$ are distinct NSPs, by 4.24 theorem, there exist $\tau_{u 1}$-NSOS K such that

$$
\begin{aligned}
u_{(e)}^{(\alpha, \beta, \gamma)} \in K \text { and } & v_{\left(e^{\prime}\right)}^{(\alpha, \beta, \gamma)} \in\left((\bar{K})^{\tau_{u 2}}\right)^{c} . \\
& \Rightarrow v_{\left(e^{\prime}\right)}^{(\alpha, \beta, \gamma)} \notin f_{(\bar{K})^{r_{u 2}}}\left(e^{\prime}\right) . \\
& \Rightarrow v_{\left(e^{\prime}\right)}^{(\alpha, \beta, \gamma)} \notin \bigcap_{u_{(e)}^{(\alpha, \beta, \gamma)} \in K \in \tau_{u 1}}\left(f_{(\bar{K})^{\tau_{u 2}}}\left(e^{\prime}\right)\right) \text { for all } e^{\prime} \in E .
\end{aligned}
$$

Thus

$$
\begin{equation*}
\bigcap\left\{(\bar{K})^{\tau_{u 2}}: u_{(e)}^{(\alpha, \beta, \gamma)} \in K \in \tau_{u 1}\right\} \subseteq u_{E}^{(\alpha, \beta, \gamma)} \tag{1}
\end{equation*}
$$

Also it is obvious that $u_{(e)}^{(\alpha, \beta, \gamma)} \in K \subseteq(\bar{K})^{\tau_{u 2}}$.
Thus

$$
\begin{equation*}
u_{E}^{(\alpha, \beta, \gamma)} \subseteq \bigcap\left\{(\bar{K})^{\tau_{u 2}}: u_{(e)}^{(\alpha, \beta, \gamma)} \in K \in \tau_{u 1}\right\} \tag{2}
\end{equation*}
$$

Hence from (1) and (2),

$$
u_{E}^{(\alpha, \beta, \gamma)}=\bigcap\left\{(\bar{K})^{\tau_{u 2}}: u_{(e)}^{(\alpha, \beta, \gamma)} \in K \in \tau_{u 1}\right\} .
$$

Corollary 4.26 Let $\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ be a pairwise NS T_{2}-space over (V, E). Then for each NSP $u_{(e)}^{(\alpha, \beta, \gamma)}$,
$\left(u_{E}^{(\alpha, \beta, \gamma)}\right)^{c} \in \tau_{u i}$ for $i=1,2$.
$\operatorname{Proof.~Let~}\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ be a pairwise NS T_{2}-space over (V, E) and $u_{(e)}^{(\alpha, \beta, \gamma)}$ be a NSP.
By 4.25 corollary,

$$
\left(u_{E}^{(\alpha, \beta, \gamma)}\right)^{c}=\bigcup\left\{\left((\bar{K})^{\tau_{u 2}}\right)^{c}: u_{(e)}^{(\alpha, \beta, \gamma)} \in K \in \tau_{u 1}\right\}
$$

Since $(\bar{K})^{\tau_{u 2}}$ is a $\tau_{u 2}$-NSCS, then $\left((\bar{K})^{\tau_{u 2}}\right)^{c} \in \tau_{u 2}$.
By the axioms of a NS topological space,

$$
\bigcup\left\{\left((\bar{K})^{\tau_{u 2}}\right)^{c}: u_{(e)}^{(\alpha, \beta, \gamma)} \in K \in \tau_{u 1}\right\} \in \tau_{u 2} .
$$

Thus $\left(u_{E}^{(\alpha, \beta, \gamma)}\right)^{c} \in \tau_{u 2}$.

Similarly it can be proved that, $\left(u_{E}^{(\alpha, \beta, \gamma)}\right)^{c} \in \tau_{u 1}$.

Hence $\left(u_{E}^{(\alpha, \beta, \gamma)}\right)^{c} \in \tau_{u i}$ for $i=1,2$.

Definition 4.27 A NBSTS $\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ over (V, E) is called pairwise NS regular space, if K is a $\tau_{u 1}$ -NSCS and $u_{(e)}^{(\alpha, \beta, \gamma)} \cap K=\phi_{u}$ then there exist $\tau_{u 2}$-NSOSs L_{1} and L_{2} such that $u_{(e)}^{(\alpha, \beta, \gamma)} \in L_{1}, K \subseteq L_{2}$ and $L_{1} \cap L_{2}=\phi_{u}$.
A NBSTS $\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ over (V, E) is called pairwise NS T_{3}-space, if it is both a pairwise NS regular space and a pairwise NS T_{1}-space.

Theorem 4.28 Let $\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ be a NBSTS over (V, E). Then $\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ is a pairwise NS T_{3}-space if and only if for every $u_{(e)}^{(\alpha, \beta, \gamma)} \in K \in \tau_{u 1}$, there exists $L \in \tau_{u 2}$ such that $u_{(e)}^{(\alpha, \beta, \gamma)} \in L \subseteq \bar{L} \subseteq K$.

Proof. Let $\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ be a NBSTS over (V, E).
Suppose that $\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ is a pairwise NS T_{3}-space and $\quad u_{(e)}^{(\alpha, \beta, \gamma)} \in K \in \tau_{u 1}$.
Since $\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ is a pairwise NS T_{3}-space for the NSP $u_{(e)}^{(\alpha, \beta, \gamma)}$ and $\tau_{u 1}$-NSCS K^{c}, there exist $\tau_{u 2}$-NSOSs L_{1} and L_{2} such that $u_{(e)}^{(\alpha, \beta, \gamma)} \in L_{1}, K^{c} \subseteq L_{2}$ and $L_{1} \cap L_{2}=\phi_{u}$.

Thus $u_{(e)}^{(\alpha, \beta, \gamma)} \in L_{1} \subseteq\left(L_{2}\right)^{c} \subseteq K$.

Since $\left(L_{2}\right)^{c}$ is a $\tau_{u 2}$-NSCS, $\bar{L}_{1} \subseteq\left(L_{2}\right)^{c}$.

Hence $u_{(e)}^{(\alpha, \beta, \gamma)} \in L_{1} \subseteq \bar{L}_{1} \subseteq K$.

Conversely, let $u_{(e)}^{(\alpha, \beta, \gamma)} \cap K=\phi_{u}$ and K be a $\tau_{u 1}$-NSCS.

Thus $u_{(e)}^{(\alpha, \beta, \gamma)} \in K^{c}$.
From the condition of the theorem,

$$
u_{(e)}^{(\alpha, \beta, \gamma)} \in L \subseteq \bar{L} \subseteq K^{c}
$$

Then $u_{(e)}^{(\alpha, \beta, \gamma)} \in L, K \subseteq \bar{L}^{c}$ and $L \bigcap \bar{L}^{c}=\phi_{u}$.
Hence $\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ is a pairwise NS T_{3}-space.

Definition 4.29 A NBSTS $\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ over (V, E) is called pairwise NS normal space, if for every pair of disjoint $\tau_{u 1}$-NSCSs K_{1} and K_{2}, there exists disjoint $\tau_{u 2}$-NSOSs L_{1} and L_{2} such that $K_{1} \subseteq L_{1}$ and $K_{2} \subseteq L_{2}$.
A NBSTS $\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ over (V, E) is called pairwise NS T_{4}-space, if it is both a pairwise NS normal space and a pairwise NS T_{1}-space.

[^33]Theorem 4.30 Let $\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ be a NBSTS over (V, E). Then $\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ is a pairwise NS T_{4}-space if and only if for each $\tau_{u 1}$-NSCS K and $\tau_{u 1}$-NSOS L with $K \subseteq L$, there exists a $\tau_{u 2}$-NSOS P such that $K \subseteq P \subseteq \bar{P} \subseteq L$.
$\operatorname{Proof.~Let~}\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ be a NBSTS over (V, E).
Suppose that $\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ is a pairwise NS T_{4}-space and K be $\tau_{u 1}$-NSCS and $K \subseteq L \in \tau_{u 1}$.
Then L^{c} is a $\tau_{u 1}$-NSCS and $K \bigcap L^{c}=\phi_{u}$.
Since $\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ is a pairwise NS T_{4}-space, there exist $\tau_{u 2}$-NSOSs P_{1} and P_{2} such that $K \subseteq P_{1}, M^{c} \subseteq P_{2}$ and $P_{1} \cap P_{2}=\phi_{u}$.
Thus $K \subseteq P_{1} \subseteq\left(P_{2}\right)^{c} \subseteq L$.
Since $\left(P_{2}\right)^{c}$ is a $\tau_{u 2}$-NSCS, $\bar{P}_{1} \subseteq\left(P_{2}\right)^{c}$.
Hence $K \subseteq P_{1} \subseteq \bar{P}_{1} \subseteq L$.
Conversely, let K_{1} and K_{2} be any two disjoint $\tau_{u 1}$-NSCSs.
Then $K_{1} \subseteq\left(K_{2}\right)^{c}$.
From the condition of the theorem, there exists a $\tau_{u 2}$-NSOS P such that $K_{1} \subseteq P \subseteq \bar{P} \subseteq\left(K_{2}\right)^{c}$.
Thus P and $(\bar{P})^{c}$ are $\tau_{u 2}$-NSOSs.

Then $K_{1} \subseteq P, \quad K_{2} \subseteq(\bar{P})^{c}$ and $P \bigcap(\bar{P})^{c}=\phi_{u}$.
Hence $\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ is a pairwise NS T_{4}-space.

Example 4.31 Let $V=\left\{v_{1}, v_{2}\right\}, E=\left\{e_{1}, e_{2}, e_{3}\right\}$, and $v_{1\left(e_{1}\right)}^{(.2,4,3)}, v_{1\left(e_{2}\right)}^{(.2,8,2)}, v_{1\left(e_{3}\right)}^{(.2,5,7)}, v_{2\left(e_{1}\right)}^{(.1,2,5)}, v_{2\left(e_{2}\right)}^{(.2,7,5)}$ and $v_{2\left(e_{3}\right)}^{(.1,1,9)}$ be NSPs.

Then $\tau_{u 1}=\left\{\phi_{u}, 1_{u}, K_{1}, K_{2}, K_{3}, K_{4}, K_{5}, K_{6}, K_{7}\right\}$ and $\tau_{u 2}=\left\{\phi_{u}, 1_{u}, L_{1}, L_{2}, L_{3}, L_{4}, L_{5}, L_{6}, L_{7}\right\}$ where K_{1}, K_{2}, $K_{3}, K_{4}, K_{5}, K_{6}, K_{7}, L_{1}, L_{2}, L_{3}, L_{4}, L_{5}, L_{6}, L_{7}$ are NSSs over (V, E), defined as follows

$$
\begin{aligned}
& K_{1}=\left\{\begin{array}{l}
f_{K_{1}}\left(e_{1}\right)=\left\{<v_{1},(.2, .4, .3)>,<v_{2},(1,1,0)>\right\} \\
f_{K_{1}}\left(e_{2}\right)=\left\{<v_{1},(1,1,0)>,<v_{2},(1,1,0)>\right\} ; \\
f_{K_{1}}\left(e_{3}\right)=\left\{<v_{1},(1,1,0)>,<v_{2},(1,1,0)>\right\}
\end{array} ;\right. \\
& K_{2}=\left\{\begin{array}{l}
f_{K_{2}}\left(e_{1}\right)=\left\{<v_{1},(1,1,0)>,<v_{2},(1,1,0)>\right\} \\
f_{K_{2}}\left(e_{2}\right)=\left\{<v_{1},(1,1,0)>,<v_{2},(.2, .7, .5)>\right\} ; \\
f_{K_{2}}\left(e_{3}\right)=\left\{<v_{1},(1,1,0)>,<v_{2},(1,1,0)>\right\}
\end{array} ;\right. \\
& K_{3}=\left\{\begin{array}{l}
f_{K_{3}}\left(e_{1}\right)=\left\{<v_{1},(1,1,0)>,<v_{2},(1,1,0)>\right\} \\
f_{K_{3}}\left(e_{2}\right)=\left\{<v_{1},(1,1,0)>,<v_{2},(1,1,0)>\right\} \\
f_{K_{3}}\left(e_{3}\right)=\left\{<v_{1},(.2, .5, .7)>,<v_{2},(1,1,0)>\right\}
\end{array} ;\right.
\end{aligned}
$$

$$
\begin{aligned}
& K_{4}=K_{1} \cap K_{2} ; \\
& K_{5}=K_{1} \cap K_{3} ; \\
& K_{6}=K_{2} \cap K_{3} ; \\
& K_{7}=K_{1} \cap K_{2} \cap K_{3}
\end{aligned}
$$

and

$$
\begin{aligned}
& L_{1}=\left\{\begin{array}{l}
f_{L_{1}}\left(e_{1}\right)=\left\{<v_{1},(.5, .7, .1)>,<v_{2},(0,0,1)>\right\} \\
f_{L_{1}}\left(e_{2}\right)=\left\{<v_{1},(0,0,1)>,<v_{2},(0,0,1)>\right\} ; \\
f_{L_{1}}\left(e_{3}\right)=\left\{<v_{1},(0,0,1)>,<v_{2},(0,0,1)>\right\}
\end{array} ;\right. \\
& L_{2}=\left\{\begin{array}{l}
f_{L_{2}}\left(e_{1}\right)=\left\{<v_{1},(0,0,1)>,<v_{2},(0,0,1)>\right\} \\
f_{L_{2}}\left(e_{2}\right)=\left\{<v_{1},(0.0,1)>,<v_{2},(.8, .6, .1)>\right\} ; \\
f_{L_{2}}\left(e_{3}\right)=\left\{<v_{1},(0,0,1)>,<v_{2},(0,0,1)>\right\}
\end{array} ;\right. \\
& L_{3}=\left\{\begin{array}{l}
f_{L_{3}}\left(e_{1}\right)=\left\{<v_{1},(0,0,1)>,<v_{2},(0,0,1)>\right\} \\
f_{L_{3}}\left(e_{2}\right)=\left\{<v_{1},(0,0,1)>,<v_{2},(0,0,1)>\right\} \\
f_{L_{3}}\left(e_{3}\right)=\left\{<v_{1},(.7, .5, .2)>,<v_{2},(0,0,1)>\right\}
\end{array} ;\right. \\
& L_{4}=L_{1} \cup L_{2} ; \\
& L_{5}=L_{1} \cup L_{3} ; \\
& L_{6}=L_{2} \cup L_{3} ; \\
& L_{7}=L_{1} \cup L_{2} \cup L_{3} ;
\end{aligned}
$$

Thus $\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ is a NBSTS over (V, E).
Consider $\left(\tau_{u 1}\right)^{c}=\left\{\phi_{u}, 1_{u},\left(K_{1}\right)^{c},\left(K_{2}\right)^{c},\left(K_{3}\right)^{c},\left(K_{4}\right)^{c},\left(K_{5}\right)^{c},\left(K_{6}\right)^{c},\left(K_{7}\right)^{c}\right\}$
where $\left(K_{1}\right)^{c},\left(K_{2}\right)^{c},\left(K_{3}\right)^{c},\left(K_{4}\right)^{c},\left(K_{5}\right)^{c},\left(K_{6}\right)^{c},\left(K_{7}\right)^{c}$ are $\tau_{u 1}$-NSCSs over (V, E), defined as follows

$$
\begin{aligned}
& \left(K_{1}\right)^{c}=\left\{\begin{array}{l}
f_{\left(K_{1}\right)^{c}}\left(e_{1}\right)=\left\{<v_{1},(.3, .6, .2)>,\left\langle v_{2},(0,0,1)>\right\}\right. \\
f_{\left(K_{1}\right)^{c}}\left(e_{2}\right)=\left\{<v_{1},(0,0,1)>,\left\langle v_{2},(0,0,1)>\right\}\right. \\
f_{\left(K_{1}\right)^{c}}\left(e_{3}\right)=\left\{<v_{1},(0,0,1)>,<v_{2},(0,0,1)>\right\}
\end{array} \quad ;\right. \\
& \left(K_{2}\right)^{c}=\left\{\begin{array}{l}
f_{\left(K_{2}\right)^{c}}\left(e_{1}\right)=\left\{<v_{1},(0,0,1)>,<v_{2},(0,0,1)>\right\} \\
f_{\left(K_{2}\right)^{c}}\left(e_{2}\right)=\left\{<v_{1},(0,0,1)>,\left\langle v_{2},(.5, .3, .2)\right\rangle\right\} \quad ; \\
f_{\left(K_{2}\right)^{c}}\left(e_{3}\right)=\left\{\left\langle v_{1},(0,0,1)\right\rangle,\left\langle v_{2},(0,0,1)\right\rangle\right\}
\end{array} \quad ;\right. \\
& \left(K_{3}\right)^{c}=\left\{\begin{array}{l}
f_{\left(K_{3}\right)^{c}}\left(e_{1}\right)=\left\{<v_{1},(0,0,1)>,\left\langle v_{2},(0,0,1)>\right\}\right. \\
f_{\left(K_{3}\right)^{c}}\left(e_{2}\right)=\left\{<v_{1},(0,0,1)>,\left\langle v_{2},(0,0,1)>\right\}\right. \\
f_{\left(K_{3}\right)^{c}}\left(e_{3}\right)=\left\{\left\langle v_{1},(.7, .5, .2)\right\rangle,\left\langle v_{2},(0,0,1)>\right\}\right.
\end{array} \quad ;\right. \\
& \left(K_{4}\right)^{c}=\left(K_{1}\right)^{c} \cup\left(K_{2}\right)^{c} \text {; } \\
& \left(K_{5}\right)^{c}=\left(K_{1}\right)^{c} \cup\left(K_{3}\right)^{c} \text {; }
\end{aligned}
$$

$$
\begin{aligned}
& \left(K_{6}\right)^{c}=\left(K_{2}\right)^{c} \cup\left(K_{3}\right)^{c} \\
& \left(K_{7}\right)^{c}=\left(K_{1}\right)^{c} \cup\left(K_{2}\right)^{c} \cup\left(K_{3}\right)^{c}
\end{aligned}
$$

Hence $\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ is a pairwise NS T_{4}-space, also a pairwise NS T_{3}-space.

5. DM Problem in NBSTS

In this segment, measured the output of problem and evaluated the decision on NBSTS.

Definition 5.1 Let V be the set of universal set, E be its parameter and $\tau_{u 1}=\left\{\phi_{u}, 1_{u}, P\right\}$ and $\tau_{u 2}=\left\{\phi_{u}, 1_{u}, Q\right\}$ be two NSTs. Then NSSs P and Q in NBSTS $\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ over (V, E) are defined by $k \times l$ matrix where every entries are marks of v_{k} based on each parameters e_{l}.

and

where $v_{1}, v_{2}, \ldots, v_{k} \in V$ and $e_{1}, e_{2}, \ldots, e_{l} \in E$.
Clearly $\tau_{u 1}=\left\{\phi_{u}, 1_{u},[P]_{k \times l}\right\}$ and $\tau_{u 2}=\left\{\phi_{u}, 1_{u},[Q]_{k \times l}\right\}$ are also NSTs in $\operatorname{NBSTS}\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ over (V, E).

Thus the outcome result (OR) of $v \in V$ is given by the formula

$$
\begin{equation*}
O R(v)^{e}=\left[\frac{\left(T_{f_{p}(e)}(v)-F_{f_{Q}(e)}(v)\right)+\left(T_{f_{\varrho_{Q}}(e)}(v)-F_{f_{p}(e)}(v)\right)}{2}\right]\left[1-\frac{\left(I_{f_{p}(e)}(v)+I_{f_{Q}(e)}(v)\right)}{2}\right] \tag{5.1.1}
\end{equation*}
$$

where $e \in E$.
The Net Result (NR) of each $v_{1}, v_{2}, \ldots, v_{k} \in V$ is

$$
\begin{equation*}
N R\left(v_{i}\right)^{e_{j}}=\sum_{j=1}^{l}\left(R\left(v_{i}\right)^{e_{j}}\right) \tag{5.1.2}
\end{equation*}
$$

for all $i=1$ to k.

Example 5.2 Let $V=\left\{v_{1}, v_{2}\right\}, E=\left\{e_{1}, e_{2}\right\}$ and $\tau_{u 1}=\left\{\phi_{u}, 1_{u},\left[K_{1}\right]_{2 \times 2},\left[K_{2}\right]_{2 \times 2},\left[K_{3}\right]_{2 \times 2},\left[K_{4}\right]_{2 \times 2}\right\}$ and
$\tau_{u 2}=\left\{\phi_{u}, 1_{u},\left[L_{1}\right]_{2 \times 2},\left[L_{2}\right]_{2 \times 2}\right\}$ where $\left[K_{1}\right]_{2 \times 2},\left[K_{2}\right]_{2 \times 2},\left[K_{3}\right]_{2 \times 2},\left[K_{4}\right]_{2 \times 2},\left[L_{1}\right]_{2 \times 2},\left[L_{2}\right]_{2 \times 2}$ are NSSs over (V, E), defined as follows
$\left[K_{1}\right]_{2 \times 2}=\left[\begin{array}{cc}<.1, .2, .3\rangle & <.4, .5, .6\rangle \\ \langle .9, .4, .7\rangle & <.2, .6 .3\rangle\end{array}\right]$,
$\left[K_{2}\right]_{2 \times 2}=\left[\begin{array}{ll}<.2, .3, .1\rangle & <.4, .7, .2> \\ <.5, .7, .6> & <.3, .5 .2>\end{array}\right]$,
$\left[K_{3}\right]_{2 \times 2}=\left[\begin{array}{cc}<.2, .3, .1> & <.4, .7, .2> \\ <.9, .7, .6> & <.3, .6 .2>\end{array}\right]$,
$\left[K_{4}\right]_{2 \times 2}=\left[\begin{array}{cc}\langle .1, .2, .3\rangle & <.4, .5, .6\rangle \\ \langle .5, .4, .7\rangle & <.2, .5 .3\rangle\end{array}\right]$.
and
$\left[L_{1}\right]_{2 \times 2}=\left[\begin{array}{cc}<.5, .8, .1> & <.3, .4, .2> \\ <.3, .1, .2> & <.6, .7 .2>\end{array}\right]$,
$\left[L_{2}\right]_{2 \times 2}=\left[\begin{array}{cc}<.4, .7, .2> & <.2, .3, .5> \\ <.2, .1, .6> & <.3, .6 .9>\end{array}\right]$.
Thus $\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ is a NBSTS over (V, E).

Algorithm

Step 1: List the set of things or person $v \in V$ with their parameters $e \in E$.
Step 2: Go through the records of the particulars.
Step 3: Collect the data for each $v \in V$ according to all $e \in E$.
Step 4: Define NSSs.
Step 5: Define two different topologies $\tau_{u 1}$ and $\tau_{u 2}$ where each satisfies the condition of NST and so $\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ is a NBSTS over (V, E).

Step 6: Form $N S S s \in \tau_{u i=u 1, u 2}$ matrix with collected data where v_{k} as rows and e_{l} as columns.
Step 7: Calculate the OR for all $v \in V$.
Step 8: Calculate the NR for all $v \in V$.
Step 9: Select a highest value among all the calculated NR.
Step 10: If two or more NR are identical, add one more parameter and repeat the process.
Step 11: End the process while we acquire the unique NR of v_{k}.

Problem 5.3 Let us suppose that there are two groups of women. First group consists of young age women (YAW, aging 20-25), say $\tau_{u 1}$, and second group consists of middle age women (MAW, aging 30-35), say $\tau_{u 2}$. Our aim is to insist both groups of women to select a saree together according to their desire and choice.

1. Let $V=\left\{s r_{1}, s r_{2}, s r_{3}, s r_{4}, s r_{5}\right\}$ be the set of sample sarees and selection done by the set of parameters let it be $E=\{c, q, d, p\}$ where is $c=$ colour, $q=$ quality, $d=$ design and $p=$ price.
2. Both groups are analyzing the sarees collections.
3. Data are collected for each sarees according to its paramaters given.
4. Convert these data as NSSs, say YAW and MAW.
5. Let $\tau_{u 1}=\left\{\phi_{u}, 1_{u}, Y A W\right\}$ and $\tau_{u 2}=\left\{\phi_{u}, 1_{u}, M A W\right\}$ be two NSTs and so $\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ is a NBSTS over (V, E).
6. The matrix form of NSSs YAW and MAW are as follows:

$$
[Y A W]_{5 \times 4}=\left[\begin{array}{lllll}
<.5,7,2\rangle & \langle .7,2,2\rangle & \langle .4,2,7\rangle & \langle .8,4,5\rangle \\
\langle .9,3,4\rangle & \langle .3,4,2\rangle & \langle .8,7,5\rangle & \langle .9,3,6\rangle \\
<.6,3,9\rangle & \langle .7,4,8\rangle & \langle .2,7,1\rangle & \langle .3,2,5\rangle \\
<.2,4,6\rangle & \langle .4,6,8\rangle & \langle .5,3,1\rangle & \langle .7,1,3\rangle \\
<.7,5,2\rangle & <.1,2,3\rangle & <.3,6,9\rangle & \langle .1,3,4\rangle
\end{array}\right]
$$

and

$$
[M A W]_{\mathrm{sx} 4}=\left[\begin{array}{llll}
<.6,4,3\rangle & \langle .7,3,2\rangle & \langle .3,6,2\rangle & \langle .4,7,3\rangle \\
\langle .8,4,2\rangle & \langle .8,4,2\rangle & \langle .5,9,4\rangle & \langle .4,4,4\rangle \\
\langle .1,9,2\rangle & \langle .6,7,3\rangle & \langle .8,2,1\rangle & \langle .5,1,2\rangle \\
\langle .2,6,7\rangle & \langle .3,4,5\rangle & \langle .7,2,2\rangle & \langle .2,9,1\rangle \\
<.3,1,2\rangle & <.2,1,2\rangle & \langle .3,5,2\rangle & \langle .2,4,8\rangle
\end{array}\right]
$$

7. The Table 5.3 .1 is obtained by using the formula (5.1.1),

Table 5.3.1. OR table.

	$\mathbf{s r}_{1}$	$\mathbf{s r}_{2}$	$\mathbf{s r}_{3}$	$\mathbf{s r}_{4}$	$\mathbf{s r}_{5}$
\boldsymbol{c}	.105	.3575	-.08	-.225	.21
\boldsymbol{q}	.375	.21	.045	.15	-.085
\boldsymbol{d}	.06	.04	.22	.45	-.1125
\boldsymbol{p}	.09	.0975	.0425	.125	-.2925

8. The Table 5.3.2 is obtained by using the formula (5.1.2),

Table 5.3.2. NR table.

	$\mathbf{s r}_{1}$	$\mathbf{s r}_{\mathbf{2}}$	$\mathbf{s r}_{3}$	$\mathbf{s r}_{4}$	$\mathbf{s r}_{5}$
\boldsymbol{c}	.105	.3575	-.08	-.225	.21
\boldsymbol{q}	.375	.21	.045	.15	-.085
\boldsymbol{d}	.06	.04	.22	.45	-.1125
\boldsymbol{p}	.09	.0975	.0425	.125	-.2925
$\boldsymbol{N R}$.63	.705	.2275	.2	-.28

Thus the second saree has selected by both the categories of women.

Problem 5.4 Consider the situation of problem 5.3.

1. Let $V=\left\{s r_{1}, s r_{2}, s r_{3}, s r_{4}, s r_{5}\right\}$ be the set of sample sarees and selection done by the set of parameters let it be $E=\{c, q, d, p\}$ where is $c=$ colour, $q=$ quality, $d=\operatorname{design}$ and $p=$ price.
2. Both groups are analyzing the sarees collections.
3. Data are collected for each sarees according to its paramaters given.
4. Convert these data as NSSs, say YAW and MAW.
5. Let $\tau_{u 1}=\left\{\phi_{u}, 1_{u}, Y A W\right\}$ and $\tau_{u 2}=\left\{\phi_{u}, 1_{u}, M A W\right\}$ be two NSTs and so $\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ is a NBSTS over (V, E).
6. The matrix form of NSSs YAW and MAW are as follows:

$$
[\text { YAW }]_{5 \times 4}=\left[\begin{array}{lllll}
\langle .5,7,2\rangle & \langle .5,3,1\rangle & \langle .4,2,7\rangle & \langle .8,4,5\rangle \\
\langle .9,3,4\rangle & \langle .3,4,2\rangle & \langle .8,7,5\rangle & \langle .9,3,6\rangle \\
<.1,3,4\rangle & \langle .7,4,8\rangle & \langle .2,7,1\rangle & \langle .3,2,5\rangle \\
\langle .2,4,6\rangle & \langle .4,6,8\rangle & \langle .7,2,2\rangle & \langle .7,1,3\rangle \\
<.7,5,2\rangle & <.1,2,3\rangle & \langle .3,6,9\rangle & <.6,3,9\rangle
\end{array}\right]
$$

and

$$
[M A W]_{5 \times 4}=\left[\begin{array}{llll}
\langle .6,4,3\rangle & \langle .7,2,1\rangle & \langle .3,6,2\rangle & \langle .4,7,3\rangle \\
\langle .8,4,2\rangle & \langle .8,4,2\rangle & \langle .5,9,4\rangle & \langle .4,4,4\rangle \\
\langle .2,4,8\rangle & \langle .6,7,3\rangle & \langle .8,2,1\rangle & \langle .5,1,2\rangle \\
\langle .2,6,7\rangle & \langle .3,4,5\rangle & \langle .7,3,2\rangle & \langle .2,9,1\rangle \\
\langle .3,1,2\rangle & \langle .2,1,2\rangle & \langle .3,5,2\rangle & <.1,9,2\rangle
\end{array}\right]
$$

7. The Table 5.4.1 is obtained by using the formula (5.1.1),

Table 5.4.1. OR table.

	$\mathbf{s r}_{1}$	$\mathbf{s r}_{\mathbf{2}}$	$\mathbf{s r}_{3}$	$\mathbf{s r}_{4}$	$\mathbf{s r}_{5}$
\boldsymbol{c}	.105	.3575	-.2925	-.225	.21
\boldsymbol{q}	.45	.21	.045	.15	-.085
\boldsymbol{d}	.06	.04	.22	.375	-.1125
\boldsymbol{p}	.09	.0975	.0425	.125	-.08

8. The Table 5.4.2 is obtained by using the formula (5.1.2),

Table 5.4.2. NR table.

	$\mathbf{s r}_{1}$	$\mathbf{s r}_{2}$	$\mathbf{s r}_{3}$	$\mathbf{s r}_{4}$	$\mathbf{s r}_{5}$
\boldsymbol{c}	.105	.3575	-.2925	-.225	.21
\boldsymbol{q}	.45	.21	.045	.15	-.085
\boldsymbol{d}	.06	.04	.22	.375	-.1125
p	.09	.0975	.0425	.125	-.08
$\boldsymbol{N R}$.705	.705	.015	.125	-.0675

Thus first and second sarees have selected by both categories of women.
In this situation, we just add a parameter $f=$ fabric in E and repeat the process.
4. After adding one more parameter, convert these data as NSSs, say $Y A W^{*}$ and $M A W^{*}$.
5. Let $\tau_{u 1}=\left\{\phi_{u}, 1_{u}, Y A W^{*}\right\}$ and $\tau_{u 2}=\left\{\phi_{u}, 1_{u}, M A W^{*}\right\}$ be two NSTs and so $\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ is a NBSTS over (V, E).
6. The matrix form of NSSs $Y A W^{*}$ and $M A W^{*}$ are as follows:

$$
\left[Y_{A} W^{*}\right]_{\times \times 5}=\left[\begin{array}{llllll}
\langle .5,7,2\rangle & \langle .5,3,1\rangle & \langle .4,2,7\rangle & \langle .8,4,5\rangle & \langle .6,7,2\rangle \\
\langle .9,3,4\rangle & \langle .3,4,2\rangle & \langle .8,7,5\rangle & \langle .9,3,6\rangle & \langle .5,1,3\rangle \\
\langle .1,3,4\rangle & \langle .7,4,4\rangle & \langle .2,7,1\rangle & \langle .3,2,5\rangle & \langle .4,5,2\rangle \\
\langle .2,4,6\rangle & \langle .4,6,6\rangle & \langle .7,2,2\rangle & \langle .7,1,3\rangle & \langle .7,8,4\rangle \\
\langle .7,5,2\rangle & \langle .1,2,3\rangle & <.3,6,9\rangle & \langle .6,3,9\rangle & \langle .1,3,6\rangle
\end{array}\right]
$$

and
7. The Table 5.4.3 is obtained by using the formula (5.1.1),

Table 5.4.3. OR table after adding a parameter.

	$\mathbf{s r}_{1}$	$\mathbf{s r}_{\mathbf{2}}$	$\mathbf{s r}_{\mathbf{3}}$	$\mathbf{s r}_{4}$	$\mathbf{s r}_{5}$
\boldsymbol{c}	.105	.3575	-.2925	-.225	.21
\boldsymbol{q}	.45	.21	.045	.15	-.085
\boldsymbol{d}	.06	.04	.22	.375	-.1125
\boldsymbol{p}	.09	.0975	.0425	.125	-.08
\boldsymbol{f}	.175	.22	.1	.0225	-.225

8. The Table 5.4.4 is obtained by using the formula (5.1.2),

Table 5.4.4. NR table after adding a parameter.

	$\mathbf{s r}_{1}$	$\mathbf{s r}_{2}$	$\mathbf{s r}_{3}$	$\mathbf{s r}_{4}$	$\mathbf{s r}_{5}$
\boldsymbol{c}	.105	.3575	-.2925	-.225	.21
\boldsymbol{q}	.45	.21	.045	.15	-.085
\boldsymbol{d}	.06	.04	.22	.375	-.1125
\boldsymbol{p}	.09	.0975	.0425	.125	-.08
\boldsymbol{f}	.175	.22	.1	.0225	-.225
$\boldsymbol{N R}$.88	.925	.115	.1475	-.2925

Thus the second saree has selected by both categories of women.

Problem 5.5 Consider the situation that there are six students on the main stage for Quiz Finale. There are two teams, each team consists of three students, one is Winner (W) and other is Runner (R). Let $F A 1$ and $F A 2$ be two final authorities to judge the event. Our problem is to find the best player in the winning team whose teammates are not mentioned here.

1. Let $V=\left\{s t_{1}, s t_{2}, s t_{3}, s t_{4}, s t_{5}, s t_{6}\right\}$ be the set of students and judgement is based on the set of parameters let it be $E=\{r a, e f f, c a, m r, g p\}$ where $r a=$ right answers, eff $=$ effectiveness, $c a=$ complex analysis, $m r=$ memory, $g p=$ grasping power.

[^34]2. First of all these final authorities will go through the records of the students.
3. They will collect student's data according to their paramaters given.
4. These data are converted into two different NSSs, say FA1 and FA2.
5. Let $\tau_{u 1}=\left\{\phi_{u}, 1_{u}, F A 1\right\}$ and $\tau_{u 2}=\left\{\phi_{u}, 1_{u}, F A 2\right\}$ be two NSTs and so $\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ is a NBSTS over (V, E).
6. The matrix form of NSSs FA1 and FA2 are as follows:
\[

[F A 1]_{6 \times 5}=\left[$$
\begin{array}{ccccc}
<.4, .2, .7> & <.6, .3, .1> & <.2, .4, .8> & <.2, .9, .1> & <.6, .5, .3> \\
<.7, .3, .2> & <.8, .6, .1> & <.5, .4, .3> & <.9, .7, .2> & <.2, .7, .5> \\
<.3, .6, .6> & <.3, .5, .4> & <.6, .4, .2> & <.1, .2, .3> & <.5, .4, .6> \\
<.2, .6, .3> & <.7, .5, .4> & <.8, .6, .1> & <.4, .2, .7> & <.7, .3, .4> \\
<.6, .5, .4> & <.9, .2, .1> & <.7, .3, .4> & <.3, .5, .4> & <.4, .1, .4> \\
<.7, .3, .4> & <.6, .7, .2> & <.8, .9, .6> & <.3, .5, .4> & <.3, .5, .2>
\end{array}
$$\right]
\]

and

$$
[F A 2]_{6 \times 5}=\left[\begin{array}{ccccc}
<.4, .7, .3> & <.2, .3, .4> & <.5, .7, .2> & <.3, .4, .2> & <.2, .7, .1> \\
<.5, .1, .2> & <.6, .7, .3> & <.9, .3, .4> & <.7, .4, .8> & <.7, .2, .2> \\
<.7, .8, .1> & <.9, .3, .6> & <.1, .3, .4> & <.4, .6, .8> & <.3, .6, .9> \\
<.2, .6, .7> & <.7, .4, .8> & <.2, .4, .6> & <.1, .2, .3> & <.8, .4, .5> \\
<.5, .9, .4> & <.1, .2, .3> & <.7, .5, .2> & <.4, .2, .7> & <.3, .2, .5> \\
<.8, .4, .5> & <.9, .6, .3> & <.5, .3, .1> & <.1, .3, .4> & <.7, .3, .2>
\end{array}\right]
$$

7. The Table 5.5.1 is obtained by using the formula (5.1.1),

Table 5.5.1. OR table.

	$\mathbf{s t}_{\mathbf{1}}$	$\mathbf{s t}_{\mathbf{2}}$	$\mathbf{s t}_{3}$	$\mathbf{s t}_{4}$	$\mathbf{s t}_{5}$	$\mathbf{s t}_{6}$
$\boldsymbol{r a}$.11	.32	.045	-.12	.045	.195
$\boldsymbol{e f f}$.105	.175	.24	.055	.24	.175
$\boldsymbol{c a}$.0675	.2275	.0325	.075	.24	.12
$m r$.035	.135	-.018	-.02	-.13	.24
$\boldsymbol{g} \boldsymbol{p}$.08	.055	-.175	.195	-.085	.18

8. The Table 5.5.2 is obtained by using the formula (5.1.2),

Table 5.5.2. NR table.

	$\mathbf{s t}_{1}$	$\mathbf{s t}_{2}$	$\mathbf{s t}_{3}$	$\mathbf{s t}_{4}$	$\mathbf{s t}_{5}$	$\mathbf{s t}_{6}$
$\boldsymbol{r a}$.11	.32	.045	-.12	.045	.195
$e f f$.105	.175	.24	.055	.24	.175
$\boldsymbol{c a}$.0675	.2275	.0325	.075	.24	.12
$\boldsymbol{m r}$.035	.135	-.018	-.02	-.13	.24
$\boldsymbol{g} \boldsymbol{p}$.08	.055	-.175	.195	-.085	.18
$\boldsymbol{N R}$.3975	.9125	-.0375	.005	.31	.91

Here both $s t_{2}$ and $s t_{6}$ got high score from judges, so they both does not belongs to R.

Case (i). If $s t_{2} \in W$ and $s t_{6} \in R$, then the best player award goes to $s t_{2}$.
Case (ii). If $s t_{2} \in R$ and $s t_{6} \in W$, then the best player award goes to $s t_{6}$.
Case (ii). If $s t_{2} \in W$ and $s t_{6} \in W$, then we just add a parameter $l d=$ leadership.
4. After adding one more parameter, convert these data as NSSs, say $F A 1^{*}$ and $F A 2^{*}$.
5. Let $\tau_{u 1}=\left\{\phi_{u}, 1_{u}, F A 1^{*}\right\}$ and $\tau_{u 2}=\left\{\phi_{u}, 1_{u}, F A 2^{*}\right\}$ be two NSTs and so $\left(V, E, \tau_{u 1}, \tau_{u 2}\right)$ is a NBSTS over (V, E).
6. The matrix form of NSSs $F A 1^{*}$ and $F A 2^{*}$ are as follows:

$$
\left[F A 1^{*}\right]_{6 \times 6}=\left[\begin{array}{cccccc}
<.4, .2, .7> & <.6, .3, .1> & <.2, .4, .8> & <.2, .9, .1> & <.6, .5, .3> & <.3, .2, .4> \\
<.7, .3, .2> & <.8, .6, .1> & <.5, .4, .3> & <.9, .7, .2> & <.2, .7, .5> & <.9, .1, .1> \\
<.3, .6, .6> & <.3, .5, .4> & <.6, .4, .2> & <.1, .2, .3> & <.5, .4, .6> & <.7, .5, .3> \\
<.2, .6, .3> & <.7, .5, .4> & <.8, .6, .1> & <.4, .2, .7> & <.7, .3, .4> & <.8, .2, .1> \\
<.6, .5, .4> & <.9, .2, .1> & <.7, .3, .4> & <.3, .5, .4> & <.4, .1, .4> & <.3, .1, .5> \\
<.7, .3, .4> & <.6, .7, .2> & <.8, .9, .6> & <.3, .5, .4> & <.3, .5, .2> & <.6, .2, .6>
\end{array}\right]
$$

and

$$
\left[F A 2^{*}\right]_{6 \times 6}=\left[\begin{array}{cccccc}
<.4, .7, .3> & <.2, .3, .4> & <.5, .7, .2> & <.3, .4, .2> & <.2, .7, .1> & <.7, .5, .4> \\
<.5, .1, .2> & <.6, .7, .3> & <.9, .3, .4> & <.7, .4, .8> & <.7, .2, .2> & <.6, .9, .1> \\
<.7, .8, .1> & <.9, .3, .6> & <.1, .3, .4> & <.4, .6, .8> & <.3, .6, .9> & <.8, .4, .4> \\
<.2, .6, .7> & <.7, .4, .8> & <.2, .4, .6> & <.1, .2, .3> & <.8, .4, .5> & <.3, .4, .5> \\
<.5, .9, .4> & <.1, .2, .3> & <.7, .5, .2> & <.4, .2, .7> & <.3, .2, .5> & <.7, .3, .2> \\
<.8, .4, .5> & <.9, .6, .3> & <.5, .3, .1> & <.1, .3, .4> & <.7, .3, .2> & <.5, .9, .4>
\end{array}\right]
$$

7. The Table 5.5.3 is obtained by using the formula (5.1.1),

Table 5.5.3. OR table after adding a parameter.

	$\mathbf{s t}_{1}$	$\mathbf{s t}_{2}$	$\mathbf{s t}_{3}$	$\mathbf{s t}_{4}$	st $_{5}$	st $_{6}$
$\boldsymbol{r a}$.11	.32	.045	-.12	.045	.195
$\boldsymbol{e f f}$.105	.175	.24	.055	.24	.175
$\boldsymbol{c} \boldsymbol{a}$.0675	.2275	.0325	.075	.24	.12
$\boldsymbol{m} \boldsymbol{r}$.035	.135	-.018	-.02	-.13	.24
$\boldsymbol{g} \boldsymbol{p}$.08	.055	-.175	.195	-.085	.18
$\boldsymbol{l d}$.065	.352	-.055	.175	.12	.0675

8. The Table 5.5.4 is obtained by using the formula (5.1.2),

Table 5.5.4. NR table after adding a parameter.

	$\mathbf{s t}_{1}$	$\mathbf{s t}_{2}$	$\mathbf{s t}_{3}$	$\mathbf{s t}_{4}$	$\mathbf{s t}_{5}$	$\mathbf{s t}_{6}$
$\boldsymbol{r a}$.11	.32	.045	-.12	.045	.195
$\boldsymbol{e f f}$.105	.175	.24	.055	.24	.175
$\boldsymbol{c a}$.0675	.2275	.0325	.075	.24	.12
$\boldsymbol{m r}$.035	.135	-.018	-.02	-.13	.24
$\boldsymbol{g} \boldsymbol{p}$.08	.055	-.175	.195	-.085	.18

$\overline{\text { Chinnadurai } V \text { and Sindhu } M \text { P, A Novel Approach for Pairwise Separation Axioms on Bi-Soft Topology Using }}$ Neutrosophic Sets and An Output Validation in Real Life Application

$\boldsymbol{l d}$.065	.352	-.055	.175	.12	.0675
$N R$.4625	1.2375	-.0925	.18	.43	.9775

Thus the best player award goes to $s t_{2}$.

6. Conclusion

The main involvement of this paper is to preface the definition of NBSTSs and the study of some important properties of such spaces including separation axioms and the relationship between $T_{i=0,1,2,3,4}$-spaces. The key of this paper is to apply NBSTS in real life problems to take a decision, which might be positive or negative. In our problems two different types of NSTs are combined together to choose a unique decision according to the algorithm and calculation made by the formulae given here. Subsequently, NBSTS can be built up to pairwise NS separated sets, pairwise NS connected spaces, pairwise NS connected sets, pairwise NS disconnected spaces, pairwise NS disconnected sets and so on. We look forward to encourage this type of NBSTS will find a way to other types of topological structures. In future, some case studies which we mention in this paper need to develop on multicriteria DM also.

References

1. Abdel-Basset, M.; El-hoseny, M.; Gamal, A.; Smarandache, F. A novel model for evaluation Hospital medical care systems based on plithogenic sets. Artificial intelligence in medicine 2019, 100, 101710.
2. Abdel-Basset, M.; Manogaran, G.; Gamal, A.; Chang, V. A Novel Intelligent Medical Decision Support Model Based on Soft Computing and IoT. IEEE Internet of Things Journal 2019.
3. Abdel-Basset, M.; Mohamed, R.; Zaied, A. E. N. H.; Smarandache, F. A hybrid plithogenic decision-making approach with quality function deployment for selecting supply chain sustainability metrics. Symmetry 2019, 11(7), 903.
4. Abdel-Basset, M.; Nabeeh, N. A.; El-Ghareeb, H. A.; Aboelfetouh, A. Utilising neutrosophic theory to solve transition difficulties of IoT-based enterprises. Enterprise Information Systems 2019, 1-21.
5. Abdel-Baset, M.; Chang, V.; Gamal, A. Evaluation of the green supply chain management practices: A novel neutrosophic approach. Computers in Industry 2019, 108, 210-220.
6. Abdel-Basset, M.; Mohamed, M.; Smarandache, F. An Extension of Neutrosophic AHP-SWOT Analysis for Strategic Planning and Decision Making. Symmetry 2018, 10, 116.
7. Smarandache, F. Neutrosophy, Neutrosophic Probability, Set and Logic. American Research Press, Rehoboth, USA 1998, 105.
8. Smarandache, F. Neutrosophic set, a generalisation of the intuitionistic fuzzy sets. International Journal of Pure and Applied Mathematics 2005, 24, 287-297.
9. Smarandache, F. Plithogeny, Plithogenic Set, Logic, Probability, and Statistics; Infinity Study 2017, 141.
10. Bera, T.; Mahapatra, N.K. On Neutrosophic Soft Topological Space. Neutrosophic Sets and Systems 2018, 19, 315.
11. Taha, Y. O.; Alkan, O. Neutrosophic Bitopological Spaces. Neutrosophic Sets and Systems 2019, 30, 88-97.
12. Abishek, G.; Saurabh, S.; Rakesh, K. B. On Parametric Diverdence Measure of Neutrosophic Sets with its Application in Decision-Making Models. Neutrosophic Sets and Systems 2019, 29, 101-120.
13. Chinnadurai, V.; Smarandache, F.; Bobin, A. Multi-Aspect Decision-Making Process in Equity Investment Using Neutrosophic Soft Matrices. Neutrosophic Sets and Systems 2020, 31, 224-241.
14. Chinnadurai, V.; Swaminathan, A.; Bobin, A.; Kathar Kani, B. Generalised Interval Valued Intuitionistic Fuzzy Soft Matrices and Their Application to Multicriteria Decision Making. Recent Trends in Pure and Applied Mathematics 2019, AIP Conf. Proc. 2177, 020019-1 -020019-11.
15. Kalaiselvi, S.; Sindhu, M. P. $\tau_{1} \tau_{2}$-fb-open Sets in Fine-Bitopological Spaces. International Journal of Multidisciplinary Research and Modern Education 2016, 2(2), 435-441.
16. Muhammad, Riaz.; Khalid, Nazeem.; Iqra, Zareef.; Deeba, Afzal. Neutrosophic N-soft sets with TOPSIS method for Mutiple Attribute Decision Making, Neutrosophic Sets and Systems 2020, 32, 146-170.
17. Mehmood, A.; Nadeem, F.; Nordo, G.; Zamir, M.; Park, C.; Kalsoom, H.; Jabeen, S.; Khan, M.I.; Generalized Neutrosophic Separation Axioms in Neutrosophic Soft Topological Spaces, Neutrosophic Sets and Systems 2020, 32, 38-51.
18. Evanzalin Ebenanjar, P.; Jude Immaculate, H.; Sivaranjani, K. Introduction to neutrosophic soft topological spatial region, Neutrosophic Sets and Systems 2020, 31, 297-304.
19. Chinnadurai, V.; Swaminathan, A.; Bobin, A.; Kathar Kani, B. Generalised Interval Valued Intuitionistic Fuzzy Soft Matrices and Their Application to Multicriteria Decision Making. Recent Trends in Pure and Applied Mathematics 2019, AIP Conf. Proc. 2177, 020019-1 - 020019-11.
20. Taha, Y.O.; Cigdem, G.A.; Sadi, B. A new approach to operations on neutrosophic soft sets and to neutrosophic soft topological spaces. Communications in Mathematics and Applications 2019, 10(3), 481-493.
21. Taha, Y.O.; Cigdem, G.A.; Sadi. B. Separation axioms on neutrosophic soft topological spaces. Turkish Journal of Mathematics 2019, 43, 498-510.
22. Bayramov, S.; Gunduz, C. A new approach to separability and compactness in soft topological spaces. TWMS Journal of Pure and Applied Mathematics 2018, 9, 82-93.
23. Bera, T.; Mahapatra, N.K. Introduction to neutrosophic soft topological space. OPSEARCH 2017, 54, 841-867, DOI 10.1007/s12597-017-0308-7.
24. Bera. T.; Mahapatra, N.K. On neutrosophic soft function. Annals of Fuzzy Mathematics and Informatics 2016, 12, 101-119.
25. Faruk, K. Neutrosophic Soft Sets with Applications in Decision Making. International Journal of Information Science and Intelligent Systems 2015, 4(2), 1-20.
26. Tantawy, O.; EL-Sheikh, S. A.; Hamde. S. Separation axioms on soft topological spaces. Annals of Fuzzy Mathematics and Informatics 2015, 1-15.
27. Deli, I.; Broumi, S. Neutrosophic soft relations and some properties. Annals of Fuzzy Mathematics and Informatics 2015, 9, 169-182.
28. Naz, M.; Ali, M.I.; Shabir, M. Separation Axioms in Bi-Soft Topological Spaces. arXiv:1509.00866v1[math.GN] 2015, 1-22.
29. Bayramov, S.; Gunduz, C. On intuitionistic fuzzy soft topological spaces. TWMS Journal of Pure and Applied Mathematics 2014, 5, 66-79.
30. Maji, P.K. Neutrosophic soft set. Annals of Fuzzy Mathematics and Informatics 2013, 5, 157-168.
31. Varol, B. P.; Aygun, H. On Soft Hausdorff Spaces, Annals of Fuzzy Mathematics and Informatics 2013, 5(1), 15-24.
32. Nazmul, S.K.; Samanta, S. K. Neighborhood Properties of Soft Topological spaces. Annals of Fuzzy Mathematics and Informatics 2012, 1-16.
33. Salma, A.A.; Alblowi, S.A. Neutrosophic set and neutrosophic topological spaces. IOSR Journal of Applied Mathematics 2012; 3, 31-35.
34. Zorlutuna, I.; Akdag, M.; Min, W.K.; Atmaca, S. Remarks on soft topological spaces. Annals of Fuzzy Mathematics and Informatics 2012, 3(2), 171-185.
35. Ali, M.I.; Shabir, M.; Naz, M. Algebraic structures of soft sets associated with new operations. Computers and Mathematics with Applications 2011, 61, 2647-2654.
36. Hussain, S.; Ahmad, B. Some properties of soft topological spaces. Computers and Mathematics with Applications 2011, 62, 4058-4067.
37. Cagman, N.; Karatas, S.; Enginoglu, S. Soft topology. Computers and Mathematics with Applications 2011, 62, 351-358.
38. Shabir, M.; Naz, M. On soft topological spaces, Computers and Mathematics with Applications 2011, 61, 1786-1799.
39. Min, W. K. A note on soft topological spaces. Computers and Mathematics with Applications 2011, 62, 3524-3528.
40. Ali, M.I.; Feng, F.; Liu, X.Y.; Min, W.K.; Shabir, M. On some new operations in soft set theory, Computers and Mathematics with Applications 2009, 57, 1547-1553.
41. Feng, F.; Jun, Y.B.; Zhao, X.Z. Soft semirings. Computers and Mathematics with Applications 2009, 57, 1547-1553
42. Pie, D.; Miao, D. From soft sets to information systems. IEEE International Conference on Granular Computing 2005, 2, 617-621.
43. Chen, D. The parametrization reduction of soft sets and its applications. Computers and Mathematics with Applications 2005, 49, 757-763.
44. Maji, P.K.; Biswas, R.; Roy, A.R. Soft set theory. Computers and Mathematics with Applications 2003, 45, 555-562.
45. Maji, P.K.; Roy, A. R.; Biswas, R. An application of soft sets in a decision making problem. Computers and Mathematics with Applications 2002, 44, 1077-1083.
46. Molodtsov, D. Soft set theory-first results. Computers and Mathematics with Applications 1999, 37, 19-31.
47. Atanassov, K. Intuitionistic fuzzy sets. Fuzzy Sets and Systems 1986, 20, 87-96.
48. Lal, S. Pairwise concepts in bitopological spaces. Journal of the Australian Mathematical Society (Series A) 1978, 26, 241-250.
49. Reilly, I. L. On bitopological separation properties. Nanta Mathematica 1972, 5, 14-25.
50. Singal, M.K.; Asha, R.S. Some more separation axioms in bitopological spaces. Annales de la Société scientifique de Bruxelles 1970, 84, 207-230.
51. Kim, Y. W. Pairwise compactness. Publications Mathématiques de l'IHÉS 1968, 15, 87-90.
52. Patty, C. W. Bitopological spaces. Duke Mathematical Journal 1967, 34, 387-392.
53. Lane, E. P. Bitopological spaces and quasi-uniform spaces. Proceedings of the London Mathematical Society 1967, 17, 241-256.
54. Zadeh, L.A. Fuzzy sets. Information and Control 1965, 8, 338-353.
55. Kelly, J. C. Bitopological spaces. Proceedings of the London Mathematical Society 1963, 13, 71-89.

Ranking of Pentagonal Neutrosophic Numbers and its Applications to solve Assignment Problem

K.Radhika ${ }^{1}$ and K.Arun Prakash ${ }^{2}$
1 Department of Mathematics, Kongu Engineering College, Perundurai; radhikavisu@gmail.com
2 Department of Mathematics, Kongu Engineering College, Perundurai; arunfuzzy@gmail.com

Abstract

Introduction of Neutrosophic sets and Neutrosophic numbers paves a way to handle uncertainty more effectively. In this paper we propose a new approach for ranking neutrosophic number by using its magnitude. We develop an algorithm for the solution of neutrosophic assignment problems involving pentagonal neutrosophic number. The proposed method is easy to understand and to apply for finding solution of neutrosophic assignment problems occurring in real life situations. To show the proposed strategy numerical models are given and the acquired results are analyzed.

Keywords: Neutrosophic sets, Neutrosophic number, Pentagonal neutrosophic number, Neutrosophic Assignment Problem, Optimal Solution.

1. Introduction

This section gives a survey of research work carried out so far to handle uncertainity. The novelty of present work, motivation behind it and structure of the remaining sections were also provided.

1.1: Literature survey

Smarandache [1] introduced neutrosophic sets having three components truthiness, indeterminacies, and falseness. Wang et al [3] introduced a single valued neutrosophic set, which is a subclass of a neutrosophic set presented by Smarandache [1]. Introduction of neutrosophic measure, neutrosophic integral, and neutrosophic probability by Smarandache [2,4] gave notation and many examples for neutrosophic measure, and consequently, the neutrosophic integral and neutrosophic probability are also defined. Many researchers have applied the neutrosophic logic in various fields.

To develop an optimization problem and its solution procedure in uncertain environment, the study of fuzzy number, intuitionistic fuzzy number, neutrosophic number and their ranking is necessary. Several researchers paid attention to fuzzy and intuitionistic fuzzy optimization methods by adopting various ranking techniques. But ranking of neutrosophic number is a risk task. To handle optimization problems having indeterminacy, ranking of neutrosophic numbers plays a vital role. S.Subasri and K.Selvakumari [5] ranked triangular neutrosophic number and applied the same to solve travelling salesman problems. Avishek Chakraborty [6], [7] gave a new ranking method to rank pentagonal neutrosophic number. Chakraborty A, Mondal SP, Ahmadian A, Senu N, Alam S,Salahshour S in 2018 [8] formatted Different forms of triangular neutrosophic numbers,
and introduced de-neutrosophication techniques, and applied in critical path analysis. Smarandache [9] in 2019 approached TOPSIS technique for developing supplier selection with group decision making under type-2 neutrosophic number. Nabeeh NA, Abdel-Basset M, El-Ghareeb HA, Aboelfetouh A in 2019[10] developed multi-criteria decision making approach for IoT-based enterprises using neutrosophic numbers. Neutrosophic functions and neutrosophic calculus, was defined by Florentin Smarandache [11].Neutrosophic ordinary differential equation of first order via neutrosophic numbers is epitomized by Sumathi IR, MohanaPriya V [12], Differential equations in neutrosophic environment are explored, and solution of second-order linear differential equation with trapezoidal neutrosophic numbers as boundary conditions is discussed by R. Sumathi [13].Minimal spanning tree is one of the important fact in the field of graph theory. Single valued neutrosophic minimal spanning tree and clustering method was solved by Ye [14] in 2014. Mandal \& Basu [15] solved similarity measure to find spanning tree related with neutrosophic arena. Mullai et.al [16] formulated minimum spanning tree problem in bipolar neutrosophic number. Broumi et.al [17] formulated shortest path problem on single valued neutrosophic graphs. Kandasamy [18] developed double-valued neutrosophic sets and their application in minimum spanning tree problems. Broumi et.al [19] formulated neutrosophic shortest path for solving Dijkstra's algorithm in graph theory. Mohamed Abdel-Basset [20] introduced bipolar neutrosophic number and applied in decission making problems he also proposed a model in [21] to evaluate the supply chain sustainability metrics based on a combination of quality function deployment and plithogenic aggregation operations. Assignment problems plays an important role in optimization. Many researchers have handled assignment problems in fuzzy and intuitionistic fuzzy environment but in neutrosophic environment, only few articles were published, that too involving other forms neutrosophic numbers. This was the first attempt to discuss assignment problems in neutrosophic environments involving pentagonal neutrosophic numbers.

1.2. Motivation

For the past few years the ambiguous data were handled by fuzzy sets, intuitionistic fuzzy sets, interval valued fuzzy sets and many such structures. Recently, the introduction of neutrosophic sets proves to be more suited to handle vagueness than existing set theoretical structure. Fuzzy number can measure only uncertainty, intuitionistic and interval valued intuitionistic fuzzy number can measure uncertainty and vagueness not hesitation. Only neutrosophic number can measure all the three parameters effectively. Thus pentagonal neutrosophic number attracts more attention and paves path for new research.

1.3. Novelties

From its inception, a few research articles had just distributed in various journals in neutrosophic field. Only a countable amount of articles had dealt with pentagonal neutrosophic number in that other types neutrosophic number can be generalized from pentagonal neutrosophic number. Neutrosophic assignment problem is an area in which focus on the de-neutrosophication technique applied to solve neutrosophic assignment problem.

1.4. Contribution

In this research article, symmetric pentagonal neutrosophic fuzzy numbers are considered. These numbers are converted into crisp values by means of ranking approach by magnitude. There are many ranking procedures which rank uncertainty and vagueness separately. Here our ranking procedure converts all the three parts of pentagonal neutrosophic number into crisp number. Lastly, the proposed ranking was applied to solve neutrosophic assignment problem. Section-1 throws an introduction to neutrosophic number and literature survey in the field. Section-2 gives the preliminaries Section-3 covers representation, definition and ranking of pentagonal neutrosophic
number. Section-4 provides mathematical formation of neutrosophic assignment problem, algorithm to solve it and numerical example illustrating the procedure. The last section gives the conclusion and scope of the future work.

2. Preliminaries

Definition 2.1: [1] Let X be a universe set. A neutrosophic set A on X is defined as $A=\left\{T_{A}(x), I_{A}(x), F_{A}(x): x \in X\right\}$, where $\left.T_{A}(x), I_{A}(x), F_{A}(x): X \rightarrow-\right] 0,1[+$ represents the degree of membership, degree of indeterministic, and degree of non-membership respectively of the element $x \in X$, such that $-0 \leq T_{A}(x)+I_{A}(x)+F_{A}(x) \leq 3+$.

Definition 2.2: [12] (α, β, γ) - cut: The (α, β, γ) - cut neutrosophic set is denoted by $F(\alpha, \beta, \gamma)$, where $\alpha, \beta, \gamma \in[0,1]$ and are fixed numbers, such that $\alpha+\beta+\gamma \leq 3$ is defined as $F(\alpha, \beta, \gamma)=\left\{T_{A}(x), I_{A}(x), F_{A}(x): x \in X, T_{A}(x) \geq \alpha, I_{A}(x) \leq \beta, F_{A}(x) \leq \gamma\right\}$.

Definition 2.3: [12] A neutrosophic set A defined on the universal set of real numbers R is said to be neutrosophic number if it has the following properties. (i) A is normal if there exist $x_{0} \in R$, such that $T_{A}\left(x_{0}\right)=1, I_{A}\left(x_{0}\right)=F_{A}\left(x_{0}\right)=0$. (ii) A is convex set for the truth function $T_{A}(x)$, i.e., $T_{A}\left(\mu x_{1}+(1-\mu) x_{2}\right) \geq \min \left(T_{A}\left(x_{1}\right), T_{A}\left(x_{2}\right)\right), \forall x_{1}, x_{2} \in R, \mu \in[0,1]$. (iii) A is concave set for the indeterministic function and false fuunction $I_{A}(x)$ and $F_{A}(x)$, i.e., $I_{A}\left(\mu x_{1}+(1-\mu) x_{2}\right) \geq \max \left(I_{A}\left(x_{1}\right), I_{A}\left(x_{2}\right)\right), \forall x_{1}, x_{2} \in R, \mu \in[0,1]$, $F_{A}\left(\mu x_{1}+(1-\mu) x_{2}\right) \geq \max \left(F_{A}\left(x_{1}\right), F_{A}\left(x_{2}\right)\right), \forall x_{1}, x_{2} \in R, \mu \in[0,1]$.

3 Ranking of pentagonal Neutrosophic number

This section gives the definition of symmetric pentagonal neutrosphic number and a method of ranking it by means of magnitude. Numerical examples were illustrated to explain the proposed ranking procedure.

Definition: Symmetric Pentagonal neutrosophic number: A is a subset of neutrosophic number in R with the following truth function, indeterministic function, and falsity function which is given by the following:

$$
A=\left\{\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right),\left(b_{1}, b_{2}, b_{3}, b_{4}, b_{5}\right),\left(c_{1}, c_{2}, c_{3}, c_{4}, c_{5}\right) ; p, q, r\right\}, \text { where } p, q, r \in[0,1] .
$$

The accuracy membership function $A_{\mu}(x): \square \rightarrow[0,1]$, the indeterminacy membership function $A_{v}(x): \square \rightarrow[0,1]$ and the falsity membership function $A_{\varphi}(x): \square \rightarrow[0,1]$ are defined as follows:

$$
\begin{aligned}
& \left\{\begin{array}{l}
0, x \leq a_{1} \\
p\left(\frac{x-a_{1}}{a_{2}-a_{1}}\right), a_{1} \leq x \leq a_{2}
\end{array}\right. \\
& A_{\mu}(x)=\left\{\begin{array}{l}
1+\frac{(p-1)\left(x-a_{3}\right)}{a_{3}-a_{2}}, a_{2} \leq x \leq a_{3} \\
1, x=a_{3} \\
1+\frac{(p-1)\left(x-a_{3}\right)}{a_{3}-a_{2}}, a_{2} \leq x \leq a_{3} \\
p\left(\frac{a_{5}-x}{a_{5}-a_{4}}\right), a_{4} \leq x \leq a_{5} \\
0, x \geq a_{5}
\end{array}\right. \\
& A_{v}(x)=\left\{\begin{array}{l}
1, x \leq b_{1} \\
1+\frac{(q-1)\left(x-b_{1}\right)}{b_{2}-b_{1}}, b_{1} \leq x \leq b_{2} \\
q\left(\frac{b_{3}-x}{b_{3}-b_{2}}\right), b_{2} \leq x \leq b_{3} \\
0, x=b_{3} \\
q\left(\frac{x-b_{3}}{b_{4}-b_{3}}\right), b_{3} \leq x \leq b_{4} \\
q+\frac{(1-q)\left(x-b_{4}\right)}{b_{5}-b_{4}}, b_{4} \leq x \leq b_{5} \\
1, x \geq b_{5}
\end{array}\right. \\
& A_{\varphi}(x)=\left\{\begin{array}{l}
1, x \leq c_{1} \\
1+\frac{(r-1)\left(x-c_{1}\right)}{c_{2}-c_{1}}, c_{1} \leq x \leq c_{2} \\
r\left(\frac{c_{3}-x}{c_{3}-c_{2}}\right), c_{2} \leq x \leq c_{3} \\
0, x=c_{3} \\
r\left(\frac{x-c_{3}}{c_{4}-c_{3}}\right), c_{3} \leq x \leq c_{4} \\
r+\frac{(1-r)\left(x-c_{4}\right)}{c_{5}-c_{4}}, c_{4} \leq x \leq c_{5} \\
1, x \geq c_{5}
\end{array}\right.
\end{aligned}
$$

Figure 1.Representation of Symmetric Pentagonal neutrosophic number

3.1 Magnitude of a Pentagonal Neutrosophic Number

Let $A=\left\{\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right),\left(b_{1}, b_{2}, b_{3}, b_{4}, b_{5}\right),\left(c_{1}, c_{2}, c_{3}, c_{4}, c_{5}\right) ; p, q, r\right\}$, where $p, q, r \in[0,1]$ be a symmetric pentagonal neutrosophic number whose accuracy membership function is given by

$$
A_{\mu}(x)=\left\{\begin{array}{l}
0, \quad x \leq a_{1} \\
z_{A}^{L 1}, a_{1} \leq x \leq a_{2} \\
z_{A}^{L 2}, \quad a_{2} \leq x \leq a_{3} \\
1, \quad x=a_{3} \\
z_{A}^{R 1}, \quad a_{3} \leq x \leq a_{4} \\
z_{A}^{R 2}, \quad a_{4} \leq x \leq a_{5} \\
0, \quad x \geq a_{5}
\end{array}\right.
$$

indeterminacy membership function is given by

$$
A_{v}(x)=\left\{\begin{array}{l}
1, \quad x \leq b_{1} \\
k_{A}^{L 1}, b_{1} \leq x \leq b_{2} \\
k_{A}^{L 2}, b_{2} \leq x \leq b_{3} \\
0, \quad x=b_{3} \\
k_{A}^{R 1}, b_{3} \leq x \leq b_{4} \\
k_{A}^{R 2}, b_{4} \leq x \leq b_{5} \\
1, x=b_{5}
\end{array} \quad\right. \text { and }
$$

and falsity membership function is given by
$A_{\phi}(x)=\left\{\begin{array}{l}1, \quad x \leq c_{1} \\ m_{A}^{L 1}, \quad c_{1} \leq x \leq c_{2} \\ m_{A}^{L 2}, \quad c_{2} \leq x \leq c_{3} \\ 0, \quad x=c_{3} \\ m_{A}^{R 1}, \quad c_{3} \leq x \leq c_{4} \\ m_{A}^{R 2}, \quad c_{4} \leq x \leq c_{5} \\ 1, \quad x \geq c_{5}\end{array}\right.$
Here

$$
z_{A}^{L 1}(x):\left[a_{1}, a_{2}\right] \rightarrow[0, \mathrm{p}], z_{A}^{L 2}(x):\left[a_{2}, a_{3}\right] \rightarrow[\mathrm{p}, 1], z_{A}^{R 1}(x):\left[a_{3}, a_{4}\right] \rightarrow[\mathrm{p}, 1], \mathrm{z}_{A}^{R 2}(\mathrm{x}):\left[\mathrm{a}_{4}, \mathrm{a}_{5}\right] \rightarrow[0, p]
$$

where $z_{A}^{L 1}(x), z_{A}^{L 2}(\mathrm{x})$ are non-decreasing left accuracy functions and $z_{A}^{R 1}(x), z_{A}^{R 2}(x)$ are non-increasing right accuracy functions of symmetric Pentagonal neutrosophic number. Also $k_{A}^{L 1}(x):\left[b_{1}, b_{2}\right] \rightarrow[q, 1], k_{A}^{L 2}(x):\left[b_{2}, b_{3}\right] \rightarrow[0, \mathrm{q}], k_{A}^{R 1}(x):\left[b_{3}, b_{4}\right] \rightarrow[0, \mathrm{q}], k_{A}^{R 2}(x):\left[b_{4}, b_{5}\right] \rightarrow[\mathrm{q}, 1]$, where $k_{A}^{L 1}(x), \mathrm{k}_{A}^{L 2}(\mathrm{x})$ are non-increasing left indeterminacy membership functions and $k_{A}^{R 1}(x), \mathrm{k}_{A}^{R 2}(x)$ are non-decreasing right indeterminacy membership functions of symmetric pentagonal neutrosophic number. Similarly the functions that occur in falsity membership function were defined as follows:
$m_{A}^{L 1}(x):\left[\mathrm{c}_{1}, c_{2}\right] \rightarrow[\mathrm{r}, 1], \mathrm{m}_{A}^{L 2}(x):\left[\mathrm{c}_{2}, c_{3}\right] \rightarrow[0, \mathrm{r}], \mathrm{m}_{A}^{R 1}(x):\left[\mathrm{c}_{3}, c_{4}\right] \rightarrow[0, \mathrm{r}], \mathrm{m}_{A}^{R 2}(x):\left[\mathrm{c}_{4}, c_{5}\right] \rightarrow[\mathrm{r}, 1]$, where $m_{A}^{L 1}(x), \mathrm{m}_{A}^{L 2}(\mathrm{x})$ are non-increasing left falsity membership function and $m_{A}^{R 1}(x), \mathrm{m}_{A}^{R 2}(x)$ are non-decreasing right falsity membership function of symmetric Pentagonal neutrosophic number. It is clear that $z_{A}^{L 1}(x), z_{A}^{L 2}(\mathrm{x})$ $z_{A}^{R 1}(x), z_{A}^{R 2}(x), k_{A}^{L 1}(x), \mathrm{k}_{A}^{L 2}(\mathrm{x}), k_{A}^{R 1}(x), \mathrm{k}_{A}^{R 2}(x), m_{A}^{L 1}(x), \mathrm{m}_{A}^{L 2}(\mathrm{x}), m_{A}^{R 1}(x), \mathrm{m}_{A}^{R 2}(x)$ are one to one and inverse exist.

The inverse functions of left and right accuracy, indeterminacy and falsity functions are defined as follows:
$f_{A}^{L 1}:[0, p] \rightarrow R, f_{A}^{L 2}:[p, 1] \rightarrow R, f_{A}^{R 1}:[p, 1] \rightarrow R, f_{A}^{R 2}:[0, p] \rightarrow R, g_{A}^{L 1}:[1, q] \rightarrow R, g_{A}^{L 2}:[0, q] \rightarrow R$,
$g_{A}^{R 1}:[0, q] \rightarrow R, g_{A}^{R 2}:[1, q] \rightarrow R, h_{A}^{L 1}:[1, q] \rightarrow R, h_{A}^{L 2}:[0, q] \rightarrow R, h_{A}^{R 1}:[0, q] \rightarrow R, h_{A}^{R 2}:[1, q] \rightarrow R$,
where
$f_{A}^{L 1}(y)=a_{1}+y \frac{\left(a_{2}-a_{1}\right)}{p}, 0 \leq y \leq p$
$f_{A}^{L 2}(y)=a_{2}+\frac{\left(a_{3}-a_{2}\right)(y-p)}{1-p}, p \leq y \leq 1$
$f_{A}^{R 1}(y)=a_{3}+\frac{\left(a_{4}-a_{3}\right)(y-1)}{p-1}, p \leq y \leq 1$
$f_{A}^{R 2}(y)=a_{5}+y \frac{\left(a_{4}-a_{5}\right)}{p}, 0 \leq y \leq p$
$g_{A}^{L 1}(y)=b_{1}+\frac{\left(b_{2}-b_{1}\right)(y-1)}{q-1}, q \leq y \leq 1$
$g_{A}^{L 2}(y)=b_{3}-\frac{\left(b_{3}-b_{2}\right) y}{q}, \quad 0 \leq y \leq q$
$g_{A}^{R 1}(y)=b_{3}+\frac{\left(b_{4}-b_{3}\right) y}{q}, \quad 0 \leq y \leq q$
$g_{A}^{R 2}(y)=b_{4}+\frac{\left(b_{5}-b_{4}\right)(y-q)}{1-q}, q \leq y \leq 1$
$h_{A}^{L 1}(y)=c_{1}+\frac{\left(c_{2}-c_{1}\right)(y-1)}{r-1}, r \leq y \leq 1$
$h_{A}^{L 2}(y)=c_{3}-\frac{\left(c_{3}-c_{2}\right) y}{r}, \quad 0 \leq y \leq r$
$h_{A}^{R 1}(y)=c_{3}+\frac{\left(c_{4}-c_{3}\right) y}{r}, \quad 0 \leq y \leq r$
$h_{A}^{R 2}(y)=c_{4}+\frac{\left(c_{5}-c_{4}\right)(y-r)}{1-r}, r \leq y \leq 1$
The magnitude denoted by $\operatorname{Mag}(A)$ of a symmetric pentagonal neutrosophic number $A=\left\{\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right),\left(b_{1}, b_{2}, b_{3}, b_{4}, b_{5}\right),\left(c_{1}, c_{2}, c_{3}, c_{4}, c_{5}\right) ; p, q, r\right\}$, is determined as follows:

$$
\begin{align*}
\operatorname{Mag}(A)= & \frac{1}{2} \int\left(f_{A}^{L 1}(\alpha)+f_{A}^{L 2}(\alpha)+f_{A}^{R 1}(\alpha)+f_{A}^{R 2}(\alpha)+2 \mathrm{a}_{3}+g_{A}^{L 1}(\alpha)+g_{A}^{L 2}(\alpha)+g_{A}^{R 1}(\alpha)+g_{A}^{R 2}(\alpha)+2 \mathrm{~b}_{3}+h_{A}^{L 1}(\alpha)+h_{A}^{L 2}(\alpha)+\right. \\
& \left.h_{A}^{R 1}(\alpha)+h_{A}^{R 2}(\alpha)+2 \mathrm{c}_{3}\right) t(\alpha) d \alpha . \\
= & \frac{1}{12}\left[p^{2}\left(a_{1}+a_{5}\right)+(1+p)\left(a_{2}+a_{4}\right)-\left(2 p^{2}+2 p-10\right) a_{3}-\left(q^{2}+q-2\right)\left(b_{1}+b_{5}\right)+(1+q)\left(b_{2}+b_{4}\right)+\right. \\
& \left.\left(2 q^{2}+6\right) b_{3}-\left(r^{2}+r-2\right)\left(c_{1}+c_{5}\right)+(1+r)\left(c_{2}+c_{4}\right)+\left(2 r^{2}+6\right) c_{3}\right] . \tag{1}
\end{align*}
$$

where the function $t(\alpha)$ is a weighted function and is a non-negative and increasing function on $[0,1]$ with $\mathrm{t}(0)=0, \mathrm{t}(1)=1$ and $\int_{0}^{1} t(\alpha) d \alpha=\frac{1}{2}$ we choose $\mathrm{t}(\alpha)=\alpha$. The scalar value $\operatorname{Mag}(\mathrm{A})$ is used to rank Pentagonal neutrosophic number.

Remark:

When $p=0, q=1, r=1$ pentagonal neutrosophic number becomes triangular neutrosophic number.
Then the magnitude of A defined in equation (1) will be transformed into
$\operatorname{Mag}(A)=\frac{1}{12}\left[\left(a_{2}+a_{4}\right)+10 a_{3}+2\left(b_{2}+b_{4}\right)+8 b_{3}+2\left(c_{2}+c_{4}\right)+8 c_{3}\right]$

3.2 Ranking Procedure

Using the magnitude of symmetric pentagonal neutrosophic number defined above, the ordering of pentagonal neutrosophic numbers is explained in this section.

Let $A=\left\{\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right),\left(b_{1}, b_{2}, b_{3}, b_{4}, b_{5}\right),\left(c_{1}, c_{2}, c_{3}, c_{4}, c_{5}\right) ; p, q, r\right\}$, and
$B=\left\{\left(d_{1}, d_{2}, d_{3}, d_{4}, d_{5}\right),\left(e_{1}, e_{2}, e_{3}, e_{4}, e_{5}\right),\left(i_{1}, i_{2}, i_{3}, i_{4}, i_{5}\right) ; u, v, w\right\}$ be any two arbitrary Pentagonal neutrosophic numbers. Then the ranking procedure is as follows:

Step 1: Compute $\operatorname{Mag}(\mathrm{A}), \operatorname{Mag}(\mathrm{B})$, any one of the following cases prevail.

Step 2:

(i) If $\operatorname{Mag}(A)>\operatorname{Mag}(\mathrm{B})$, then $\mathrm{A}>\mathrm{B}$
(ii) If $\operatorname{Mag}(A)<\operatorname{Mag}(\mathrm{B})$, then $\mathrm{A}<\mathrm{B}$
(iii) If $\operatorname{Mag}(A)=\operatorname{Mag}(\mathrm{B})$, then $\mathrm{A}=\mathrm{B}$

3.3 Numerical examples

The ordering procedure in the previous section is illustrated by numerical examples.
Consider the following sets of Pentagonal neutrosophic numbers.
Set $1: A=\{(.5,1.5,2.5,3.5,4.5)(0.3,1.3,2.3,3.3,4.3)(1.8,2.8,3.8,4.8,5.8) ; 0.5,0.5,0.5\}$
$B=\{(.7,1.7,2.5,3.5,4.7)(.5,1.5,2.2,3.2,4)(1.7,2.7,3 ., 4.7,5.7) ; 0.5,0.5,0.5\}$
$C=\{(1,4,7,10,13)(0.5,3.5,6.5,9.5,12.5)(4.5,7.5,9,12,14.5) ; 0.5,0.5,0.5\}$
Set $2: A=\{(10,15,20,25,30)(0,3,5,7,10)(0,1,2,3,4) ; 0.5,0.5,0.5\}$
$B=\{(5,10,15,20,25)(1,2,3,4,5)(1,1.5,2,2.5,3) ; 0.5,0.5,0.5\}$
$C=\{(10,20,30,40,50)(1,4,7,8,10)(1,1.5,2,2.5,3) ; 0.5,0.5,0.5\}$
The table. 1 gives the comparison of proposed ranking of Pentagonal neutrosophic numbers with the existing methods.

Author name and method	Set 1	Set 2
Proposed method	$\begin{aligned} & \mathrm{A}=8.6 \\ & \mathrm{~B}=8.4 \\ & \mathrm{C}=22.79 \\ & \text { Result: } \quad \mathrm{C}>\mathrm{A}>\mathrm{B} \end{aligned}$	$\begin{aligned} & \mathrm{A}=27 \\ & \mathrm{~B}=20 \\ & \mathrm{C}=38.5 \\ & \text { Result: } \quad \mathrm{C}>\mathrm{A}>\mathrm{B} \end{aligned}$
Avishek Chakraborty's De-Neutrosophication value [6]	$\begin{aligned} & \mathrm{A}=2.86 \\ & \mathrm{~B}=2.66 \\ & \mathrm{C}=7.66 \\ & \text { Result: } \quad \mathrm{C}>\mathrm{A}=\mathrm{B} \end{aligned}$	$\begin{aligned} & \mathrm{A}=9 \\ & \mathrm{~B}=6.66 \\ & \mathrm{C}=12.70 \\ & \text { Result: } \quad \mathrm{C}>A>B \end{aligned}$
Avishek Chakraborty's accuracy function value [7]	$\begin{aligned} & \mathrm{A}=-.533 \\ & \mathrm{~B}=-.45 \\ & \mathrm{C}=-2.33 \\ & \text { Result: } \quad \mathrm{B}>\mathrm{A}>\mathrm{C} \end{aligned}$	$\begin{aligned} & A=5 \\ & B=4 \\ & C=8 \\ & \text { Result: } \quad C>A>B \\ & \hline \end{aligned}$

Table. 1 Comparison table for ranking Pentagonal neutrosophic numbers
The table 2 gives the numerical example of the De-Neutrosophication value of Triangular neutrosophic numbers.

Sl.No	Triangular neutrosophic numbers	proposed method of ranking
	$\mathrm{A}=\{(1,2,3)(0.5,1.5,2.5)(1.2,2.7,3.5)\}$	6.083
	$\mathrm{~B}=\{(.5,1.5,2.5)(.3,1.3,2.2)(.7,1.7,2.2\}$	3.723
	Result	$\mathrm{A}>\mathrm{B}$

Table. 2 De-Neutrosophication value Triangular neutrosophic numbers

4. Application of Ranking of Pentagonal Neutrosophic Number in solving Neutosphic Assignment Problem

In this section neutrosophic assignment problem with pentagonal neutrosophic numbers as parameters was formulated, algorithm for identifying the optimal solution to neutrosophic assignment problem was stated. Finally a numerical example was produced to explain the proposed algorithm.

Need for Pentagonal neutrosophic numbers

Suppose there are n facilities and n jobs it is clear that in this case, there will be n assignments. Each facility or say worker can perform each job, one at a time. But there should be certain procedure by which assignment should be made so that the profit is maximized or the cost or time is minimized. But in our real life applications the times taken to complete the job undergo uncertainty, hesitation and vagueness. In such cases we cannot have the parameter as a real value. So we have to use some other representation of the parameter with which the uncertainty, hesitation and vagueness can be measured. The below discussion justify the need for selecting the cost parameter in the terms of Pentagonal neutrosophic number.

* If the parameter is a real value - uncertainty hesitation and vagueness cannot be handled
* If the parameter is a fuzzy value- uncertainty but hesitation and vagueness cannot be handled
* If the parameter is an Intuitionistic Fuzzy value - uncertainty and hesitation can be handled but vagueness cannot be handled.
* If the parameter is a Pentagonal neutrosophic value - uncertainty, hesitation and vagueness (i.e) all the components can be handled.

From the above discussion, it is clear that only pentagonal neutrosophic environment can tackle the impreciseness, hesitation and truthiness in a membership function of an uncertain number, which is more reliable, logical and realistic for a decision maker. Pentagonal neutrosophic numbers enabled to meet the imprecise parameters as well, which is approvingly the advantageous for the decision makers to analyze the result in a more precise manner. Moreover Pentagonal neutrosophic numbers generalize other types of neutrosophic numbers.

Pentagonal neutrosophic assignment problem may be formulated as follows:

Consider the assignment problem with cost function as Pentagonal neutrosophic number.

$$
\begin{aligned}
& \text { Minimize } z=\sum_{i=1}^{n} \sum_{j=1}^{n} c_{i j} x_{i j} \text {, subject to } \\
& \sum_{i=1}^{n} x_{i j}=1, j=1,2,3, \ldots \ldots . n \text { and } \sum_{j=1}^{n} x_{i j}=1, j=1,2,3, \ldots \ldots . n, \quad x_{i j}=1 \text { or } 0 \text { for al } i, j \text {, where } c_{i j} \text { is a }
\end{aligned}
$$

Pentagonal neutrosophic number and the total cost for performing all the activity is given by

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} c_{i j} x_{i j} .
$$

Fundamental Theorems of a Pentagonal neutrosophic Assignment Problem

The solution of a Pentagonal neutrosophic assignment problem is fundamentally based on the following two theorems:

Theorem 1:

In a Pentagonal neutrosophic assignment problem, if we add or subtract an Pentagonal neutrosophic number to every element of any row (or column) of the Pentagonal neutrosophic parameter matrix $\left[c_{i j}\right]$, then an assignment that minimizes the total Pentagonal neutrosophic parameter on one matrix also minimizes the total Pentagonal neutrosophic parameter on the other matrix.
Minimize $Z=\sum^{n} \sum^{n} c_{i j} x_{i j}$ with $\sum_{n}^{n} x_{i j}=1, j=12 \ldots . n, \sum^{n} x_{i j}=1, i=1,2 . . n \quad x_{i j}=0$ or 1 for every i, j then $x_{i j}^{*}$ also minimize $Z^{*}=\sum \sum c_{i j}^{*} x_{i j}$ where $c_{i j}^{*}=c_{i j}-u_{i}-v_{j}$ for all $i, j=1,2 \ldots n$ for all $\mathrm{i}, \mathrm{j}=1$, $2, \ldots \ldots$. n are some real valued Pentagonal neutrosophic number.

Proof:

$$
\begin{aligned}
Z^{*} & =\sum \sum c_{i j}^{*} x_{i j} \\
& =\sum_{j}^{n} \sum_{i}^{n}\left(c_{i j}-u_{i}-v_{j}\right) x_{i j} \\
& =\sum_{i}^{n} \sum_{j}^{n} c_{i j} x_{i j}-\sum_{i}^{n} u_{i} \sum_{j}^{n} x_{i j}-\sum_{j}^{n} v_{j}-\sum_{i}^{n} x_{i j} \\
& =Z-\sum_{i}^{n} u_{i}-\sum_{j}^{n} v_{j} \sin c e \sum_{i}^{n} x_{i j}=1 \text { and } \sum_{j}^{n} x_{i j}=1
\end{aligned}
$$

This shows that the minimization of the new objective function Z^{*} yields the same solution as the minimization of original objective function Z

Theorem 2:

In a pentagonal neutrosophic assignment problem with parameter function $c_{i j}$ if all $c_{i j} \geq 0$ the feasible solution which $x_{i j}$ satisfies $\sum_{i}^{n} \sum_{j}^{n} c_{i j} x_{i j}=0$ is an optimal solution.

Proof: Since all $c_{i j} \geq 0$ all $x_{i j} \geq 0$. The objective function $Z=\sum^{n} \sum^{n} c_{i j} x_{i j}$ cannot be negative the minim $\mu \mathrm{m}_{n}$ possible that Z can have is 0 .Therefore any feasible solution $x_{i j}$ obtained that satisfies $Z=\sum \sum c_{i j} x_{i j}=0$ will be optimal.

Algorithm to solve Pentagonal neutrosophic assignment problem:

We, now introduce a new algorithm called the Pentagonal neutrosophic Hungarian method for finding a Pentagonal neutrosophic optimal assignment for Pentagonal neutrosophic assignment problem.

Step 1: Determine the Pentagonal neutrosophic parameter table from the given problem.
Step 2: Convert the given Pentagonal neutrosophic assignment matrix to crisp by using the magnitude method.
Step 3: Subtract the row minimum from each row entry of that row. Subtract the column minimum of the resulting matrix from each column entry of that column. Each column and row now has at least one zero.
Step 4: In the modified assignment table obtained in step 3, search for optimal assignment as follows.
Examine the rows successively until a row with a single zero is found. Assign the zero and cross off all other zeros in its column. Continue this for all the rows. Repeat the procedure for each column of reduced assignment table. If a row and / or column have two or more zeros assign arbitrary any one of these zeros and cross off all other zeros of that row/column. Repeat the above process successively until the chain of assigning or cross ends.
Step 5: If the number of assignments is equal to n, the order of the parameter matrix, optimal solution is reached. If the number of assignments is less than n, parameter matrix, go to the step 6 . Step 6: Draw the minimum number of horizontal and / or vertical lines to cover all the zeros of the reduced assignment matrix. This can be done by using the following:
(i)Mark rows that do not have any assigned zero. (ii)Mark columns that have zeros in the marked rows. (iii)Mark rows that do have zeros in the marked columns. Repeat (ii) and (iii) of the above until the chain of marking is completed. Draw lines through all the unmarked rows and marked columns. This gives the desired minimum number of lines.

Step 7: Develop the new revised reduced parameter matrix as follows: Find the smallest entry of the reduced matrix not covered by any of the lines. Subtract this entry from all the uncovered entries and add the same to all the entries lying at the intersection of any two lines.
Step 8: Repeat step 5 to step 7 until optimal solution to the given assignment problem is attained.

Numerical example:

Suppose we want to assign jobs A, B, C, D to machine M1, M2, M3, and M4. Our aim is to find the minimum time so that the job is completed so that each machine is assigned only one job,

The time parameter may not be a real value since the time taken to complete a job depend on the facts such as (i) working condition of the machine (ii) climatic condition and so on. So we represent the time parameter as Pentagonal neutrosophic number. The problem can be considered as follows. $\underset{\text { Where }}{\operatorname{Minimize}} \quad Z=\sum_{j} \sum_{i} c_{i j} x_{i j}$

$$
\begin{aligned}
& c_{11}=\{(8,13,19,24,30)(7,10,15,22,27)(10,16,23,25,32) ; 0.5,0.5,0.5\} \\
& c_{12}=\{(7,12,18,24,30)(6,10,14,20,25)(10,15,20,25,35) ; 0.6,0.4,0.3\} \\
& c_{13}=\{(3,8,14,20,26)(2,7,12,18,22)(5,10,15,24,30) ; 0.4,0.3,0.4\} \\
& c_{14}=\{(10,15,20,26,32)(7,12,18,22,26)(12,16,22,28,35) ; 0.6,0.4,0.3\} \\
& c_{21}=\{(8,14,20,26,32)(6,12,18,22,28)(10,18,24,28,35) ; 0.4,0.5,0.4\} \\
& c_{22}=\{(6,10,15,20,25)(4,8,12,18,22)(8,14,20,24,30) ; 0.6,0.6,0.5\} \\
& c_{23}=\{(9,14,20,25,30)(6,12,16,21,24)(12,15,23,28,35) ; 0.5,0.4,0.3\} \\
& c_{24}=\{(11,15,19,23,27)(8,12,17,21,24)(14,18,22,26,30) ; 0.6,0.6,0.4\} \\
& c_{31}=\{(7,10,13,16,20)(6,8,12,15,18)(10,14,18,22,25) ; 0.7,0.4,0.5\} \\
& c_{32}=\{(12,15,18,24,26)(5,9,13,17,21)(10,14,18,22,26) ; 0.8,0.6,0.2\} \\
& c_{33}=\{(6,11,15,18,24,26)(9,13,17,20,23)(14,18,22,25,29) ; 0.6,0.4,0.3\} \\
& c_{34}=\{(7,11,14,17,26)(4,8,13,19,23)(9,14,19,24,28) ; 0.6,0.5,0.4\} \\
& c_{41}=\{(4,9,15,21,27)(3,8,13,19,23)(6,11,16,25,31) ; 0.6,0.6,0.4\} \\
& c_{42}=\{(11,14,17,23,25)(7,11,16,20,23)(13,17,21,25,29) ; 0.5,0.3,0.4\} \\
& c_{43}=\{(6,11,15,18,24,26)(7,11,15,18,20)(13,17,21,24.27) ; 0.7,0.3,0.4\} \\
& c_{44}=\{(10,14,18,22,26)(5,9,13,19,23)(9,15,21,25,31) ; 0.5,0.4,0.3\}
\end{aligned}
$$

Subject to $\sum_{j=1}^{4} x_{i j}=1, i=1,2,3,4 . \sum_{i}^{4} x_{i j}=1, j=1,2,3,4 ., x_{i j}=1$ or 0 , for all i, j.

Pentagonal neutrosophic assignment matrix in the crisp form

$C_{\text {ij }}=$| | A | B | C | D |
| :---: | :---: | :---: | ---: | :---: |
| M1 | 56.5 | 53.52 | 42.18 | 60.0 |
| M2 | 60.9 | 47.0 | 58.54 | 57.69 |
| M3 | 42.82 | 49.55 | 54.12 | 46.25 |
| M4 | 45.23 | 54.98 | 49.99 | 51.98 |

Applying step 3, 4 the following time parameter matrix is obtained is

$\mathrm{C}_{\mathrm{ij}}=$| | A | B | C | D |
| :---: | :---: | :---: | :---: | :---: |
| M1 | 14.32 | 11.34 | 0 | 17.82 |
| M2 | 13.9 | 0 | 11.54 | 10.69 |
| M3 | 0 | 6.73 | 11.3 | 3.43 |
| M4 | 0 | 9.75 | 4.76 | 6.75 |

Applying step 5 we the following result

$\mathrm{C}_{\mathrm{ij}}=$| | A | B | C | D |
| :---: | :---: | :---: | :---: | :---: |
| M1 | 14.32 | 11.34 | 0 | 14.39 |
| M2 | 13.9 | 0 | 11.54 | 6.26 |
| M3 | 0 | 6.73 | 11.3 | 0 |
| M4 | 0 | 8.81 | 4.76 | 3.32 |

Number of assignment is equal to the order of the matrix. Therefore the optimal assignment is $A \rightarrow M 4, B \rightarrow M 2, C \rightarrow M 1, D \rightarrow M 3$ the minimum time to complete the job is $45.23+47+42.18+46.25=180.66$.

5. Conclusions

In this research article the de-Neutrosophication Pentagonal neutrosophic number into a real number has been introduced by means of magnitude approach. The resulted ranking has been applied to solve neutrosophic assignment problems. The algorithm stated in this paper is simple to use and applicable to solve neutrosophic assignment problems in short time. Also it produces accurate result. There is much scope for future work in this field. This ranking can be applied to solve linear, non-linear and transportation problems involving pentagonal neutrosophic number. Further image processing multi-criteria decision making problems can also make use of this ranking method for smart computation.

Funding: "This research received no external funding"
Acknowledgments: In this section we acknowledge the Chief Editor and reviewers for their valuable suggestions.

Conflicts of Interest: "The authors declare no conflict of interest."

References

1. Smarandache,F. Neutrosophic set - a generalization of the intuitionistic fuzzy set, Proceeding of International Conference on Granular Computing, IEEE, Atlanta, GA, USA, 2006.doi: 10.1109/GRC.2006.1635754.
2. Smarandache,F. An Introduction to Neutrosophy, Neutrosophic Logic and Neutrosophic Set, First International Conference on Neutrosophy, Neutrosophic Logic, Set, Probability and Statistics, University of New Mexico, USA, 2001.
3. Wang,H.; Smarandache,F.; Zhang, Y.Q.; Sunderraman, R. Single valued neutrosophic sets. Multispace and Multistructure ,2010, Volume 4,pp. 410-413.
4. Smarandache,F. Introduction to neutrosophic measure, neutrosophic integral, and neutrosophic probability", Sitech Educational,Craiova, Columbus, USA,2013.
5. Subasr,S.; Selvakumar,K. Solving Neutrosophic Travelling Salesman Problem in Triangular Fuzzy Number Using Ones Assignment Method, Eurasian Journal of Analytical Chemistry, 2018,Volume 13.pp. 285-291. doi:10.5281/zenodo. 3133798.
6. Avishek Chakraborty,;Shreyashree Mondal,;Said Broumi. De-Neutrosophication Technique of Pentagonal Neutrosophic Number and Application in Minimal Spanning Tree, Neutrosophic Sets and Systems, 2019, Volume 29.pp. doi: 10.5281/zenodo. 3514383.
7. Avishek Chakraborty ; SaidBroumi; Prem Kumar Singh. Some properties of Pentagonal Neutrosophic Numbers and its Applications in Transportation Problem Environment, Neutrosophic Sets and Systems, 2019,Volume 28.pp. doi:10.5281/zenodo. 3382542.
8. Chakraborty A,; Mondal SP, ;Ahmadian A,; Senu N, AlamS,Salahshour S. Different forms of triangular neutrosophic numbers, de-neutrosophication techniques, and their applications, Symmetry, 2018, Volume 10:327.pp. doi: 10.3390/sym10080327.
9. Abdel-Basset ,M;Saleh ,M; Gamal ,A; Smarandache F. An approach of TOPSIS technique for developing supplier selection with group decision making under type-2 neutrosophic number, Appl Soft Computing, ,Volume 77.pp.438-452.doi: 10.1016/j.asoc.2019.01.035.
10. Nabeeh,N.A;Abdel-Basset,M; El-Ghareeb,H.A; Aboelfetouh,A.vNeutrosophic multi- criteria decision making approach for IoT-based enterprises, IEEE Access, 2019, Volume 7.pp 59559-59574.doi: 10.1109/ACCESS.2019.2908919.
11. Florentin Smarandache. Neutrosophic precalculus and neutrosophic calculus, Sitech Educational, Europa Nova, Brussels, Belgium ,2015.
12. Sumathi,IR; MohanaPriya, V. A new perspective on neutrosophic differential equation, Int J EngTechnol.2018,Volume.7.pp.422-425. doi: 10.14419/ijet.v7i4.10.21031.
13. Sumathi.R. New approach on differential equation via trapezoidal neutrosophic number, Complex \mathcal{E} Intelligent Systems ,2019,Volume 5.pp.417-424.doi: 10.1007/s40747-019-00117-3.
14. Ye, J. Single valued neutrosophic minimum spanning tree and its clustering method,Journal of Intelligent Systems, 2014, Volume 23. pp.311-324.doi: 10.1515/jisys-2013-0075.
15. Mandal,K; Basu, K. Improved similarity measure in neutrosophic environment and its application in finding minimum spanning tree, Journal of Intelligent and Fuzzy Systems, 2016,Volume 31.pp.1721-1730.doi: 10.3233/JIFS-152082.
16. Mullai,M.; Broumi, S; Stephen, A. Shortest path problem by minimal spanning tree algorithm using bipolar neutrosophic numbers, International Journal of Mathematics Trends andTechnology, 2017, Volume 46.pp.80-87.doi: 10.14445/22315373/IJMTT-V46P514.
17. Broumi,S;Bakali,A;Talea, M; Smarandache, F; Kishore Kumar, P. Shortest path problem on single valued neutrosophic graphs, International Symposium on Networks, Computers and Communications (ISNCC), IEEE, Marrakech, Morocco,2017.doi: 10.1109/ISNCC.2017.8071993.
18. Kandasamy, I. Double-valued neutrosophic sets, their minimum spanning trees, and clustering algorithm. Journal of Intelligent Systems, 2016, Volume 27.pp.1-17. doi: 10.1515/jisys-2016-0088.
19. Broumi, $\mathrm{S} ;$ Bakali, $\mathrm{A} ;$ Talea, $\mathrm{M} ; \mathrm{Smarandache}, \mathrm{F;Vladareanu}, \mathrm{L}$. neutrosophic shortest path problem, Proceedings on the International Conference on Advanced Mechatronic Systems. Melbourne, Australia, 2016.
20. Mohamed Abdel-Basset; Abduallah Gamal; Le Hoang Son.; Smarandache,F. A Bipolar Neutrosophic Multi Criteria Decision Making Framework for Professional Selection, Applied Sciences, 2020, Volume 10 .pp.1-22.doi: 10.3390/app10041202.
21. Abdel-Basset, M.; Mohamed, R.; Zaied, A. E. N. H.; Smarandache, F. A hybrid plithogenic decision-making approach with quality function deployment for selecting supply chain sustainability metrics. Symmetry, 2019,Volume 11.pp. 1-21.doi:10.3390/sym11070903.

Received: Apr 10, 2020. Accepted: July 132020

A new distance measure for trapezoidal fuzzy neutrosophic numbers based on the centroids

Broumi said ${ }^{\text {1* }}$, Malayalan Lathamaheswari ${ }^{2}$, Ruipu Tan 3, Deivanayagampillai Nagarajan ${ }^{2}$, Talea Mohamed ${ }^{1}$, Florentin Smarandache ${ }^{4}$, Assia Bakali ${ }^{5}$
${ }^{1 *}$ Laboratory of Information Processing, Faculty of Science Ben M'Sik, University Hassan II, B.P 7955, Sidi Othman, Casablanca, Morocco; broumisaid78@gmail.com; s.broumi@flbenmsik.ma; taleamohamed@yahoo.fr
2 Department of Mathematics, Hindustan Institute of Technology and Science, Chennai-603 103, India; lathamax@gmail.com
${ }^{3}$ College of Electronics and Information Science, Fujian Jiangxia University, Fuzhou 350108, China;
${ }^{4}$ Department of Mathematics, University of New Mexico, 705 Gurley Avenue, Gallup, NM 87301, USA
${ }^{5}$ Ecole Royale Navale, Boulevard Sour Jdid, B.P 16303 Casablanca, Morocco,Email: assiabakali@yahoo.fr
* Correspondence: broumisaid78@gmail.com; s.broumi@flbenmsik.ma

Abstract

Distance measure is a numerical measurement of the distance between any two objects. The aim of this paper is to propose a new distance measure for trapezoidal fuzzy neutrosophic numbers based on the centroids with graphical representation. In addition, the metric properties of the proposed measure are examined in detail. A decision making problem also has been solved using the proposed distance measure for a software selection process. comparative analysis has been done with the existing methods to show the potential of the proposed distance measure and various forms of trapezoidal fuzzy neutrosophic number have been listed out to show the uniqueness of the proposed graphical representation. Further, advantages of the proposed distance measure have been given.

Keywords: trapezoidal fuzzy neutrosophic numbers; centroids; distance measure

1-Introduction

Zadeh introduced a mathematical frame work called fuzzy set [43] which plays a very significant role in many aspects of science. Intuitionistic fuzzy set is the generalization of the Zadeh's fuzzy set which was presented by Atanassov [3]. Later, triangular intuitionistic fuzzy sets was developed by Liu and Yuan [22] which is based on the combination of triangular fuzzy numbers and intuitionistic fuzzy sets. The fundamental characteristic of the triangular intuitionistic fuzzy set is that the values of its membership function and non-membership function are triangular fuzzy numbers rather than exact numbers. Furthermore, Ye [38] extended the triangular intuitionistic fuzzy set to the trapezoidal intuitionistic fuzzy set, where its fundamental characteristic is that the values of its membership function and non-membership function are trapezoidal fuzzy numbers rather than triangular fuzzy numbers, and proposed the trapezoidal intuitionistic fuzzy prioritized weighted averaging (TIFPWA) operator and trapezoidal intuitionistic fuzzy prioritized weighted geometric (TIFPWG) operator and their multi-criteria decision-making method, in which the criteria are in different

[^35]priority level. Recently, Wang et al. [35] introduced a single-valued neutrosophic set, which is a subclass of a neutrosophic set presented by Smarandache [30], as a generalization of the classic set, fuzzy set and intuitionistic fuzzy set. The single-valued neutrosophic set can independently express truth-membership degree, indeterminacy-membership degree and falsity-membership degree and deal with incomplete, indeterminate and inconsistent information. All the factors described by the single-valued neutrosophic set are very suitable for human thinking due to the imperfection of knowledge that human receives or observes from the external world. For example, for a given proposition "Movie X would be hit," in this situation human brain certainly cannot generate precise answers in terms of yes or no, as indeterminacy is the sector of unawareness of a proposition's value between truth and falsehood. Obviously, the neutrosophic components are best fit in the representation of indeterminacy and inconsistent information, while the intuitionistic fuzzy set cannot represent and handle indeterminacy and inconsistent information. Hence, the single-valued neutrosophic set has been a rapid development and a wide range of applications [39, 40]. Ye [42] introduced the trapezoidal neutrosophic set and its application to multiple attribute decision-making. Cui and Ye [10], Donghai et al. [16], Ebadi et al. [17], Guha and Chakraborty [18], Hajjari [19], Nayagam et al. [25], Rouhparvar et al. [29], Wu [37], Ye [40], Zou et al. [45] and more researchers have shown interest on decision making problem using distance measures. Weighted projection measure, the combination of angle cosine and weighted projection measure,similarity measure, hybrid vector similarity measure of single valued neutrosophic set and interval valued neutrosophic set, outranking strategy, complete ranking, new ranking function have been introduced so far under fuzzy, intuitionistic fuzzy and neutrosophic environments and applied in decision making problem. The rest of the paper is organized as follows. In section 2, literature review is given. In section 3, basic concepts are presented for better understanding. In section 4, proposed a new distnace measure and its graphical representation, and derived its properties in detail. In section 5, new methodology is described for a decision making process using the proposed measure. In section 6, a numerical example is using the proposed methodology to choose the best software system. In section 7, comparative analysis has been done with the existing methods and various forms of trapezoidal fuzzy neutrosophic numbers have been listed out to ahow the uniqueness of the proposed graphical representation. In section 8 , advantages of the proposed measure are given. In section 9, conclusion of the present work is given with the future direction.

2-Literature Review

The authors of, Ahmad et al. [1] proposed a similarity measure based on the distance and set theory for generalized trapezoidal fuzzy numbers. Allahviranloo et al. [2] contributed a new distance measure and ranking method for generalized trapezoidal fuzzy numbers. Atanassov [3] introduced intuitionistic fuzzy sets. Azman and Abdullah [4] proposed a novel centroid method for trapezoidal fuzzy numbers for ranking. Biswas et al. [6] solved a decision making problem using expected value of neutrosophic trapezoidal numbers. Biswas et al. [6] solved a decision making problem using distance measure under interval trapezoidal neutrosophic numbers. Bolos et al. [7] designed the performance indicators of financial assets using neutrosophic fuzzy numbers. Bora and Gupta [8] studied the reaction of distance measure on the work of K-Means algorithm Matlab. Chakraborty et al. [9] presented different forms of trapezoidal neutrosophic number and deneutrosophication
techniques. Cui and Ye [10] proposed logarithmic similarity measure and applied in medical diagnosis under dynamic neutrosophic cubic setting. Darehmiraki [11] introduced a new ranking methodology to solve linear programming problem. Das and De [12] introduced a new distance measure for the ranking IFNs. Das and Guha [13] introduced a ranking method for IFN using the point of centroid. Deli and Oztaurk [14] introduced a defuzzification method and applied in a decision-making problem for single valued trapezoidal neutrosophic numbers. Dhar et al. [15] indicated square neutrosophic fuzzy matrices. Donghai et al. [16] proposed a new similarity measure and distance measure between hesitant linguisticterm sets and applied the proposed concepts in a decision making problem. Ebadi et al. [17] proposed a novel distance measure for trapezoidal fuzzy numbers. Guha and Chakraborty [18] contributed a theoretical development of distance measure for intuitionistic fuzzy numbers (IFNs). Hajjari [19] conferred a new distance measure for Trapezoidal fuzzy numbers. Huang and Wu [20] presented equivalent forms of the triangle inequalities in fuzzy metric spaces. Liang et al. [21] proposed an integrated approach under a single valued trapezoidal neutrosophic environment. Liu and Yuan [22] prospected fuzzy number of intuitionistic fuzzy set. Llopis and Micheli [23] rectified a state of conflict in the sequence of input images. Minculete and Paltanea [24] introduced an enhanced estimates for the triangle inequality. Nayagam et al. [25] contributed a complete ranking of IFNs. Pardha Saradhi et al. [26] presented ordering of IFNs using centroids of centroids. Ravi Shankar et al. [27] developed a new ranking formula using centroid of centroids for fuzzy numbers and applied in a fuzzy critical path method. Rezvani [28] proposed a new ranking exponential formula using median value for trapezoidal fuzzy numbers. Rouhparvar et al. [29] introduced a novel fuzzy distance measure. Uppada [31] examined clustering algorithm using centroid clearly. Varghese and Kuriakose [32] proposed a formula to find the centroid of the fuzzy number. Wang [33] introduced geometric aggregation operator and applied in a decision making problem under intuitionistic fuzzy environment. Wang [34] proposed arithmetic aggregation operators. Wang et al. [35] introduced single valued neutrosophic sets. Wei et al. [36] introduced some persuaded aggregation operators under intuinistic fuzzy setting and applied in a group decision making problem. Wu [37] explained about distance metrics and their role in data transformations.Ye [38] proposed prioritized aggregation operators based on trapezoidal intuitionistic fuzzy concept and applied in a multi-criteria decision making problem. Ye [39] solved minimum spanning tree problem under single valued neutrosophic setting and its clustering method. Ye [40] proposed single valued neutrosophic cross entropy measure and applied in a decision making problem. Ye [41] introduced the expected Dice similarity measure and applied in a decision making problem. Ye [42] projected trapezoidal neutrosophic set and applied in a multiple attribute decision making. Zhang et al. [44] introduced interval neutrosophic sets and used in multi criteria decision making problem. Zou et al. [45] introduced a distance measure between neutrosophic sets as an evidential approach. From the literature, it is found that distance measure for trapezoidal neutrosophic numbers using centroids with its properties has not yet been studied so far. Hence the motivation of the present study.

Hence, in this paper a new distance measure for trapezoidal fuzzy neutrosophic numbers based on centroids has been proposed with its metric properties in detail. Also the graphical representation is presented for trapezoidal fuzzy neutrosophic number. Comparative study also have been made with
the existing cases for both proposed distance measure and proposed graphical representation. Further advantages of the proposed distance measure are presented.

3-Preliminaries

Definition 1. [38] Let X be a space of discourse, a trapezoidal intuitionistic fuzzy set B in X is defined as: $B=\left\{\left\langle y, \alpha_{B}(y), \beta_{B}(y)\right\rangle \mid y \in X\right\}$, where $\alpha_{B}(y) \subset[0,1]$ and $\beta_{B}(y) \subset[0,1]$ are two trapezoidal fuzzy numbers $\alpha_{B}(y)=\left(\alpha_{B}^{1}(y), \alpha_{B}^{2}(y), \alpha_{B}^{3}(y), \alpha_{B}^{4}(y)\right): Y \rightarrow[0,1]$ and $\beta_{B}(y)=\left(\beta_{B}^{1}(y), \beta_{B}^{2}(y), \beta_{B}^{3}(y), \beta_{B}^{4}(y)\right): Y \rightarrow[0,1] \quad$ with the condition that $0 \leq \alpha_{B}^{4}(y)+\beta_{B}^{4}(y) \leq 1, \forall y \in Y$.

For Convenience, let $\alpha_{B}(y)=(a, b, c, d)$ and $\beta_{B}(y)=(e, f, g, h)$ be two trapezoidal fuzzy numbers, thus a trapezoidal intuitionistic fuzzy number (TrIFN) can be denoted by $j=\langle(a, b, c, d),(e, f, g, h)\rangle$, which is basic element in a trapezoidal intuitionistic fuzzy set.

If $b=c$ and $f=g$ hold in a $\operatorname{TrIFN} j$, which is a special case of the TrIFN.
Definition 2. [38] Let $j_{1}=\left\langle\left(a_{1}, b_{1}, c_{1}, d_{1}\right),\left(e_{1}, f_{1}, g_{1}, h_{1}\right)\right\rangle$ and $\dot{j}_{2}=\left\langle\left(a_{2}, b_{2}, c_{2}, d_{2}\right),\left(e_{2}, f_{2}, g_{2}, h_{2}\right)\right\rangle$, be two TrIFNs. Then there are the following operational rules:

1. $\quad j_{1} \oplus j_{2}=\left\{\begin{array}{l}\left(a_{1}+a_{2}-a_{1} a_{2}, b_{1}+b_{2}-b_{1} b_{2}, c_{1}+c_{2}-c_{1} c_{2}, d_{1}+d_{2}-d_{1} d_{2}\right), \\ \left(e_{1} e_{2}, f_{1} f_{2}, g_{1} g_{2}, h_{1} h_{2}\right)\end{array}\right\rangle$
2. $\quad i_{1} \otimes j_{2}=\left\{\begin{array}{l}\left(a_{1} a_{2}, b_{1} b_{2}, c_{1} c_{2}, d_{1} d_{2}\right), \\ \left(e_{1}+e_{2}-e_{1} e_{2}, f_{1}+f_{2}-f_{1} f_{2}, g_{1}+g_{2}-g_{1} g_{2}, h_{1}+h_{2}-h_{1} h_{2}\right)\end{array}\right\rangle$
3. $\lambda j_{1}=\left\langle\begin{array}{l}\left(1-\left(1-a_{1}\right)^{\lambda}, 1-\left(1-b_{1}\right)^{\lambda}, 1-\left(1-c_{1}\right)^{\lambda}, 1-\left(1-d_{1}\right)^{\lambda}\right), \\ \left(e_{1}^{\lambda}, f_{1}^{\lambda}, g_{1}^{\lambda}, h_{1}^{\lambda}\right)\end{array}\right\rangle, \lambda>0$;
4. $\quad m_{1}^{\lambda}=\binom{\left(a_{1}^{\lambda}, b_{1}^{\lambda}, c_{1}^{\lambda}, d_{1}^{\lambda}\right),\left(1-\left(1-e_{1}\right)^{\lambda}, 1-\left(1-f_{1}\right)^{\lambda}, 1-\left(1-g_{1}\right)^{\lambda}, 1-\left(1-h_{1}\right)^{\lambda}\right)}{,\left(1-\left(1-i_{1}\right)^{\lambda}, 1-\left(1-j_{1}\right)^{\lambda}, 1-\left(1-k_{1}\right)^{\lambda}, 1-\left(1-l_{1}\right)^{\lambda}\right)}, \lambda \geq 0$

Definition 3. [30] From philosophical point of view, Smarandache [30] originally presented the concept of a neutrosophic set B in a universal set Y, which is characterized independently by a
truth-membership function $T_{B}(y)$, an indeterminacy membership function $I_{B}(y)$ and a falsitymembership function $F_{B}(y)$. The function $T_{B}(y), I_{B}(y)$ and $F_{B}(y)$ in Y are real standard or nonstandard subsets of $]^{-} 0,1^{+}\left[, \quad \text { such that } T_{B}(y): Y \rightarrow\right]^{-} 0,1^{+}\left[, I_{B}(y): Y \rightarrow\right]^{-} 0,1^{+}[, \quad$ and $\left.F_{B}(y): Y \rightarrow\right]^{-} 0,1^{+}\left[\right.$.Then, the sum of $T_{B}(y), I_{B}(y)$ and $F_{B}(y)$ satisfies the condition ${ }^{-} 0 \leq \sup T_{B}(y)+\sup I_{B}(y)+\sup F_{B}(y) \leq 3^{+}$. Obviously, it is difficult to apply the neutrosophic set to practical problems. To easily apply it in science and engineering fields, Wang et al. [35] introduced the concept of a single-valued neutrosophic set as a subclass of the neutrosophic set and gave the following definition.
Definition 4. [35] A single-valued neutrosophic set B in a universal set Y is characterized by a truth-membership function $T_{B}(y)$, an indeterminacy-membership function $I_{B}(y)$ and a falsitymembership function $F_{B}(y)$. Then, a single-valued neutrosophic set B can be denoted by $B=\left\{\left\langle y, T_{B}(y), I_{B}(y), F_{B}(y)\right\rangle \mid y \in Y\right\}$
where, $T_{B}(y), I_{B}(y), F_{B}(y) \in[0,1]$ for each $y \in Y$. Therefore, the sum of $T_{B}(y), I_{B}(y)$ and

$$
F_{B}(y) \text { satisfies } 0 \leq T_{B}(y)+I_{B}(y)+F_{B}(y) \leq 3 .
$$

Let $M=\left\{\left\langle y, T_{M}(y), I_{M}(y), F_{M}(y)\right\rangle \mid y \in Y\right\}$ and $N=\left\{\left\langle y, T_{N}(y), I_{N}(y), F_{N}(y)\right\rangle \mid y \in Y\right\}$ be two singlevalued neutrosophic sets, then we the following relations [8,11]:

1. Complement: $M^{C}=\left\{\left\langle y, F_{M}(y), 1-I_{M}(y), T_{M}(y)\right\rangle \mid y \in Y\right\}$;
2. Inclusion: $M \subseteq N$ if and only if $T_{M}(y) \leq T_{N}(y), I_{M}(y) \geq I_{N}(y)$ and $F_{M}(y) \geq F_{N}(y)$ for any $y \in Y$;
3. Equality: $M=N$ if and only if $M \subseteq N$ and $N \subseteq M$;
4. Union: $M \cup N=\left\{\left\langle y, T_{M}(y) \vee T_{N}(y), I_{M}(y) \wedge I_{N}(y), F_{M}(y) \wedge F_{N}(y)\right\rangle \mid y \in Y\right\}$;
5. Intersection: $M \cap N=\left\{\left\langle y, T_{M}(y) \wedge T_{N}(y), I_{M}(y) \vee I_{N}(y), F_{M}(y) \vee F_{N}(y)\right\rangle \mid y \in Y\right\}$;
6. Addition: $M \oplus N=\left\{\begin{array}{l}\left.\left\langle\begin{array}{l}y, T_{M}(y)+T_{N}(y)-T_{M}(y) T_{N}(y), I_{M}(y) I_{N}(y), \\ F_{M}(y) F_{N}(y)\end{array}\right) \right\rvert\, y \in Y\end{array}\right\} ;$
7. Multiplication: $\left.M \otimes N=\left\{\begin{array}{l}\left\langle, T_{M}(y) T_{N}(y), I_{M}(y)+I_{N}(y)-I_{M}(y) I_{N}(y),\right. \\ F_{M}(y)+F_{N}(y)-F_{M}(y) F_{N}(y)\end{array}\right\rangle y \in Y\right\}$.

Definition 5. [42] Let Y be a space of discourse, a trapezoidal neutrosophic set H in Y is defined as follow:
$H=\left\{\left\langle y, T_{H}(y), I_{H}(y), F_{H}(y)\right\rangle \mid y \in Y\right\}$, where $T_{H}(y) \subset[0,1], I_{H}(y) \subset[0,1]$ and $F_{H}(y) \subset[0,1]$ are three trapezoidal fuzzy numbers $T_{H}(y)=\left(t_{H}^{1}(y), t_{H}^{2}(y), t_{H}^{3}(y), t_{H}^{4}(y)\right): Y \rightarrow[0,1]$,
$I_{H}(y)=\left(i_{H}^{1}(y), i_{H}^{2}(y), i_{H}^{3}(y), i_{H}^{4}(y)\right): Y \rightarrow[0,1]$ and $F_{H}(y)=\left(f_{H}^{1}(y), f_{H}^{2}(y), f_{H}^{3}(y), f_{H}^{4}(y)\right): Y \rightarrow[0,1]$ with the condition $0 \leq t_{H}^{4}(y)+i_{H}^{4}(y)+f_{H}^{4}(y) \leq 3, y \in Y$.

For convenience, the three trapezoidal fuzzy numbers are denoted by $T_{H}(y)=(a, b, c, d), \quad I_{H}(y)=(e, f, g, h)$ and $F_{H}(y)=(i, j, k, l)$. Thus, a trapezoidal neutrosophic numbers is denoted by $m=\langle(a, b, c, d),(e, f, g, h),(i, j, k, l)\rangle$, which is a basic element in the trapezoidal neutrosophic set.

If $b=c, f=g$ and $j=k$ hold in a trapezoidal neutrosophic number j_{1}, it reduces to the triangular neutrosophic number, which is considered as a special case of the trapezoidal neutrosophic number.

Definition 6. [42] Let $m_{1}=\left\langle\left(a_{1}, b_{1}, c_{1}, d_{1}\right),\left(e_{1}, f_{1}, g_{1}, h_{1}\right),\left(i_{1}, j_{1}, k_{1}, l_{1}\right)\right\rangle$, and $m_{2}=\left\langle\left(a_{2}, b_{2}, c_{2}, d_{2}\right),\left(e_{2}, f_{2}, g_{2}, h_{2}\right),\left(i_{2}, j_{2}, k_{2}, l_{2}\right)\right\rangle$ be two trapezoidal neutrosophic numbers. Then there are the following operational rules:

$$
\text { 1. } \quad m_{1} \oplus m_{2}=\left\{\begin{array}{l}
\left(a_{1}+a_{2}-a_{1} a_{2}, b_{1}+b_{2}-b_{1} b_{2}, c_{1}+c_{2}-c_{1} c_{2}, d_{1}+d_{2}-d_{1} d_{2}\right), \\
\left(e_{1} e_{2}, f_{1} f_{2}, g_{1} g_{2}, h_{1} h_{2}\right),\left(i_{1} i_{2}, j_{1} j_{2}, k_{1} k_{2}, l_{1} l_{2}\right)
\end{array}\right\rangle
$$

2. $\quad m_{1} \otimes m_{2}=\left\langle\begin{array}{l}\left(a_{1} a_{2}, b_{1} b_{2}, c_{1} c_{2}, d_{1} d_{2}\right), \\ \left(e_{1}+e_{2}-e_{1} e_{2}, f_{1}+f_{2}-f_{1} f_{2}, g_{1}+g_{2}-g_{1} g_{2}, h_{1}+h_{2}-h_{1} h_{2}\right), \\ \left(i_{1}+i_{2}-i_{1} i_{2}, j_{1}+j_{2}-j_{1} j_{2}, k_{1}+k_{2}-k_{1} k_{2}, l_{1}+l_{2}-l_{1} l_{2}\right)\end{array}\right\rangle ;$
3. $\lambda m_{1}=\left\langle\begin{array}{l}\left(1-\left(1-a_{1}\right)^{\lambda}, 1-\left(1-b_{1}\right)^{\lambda}, 1-\left(1-c_{1}\right)^{\lambda}, 1-\left(1-d_{1}\right)^{\lambda}\right), \\ \left(e_{1}^{\lambda}, f_{1}^{\lambda}, g_{1}^{\lambda}, h_{1}^{\lambda}\right),\left(i_{1}^{\lambda}, j_{1}^{\lambda}, k_{1}^{\lambda}, l_{1}^{\lambda}\right)\end{array}\right\rangle, \lambda>0$;
4. $\quad m_{1}^{\lambda}=\left\{\begin{array}{l}\left(a_{1}^{\lambda}, b_{1}^{\lambda}, c_{1}^{\lambda}, d_{1}^{\lambda}\right), \\ \left(1-\left(1-e_{1}\right)^{\lambda}, 1-\left(1-f_{1}\right)^{\lambda}, 1-\left(1-g_{1}\right)^{\lambda}, 1-\left(1-h_{1}\right)^{\lambda}\right), \\ \left(1-\left(1-i_{1}\right)^{\lambda}, 1-\left(1-j_{1}\right)^{\lambda}, 1-\left(1-k_{1}\right)^{\lambda}, 1-\left(1-l_{1}\right)^{\lambda}\right)\end{array}\right\rangle, \lambda \geq 0$

Definition 7. [18] Let P and Q be the intuitionistic fuzzy sets with membership functions $\mu_{P}(x), \mu_{Q}(x)$, non-membership functions $v_{P}(x), v_{Q}(x)$ and hesitation degree $\pi_{P}(x), \pi_{Q}(x)$. Then the normalized Hamming distance is

$$
D(P, Q)=\frac{1}{2 n} \sum_{i=1}^{n}\left[\left|\mu_{P}\left(x_{i}\right)-\mu_{Q}\left(x_{i}\right)\right|+\left|v_{P}\left(x_{i}\right)-v_{Q}\left(x_{i}\right)\right|+\left|\pi_{P}\left(x_{i}\right)-\pi_{Q}\left(x_{i}\right)\right|\right]
$$

And the normalized Euclidean distance is
$D_{E}(P, Q)=\sqrt{\frac{1}{2 n} \sum_{i=1}^{n}\left[\left(\mu_{P}\left(x_{i}\right)-\mu_{Q}\left(x_{i}\right)\right)^{2}+\left(v_{P}\left(x_{i}\right)-v_{Q}\left(x_{i}\right)\right)^{2}+\left(\pi_{P}\left(x_{i}\right)-\pi_{Q}\left(x_{i}\right)\right)^{2}\right]}$

Definition 8. [17] Consider the real values $r_{i}, i=1,2,3, \ldots, 6$ and if $r_{1} \leq r_{2}, r_{3} \leq r_{4}, r_{5} \leq r_{6}$ then the following results are true.

1. $\max \left\{r_{1}, r_{3}, r_{5}\right\} \leq \max \left\{r_{2}, r_{4}, r_{6}\right\}$
2. $\max \left\{r_{1}+r_{2}, r_{3}+r_{4}, r_{5}+r_{6}\right\} \leq \max \left\{r_{1}, r_{3}, r_{5}\right\}+\max \left\{r_{2}, r_{4}, r_{6}\right\}$

Definition 9. [34] For any real numbers $r_{i}, s_{i} \geq 0, i=1,2, \ldots, d$, the Euclidean distance is defined as, $D(r, s)=\sqrt{\sum_{i=1}^{d}\left(r_{i}-s_{i}\right)^{2}}$ and satisfies the condition that $\left[\sum_{i=1}^{d}\left(r_{i}+s_{i}\right)^{p}\right]^{1 / p} \leq\left(\sum_{i=1}^{d}\left(r_{i}\right)^{p}\right)^{1 / p}+\left(\sum_{i=1}^{d}\left(s_{i}\right)^{p}\right)^{1 / p}$.

Definition 10. [42] Let $m_{p}=\left\langle\left(a_{p}, b_{p}, c_{p}, d_{p}\right),\left(e_{p}, f_{p}, g_{p}, h_{p}\right),\left(i_{p}, j_{p}, k_{p}, l_{p}\right)\right\rangle, p=1,2,3, \ldots, n$ be the trapezoidal fuzzy neutrosophic numbers then the trapezoidal fuzzy neurosophic weighted geometric operator is defined by

$$
\begin{aligned}
& \operatorname{TFNWG}\left(m_{1}, m_{2}, \ldots, m_{n}\right)=m_{1}^{\omega_{1}} \otimes m_{2}^{\omega_{2}} \otimes m_{3}^{\omega_{3}} \otimes \ldots \otimes m_{n}^{\omega_{n}} \\
& =\left\langle\left(\prod_{p=1}^{n} a_{p}^{\omega_{p}}, \prod_{p=1}^{n} b_{p}^{\omega_{p}}, \prod_{p=1}^{n} c_{p}^{\omega_{p}}, \prod_{p=1}^{n} d_{p}^{\omega_{p}}\right),\left(1-\prod_{p=1}^{n}\left(1-e_{p}\right)^{\omega_{p}}, 1-\prod_{p=1}^{n}\left(1-f_{p}\right)^{\omega_{p}}, 1-\prod_{p=1}^{n}\left(1-g_{p}\right)^{\omega_{p}}, 1-\prod_{p=1}^{n}\left(1-h_{p}\right)^{\omega_{p}}\right),\right. \\
& \\
& \left.\quad\left(1-\prod_{p=1}^{n}\left(1-i_{p}\right)^{\omega_{p}}, 1-\prod_{p=1}^{n}\left(1-j_{p}\right)^{\omega_{p}}, 1-\prod_{p=1}^{n}\left(1-k_{p}\right)^{\omega_{p}}, 1-\prod_{p=1}^{n}\left(1-l_{p}\right)^{\omega_{p}}\right)\right\rangle
\end{aligned}
$$

where, $\omega_{1}, \omega_{2}, \ldots, \omega_{n}$ are the weight vectors and the sum of the weight vectors is 1 .

Definition 11. [9] Graphical representation of trapezoidal neutrosophic number

Figure 1. Graphical representation of Trapezoidal neutrosophic number
Figure 1 shows that graphical representation of trapezoidal fuzzy neutrosophic number can be done in different ways. It is a linear trapezoidal neutrosophic number.

4-Proposed Distance Measure for Trapezoidal Fuzzy Neutrosophic Number

Here we propose a new distance measure for trapezoidal fuzzy neutrosophic number based on centroids. Firstly, individual graphical representation proposed measure is presented here with the individual representation of truth, indeterminacy, falsity membership functions and trapezoidal fuzzy neutrosophic fuzzy number described by Figure 2-Figure 6.

Centre point of the object is called centroid. It should lie inside the object. At this point, the three medians of the triangle intersect and is termed point of intersection. Centroid is the average of coordinate points in X axis and Y axis of each vertex of the triangle. Centroid is the fixed point of all linear transformation which maintains length in translation, rotation, glides and reflection.

The centroid of the truth, indeterminacy and falsity trapezoid is treated as a balance point for the trapezoid. The centroid of each part are estimated using the calculation of centroid and the simple area and this combination will generate a triangle. Also the distance is measured from the centroid of all the parts to X axis and Y axis. Here the area of all the parts are multiplied by the distance and
find their sum to get the total value. And the sum of the products of the area and distances is divided by the total area and obtain the centroid of circumcentre described by x and y point. Since centroid based distance measure may be derived using Euclidean measure, here it is obtained from the circumcentre of the centroids and the authentic point for the trapezoidal fuzzy neutrosophic number.

Figure 2. Truth membership function of trapezoidal fuzzy neutrosophic set with centroid

Figure 3. Truth membership function of trapezoidal fuzzy neutrosophic set
Suppose $\tilde{n}=\left\langle\left(a_{1}, a_{2}, a_{3}, a_{4}\right),\left(b_{1}, b_{2}, b_{3}, b_{4}\right),\left(c_{1}, c_{2}, c_{3}, c_{4}\right)\right\rangle$ be a trapezoidal fuzzy neutrosophic number. Based on the literature (Y. M. Wang et al. On the centroids of fuzzy numbers), we can get the centroid point $O^{T}=\left(x_{o}^{T}(\tilde{n}), y_{o}^{T}(\tilde{n})\right)$ of the truth membership function of trapezoidal fuzzy neutrosophic number \tilde{n}.

$$
\begin{aligned}
& x_{o}^{T}(\tilde{n})=\frac{\int_{a_{1}}^{a_{2}} x f_{T}^{L} d x+\int_{a_{2}}^{a_{3}} x \cdot 1 d x+\int_{a_{3}}^{a_{4}} x f_{T}^{R} d x}{\int_{a_{1}}^{a_{2}} f_{T}^{L} d x+\int_{a_{2}}^{a_{3}} 1 d x+\int_{a_{3}}^{a_{4}} f_{T}^{R} d x}=\frac{1}{3}\left[a_{1}+a_{2}+a_{3}+a_{4}-\frac{a_{4} a_{3}-a_{1} a_{2}}{\left(a_{4}+a_{3}\right)-\left(a_{1}+a_{2}\right)}\right], \\
& y_{o}^{T}(\tilde{n})=\frac{\int_{0}^{1} y\left(g_{T}^{L}-g_{T}^{R}\right) d y}{\int_{0}^{1}\left(g_{T}^{L}-g_{T}^{R}\right) d y}=\frac{1}{3}\left[1+\frac{a_{3}-a_{2}}{\left(a_{4}+a_{3}\right)-\left(a_{1}+a_{2}\right)}\right] . \\
& I_{\tilde{n}}(x) \\
& 1 \\
& 0
\end{aligned}
$$

Figure 4. Indeterminate membership function of trapezoidal fuzzy neutrosophic set with centroid

Figure 5. Indeterminate membership function of trapezoidal fuzzy neutrosophic number
we can get the centroid point $O^{I}=\left(x_{o}^{I}(\tilde{n}), y_{o}^{I}(\tilde{n})\right)$ of indeterminacy membership function of trapezoidal fuzzy neutrosophic number \tilde{n}.
$x_{o}^{I}(\tilde{n})=\frac{\int_{b_{1}}^{b_{2}} x f_{I}^{L} d x+\int_{b_{2}}^{b_{3}} x \cdot 1 d x+\int_{b_{3}}^{b_{4}} x f_{I}^{R} d x}{\int_{b_{1}}^{b_{2}} f_{I}^{L} d x+\int_{b_{2}}^{b_{3}} 1 d x+\int_{b_{3}}^{b_{4}} f_{I}^{R} d x}=\frac{1}{3}\left[b_{1}+b_{2}+b_{3}+b_{4}-\frac{b_{4} b_{3}-b_{1} b_{2}}{\left(b_{4}+b_{3}\right)-\left(b_{1}+b_{2}\right)}\right]$,
$y_{o}^{I}(\tilde{n})=\frac{\int_{0}^{1} y\left(g_{I}^{L}-g_{I}^{R}\right) d y}{\int_{0}^{1}\left(g_{I}^{L}-g_{I}^{R}\right) d y}=\frac{1}{3}\left[1+\frac{b_{3}-b_{2}}{\left(b_{4}+b_{3}\right)-\left(b_{1}+b_{2}\right)}\right]$.
Similarly, we can get the centroid point $O^{F}=\left(x_{o}^{F}(\tilde{n}), y_{o}^{F}(\tilde{n})\right)$ of falsity membership function of trapezoidal fuzzy neutrosophic number \tilde{n}.

$$
\begin{aligned}
& x_{o}^{F}(\tilde{n})=\frac{\int_{c_{1}}^{c_{2}} x f_{F}^{L} d x+\int_{c_{2}}^{c_{3}} x \cdot 1 d x+\int_{c_{3}}^{c_{4}} x f_{F}^{R} d x}{\int_{c_{1}}^{c_{2}} f_{F}^{L} d x+\int_{c_{2}}^{c_{3}} 1 d x+\int_{c_{3}}^{c_{4}} f_{F}^{R} d x}=\frac{1}{3}\left[c_{1}+c_{2}+c_{3}+c_{4}-\frac{c_{4} c_{3}-c_{1} c_{2}}{\left(c_{4}+c_{3}\right)-\left(c_{1}+c_{2}\right)}\right], \\
& y_{o}^{F}(\tilde{n})=\frac{\int_{0}^{1} y\left(g_{F}^{L}-g_{F}^{R}\right) d y}{\int_{0}^{1}\left(g_{F}^{L}-g_{F}^{R}\right) d y}=\frac{1}{3}\left[1+\frac{c_{3}-c_{2}}{\left(c_{4}+c_{3}\right)-\left(c_{1}+c_{2}\right)}\right] .
\end{aligned}
$$

Figure 6. Trapezoidal fuzzy neutrosophic number with circumcentre of Centroids

In the above figure 5, the red dot represents the center of gravity of the triangle consisting of O^{T}, O^{I} , and O^{F}. According to the coordinate formula of the center of gravity of the triangle, we can get the coordinates of red dots $O=(x(\tilde{n}), y(\tilde{n}))$.

$$
\begin{aligned}
& x(\tilde{n})=\frac{x_{o}^{T}(\tilde{n})+x_{o}^{I}(\tilde{n})+x_{o}^{F}(\tilde{n})}{3} \\
& =\frac{1}{3}\left\{\begin{array}{l}
\frac{1}{3}\left[a_{1}+a_{2}+a_{3}+a_{4}-\frac{a_{4} a_{3}-a_{1} a_{2}}{\left(a_{4}+a_{3}\right)-\left(a_{1}+a_{2}\right)}\right] \\
+\frac{1}{3}\left[b_{1}+b_{2}+b_{3}+b_{4}-\frac{b_{4} b_{3}-b_{1} b_{2}}{\left(b_{4}+b_{3}\right)-\left(b_{1}+b_{2}\right)}\right]+\frac{1}{3}\left[c_{1}+c_{2}+c_{3}+c_{4}-\frac{c_{4} c_{3}-c_{1} c_{2}}{\left(c_{4}+c_{3}\right)-\left(c_{1}+c_{2}\right)}\right]
\end{array}\right\} \\
& =\frac{1}{9}\left[\sum_{i=1}^{4} a_{i}+\sum_{i=1}^{4} b_{i}+\sum_{i=1}^{4} c_{i}-\frac{a_{4} a_{3}-a_{1} a_{2}}{\left(a_{4}+a_{3}\right)-\left(a_{1}+a_{2}\right)}-\frac{b_{4} b_{3}-b_{1} b_{2}}{\left(b_{4}+b_{3}\right)-\left(b_{1}+b_{2}\right)}-\frac{c_{4} c_{3}-c_{1} c_{2}}{\left(c_{4}+c_{3}\right)-\left(c_{1}+c_{2}\right)}\right] \\
& y(\tilde{n})=\frac{y_{o}^{T}(\tilde{n})+y_{o}^{I}(\tilde{n})+y_{o}^{F}(\tilde{n})}{3} \\
& =\frac{a_{3}-a_{2}}{\frac{1}{3}\left[1+\frac{a_{3}}{\left(a_{4}+a_{3}\right)-\left(a_{1}+a_{2}\right)}\right]+\frac{1}{3}\left[1+\frac{b_{3}-b_{2}}{\left(b_{4}+b_{3}\right)-\left(b_{1}+b_{2}\right)}\right]+\frac{1}{3}\left[1+\frac{c_{3}-c_{2}}{\left(c_{4}+c_{3}\right)-\left(c_{1}+c_{2}\right)}\right]} \\
& =\frac{1}{9}\left[3+\frac{a_{3}-a_{2}}{\left(a_{4}+a_{3}\right)-\left(a_{1}+a_{2}\right)}+\frac{b_{3}-b_{2}}{\left(b_{4}+b_{3}\right)-\left(b_{1}+b_{2}\right)}+\frac{c_{3}-c_{2}}{\left(c_{4}+c_{3}\right)-\left(c_{1}+c_{2}\right)}\right]
\end{aligned}
$$

Definition1: Let $\tilde{n}_{1}=\left\langle\left(a_{1}, a_{2}, a_{3}, a_{4}\right),\left(b_{1}, b_{2}, b_{3}, b_{4}\right),\left(c_{1}, c_{2}, c_{3}, c_{4}\right)\right\rangle$ and $\tilde{n}_{2}=\left\langle\left(e_{1}, e_{2}, e_{3}, e_{4}\right),\left(f_{1}, f_{2}, f_{3}, f_{4}\right),\left(g_{1}, g_{2}, g_{3}, g_{4}\right)\right\rangle$ be two trapezoidal fuzzy neutrosophic numbers, and their centroids are $O_{1}=\left(x\left(\tilde{n}_{1}\right), y\left(\tilde{n}_{1}\right)\right), O_{2}=\left(x\left(\tilde{n}_{2}\right), y\left(\tilde{n}_{2}\right)\right)$ respectively, then the distance between \tilde{n}_{1} and \tilde{n}_{2} is

$$
D\left(\tilde{n}_{1}, \tilde{n}_{2}\right)=\frac{1}{9}\left[\begin{array}{l}
{\left[\begin{array}{l}
\sum_{i=1}^{4} a_{i}+\sum_{i=1}^{4} b_{i}+\sum_{i=1}^{4} c_{i}-\sum_{i=1}^{4} e_{i}-\sum_{i=1}^{4} f_{i}-\sum_{i=1}^{4} g_{i}-\left(\frac{a_{4} a_{3}-a_{1} a_{2}}{\left(a_{4}+a_{3}\right)-\left(a_{1}+a_{2}\right)}-\frac{e_{4} e_{3}-e_{1} e_{2}}{\left(e_{4}+e_{3}\right)-\left(e_{1}+e_{2}\right)}\right) \\
\left.-\left(\frac{b_{4} b_{3}-b_{1} b_{2}}{\left(b_{4}+b_{3}\right)-\left(b_{1}+b_{2}\right)}-\frac{f_{4} f_{3}-f_{1} f_{2}}{\left(f_{4}+f_{3}\right)-\left(f_{1}+f_{2}\right)}\right)-\left(\frac{c_{4} c_{3}-c_{1} c_{2}}{\left(c_{4}+c_{3}\right)-\left(c_{1}+c_{2}\right)}-\frac{g_{4} g_{3}-g_{1} g_{2}}{\left(g_{4}+g_{3}\right)-\left(g_{1}+g_{2}\right)}\right)\right]^{2} \\
+\left[\left(\frac{a_{4} a_{3}-a_{1} a_{2}}{\left(a_{4}+a_{3}\right)-\left(a_{1}+a_{2}\right)}-\frac{e_{4} e_{3}-e_{1} e_{2}}{\left(e_{4}+e_{3}\right)-\left(e_{1}+e_{2}\right)}\right)+\left(\frac{b_{4} b_{3}-b_{1} b_{2}}{\left(b_{4}+b_{3}\right)-\left(b_{1}+b_{2}\right)}-\frac{f_{4} f_{3}-f_{1} f_{2}}{\left(f_{4}+f_{3}\right)-\left(f_{1}+f_{2}\right)}\right)\right. \\
\left.+\left(\frac{c_{4} c_{3}-c_{1} c_{2}}{\left(c_{4}+c_{3}\right)-\left(c_{1}+c_{2}\right)}-\frac{g_{4} g_{3}-g_{1} g_{2}}{\left(g_{4}+g_{3}\right)-\left(g_{1}+g_{2}\right)}\right)\right]^{2}
\end{array}\right.}
\end{array}\right.
$$

Theorem 1: This distance $D\left(\tilde{n}_{1}, \tilde{n}_{2}\right)$ of \tilde{n}_{1} and \tilde{n}_{2} fulfills the following properties:

1. $0 \leq D\left(\tilde{n}_{1}, \tilde{n}_{2}\right) \leq 1$;
2. $D\left(\tilde{n}_{1}, \tilde{n}_{2}\right)=0$ if and only if $\tilde{n}_{1}=\tilde{n}_{2}$, i.e., $a_{i}=e_{i}, b_{i}=f_{i}$ and $c_{i}=g_{i}$ hold for $i=1,2,3,4$;
3. $D\left(\tilde{n}_{1}, \tilde{n}_{2}\right)=D\left(\tilde{n}_{2}, \tilde{n}_{1}\right)$.
4. If $\tilde{n}_{1}, \tilde{n}_{2} \& \tilde{n}_{3}$ are the trapezoidal fuzzy neutrosophic numbers then
$D\left(\tilde{n}_{1}, \tilde{n}_{3}\right) \leq D\left(\tilde{n}_{1}, \tilde{n}_{2}\right)+D\left(\tilde{n}_{2}, \tilde{n}_{3}\right)$

Proof

1. It is easy to prove $0 \leq D\left(\tilde{n}_{1}, \tilde{n}_{2}\right)$. In addition, it can be seen from figure 1 , the maximum distance is the distance between the point $(0,0)$ and the point $(1,1)$, or the point $(0,1)$ and the point $(1,0)$, assume the coordinates of centroids of \tilde{n}_{1} and \tilde{n}_{2} are O_{1} and O_{2}, and $O_{1}=(0,1)$ and $O_{2}=(1,0)$, or $O_{1}=(1,0)$ and $O_{2}=(0,1)$, or $O_{1}=(0,0)$ and $O_{2}=(1,1)$, or $O_{1}=(1,1)$ and $O_{2}=(0,0)$, then the $D\left(\tilde{n}_{1}, \tilde{n}_{2}\right)=1$, otherwise, $D\left(\tilde{n}_{1}, \tilde{n}_{2}\right)<1$, thus $0 \leq D\left(\tilde{n}_{1}, \tilde{n}_{2}\right) \leq 1$.
2. if $\tilde{n}_{1}=\tilde{n}_{2}$, i.e., $a_{i}=e_{i}, b_{i}=f_{i}$ and $c_{i}=g_{i}$, then
$\begin{aligned} & D\left(\tilde{n}_{1}, \tilde{n}_{2}\right)=\frac{1}{9} \\ & \begin{array}{l}{\left[\sum_{i=1}^{4} a_{i}+\sum_{i=1}^{4} b_{i}+\sum_{i=1}^{4} c_{i}-\sum_{i=1}^{4} a_{i}-\sum_{i=1}^{4} b_{i}-\sum_{i=1}^{4} c_{i}-\left(\frac{a_{4} a_{3}-a_{1} a_{2}}{\left(a_{4}+a_{3}\right)-\left(a_{1}+a_{2}\right)}-\frac{a_{4} a_{3}-a_{1} a_{2}}{\left(a_{4}+a_{3}\right)-\left(a_{1}+a_{2}\right)}\right)\right.} \\ \left.-\left(\frac{b_{4} b_{3}-b_{1} b_{2}}{\left(b_{4}+b_{3}\right)-\left(b_{1}+b_{2}\right)}-\frac{b_{4} b_{3}-b_{1} b_{2}}{\left(b_{4}+b_{3}\right)-\left(b_{1}+b_{2}\right)}\right)-\left(\frac{c_{4} c_{3}-c_{1} c_{2}}{\left(c_{4}+c_{3}\right)-\left(c_{1}+c_{2}\right)}-\frac{c_{4} c_{3}-c_{1} c_{2}}{\left(c_{4}+c_{3}\right)-\left(c_{1}+c_{2}\right)}\right)\right]^{2} \\ +\left[\frac{a_{4} a_{3}-a_{1} a_{2}}{\left(a_{4}+a_{3}\right)-\left(a_{1}+a_{2}\right)}-\frac{a_{4} a_{3}-a_{1} a_{2}}{\left(a_{4}+a_{3}\right)-\left(a_{1}+a_{2}\right)}\right)+\left(\frac{b_{4} b_{3}-b_{1} b_{2}}{\left(b_{4}+b_{3}\right)-\left(b_{1}+b_{2}\right)}-\frac{b_{4} b_{3}-b_{1} b_{2}}{\left(b_{4}+b_{3}\right)-\left(b_{1}+b_{2}\right)}\right) \\ \left.+\left(\frac{c_{4} c_{3}-c_{1} c_{2}}{\left(c_{4}+c_{3}\right)-\left(c_{1}+c_{2}\right)}-\frac{c_{4} c_{3}-c_{1} c_{2}}{\left(c_{4}+c_{3}\right)-\left(c_{1}+c_{2}\right)}\right)\right]^{2}\end{array} \\ &=0 .\end{aligned}$
$D\left(\tilde{n}_{1}, \tilde{n}_{2}\right)=0$, then
$\left[\sum_{i=1}^{4} a_{i}+\sum_{i=1}^{4} b_{i}+\sum_{i=1}^{4} c_{i}-\sum_{i=1}^{4} e_{i}-\sum_{i=1}^{4} f_{i}-\sum_{i=1}^{4} g_{i}-\left(\frac{a_{4} a_{3}-a_{1} a_{2}}{\left(a_{4}+a_{3}\right)-\left(a_{1}+a_{2}\right)}-\frac{e_{4} e_{3}-e_{1} e_{2}}{\left(e_{4}+e_{3}\right)-\left(e_{1}+e_{2}\right)}\right)\right.$
$\left.-\left(\frac{b_{4} b_{3}-b_{1} b_{2}}{\left(b_{4}+b_{3}\right)-\left(b_{1}+b_{2}\right)}-\frac{f_{4} f_{3}-f_{1} f_{2}}{\left(f_{4}+f_{3}\right)-\left(f_{1}+f_{2}\right)}\right)-\left(\frac{c_{4} c_{3}-c_{1} c_{2}}{\left(c_{4}+c_{3}\right)-\left(c_{1}+c_{2}\right)}-\frac{g_{4} g_{3}-g_{1} g_{2}}{\left(g_{4}+g_{3}\right)-\left(g_{1}+g_{2}\right)}\right)\right]^{2}$
$+\left[\left(\frac{a_{4} a_{3}-a_{1} a_{2}}{\left(a_{4}+a_{3}\right)-\left(a_{1}+a_{2}\right)}-\frac{e_{4} e_{3}-e_{1} e_{2}}{\left(e_{4}+e_{3}\right)-\left(e_{1}+e_{2}\right)}\right)+\left(\frac{b_{4} b_{3}-b_{1} b_{2}}{\left(b_{4}+b_{3}\right)-\left(b_{1}+b_{2}\right)}-\frac{f_{4} f_{3}-f_{1} f_{2}}{\left(f_{4}+f_{3}\right)-\left(f_{1}+f_{2}\right)}\right)\right.$
$\left.+\left(\frac{c_{4} c_{3}-c_{1} c_{2}}{\left(c_{4}+c_{3}\right)-\left(c_{1}+c_{2}\right)}-\frac{g_{4} g_{3}-g_{1} g_{2}}{\left(g_{4}+g_{3}\right)-\left(g_{1}+g_{2}\right)}\right)\right]^{2}=0$,
Thus,
$\sum_{i=1}^{4} a_{i}+\sum_{i=1}^{4} b_{i}+\sum_{i=1}^{4} c_{i}-\sum_{i=1}^{4} e_{i}-\sum_{i=1}^{4} f_{i}-\sum_{i=1}^{4} g_{i}-\left(\frac{a_{4} a_{3}-a_{1} a_{2}}{\left(a_{4}+a_{3}\right)-\left(a_{1}+a_{2}\right)}-\frac{e_{4} e_{3}-e_{1} e_{2}}{\left(e_{4}+e_{3}\right)-\left(e_{1}+e_{2}\right)}\right)$
$-\left(\frac{b_{4} b_{3}-b_{1} b_{2}}{\left(b_{4}+b_{3}\right)-\left(b_{1}+b_{2}\right)}-\frac{f_{4} f_{3}-f_{1} f_{2}}{\left(f_{4}+f_{3}\right)-\left(f_{1}+f_{2}\right)}\right)-\left(\frac{c_{4} c_{3}-c_{1} c_{2}}{\left(c_{4}+c_{3}\right)-\left(c_{1}+c_{2}\right)}-\frac{g_{4} g_{3}-g_{1} g_{2}}{\left(g_{4}+g_{3}\right)-\left(g_{1}+g_{2}\right)}\right)$
$=0$,
$\left(\frac{a_{4} a_{3}-a_{1} a_{2}}{\left(a_{4}+a_{3}\right)-\left(a_{1}+a_{2}\right)}-\frac{e_{4} e_{3}-e_{1} e_{2}}{\left(e_{4}+e_{3}\right)-\left(e_{1}+e_{2}\right)}\right)+\left(\frac{b_{4} b_{3}-b_{1} b_{2}}{\left(b_{4}+b_{3}\right)-\left(b_{1}+b_{2}\right)}-\frac{f_{4} f_{3}-f_{1} f_{2}}{\left(f_{4}+f_{3}\right)-\left(f_{1}+f_{2}\right)}\right)$
$+\left(\frac{c_{4} c_{3}-c_{1} c_{2}}{\left(c_{4}+c_{3}\right)-\left(c_{1}+c_{2}\right)}-\frac{g_{4} g_{3}-g_{1} g_{2}}{\left(g_{4}+g_{3}\right)-\left(g_{1}+g_{2}\right)}\right)$
$=0$,
thus
$\frac{a_{4} a_{3}-a_{1} a_{2}}{\left(a_{4}+a_{3}\right)-\left(a_{1}+a_{2}\right)}-\frac{e_{4} e_{3}-e_{1} e_{2}}{\left(e_{4}+e_{3}\right)-\left(e_{1}+e_{2}\right)}=0$,
$\frac{b_{4} b_{3}-b_{1} b_{2}}{\left(b_{4}+b_{3}\right)-\left(b_{1}+b_{2}\right)}-\frac{f_{4} f_{3}-f_{1} f_{2}}{\left(f_{4}+f_{3}\right)-\left(f_{1}+f_{2}\right)}=0$,
$\frac{c_{4} c_{3}-c_{1} c_{2}}{\left(c_{4}+c_{3}\right)-\left(c_{1}+c_{2}\right)}-\frac{g_{4} g_{3}-g_{1} g_{2}}{\left(g_{4}+g_{3}\right)-\left(g_{1}+g_{2}\right)}=0$,
thus
$a_{i}=e_{i}, \quad b_{i}=f_{i}, \quad c_{i}=g_{i}$, that is $\tilde{n}_{1}=\tilde{n}_{2}$.
3. Since,
$\left[\sum_{i=1}^{4} a_{i}+\sum_{i=1}^{4} b_{i}+\sum_{i=1}^{4} c_{i}-\sum_{i=1}^{4} e_{i}-\sum_{i=1}^{4} f_{i}-\sum_{i=1}^{4} g_{i}-\left(\frac{a_{4} a_{3}-a_{1} a_{2}}{\left(a_{4}+a_{3}\right)-\left(a_{1}+a_{2}\right)}-\frac{e_{4} e_{3}-e_{1} e_{2}}{\left(e_{4}+e_{3}\right)-\left(e_{1}+e_{2}\right)}\right)\right.$
$\left.-\left(\frac{b_{4} b_{3}-b_{1} b_{2}}{\left(b_{4}+b_{3}\right)-\left(b_{1}+b_{2}\right)}-\frac{f_{4} f_{3}-f_{1} f_{2}}{\left(f_{4}+f_{3}\right)-\left(f_{1}+f_{2}\right)}\right)-\left(\frac{c_{4} c_{3}-c_{1} c_{2}}{\left(c_{4}+c_{3}\right)-\left(c_{1}+c_{2}\right)}-\frac{g_{4} g_{3}-g_{1} g_{2}}{\left(g_{4}+g_{3}\right)-\left(g_{1}+g_{2}\right)}\right)\right]^{2}$
$+\left[\left(\frac{a_{4} a_{3}-a_{1} a_{2}}{\left(a_{4}+a_{3}\right)-\left(a_{1}+a_{2}\right)}-\frac{e_{4} e_{3}-e_{1} e_{2}}{\left(e_{4}+e_{3}\right)-\left(e_{1}+e_{2}\right)}\right)+\left(\frac{b_{4} b_{3}-b_{1} b_{2}}{\left(b_{4}+b_{3}\right)-\left(b_{1}+b_{2}\right)}-\frac{f_{4} f_{3}-f_{1} f_{2}}{\left(f_{4}+f_{3}\right)-\left(f_{1}+f_{2}\right)}\right)\right.$
$\left.+\left(\frac{c_{4} c_{3}-c_{1} c_{2}}{\left(c_{4}+c_{3}\right)-\left(c_{1}+c_{2}\right)}-\frac{g_{4} g_{3}-g_{1} g_{2}}{\left(g_{4}+g_{3}\right)-\left(g_{1}+g_{2}\right)}\right)\right]^{2}$
$=\left[\sum_{i=1}^{4} e_{i}+\sum_{i=1}^{4} f_{i}+\sum_{i=1}^{4} g_{i}-\sum_{i=1}^{4} a_{i}-\sum_{i=1}^{4} b_{i}-\sum_{i=1}^{4} c_{i}-\left(\frac{e_{4} e_{3}-e_{1} e_{2}}{\left(e_{4}+e_{3}\right)-\left(e_{1}+e_{2}\right)}-\frac{a_{4} a_{3}-a_{1} a_{2}}{\left(a_{4}+a_{3}\right)-\left(a_{1}+a_{2}\right)}\right)\right.$
$\left.-\left(\frac{f_{4} f_{3}-f_{1} f_{2}}{\left(f_{4}+f_{3}\right)-\left(f_{1}+f_{2}\right)}-\frac{b_{4} b_{3}-b_{1} b_{2}}{\left(b_{4}+b_{3}\right)-\left(b_{1}+b_{2}\right)}\right)-\left(\frac{g_{4} g_{3}-g_{1} g_{2}}{\left(g_{4}+g_{3}\right)-\left(g_{1}+g_{2}\right)}-\frac{c_{4} c_{3}-c_{1} c_{2}}{\left(c_{4}+c_{3}\right)-\left(c_{1}+c_{2}\right)}\right)\right]^{2}$
$+\left[\left(\frac{e_{4} e_{3}-e_{1} e_{2}}{\left(e_{4}+e_{3}\right)-\left(e_{1}+e_{2}\right)}-\frac{a_{4} a_{3}-a_{1} a_{2}}{\left(a_{4}+a_{3}\right)-\left(a_{1}+a_{2}\right)}\right)+\left(\frac{f_{4} f_{3}-f_{1} f_{2}}{\left(f_{4}+f_{3}\right)-\left(f_{1}+f_{2}\right)}-\frac{b_{4} b_{3}-b_{1} b_{2}}{\left(b_{4}+b_{3}\right)-\left(b_{1}+b_{2}\right)}\right)\right.$
$\left.+\left(\frac{g_{4} g_{3}-g_{1} g_{2}}{\left(g_{4}+g_{3}\right)-\left(g_{1}+g_{2}\right)}-\frac{c_{4} c_{3}-c_{1} c_{2}}{\left(c_{4}+c_{3}\right)-\left(c_{1}+c_{2}\right)}\right)\right]^{2}$
then $D\left(\tilde{n}_{1}, \tilde{n}_{2}\right)=D\left(\tilde{n}_{2}, \tilde{n}_{1}\right)$.
4. Using Def. 8, we can prove (4).

Let $\tilde{n}_{1}=\left\langle\left(a_{1}, a_{2}, a_{3}, a_{4}\right),\left(b_{1}, b_{2}, b_{3}, b_{4}\right),\left(c_{1}, c_{2}, c_{3}, c_{4}\right)\right\rangle$,
$\tilde{n}_{2}=\left\langle\left(e_{1}, e_{2}, e_{3}, e_{4}\right),\left(f_{1}, f_{2}, f_{3}, f_{4}\right),\left(g_{1}, g_{2}, g_{3}, g_{4}\right)\right\rangle$ and
$\tilde{n}_{3}=\left\langle\left(j_{1}, \mathrm{j}_{2}, \mathrm{j}_{3}, \mathrm{j}_{4}\right),\left(k_{1}, \mathrm{k}_{2}, \mathrm{k}_{3}, \mathrm{k}_{4}\right),\left(l_{1}, l_{2}, l_{3}, l_{4}\right)\right\rangle$ are the three trapezoidal fuzzy neutrosophic numbers then $D\left(\tilde{n}_{1}, \tilde{n}_{3}\right) \leq D\left(\tilde{n}_{1}, \tilde{n}_{2}\right)+D\left(\tilde{n}_{2}, \tilde{n}_{3}\right)$

Using the results we have,

$$
\begin{aligned}
& D\left(\tilde{n}_{1}, \tilde{n}_{3}\right) \\
& =\frac{1}{9} \begin{array}{l}
{\left[\begin{array}{l}
\sum_{i=1}^{4} a_{i}+\sum_{i=1}^{4} b_{i}+\sum_{i=1}^{4} c_{i}-\sum_{i=1}^{4} j_{i}-\sum_{i=1}^{4} k_{i}-\sum_{i=1}^{4} l_{i}-\left(\frac{a_{4} a_{3}-a_{1} a_{2}}{\left(a_{4}+a_{3}\right)-\left(a_{1}+a_{2}\right)}-\frac{j_{4} j_{3}-j_{1} j_{2}}{\left(\mathrm{j}_{4}+j_{3}\right)-\left(\mathrm{j}_{1}+j_{2}\right)}\right) \\
\left.-\left(\frac{b_{4} b_{3}-b_{1} b_{2}}{\left(b_{4}+b_{3}\right)-\left(b_{1}+b_{2}\right)}-\frac{k_{4} k_{3}-k_{1} k_{2}}{\left(\mathrm{k}_{4}+k_{3}\right)-\left(\mathrm{k}_{1}+k_{2}\right)}\right)-\left(\frac{c_{4} c_{3}-c_{1} c_{2}}{\left(c_{4}+c_{3}\right)-\left(c_{1}+c_{2}\right)}-\frac{l_{4} l_{3}-l_{1} l_{2}}{\left(l_{4}+l_{3}\right)-\left(l_{1}+l_{2}\right)}\right)\right]^{2} \\
+\left[\left(\frac{a_{4} a_{3}-a_{1} a_{2}}{\left(a_{4}+a_{3}\right)-\left(a_{1}+a_{2}\right)}-\frac{j_{4} j_{3}-j_{1} j_{2}}{\left(\mathrm{j}_{4}+j_{3}\right)-\left(\mathrm{j}_{1}+j_{2}\right)}\right)+\left(\frac{b_{4} b_{3}-b_{1} b_{2}}{\left(b_{4}+b_{3}\right)-\left(b_{1}+b_{2}\right)}-\frac{k_{4} k_{3}-k_{1} k_{2}}{\left(\mathrm{k}_{4}+k_{3}\right)-\left(\mathrm{k}_{1}+k_{2}\right)}\right)\right. \\
\left.+\left(\frac{c_{4} c_{3}-c_{1} c_{2}}{\left(c_{4}+c_{3}\right)-\left(c_{1}+c_{2}\right)}-\frac{l_{4} l_{3}-l_{1} l_{2}}{\left(l_{4}+l_{3}\right)-\left(l_{1}+l_{2}\right)}\right)\right]^{2}
\end{array}\right.}
\end{array} .
\end{aligned}
$$

$$
+\frac{1}{9}\left(\begin{array}{l}
{\left[\sum_{i=1}^{4} e_{i}+\sum_{i=1}^{4} f_{i}+\sum_{i=1}^{4} g_{i}-\sum_{i=1}^{4} j_{i}-\sum_{i=1}^{4} k_{i}-\sum_{i=1}^{4} l_{i}-\left(\frac{e_{4} e_{3}-e_{1} e_{2}}{\left(\mathrm{e}_{4}+e_{3}\right)-\left(\mathrm{e}_{1}+e_{2}\right)}-\frac{j_{4} j_{3}-j_{1} j_{2}}{\left(\mathrm{j}_{4}+j_{3}\right)-\left(\mathrm{j}_{1}+j_{2}\right)}\right)\right.} \\
\left.-\left(\frac{f_{4} f_{3}-f_{1} f_{2}}{\left(f_{4}+f_{3}\right)-\left(f_{1}+f_{2}\right)}-\frac{k_{4} k_{3}-k_{1} k_{2}}{\left(\mathrm{k}_{4}+k_{3}\right)-\left(\mathrm{k}_{1}+k_{2}\right)}\right)-\left(\frac{g_{4} g_{3}-g_{1} g_{2}}{\left(g_{4}+g_{3}\right)-\left(g_{1}+g_{2}\right)}-\frac{l_{4} l_{3}-l_{1} l_{2}}{\left(l_{4}+l_{3}\right)-\left(l_{1}+l_{2}\right)}\right)\right]^{2} \\
+\left[\left(\frac{e_{4} e_{3}-e_{1} e_{2}}{\left(\mathrm{e}_{4}+e_{3}\right)-\left(\mathrm{e}_{1}+e_{2}\right)}-\frac{j_{4} j_{3}-j_{1} j_{2}}{\left(\mathrm{j}_{4}+j_{3}\right)-\left(\mathrm{j}_{1}+j_{2}\right)}\right)+\left(\frac{f_{4} f_{3}-f_{1} f_{2}}{\left(f_{4}+f_{3}\right)-\left(f_{1}+f_{2}\right)}-\frac{k_{4} k_{3}-k_{1} k_{2}}{\left(\mathrm{k}_{4}+k_{3}\right)-\left(\mathrm{k}_{1}+k_{2}\right)}\right)\right. \\
\left.+\left(\frac{g_{4} g_{3}-g_{1} g_{2}}{\left(g_{4}+g_{3}\right)-\left(g_{1}+g_{2}\right)}-\frac{l_{4} l_{3}-l_{1} l_{2}}{\left(l_{4}+l_{3}\right)-\left(l_{1}+l_{2}\right)}\right)\right]^{2}
\end{array}\right)^{1 / 2}
$$

Using Def. 9 we have,

$$
\begin{aligned}
& \qquad \begin{array}{l}
{\left[\sum_{i=1}^{4} a_{i}+\sum_{i=1}^{4} b_{i}+\sum_{i=1}^{4} c_{i}-\sum_{i=1}^{4} e_{i}-\sum_{i=1}^{4} f_{i}-\sum_{i=1}^{4} g_{i}-\left(\frac{a_{4} a_{3}-a_{1} a_{2}}{\left(a_{4}+a_{3}\right)-\left(a_{1}+a_{2}\right)}-\frac{e_{4} e_{3}-e_{1} e_{2}}{\left(e_{4}+e_{3}\right)-\left(e_{1}+e_{2}\right)}\right)\right.} \\
\left.-\left(\frac{b_{4} b_{3}-b_{1} b_{2}}{\left(b_{4}+b_{3}\right)-\left(b_{1}+b_{2}\right)}-\frac{f_{4} f_{3}-f_{1} f_{2}}{\left(f_{4}+f_{3}\right)-\left(f_{1}+f_{2}\right)}\right)-\left(\frac{c_{4} c_{3}-c_{1} c_{2}}{\left(c_{4}+c_{3}\right)-\left(c_{1}+c_{2}\right)}-\frac{g_{4} g_{3}-g_{1} g_{2}}{\left(g_{4}+g_{3}\right)-\left(g_{1}+g_{2}\right)}\right)\right]^{2} \\
+\left[\left(\frac{a_{4} a_{3}-a_{1} a_{2}}{\left(a_{4}+a_{3}\right)-\left(a_{1}+a_{2}\right)}-\frac{e_{4} e_{3}-e_{1} e_{2}}{\left(e_{4}+e_{3}\right)-\left(e_{1}+e_{2}\right)}\right)+\left(\frac{b_{4} b_{3}-b_{1} b_{2}}{\left(b_{4}+b_{3}\right)-\left(b_{1}+b_{2}\right)}-\frac{f_{4} f_{3}-f_{1} f_{2}}{\left(f_{4}+f_{3}\right)-\left(f_{1}+f_{2}\right)}\right)\right. \\
\left.+\left(\frac{c_{4} c_{3}-c_{1} c_{2}}{\left(c_{4}+c_{3}\right)-\left(c_{1}+c_{2}\right)}-\frac{g_{4} g_{3}-g_{1} g_{2}}{\left(g_{4}+g_{3}\right)-\left(g_{1}+g_{2}\right)}\right)\right]^{2}
\end{array} \\
& +\frac{1}{9} \left\lvert\, \begin{array}{l}
\sum_{i=1}^{4} e_{i}+\sum_{i=1}^{4} f_{i}+\sum_{i=1}^{4} g_{i}-\sum_{i=1}^{4} j_{i}-\sum_{i=1}^{4} k_{i}-\sum_{i=1}^{4} l_{i}-\left(\frac{e_{4} e_{3}-e_{1} e_{2}}{\left(\mathrm{e}_{4}+e_{3}\right)-\left(\mathrm{e}_{1}+e_{2}\right)}-\frac{j_{4} j_{3}-j_{1} j_{2}}{\left(\mathrm{j}_{4}+j_{3}\right)-\left(\mathrm{j}_{1}+j_{2}\right)}\right) \\
\left.-\left(\frac{f_{4} f_{3}-f_{1} f_{2}}{\left(f_{4}+f_{3}\right)-\left(f_{1}+f_{2}\right)}-\frac{k_{4} k_{3}-k_{1} k_{2}}{\left(\mathrm{k}_{4}+k_{3}\right)-\left(\mathrm{k}_{1}+k_{2}\right)}\right)-\left(\frac{g_{4} g_{3}-g_{1} g_{2}}{\left(g_{4}+g_{3}\right)-\left(g_{1}+g_{2}\right)}-\frac{l_{4} l_{3}-l_{1} l_{2}}{\left(l_{4}+l_{3}\right)-\left(l_{1}+l_{2}\right)}\right)\right]^{2} \\
+\left[\left(\frac{e_{4} e_{3}-e_{1} e_{2}}{\left(\mathrm{e}_{4}+e_{3}\right)-\left(\mathrm{e}_{1}+e_{2}\right)}-\frac{j_{4} j_{3}-j_{1} j_{2}}{\left(\mathrm{j}_{4}+j_{3}\right)-\left(\mathrm{j}_{1}+j_{2}\right)}\right)+\left(\frac{f_{4} f_{3}-f_{1} f_{2}}{\left(f_{4}+f_{3}\right)-\left(f_{1}+f_{2}\right)}-\frac{k_{4} k_{3}-k_{1} k_{2}}{\left(\mathrm{k}_{4}+k_{3}\right)-\left(\mathrm{k}_{1}+k_{2}\right)}\right)\right. \\
\left.+\left(\frac{g_{4} g_{3}-g_{1} g_{2}}{\left(g_{4}+g_{3}\right)-\left(g_{1}+g_{2}\right)}-\frac{l_{4} l_{3}-l_{1} l_{2}}{\left(l_{4}+l_{3}\right)-\left(l_{1}+l_{2}\right)}\right)\right]^{2}
\end{array}\right. \\
& \leq D\left(\tilde{n}_{1}, \tilde{n}_{2}\right)+D\left(\tilde{n}_{2}, \tilde{n}_{3}\right) \text { and hence the result (4). }
\end{aligned}
$$

5- Decision Making method based on new distance measure based on centroids

In this section, we establish an approach based an trapezoidal fuzzy neutrosophic number weighted geometric arithmetic operator and a new distance measure based on centroid to deal with trapezoidal fuzzy neutrosophic information. The proposed approach is described as follows.
Step 1: Apply trapezoidal fuzzy neutrosophic number weighted geometric arithmetic operator [39] to find the aggregated trapezoidal fuzzy neutrosophic numbers for all the alternatives.
Step 2: Use the proposed distance measure, find the distances between all the alternatives and the ideal trapezoidal fuzzy neutrooshic number

Step 3: Rank the alternatives in which smaller value of distance indicate the best one.
Step 4: End

6- Numerical Example for the application of the proposed distance measure

In this section, a numerical example of a software selection problem and the aggregation operator called trapezoidal neutrosophic number weighted geometric averaging operator are get used from Ye [39] for a multiple attribute decision making problem is contributed to exhibit the application and effectiveness of the proposed distance measure under trapezoidal fuzzy neutrosophic environment. For a software selection process, consider candidate software systems are given as the set of five alternatives $S_{1}, S_{2}, S_{3}, S_{4}, S_{5}$ and the investment company need to take a decision according to four criteria: (i). the contribution to organization performance, (ii). The effort totranform from current system, (iii). The costs of hardware/software investment, (iv). The outsourcing software deneloper reliability denoted by $C_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}$ respectively with the weight vector $\omega=(0.25,0.25,0.3,0.2)^{T}$. The experts evaluate the five alternatives with repect to the four criteions under trapezoidal fuzzy neutrosophic environment and thus we can form the trapezoidal fuzzy neutrosophic decision matrix:

Table 1: Decision matrix using trapezoidal fuzzy neutrosophic numbers

$$
\left.\begin{array}{rl}
D= & \left.\left[\begin{array}{ll}
\langle(0.4,0.5,0.6,0.7),(0.0,0.1,0.2,0.3),(0.1,0.1,0.1,0.1)\rangle & \langle(0.0,0.1,0.2,0.3),(0.0,0.1,0.2,0.3),(0.2,0.3,0.4,0.5)\rangle \\
\langle(0.3,0.4,0.5,0.5),(0.1,0.2,0.3,0.4),(0.0,0.1,0.1,0.1)\rangle & \langle(0.2,0.3,0.4,0.5),(0.0,0.1,0.2,0.3),(0.0,0.1,0.2,0.3)\rangle \\
\langle(0.1,0.1,0.1,0.1),(0.1,1.1,0.1,0.1),(0.6,0.7,0.8,0.9)\rangle & \langle(0.0,0.1,0.1,0.2),(0.0,0.1,0.2,0.3),(0.3,0.4,0.5,0.6)\rangle \\
\langle(0.7,0.7,0.7,0.7),(0.0,0.1,0.2,0.3),(0.1,0.1,0.1,0.1)\rangle & \langle(0.4,0.5,0.6,0.7),(0.1,0.1,0.1,0.1),(0.0,0.1,0.2,0.2)\rangle \\
\langle(0.0,0.1,0.2,0.2),(0.1,0.1,0.1,0.1),(0.5,0.6,0.7,0.8)\rangle & \langle(0.4,0.4,0.4,0.4),(0.0,0.1,0.2,0.3),(0.0,0.1,0.2,0.3)\rangle \\
& \langle(0.3,0.4,0.5,0.6),(0.0,0.1,0.2,0.3),(0.1,0.1,0.1,0.1)\rangle \\
& \langle(0.3,0.4,0.5,0.6),(0.1,0.1,0.1,0.1),(0.1,0.2,0.3,0.4)\rangle \\
& \langle(0.0,0.1,0.1,0.2),(0.1,0.1,0.1,0.1),(0.5,0.6,0.7,0.8)\rangle \\
\langle(0.3,0.4,0.5,0.6),(0.0,0.1,0.2,0.3),(0.1,0.1,0.1,0.2)\rangle \\
& \langle(0.2,0.3,0.4,0.5),(0.0,0.1,0.2,0.3),(0.1,0.2,0.2,0.3)\rangle
\end{array}\right\rangle(0.1,0.2,0.3,0.4),(0.1,0.1,0.1,0.1),(0.3,0.4,0.5,0.6)\right\rangle \\
& \langle(0.2,0.3,0.4,0.5),(0.0,0.1,0.2,0.3),(0.1,0.2,0.3,0.3)\rangle \\
\langle(0.1,0.2,0.3,0.4),(0.1,0.1,0.1,0.1),(0.1,0.1,0.1,0.1)\rangle \\
& \langle(0.6,0.7,0.7,0.8),(0.1,0.1,0.1,0.1),(0.0,0.1,0.1,0.2)\rangle
\end{array}\langle(0.1,0.2,0.3,0.3),(0.1,0.2,0.3,0.4),(0.2,0.3,0.4,0.5)\rangle\right\rangle .
$$

Here we used the developed method to obtain the best software system(s) and it is described as follows:
Step 1: Using trapezoidal fuzzy neutrosophic weighted geometric operator in Definition 10, get the aggregated trapezoidal fuzzy neutrosophic numbers of $n_{i}, i=1,2,3,4,5$ for the software system $S_{i}, i=1,2,3,4,5$ as follows:
$n_{1}=\langle(0.0000,0.2985,0.4162,0.5244),(0.0209,0.1003,0.1809,0.2639),(0.1261,0.1745,0.2266,0.2836)\rangle$
$n_{2}=\langle(0.0000,0.2458,0.2919,0.3798),(0.0563,0.1262,0.1984,0.2739),(0.1879,0.2944,0.3717,0.4743)\rangle$
$n_{3}=\langle(0.0000,0.1599,0.1888,0.2545),(0.0464,0.1000,0.1566,0.2162),(0.3437,0.4502,0.5424,0.6655)\rangle$
$n_{4}=\langle(0.2833,0.3885,0.4807,0.5658),(0.0464,0.1000,0.1566,0.2162),(0.1480,0.2276,0.3109,0.3109)\rangle$
$n_{5}=\langle(0.0000,0.2912,0.3756,0.3910),(0.0760,0.1210,0.1690,0.2208),(0.1958,0.3012,0.3877,0.5020)\rangle$
Step 2: Use the proposed distance measure and find the distance between all $n_{i}, i=1,2,3,4,5$ and the ideal trapezoidal fuzzy neutrosophic number $n_{\text {Ideal }}=\langle(1,1,1,1),(0,0,0,0),(0,0,0,0)\rangle$.

The obtained distances are as follows:

$$
\begin{aligned}
& D\left(n_{1}, I\right)=0.1712=D_{1} \\
& D\left(n_{2}, I\right)=0.1276=D_{2} \\
& D\left(n_{3}, I\right)=0.1000=D_{3} \\
& D\left(n_{4}, I\right)=0.1280=D_{4} \\
& D\left(n_{5}, I\right)=0.1246=D_{5}
\end{aligned}
$$

Step 3: Find the best alternative by considering the smaller value of the distance as the smaller value of distance indicates the best one.

Using step 2 it is found that, $D_{3}>D_{5}>D_{2}>D_{4}>D_{1}$ and from the ranking order, S_{3} is the best is the best software system.

7- Comparative analysis for the proposed distance measure and graphical representation

In this section, a comparative study is made to show the effectiveness of the proposed distance measure with the existing methods and to show the uniqueness of the proposed graphical representation.

Table 2: Comparative analysis with the existing methods

Existing Methods	Score/ distance values					Ranking
	D_{1}	D_{2}	D_{3}	D_{4}	D_{5}	
$[6]$	0.6092	0.4512	0.6039	0.6121	0.6321	$S_{2}>S_{3}>S_{1}>S_{4}>S_{5}$
$[16]$	0.2788	0.6790	0.9394	0.6564	0.4014	$S_{3}>S_{2}>S_{4}>S_{5}>S_{1}$
$[42]$	0.6553	0.5779	0.5069	0.6835	0.5904	$S_{4}>S_{1}>S_{5}>S_{2}>S_{3}$
$[45]$	0.7716	0.7798	0.7349	0.8124	0.8201	$S_{3}>S_{1}>S_{2}>S_{4}>S_{5}$

From the Table 2, it is found that, the third software system is the best one among the five alternatives. The results in the existing methods overlaps the proposed result. Theresore the proposed methodology using the proposed under trapezoidal fuzzy neutrosophic environment to solve the decision making problem suitably in comparision with the existing methods.

Table 3 represents the various forms of trapezoidal fuzzy neutrosophic numbers (TrFNN) have been listed out and it shows the uniqueness of the proposed graphical representation among the existing graphical representations.

Table 3: Comparative analysis with the existing graphical representation

Trapezoidal fuzzy neutrosophic forms	Graphical representation
Darehmiraki [11]; A is a TrFNN, $a_{1}^{\prime \prime}, a_{1}, a_{1}^{\prime}, a_{2}, a_{3}, a_{4}^{\prime}, a_{4}, a_{4}^{\prime \prime} \in R$ such that $\begin{aligned} & a_{1}^{\prime \prime} \leq a_{1} \leq a_{1}^{\prime} \leq a_{2} \leq a_{3} \leq a_{4}^{\prime} \leq a_{4} \leq a_{4}^{\prime \prime} \\ & A=\left\langle\left(a_{1}^{\prime \prime}, a_{1}, a_{1}^{\prime}, a_{2}, a_{3}, a_{4}^{\prime}, a_{4}, a_{4}^{\prime \prime}\right), T_{A}, I_{A}, F_{A}\right\rangle \end{aligned}$	$T_{A}(x), I_{A}(x), F_{A}(x)$
Liang [21]; A is a TrFNN, $a_{1}, a_{2}, a_{3}, a_{4} \in[0,1]$ such that $\begin{aligned} & 0 \leq a_{1} \leq a_{2} \leq a_{3} \leq a_{4} \leq 1 \\ & A=\left\langle\left[a_{1}, a_{2}, a_{3}, a_{4}\right],\left(T_{A}, I_{A}, F_{A}\right)\right\rangle \end{aligned}$	
Biswas [5]; A is a TpFNN, $\begin{aligned} & \left(a_{41}, \mathrm{a}_{21}, \mathrm{a}_{31}, \mathrm{a}_{41}\right),\left(b_{41}, \mathrm{~b}_{21}, \mathrm{~b}_{31}, \mathrm{~b}_{41}\right), \\ & \left(c_{41}, \mathrm{c}_{21}, \mathrm{c}_{31}, \mathrm{c}_{41}\right) \in R \end{aligned}$ such that $\begin{aligned} & c_{11} \leq b_{11} \leq a_{11} \leq \mathrm{c}_{21} \leq \mathrm{b}_{21} \leq \mathrm{a}_{21} \\ & \leq \mathrm{a}_{31} \leq \mathrm{b}_{31} \leq \mathrm{c}_{31} \leq \mathrm{a}_{41} \leq \mathrm{b}_{41} \leq \mathrm{c}_{41} \end{aligned}$ and $\begin{aligned} & A=\left\langle\left(a_{11}, \mathrm{a}_{21}, \mathrm{a}_{31}, \mathrm{a}_{41}\right),\left(b_{11}, \mathrm{~b}_{21}, \mathrm{~b}_{31}, \mathrm{~b}_{41}\right)\right. \\ & \left.\left(c_{11}, \mathrm{c}_{21}, \mathrm{c}_{31}, \mathrm{c}_{41}\right)\right\rangle \end{aligned}$	

8-Advantages of the proposed measure

An efficient distance measure boosts the performance of task analysis or clustering. Also centroid method is specific and location based one and acquire the best geographical location in consideration of the distance between all the competences. Though the existing methods namely Euclidean measure, Manhattan measure Minkowski measure and Hamming distance measure have been applied in many real time problems they could not provide good results for the indeterminate data. Hence in this paper, we proposed a new distance measure for trapezoidal neutrosophic fuzzy numbers based on centroids and the significant advantages of the proposed measure are given as follows.
(i). Trapezoidal fuzzy neutrosophic number is a simple design of arithmetic operations and easy and perceptive interpretation as well. Therefore the proposed measure is an easy and effective one under neutrosophic environment.
(ii). Distance measure can be estimated with simple algorithm and significant level of accuracy can be acquired as well.
(iii). While taking the important decision of choosing the method to measure a distance it can be used due its simplicity.
(iv). The proposed distance measure is based on centroid and hence estimation of the distance between all objects of the data set is possible and indeterminacy also can be addressed.
(v). It is derived using Euclidean distance and hence it is very useful in correlation analysis.
(vi). Also it can be applied in location planning, operations management, Neutrosophic Statistics, clustering, medical diagnosis, Optimization and image processing to get more accurate results without any computational complexity.

9-Conclusion and Future Research

The concept of distance measure of trapezoidal fuzzy neutrosophic number has sufficient scope of utilization in different studies in various domain. In this paper, we proposed a new distance measure for the trapezoidal fuzzy neutrosophic number based on centroid with the graphical representation. Also, the properties of the proposed measure have been derived in detail. In addition, a decision making problem has been solved using the proposed measure as a numerical example. Further, comparative analysis has been done with the existing methods to show the potential of the proposed distance measure and various forms of trapezoidal fuzzy neutrosophic number have been listed and shown the uniqueness of the proposed graphical representation. Furthermore, advantages of the proposed measure are given. In future, the present work may be extended to other special types of neutrosophic set like pentagonal neutrosophic set, neutrosophic rough set, interval valued neutrosophic set and plithogeneic environments.

References

[1] Ahmad, SAS.; Mohamad, D.; Sulaiman, NH.; Shariff, JM.; Abdullah, K. A Distance and Set theoreticBased Similarity Measure for Generalized Trapezoidal Fuzzy Numbers. AIP Conf. Proc 1974, 2018, (020043). Doi:10.1063/1.5041574
[2] Allahviranloo, T.; Jagantigh, MA.; Hajighasemi, S. A New Distance Mesure and Ranking Method for Generalized Trapezoidal Fuzzy Numbers. Math. Probl. Eng 2013, pp.1-6.
[3] Atanassov, K. Intuitionistic fuzzy sets. Fuzzy Sets Syst. (1986), 20, pp.87-96.
[4] Azman, FN.; Abdullah, L. A New Centroids Method for Ranking of Trapezoidal Fuzzy Numbers. J. Teknol 2014, 68(1), pp.101-108.
[5] Biswas, P.; Pramanik, S.; Giri, BC. Multi-attribute Group decision Making Based on Expected Value of Neutrosophic Trapezoidal Numbers. New Trends in Neutrosophic Theory and Applications (2018), pp.105-124.
[6] Biswas, P.; Pramanik, S.; Giri, BC. Distance Measure Based MADM Strategy with Interval Trapezoidal Neutrosophic Numbers. Neutrosophic Sets and Systems (2018), 19, pp.40-46.
[7] Bolos, MJ.; Bradea, IA.; Delcea, C. Modeling the Performance Indicators of Financial Assets with Neutrosophic Fuzzy Numbers. Symmetry 2019, 11, pp.1-25.
[8] Bora, DJ.; Gupta, AK. Effect of Distance Measures on the Performance of K-Means Algorithm: An Experimental Study in Matlab. Int. J. Comp. Sci. Inf. Technol 2014, 5(2), pp.2501-2506.
[9] Chakraborty, A.; Mondal, S.; Mahata, A.; Alam, S. Different linear and non-linear form of trapezoidal neutrosophic numbers, de-neutrosophication techniques and its application in time-cost optimization technique, sequencing problem. RAIRO-Oper. Res., doi: https://scihub.tw/https://doi.org/10.1051/ro/2019090
[10] Cui, WH.; Ye, J. Logarithmic similarity measure of dynamic neutrosophic cubic sets and its application in medical diagnosis. Comput. Ind 2019, 111, pp.198-206.
[11] Darehmiraki, M. A solution for the neutrosophic linear programming problem with a new ranking function. Pp.235-259. Doi:10.1016/b978-0-12-819670-0.00011-1
[12] Das, D.; De, PK. Ranking of Intuitionistic Fuzzy Numbers by New Distance Measure. J. Intell. Fuzzy. Syst 2014, pp.1-14.
[13] Das, S.; Guha, D. Ranking of Intuitionistic Fuzzy Number by Centroid Point. J. Indus. Intel. Inf 2013, 1(2), pp.107-110.
[14] Deli, I.; Ozturk, EK. A defuzzification method on single-valued trapezoidal neutrosophic numbers and multi attribute decision making. Cumhuriyet Sci. J 2020, 41(1), pp.22-37.
[15] Dhar, M.; Broumi, S.; Smarandache, F. A Note on Square Neutrosophic Fuzzy matrices. Neut. Sets Syst 2014, 3, pp. 37-41.
[16] Donghai, L.; Yuanyuan, L.; Xiaohong, C. The new similarity measure and distance measure between hesitant fuzzy linguistic term sets and their application in multi-criteria decision making. J Intell Fuzzy Syst (2019), 37, pp.995-1006.
[17] Ebadi, MJ.; Suleiman, M; Ismail.; FB, Ahmadian, A.; Shahryari.; MRB, Salahshour, S. A New Distance Measure for Trapezoidal Fuzzy Numbers. Math Probl Eng 2013, pp.1-4.
[18] Guha, D.; Chakraborty, D. A Theoretical Development of Distance Measure for Intuinistic Fuzzy Numbers. Int. J. Math. Math. Sci 2010, pp.1-25.
[19] Hajjari, T. Measuring Distance of Fuzzy Numbers by Trapezoidal Fuzzy Numbers. AIP Conf. Proc 2010, 1309 (346),pp.346-356.
[20] Huang, H., Wu, C. On the triangle inequalities in fuzzy metric spaces. Inform Sciences 2007, 177, pp.1063-1072.
[21] Liang, RX.; Wang, JQ.; Zhang, HY. Evaluation of e-commerce websites: An integrated approach under a single-valued trapezoidal neutrosophic environment. Knowl-Based Syst (2017), 135, pp. 44-59.
[22] Liu, F. ; Yuan, XH. Fuzzy number intuitionistic fuzzy set. Fuzzy Syst. Math (2007), 21(1),pp.88-91.
[23] Llopis, EM.; Micheli, M. Implementation of the Centroid method for the Correction of Turbulence. Image Process. Line 4(2014), pp.187-195.
[24] Minculete, N.; Paltanea, R. Improved estimates for the triangle inequality. J.Inequal. Appl 2017,17. Doi:10.1186/s13660-016-1281-z
[25] Nayagam, VLG.; Jeevaraj, S., Geetha, S. Complete Ranking of Intuitionistic Fuzzy Numbers. Fuzzy Inf. Eng 2016, 8, pp.237-254.
[26] Pardha Saradhi, B.; Madhuri, MV.; Ravi Shankar, N. Ordering of Intuitionistic Fuzzy Numbers Using Centroid of centroids of Intuitionistic Fuzzy Numbers. Int. J. Math. Trends. Tech 2017,52(5), pp. 276285.
[27] RaviShankar, N.; Pardh Saradhi, B.; Suresh Babu, S. Fuzzy Critical path Method Based on a New Approach of Ranking Fuzzy Numbers using Centroid of Centroids. Int. j. Fuzzy Syst. Appl 2013, 3(2), pp.16-31.
[28] Rezvani, S. Ranking Exponential Trapezoidal Fuzzy Numbers by Median Value. J. Fuzzy Set Valued Anal 2013, pp.1-9.
[29] Rouhparvar, H.; Panahi, A.; Zanjani, AN. Fuzzy Distance Measure for Fuzzy Numbers. Aust.j.basic appl.sci 2011, 5(6), pp.258-265.
[30] Smarandache, F. Neutrosophy/neutrosophic probability, set, and logic. American Research Press, Rehoboth. (1998).
[31] Uppada, SK. Centroid Based Clustering Algorithms- A Clarion Study. Int. J. Comp. Sci. Inf. Technol 2014, 5(6):, pp.7309-7313.
[32] Varghese, A.; Kuriakose, S. Centroid of an intuitionistic fuzzy number. Notes on IFS 2012, 18(1), pp.1924.
[33] Wang, XF. Fuzzy number intuitionistic fuzzy geometric aggregation operators and their application to decision making. Control Decis (2008), 23(6), pp. 607-612.
[34] Wang, XF. Fuzzy number intuitionistic fuzzy arithmetic aggregation operators. Int J Fuzzy Syst (2008) 10(2), pp.104-111.
[35] Wang, H.; Smarandache, F.; Zhang, YQ.; Sunderraman, R. (2010), Single valued neutrosophic sets. Multi-space Multi-struct 4, pp.410-413.
[36] Wei, GW.; Zhao, XF. ; Lin, R. Some induced aggregating operators with fuzzy number intuitionistic fuzzy information and their applications to group decision making. Int J Comput Intell Syst (2010), 3(1), pp. 84-95.
[37] Wu, J. Distance metrics and data transformations. LAMDA Group, National Key Lab for Novel Software Technology, Nanjing University, China. (2020), https://cs.nju.edu.cn/wujx/teaching/09_Metric.pdf
[38] Ye, J. Prioritized aggregation operators of trapezoidal intuitionistic fuzzy sets and their application to multi-criteria decision making. Neural Comput Appl (2014), 25(6), pp.1447-1454.
[39] Ye, J. Single valued neutrosophic minimum spanning tree and its clustering method. J Intell Syst (2014), 23(3), pp.311-324.
[40] Ye, J. Single valued neutrosophic cross-entropy for multi-criteria decision making problems. Appl. Math Model 2014, 38, pp.1170-1175.
[41] Ye, J. Multi-criteria decision-making method using the Dicesimilarity measure between expected intervals of trapezoidal fuzzy numbers. J Decis Syst (2012), 21(4),pp.307-317.
[42] Ye, J. Trapezoidal neutrosophic set and its application to multiple attribute decision-making. Neural Comput \& Applic (2015), 26, pp.1157-1166.
[43] Zadeh, LA. Fuzzy sets. Inf. Control (1965), 8(5), pp.338-353.
[44] Zhang, HY.; Wang, JQ.; Chen, XH. Interval neutrosophic sets and their application in multi-criteria decision making problems. Sci World J.(2014), doi:10.1155/2014/645953.
[45] Zou, J.; Deng, Y.; Hu, Y.; Lin G. Measure distance between neutrosophic sets: An evidential approach. J Amb Intel Smart En (2018), pp.1-8.

Introduction to Combined Plithogenic Hypersoft Sets

Nivetha Martin* ${ }^{1}$, Florentin Smarandache ${ }^{2}$
1 Department of Mathematics, Arul Anandar College (Autonomous), Karumathur, India, Email:nivetha.martin710@gmail.com
2 Department of Mathematics, University of New Mexico, Gallup, NM 87301, USA, Email: smarand@unm.edu
* Correspondence: nivetha.martin710@gmail.com

Abstract

Plithogenic Hypersoft sets was introduced by Florentin Smarandache, who has extended crisp sets, fuzzy sets, intuitionistic sets, neutrosophic sets to plithogenic sets. The plithogenic sets considers the degree of appurtenance of the elements with respect to the attribute system. Smarandache has presented the classification of the plithogenic hypersoft sets and the applications of plithogenic fuzzy whole hypersoft sets in multi attribute decision making. Inspired by these research works, the concept of combined plithogenic hypersoft sets is introduced in this article. The representations of the degree of appurtenance of the elements determines the type of plithogenic hypersoft set, if it takes a combination of values then the new archetype of plithogenic hypersoft sets gets emerged into decision making scenario. This research work is put forth to project the realistic perception of the experts in the construction process of optimal conclusions.

Keywords: Plithogenic hypersoft set, combined plithogenic hypersoft set, decision making, multi attribute system.

1. Introduction

Classical set theory deals with the sets consisting of elements with membership values 0 or 1 . The degree of belongingness of an element in a set has been extended to [0,1] by Zadeh [1] in the name of fuzzy sets, which is gaining momentum since its introduction. Sets comprising of quantitative elements can be defined by conventional concepts of sets, but the elements of qualitative nature can be treated only by fuzzy concepts and its membership value states the degree of confidence of its presence in the set. Atanassov [2] investigated on the degree of its absence in the set, by defining non-membership values. This paved way for the intuitionistic fuzzy sets, which consists of degree of membership, non-membership and hesitation. Fuzzy sets and intuitionistic fuzzy sets are extensively applied in decision making process. But still the human perception was not completely reflected in these two kinds of sets. This gap was filled by Florentine Smarandache [3-5] who introduced neutrosophic fuzzy sets, comprising of degree of truth membership, indeterminacy and degree of false membership. Smarandache has represented each of the three function in a more generalized and independent manner. Neutrosophic sets have extensive application in decision making at recent times. Abdel- Basset et al [6-7] has developed neutrosophic decision making models to solve transition difficulties of IoT-based enterprises and to evaluate green supply chain management practices.

Smarandache also extended the classical sets, fuzzy sets, intuitionistic fuzzy sets and neutrosophic fuzzy sets to plithogenic sets which is a quintuple ($\mathrm{P}, \mathrm{a}, \mathrm{V}, \mathrm{d}, \mathrm{c}$) consisting of a set P , the attribute a ,
the range of attribute values V, degree of appurtenance d, and the degree of contradiction c. The nature of d determines the type of plithogenic sets. Smarandache presented an elaborate discussion on the genesis of plithogenic sets in his research work [8]. Abdel-Basset et al [9-11] has developed decision making models with incorporation of plithogenic sets to evaluate green supply chain management practices and intelligent Medical Decision Support Model Based on Soft Computing and IoT was also built; a hybrid plithogenic decision-making approach with quality function deployment for selecting supply chain sustainability metrics was also framed. These plithogenic decision making models are highly robust and feasible.

Molodtsov [12] introduced and applied soft sets in decision making which was extended to fuzzy soft sets predominantly by Maji [13]. The comprehensive outlook of hypersoft sets was made by Smarandache [14] which took the different forms of fuzzy sets in the course of time. Shazia Rana et al [15] in their recent work on application of plithogenic fuzzy whole hypersoft set in multi attribute decision making introduced the matrix representation of plithogenic hypersoft set and plithogenic fuzzy whole hypersoft set which adds to the compatibility of this decision making technique. The validation of the proposed decision making model with a numerical example in this work has inspired to introduce combined plithogenic hypersoft set.

The paper is organized as follows; section 2 presents a brief description of combined plithogenic hypersoft sets; section 3 comprises the application of combined plithogenic hypersoft sets in decision making based on the technique of Shazia Rana et al [15]; section 4 discusses the results and the last section concludes with the future extension of the proposed concept.

2. Combined plithogenic hypersoft sets

This section comprises of the direct narration and representation of the combined plithogenic hypersoft sets based on the preliminaries discussed by Smarandache [14] and Shazia Rana et al [15] to avoid the repetition of the elementary definitions. Smarandache presented the classification of plithogenic hypersoft sets and the categorization was purely based on the nature of degree of appurtenance. Based on his discussion, let us consider the following example to explain the need of combined plithogenic hypersoft sets

Let U be the universe of discourse that consists of pollution mitigation methods say

$$
\mathrm{U}=\left\{\mathrm{M}_{1}, \mathrm{M}_{2}, \mathrm{M}_{3}, \mathrm{M}_{4}, \mathrm{M}_{5}\right\} \text { and the set } \mathscr{M}=\{\mathrm{M} 1, \mathrm{M} 4\} \subset \mathrm{U} .
$$

The attributes are $a_{1}=$ Cost efficiency, $a_{2}=$ Eco-compatibility, $a_{3}=$ Time efficacy, a_{4} = Profit yield. If the pollution abatement methods are supposed to fulfill these attributes, then in realistic perspective the possible attribute values are taken as follows,

Cost efficiency $=\mathrm{A}_{1}=\{$ low, medium, high $\}$, Eco-compatibility $=\mathrm{A}_{2}=\{$ very high, high $\}$, Time efficacy $=\mathrm{A}_{3}=\{$ less, more $\}$, Profit yield $=\mathrm{A}_{4}=\{$ maximum, minimum $\}$.

Suppose a manufacturing firm has decided to implement a pollution control method, then the above attributes and its values are considered for making optimal decision with the possible range of values of attributes. By usual consideration,

Let the function be: $\quad G: A_{1} \times A_{2} \times A_{3} \times A_{4} \rightarrow P(U)$
Let's assume: $G(\{$ low, high, more, maximum $\})=\left\{\mathrm{M}_{1}, \mathrm{M}_{4}\right\}$.

The degree of appurtenance of an element x to the set \mathscr{M}, with respect to each attribute value a is $d_{x}{ }^{0}(a)$ that is the deciding factor of the nature of plithogenic hypersoft set.

In the context of decision making with the expert's opinion, then $d_{x}{ }^{0}(a)$ is the resultant of the expert's perception. Sometimes the expert's outlook may be a combination of certain, fuzzy, intuitionistic and neutrosophic, which is expressed as follows
$G(\{$ low, high, more, maximum $\})=\left\{\mathrm{M}_{1}(1,0.8,0.7,(0.4,0.5))\right.$,
$\left.\mathrm{M}_{4}(1,0.9,(0.8,0.1,0.1),(0.5,0.6))\right\}$.
This is the pragmatic reflection of the person's perception in decision making process and this is the point of origin of combined plithogenic hypersoft sets. Thus a combined plithogenic hypersoft sets is a plithogenic hypersoft set in which the degree of appurtenance of an element x to the set \mathscr{M}, with respect to each attribute value is a combination of either crisp, fuzzy, intuitionistic or neutrosophic.

Combined plithogenic hypersoft sets can be classified into completely combined plithogenic hypersoft sets and partially combined plithogenic hypersoft sets based on the nature and combination of values taken by $d_{x}{ }^{0}(\mathrm{a})$. In the above stated example $\mathrm{G}(\{$ low, high, more, maximum $\})=$ $\left\{\mathrm{M}_{1}(1,0.8,0.7,(0.4,0.5)), \mathrm{M}_{4}(1,0.9,(0.8,0.1,0.1),(0.5,0.6))\right\}$ is a completely combined plithogenic hypersoft sets as $d x 0(\mathrm{a})$ takes all possible types of values. Suppose $G(\{$ low, high, more, maximum $\})=$ $\left\{\mathrm{M}_{1}(0.9,0.8,0.7,(0.4,0.5)), \mathrm{M}_{4}(0.8,0.9,0.6,(0.5,0.6))\right\}$ then this combined plithogenic hypersoft set is partial in nature as $d_{x}{ }^{0}(\mathrm{a})$ takes only a combination of two types of values. Thus a combined plithogenic hypersoft set which is not complete is partial in its nature.

It is very evident that combined plithogenic hypersoft sets are highly rational in nature and it will certainly play a vital role in receiving the expert's opinion, which is very significant in any multi attribute decision making process. Also the need of such new types of plithogenic hypersoft sets are very essential, because in the manufacturing firms and in business sectors the implementation of certain methods and installation of certain mechanisms and machinery may not be characterized by only crisp or fuzzy values with regard to the degree of appurtenance as the possibility aspect has some extent of participation in it. To handle such situations the combined plithogenic hypersoft sets may lend a helping hand to the decision makers.

3. Application of Combined Plithogenic Hypersoft set in Multi Attribute Decision Making

The previous section presented an elaborate portrayal of combined plithogenic hypersoft set, the significant feature is the realistic representation, but it has certain difficulties in computations as the degree of appurtenance varies for each attribute. To handle such crisis, all the values of $d_{x}{ }^{0}(\mathrm{a})$ must be similar in nature, i.e. either all the values must be fuzzy values which is the lower level of fuzzy representation or it must be neutrosophic values, the higher level of fuzzy representation.

A manufacturing sector has decided to enhance its production rate by installing new kinds of machinery. The ultimate aim of incorporating such a change in the production mechanism is quality production and customer satisfaction. The market is flooded with several varieties of well equipped, modern machines and since the manufacturing sector makes huge investment, the decision making process takes place in two phases based on the expert's opinion and advice. In the first phase, ten machines were selected by the manufacturing sector and in the next phase five were selected based on the feedback of the users. The decision making problem begins here, as the company has to purchase only three out of five based on the extent of satisfaction of the attributes by these machines.

Let $U=\left\{M_{1}, M_{2}, M_{3}, M_{4}, M_{5}, M_{6}, M_{7}, M_{8}, M_{9}, M_{10}\right\}$ be the university of discourse and set
$T=\left\{M_{1}, M_{3}, M_{6}, M_{7}, M_{9}\right\} \subset U$.
The attribute system is represented as follows $A=\left\{\left(A_{1}\right)\right.$ Maintenance Cost $\{$ Maximum in the initial years of utility $\left(\mathrm{A}_{1}{ }^{1}\right)$, Maximum in the latter years of utility $\left.\left(\mathrm{A}_{1^{2}}\right)\right\},\left(\mathrm{A}_{2}\right)$ Reliability $\{$ High with additional expenditure $\left(\mathrm{A}_{2}{ }^{1}\right)$, Moderate with no extra expense $\left.\left(\mathrm{A}_{2}{ }^{2}\right)\right\}$, (A_{3})Flexibility $\{$ Single task oriented $\left(\mathrm{A}_{3}{ }^{1}\right)$, Multi task oriented $\left.\left(\mathrm{A}_{3^{2}}\right)\right\}$, ($\left.\mathrm{A}_{4}\right)$ Durability \{Very high in the beginning years of service $\left(\mathrm{A}_{4}{ }^{1}\right)$, High in the latter years of service $\left(\mathrm{A}_{4}{ }^{2}\right)$, \}, (A_{5})Profitability \{Moderate in the initial years($\left.\mathrm{A}_{5}{ }^{1}\right)$, Maximum in the latter years $\left.\left.\left(\mathrm{A}_{5}^{2}\right)\right\}\right\}$.

The attributes are quite common, but the attribute values are more realistic as it mirror the actual aspects involved in making decision.

Let the function be: $\quad \mathrm{G}: \mathrm{A}_{1}{ }^{1} \times \mathrm{A}_{2}{ }^{2} \times \mathrm{A}_{3}{ }^{2} \times \mathrm{A}_{4}{ }^{1} \times \mathrm{A}_{5}{ }^{2} \rightarrow \mathrm{P}(\mathrm{U})$. Based on the Expert's opinion, the degree of appurtenance of the elements with respect to the attribute values is represented as follows
$\mathrm{G}\left(\mathrm{A}_{1}{ }^{1}, \mathrm{~A}_{2}{ }^{2}, \mathrm{~A}_{3}{ }^{2}, \mathrm{~A}_{4}{ }^{1}, \mathrm{~A}_{5}{ }^{2}\right)=$
\{M1(0.9,(0.7,0.1),0.8,(0.6,0.2),0.5),M3((0.6,0.3),0.5,(0.4,0.1,0.3),0.8,0.7),
M6(0.8,0.7,0.6,(0.5,0.2),(0.6,0.1,0.1)),M7((0.7,0.2,0.1),(0.7,0.1),0.9,(0.7,0.2),0.8),M9(1,0.9,0.5,0.8,(0.6,0.1,0. 2)) $\}$.

The modified lower and higher fuzzy values of the degree of appurtenance of the elements with respect to the attribute values are denoted as $\mathrm{GL}_{\mathrm{L}}\left(\mathrm{A}_{1}{ }^{1}, \mathrm{~A}_{2}{ }^{2}, \mathrm{~A}_{3}{ }^{2}, \mathrm{~A}_{4}{ }^{1}, \mathrm{~A}_{5}{ }^{2}\right)$ and $\mathrm{GH}_{H}\left(\mathrm{~A}_{1}{ }^{1}, \mathrm{~A}_{2}{ }^{2}, \mathrm{~A}_{3}{ }^{2}, \mathrm{~A}_{4}{ }^{1}\right.$, $\mathrm{A}_{5}{ }^{2}$)
$\mathrm{GL}\left(\mathrm{Al}_{1}{ }^{1}, \mathrm{~A}_{2}{ }^{2}, \mathrm{~A}_{3}{ }^{2}, \mathrm{~A}_{4}{ }^{1}, \mathrm{~A}_{5}{ }^{2}\right)=\{\mathrm{M} 1(0.9,0.875,0.8,0.75,0.5), \mathrm{M} 3(0.67,0.5,0.4,0.8,0.7), \mathrm{M} 6(0.8,0.7,0.6,0.7,0.5)$, M7(0.67,0.875,0.9,0.78,0.8), M9(1,0.9,0.5,0.8,0.47)\}

```
GH}(\mp@subsup{A}{1}{}\mp@subsup{}{}{1},\mp@subsup{A}{2}{2}\mp@subsup{}{}{2},\mp@subsup{A}{3}{}\mp@subsup{}{}{2},\mp@subsup{A}{4}{}\mp@subsup{}{}{1},\mp@subsup{A}{5}{2}\mp@subsup{}{}{2})
{M1(0.9,0.1,0.1),(0.7,0.2,0.1),(0.8,0.1,0.1),(0.6,0.3,0.2),(0.5,0.2,0.7)),M3((0.6,0.3,0.3),
(0.5,0.2,0.7),(0.4,0.1,0.3),(0.8,0.1,0.1),(0.7,0.2,0.1)),M6((0.8,0.1,0.1),(0.7,0.2,0.1),(0.6,0.2,0.3),(0.5,0.3,0.2),(
0.6,0.1,0.1)),M7((0.7,0.2,0.1),(0.7,0.1,0.1),(0.9,0.1,0.1),(0.7,0.1,0.2),(0.8,0.1,0.1)),M9((1,0,0),(0.9,0.1,0.1),(0.
5,0.2,0.7),(0.8,0.1,0.1),(0.6,0.1,0.2))}
```

The lower and higher fuzzy values of the degree of appurtenance correspond to single fuzzy value and neutrosophic values. The matrix representation C of the degree of appurtenance of the elements with respect to the attribute values in combined plithogenic hypersoft sets is

	$\mathrm{A}_{1}{ }^{1}$	$\mathrm{A}_{2}{ }^{2}$	$\mathrm{A3}^{2}$	$\mathrm{A}_{4}{ }^{1}$	A5 ${ }^{2}$
M1	0.9	(0.7,0.1)	0.8	(0.6,0.2)	0.5
M3	$(0.6,0.3)$	0.5	(0.4,0.1,0.3)	0.8	0.7
M6	0.8	0.7	0.6	$(0.5,0.2)$	(0.6,0.1,0.1)),
M7	(0.7,0.2,0.1)	(0.7,0.1)	0.9	(0.7,0.2)	0.8
M9	1	0.9	0.5	0.8	(0.6,0.1,0.2)

The intuitionistic and neutrosophic values are transformed to the above fuzzy values by the methods of imprecision and Defuzzification [16]

Method I (Imprecision membership): Any neutrosophic fuzzy set $\mathrm{N}_{\mathrm{A}}=\left(T_{A}, I_{A}, F_{A}\right)$ including neutrosophic fuzzy values are transformed into intuitionistic fuzzy values or vague values as $\eta(A)$
$=\left(T_{A}, f_{A}\right)$ where f_{A} is estimated the formula stated below which is called as Impression membership method.

$$
\begin{array}{cl}
F_{A}+\frac{\left[1-F_{A}-I_{A}\right]\left[1-F_{A}\right]}{\left[F_{A}+I_{A}\right]} & \text { if } F_{A}=0 \\
f_{A}=F_{A}+\frac{\left[1-F_{A}-I_{A}\right]\left[F_{A}\right]}{\left[F_{A}+I_{A}\right]} & \text { if } 0<F_{A} \leq 0.5 \\
F_{A}+\left[1-F_{A}-I_{A}\right]\left[0.5+\frac{F_{A}-0.5}{F_{A}+I_{A}}\right] & \text { if } 0.5<F_{A} \leq 1
\end{array}
$$

Method II (Defuzzification): After Method I (Median membership), intuitionistic (vague),fuzzy
values of the form $\eta(\mathrm{A})=\left(T_{A}, f_{A}\right)$ are transformed into fuzzy set including fuzzy values
as $\langle\Delta(\mathrm{A})\rangle=\left\langle\frac{T_{A}}{\left[T_{A}+f_{A}\right]}>\right.$.
The matrix representation C_{L} of the lower fuzzy values of the degree of appurtenance of the elements with respect to the attribute values in combined plithogenic hypersoft sets is
$\left.\begin{array}{l|lllll} & \mathrm{A}_{1}{ }^{1} & \mathrm{~A}_{2}{ }^{2} & \mathrm{~A}_{3}{ }^{2} & \mathrm{~A}_{4}{ }^{1} & \mathrm{~A}_{5}{ }^{2} \\ \mathrm{M}_{1} & 0.9 & 0.875 & 0.8 & 0.75 & 0.5 \\ \mathrm{M}_{3} & 0.67 & 0.5 & 0.4 & 0.8 & 0.7 \\ \mathrm{M}_{6} & 0.8 & 0.7 & 0.6 & 0.7 & 0.5 \\ \mathrm{M}_{7} & 0.67 & 0.875 & 0.9 & 0.78 & 0.8 \\ \mathrm{M}_{9} & 1 & 0.9 & 0.5 & 0.8 & 0.47\end{array}\right)$

By using the procedure of ranking as discussed by Shazia Rana et. al [15] the machines are ranked by considering the values of C_{L}.
The frequency matrix F_{L} representing the ranking of the machines is
M_{1}
M_{3}
M_{6}
M_{7}

M_{9} | 1 | R_{2} | R_{3} | R_{4} | R_{5} |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 1 | 2 |
| 1 | 0 | 1 | 2 | 0 |
| 2 | 1 | 1 | 0 | 0 |
| 1 | 0 | 0 | | |

The percentage measure of authenticity of ranking is presented below in Table 3.1

Table 3.1

R_{1}	M_{7}	50%
R_{2}	M_{1}	50%
R_{3}	M_{9}	50%
R_{4}	M_{6}	67%
R_{5}	M_{3}	100%

The matrix representation Cн of higher fuzzy values (neutrosophic representations) of the degree of appurtenance of the elements with respect to the attribute values in combined plithogenic hypersoft sets is

| $\mathrm{A}_{1}{ }^{1}$ | $\mathrm{~A}_{2}{ }^{2}$ | $\mathrm{~A}_{3}{ }^{2}$ | $\mathrm{~A}_{4}{ }^{1}$ | As^{2} |
| :--- | :--- | :--- | :--- | :--- | :--- |
| M_{3} | | | | |
| M_{6} | | | | |
| $\mathrm{M}_{7}(0.9,0.1,0.1)$ | $(0.7,0.2,0.1)$ | $(0.8,0.1,0.1)$ | $(0.6,0.3,0.2)$ | $(0.5,0.2,0.7)$ |
| $\mathrm{M}_{9}(0.6,0.3,0.3)$ | $(0.5,0.2,0.7)$ | $(0.4,0.1,0.3)$ | $(0.8,0.1,0.1)$ | $(0.7,0.2,0.1)$ |
| $(0.8,0.1,0.1)$ | $(0.7,0.2,0.1)$ | $(0.6,0.2,0.3)$ | $(0.5,0.3,0.2)$ | $(0.6,0.1,0.1)$ |
| $(0.7,0.2,0.1)$ | $(0.7,0.1,0.1)$ | $(0.9,0.1,0.1)$ | $(0.7,0.1,0.2)$ | $(0.8,0.1,0.1)$ |
| $(1,0,0)$ | $(0.9,0.1,0.1)$ | $(0.5,0.2,0.7)$ | $(0.8,0.1,0.1)$ | $(0.6,0.1,0.2)$ |

To make the ranking of the machines based on the higher values in C_{H} the score values $K(A)$ of the single valued neutrosophic representations [say $A=(a, b, c)$] are determined by $K(A)=\frac{1+a-2 b-c}{2}[17]$
$\left.\begin{array}{l|lllll} \\ \mathrm{M}_{1} \\ \mathrm{M}_{3} \\ \mathrm{M}_{6} \\ \mathrm{M}_{7}{ }^{1} & \mathrm{~A}_{2^{2}} & \mathrm{~A}_{3^{2}} & \mathrm{~A}_{4}{ }^{1} & \mathrm{~A}_{5^{2}} \\ 0.8 & 0.6 & 0.75 & 0.4 & 0.2 \\ \mathrm{M}_{9} \\ 0.35 & 0.2 & 0.45 & 0.75 & 0.6 \\ 0.75 & 0.6 & 0.45 & 0.35 & 0.65 \\ 0.6 & 0.7 & 0.8 & 0.65 & 0.75 \\ 1 & 0.8 & 0.2 & 0.75 & 0.6\end{array}\right)$

The frequency matrix F_{H} representing the ranking of machines is

	R_{1}	R2	R3	R4	R5
M1	1	0	1	1	0
M3	0	0	1	1	1
M6	0	1	1	1	0
M7	3	0	0	0	0
	1	1	1	0	0

The percentage measure of authenticity of ranking is presented below in Table 3.2

		Table 3.2	
R_{1}	M_{7}	60%	
R_{2}	M_{9}	50%	
R_{3}	M_{6}	25%	
R_{4}	M_{1}	33%	
R_{5}	M_{3}	100%	

4. Discussion

The combined plithogenic hypersoft set representations are so deliberate in nature. The resultant of computations in making decisions in two ways is represented in Table 3.1 and 3.2. The machines M_{7} and M_{3} occupy first and fifth rank respectively in both kinds of representation of degree of appurtenance. Also by making inferences from the table values M_{1}, M_{3} and M_{6} can be ranked in second ,third and fourth positions respectively. It is very evident that the transformation of combined attribute values to lower order fuzzy values yields best results in ranking the machines, but still the higher order values will also yield optimum results based on the selection of the score functions. The methods of converting combined attribute value to the values of similar fashion have to be constituted in the upcoming research works to attain feasible solutions to the decision making problems.

5. Conclusions

This research work encompasses the discussion of the new concept of combined plithogenic hypersoft set and its application in multi attribute decision making. Besides these types of appurtenance degrees, others can be used under the plithogenic umbrella, such as: Pythagorean, picture fuzzy, spherical fuzzy, spherical neutrosophic, etc. and even the most general one, refined neutrosophic type of appurtenance degree. The combined plithogenic hypersoft set can be extended to interval-valued combined plithogenic hypersoft sets and it can be converted to simple fuzzy values using score functions. The matrix representations of degree of appurtenance in combined plithogenic hypersoft set has induced the author to extend the proposed theoretical conceptualization to plithogenic concentric hypergraphs, most probably the scope and future research work.

References

1. Zadeh, L. A. (1965). Fuzzy set, Inform and Control, 8, 338-353.
2. Atanassov, K. T. (1986). Intuitionistic fuzzy set. Fuzzy set and Systems, 20(1), 87-96
3. Smarandache, F, (1997), Collected Papers", Vol. II, University of Kishinev Press, Kishinev.
4. Smarandache, F. (1999). A Unifying Field in Logic Neutrosophy, Neutrosophic Probability Set and Logic, Rehoboth, American Research Press
5. Smarandache, F. (2002). Neutrosophy, A New Branch of Philosophy, Multiple Valued Logic / An International Journal, USA, 8(3), 297-384.
6. Abdel-Basset, M., Nabeeh, N. A., El-Ghareeb, H. A., \& Aboelfetouh, A. (2019). Utilising neutrosophic theory to solve transition difficulties of IoT-based enterprises. Enterprise Information Systems, 1-21.
7. Abdel-Baset, M., Chang, V., \& Gamal, A. (2019). Evaluation of the green supply chain management practices: A novel neutrosophic approach. Computers in Industry, 108, 210-220.
8. Smarandache, F. (2018). Plithogeny, Plithogenic Set, Logic, Probability, and Statistics. arXiv preprint arXiv:1808.03948.
9. Abdel-Basset, M., El-hoseny, M., Gamal, A., \& Smarandache, F. (2019). A novel model for green supply chain management practices based on plithogenic sets. Artificial intelligence in medicine, 100, 101710.
10. Abdel-Basset, M., Manogaran, G., Gamal, A., \& Chang, V. (2019). A Novel Intelligent Medical Decision Support Model Based on Soft Computing and IoT. IEEE Internet of Things Journal.
11. Abdel-Basset, M., Mohamed, R., Zaied, A. E. N. H., \& Smarandache, F. (2019). A hybrid plithogenic decision-making approach with quality function deployment for selecting supply chain sustainability metrics. Symmetry, 11(7), 903.
12. Molodtsov, D. (1999). Soft set theory-First results, Computers and mathematics with applications. 37, 1931.
13. Maji. P.K, R. Biswas, and A. R. Roy,(2001), Fuzzy soft sets, Journal of Fuzzy Mathematics, vol. 9, no. 3, pp. 589-602.
14. Smarandache, F. (2018). Extension of Soft set to Hypersoft Set, and then to Plithogenic Hypersoft Set, Neutrosophic Sets and Systems, 22, 68-70.
15. Shazia Rana, Madiha Qayyum , Muhammad Saeed, Florentin Smarandache, and Bakhtawar Ali Khan (2019), Plithogenic Fuzzy Whole Hypersoft Set, Construction of Operators and their Application in Frequency Matrix Multi Attribute Decision Making Technique, Neutrosophic Sets and Systems, Vol. 28, 34-50.
16. Solairaju and Shajahan, (2018),Transforming Neutrosophic Fuzzy Set into Fuzzy Set by Imprecision Method", Journal of Computer and Mathematical Sciences, Vol.9(10),1392-1399.
17. Şahin R (2014) Multi-criteria neutrosophic decision making method based on score and accuracy functions under neutrosophic environment. arXiv preprint arXiv:14125202.

On Neutrosophic Generalized Alpha Generalized Continuity

Qays Hatem Imran ${ }^{1 *}$, R. Dhavaseelan², Ali Hussein Mahmood Al-Obaidi ${ }^{3}$, and Md. Hanif PAGE ${ }^{4}$
${ }^{1}$ Department of Mathematics, College of Education for Pure Science, Al-Muthanna University, Samawah, Iraq. E-mail: qays.imran@mu.edu.iq
${ }^{2}$ Department of Mathematics, Sona College of Technology, Salem-636005, Tamil Nadu, India E-mail: dhavaseelan.r@gmail.com
${ }^{3}$ Department of Mathematics, College of Education for Pure Science, University of Babylon, Hillah, Iraq. E-mail: aalobaidi@uobabylon.edu.iq
${ }^{4}$ Department of Mathematics, KLE Technological University, Hubballi-580031, Karnataka, India. E-mail: mb_page@kletech.ac.in
* Correspondence: qays.imran@mu.edu.iq

Abstract

This article demonstrates a further class of neutrosophic closed sets named neutrosophic generalized αg-closed sets and discuss their essential characteristics in neutrosophic topological spaces. Moreover, we submit neutrosophic generalized α g-continuous functions with their elegant features.

Keywords: neutrosophic generalized $\alpha \mathrm{g}$-closed sets, neutrosophic generalized $\alpha \mathrm{g}$-continuous functions, and neutrosophic generalized αg-irresolute functions.

1. Introduction

Smarandache $[1,2]$ originally handed the theory of "neutrosophic set". Recently, Abdel-Basset et al. discussed a novel neutrosophic approach [3-8] in several fields, for a few names, information and communication technology. Salama et al. [9] gave the clue of neutrosophic topological space (or simply NTS). Arokiarani et al. [10] added the view of neutrosophic α-open subsets of neutrosophic topological spaces. Imran et al. [11] presented the idea of neutrosophic semi- α-open sets in neutrosophic topological spaces. Dhavaseelan et al. [12] presented the idea of neutrosophic α^{m}-continuity. Our aim is to introduce a new idea of neutrosophic generalized αg-closed sets and examine their vital merits in neutrosophic topological spaces. Additionally, we propose neutrosophic generalized αg-continuous functions by employing neutrosophic generalized αg-closed sets and emphasizing some of their primary characteristics.

2. Preliminaries

Everywhere of these following sections, we assume that $N T S$ s $(\mathcal{U}, \xi),(\mathcal{V}, \varrho)$ and (\mathcal{W}, μ) are briefly denoted as \mathcal{U}, \mathcal{V}, and \mathcal{W}, respectively. Let \mathcal{C} be a neutrosophic set in \mathcal{U}, and we are easily symbolized it by $N S$, then the complement of \mathcal{C} is basically given by $\overline{\mathcal{C}}$. If \mathcal{C} is a neutrosophic open set in U and shortly indicated by Ne-OS. Then, $\overline{\mathcal{C}}$ is termed a neutrosophic closed set in U and simply referred by $\mathrm{Ne}-\mathrm{CS}$. The neutrosophic closure and the neutrosophic interior of \mathcal{C} are merely signified by $\mathrm{Ne}-c l(\mathcal{C})$ and $\mathrm{Ne}-\operatorname{int}(\mathcal{C})$, correspondingly.

Definition 2.1 [10]: A $N S \mathcal{C}$ in a $N T S \mathcal{U}$ is named a neutrosophic α-open set and simply written as $\mathrm{Ne}-\alpha \mathrm{OS}$ if $\mathcal{C} \subseteq \mathrm{Ne}-\operatorname{int}(\mathrm{Ne}-\operatorname{cl}(\mathrm{Ne}-\operatorname{int}(\mathcal{C})))$. Besides, if $\mathrm{Ne}-\boldsymbol{c l}(\mathrm{Ne}-\operatorname{int}(\mathrm{Ne}-\boldsymbol{c l}(\mathcal{C}))) \subseteq \mathcal{C}$, then \mathcal{C} is called a neutrosophic α-closed set, and we are shortly given it as $\mathrm{Ne}-\alpha \mathrm{CS}$. The collection of all such these
$\mathrm{Ne}-\alpha \mathrm{OS}$ (correspondently, $\mathrm{Ne}-\alpha \mathrm{CSs}$) in \mathcal{U} is referred to $\mathrm{Ne}-\alpha \mathrm{O}(\mathcal{U})$ (correspondently, $\mathrm{Ne}-\alpha \mathrm{C}(\mathcal{U})$). The intersection of all $\mathrm{Ne}-\alpha \mathrm{CS}$ s that contain \mathcal{C} is called the neutrosophic α-closure of \mathcal{C} in \mathcal{U} and represented by $\mathrm{Ne}-\alpha c l(\mathcal{C})$.

Definition 2.2 [13]: A $N S \mathcal{C}$ in $N T S \mathcal{U}$ is so-called a neutrosophic generalized closed set and denoted by Ne-gCS if for any $\mathrm{Ne}-\mathrm{OS} \mathcal{M}$ in \mathcal{U} such that $\mathcal{C} \subseteq \mathcal{M}$, then $\mathrm{Ne}-\operatorname{cl}(\mathcal{C}) \subseteq \mathcal{M}$. Moreover, its complement is named a neutrosophic generalized open set and referred to Ne-gOS.

Definition 2.3 [14]: A $N S \mathcal{C}$ in NTS \mathcal{U} is so-called a neutrosophic αg-closed set and indicated by $\mathrm{Ne}-\alpha \mathrm{gCS}$ if for any $\mathrm{Ne}-\mathrm{OS} \mathcal{M}$ in \mathcal{U} such that $\mathcal{C} \subseteq \mathcal{M}$, then $\mathrm{Ne}-\alpha \operatorname{cl}(\mathcal{C}) \subseteq \mathcal{M}$. Furthermore, its complement is named a neutrosophic αg-open set and symbolized by $\mathrm{Ne}-\alpha \mathrm{gOS}$.

Definition 2.4 [15]: A $N S \mathcal{C}$ in $N T S \mathcal{U}$ is so-called a neutrosophic $g \alpha$-closed set and signified by
 complement is named a neutrosophic g α-open set and briefly written as $\mathrm{Ne}-\mathrm{g} \alpha \mathrm{OS}$.

Theorem 2.5 [10,13-15]: For any NTS \mathcal{U}, the next declarations valid and but not vice versa:
(i) for all $\mathrm{Ne}-\mathrm{OSs}$ (correspondingly, $\mathrm{Ne}-\mathrm{CSs}$) are $\mathrm{Ne}-\alpha \mathrm{OS}$ (correspondingly, $\mathrm{Ne}-\alpha \mathrm{CSs}$).
(ii) for all $\mathrm{Ne}-\mathrm{OSs}$ (correspondingly, $\mathrm{Ne}-\mathrm{CSs}$) are Ne -gOSs (correspondingly, Ne -gCSs).
(iii) for all $\mathrm{Ne}-\mathrm{gOSs}$ (correspondingly, $\mathrm{Ne}-\mathrm{gCSs}$) are $\mathrm{Ne}-\alpha \mathrm{gOSs}$ (correspondingly, $\mathrm{Ne}-\alpha \mathrm{gCSs}$).
(iv) for all $\mathrm{Ne}-\alpha \mathrm{OS}$ (correspondingly, $\mathrm{Ne}-\alpha \mathrm{CSs}$) are $\mathrm{Ne}-\mathrm{g} \alpha \mathrm{OSs}$ (correspondingly, $\mathrm{Ne}-\mathrm{g} \alpha \mathrm{CSs}$).
(v) for all $\mathrm{Ne}-\mathrm{g} \alpha \mathrm{OSs}$ (correspondingly, $\mathrm{Ne}-\mathrm{g} \alpha \mathrm{CSs}$) are $\mathrm{Ne}-\alpha \mathrm{gOSs}$ (correspondingly, $\mathrm{Ne}-\alpha \mathrm{gCS}$).

Definition 2.6: Let (\mathcal{U}, ξ) and (\mathcal{V}, ϱ) be NTSs and $\eta:(\mathcal{U}, \xi) \rightarrow(\mathcal{V}, \varrho)$ be a mapping, we have (i) if for each $\mathrm{Ne}-\mathrm{OS}$ (correspondingly, $\mathrm{Ne}-\mathrm{CS}$) \mathcal{K} in $\mathcal{V}, \eta^{-1}(\mathcal{K})$ is a $\mathrm{Ne}-\mathrm{OS}$ (correspondingly, $\mathrm{Ne}-\mathrm{CS}$) in \mathcal{U}, then η is known as neutrosophic continuous and denoted by Ne-continuous. [16]
(ii) if for each Ne-OS (correspondingly, Ne-CS) \mathcal{K} in $\mathcal{V}, \eta^{-1}(\mathcal{K})$ is a $\mathrm{Ne}-\alpha \mathrm{OS}$ (correspondingly, Ne- $\alpha \mathrm{CS}$) in \mathcal{U}, then η is known as neutrosophic α-continuous and referred to $\mathrm{Ne}-\alpha$-continuous. [10] (iii) if for each $\mathrm{Ne}-\mathrm{OS}$ (correspondingly, $\mathrm{Ne}-\mathrm{CS}$) \mathcal{K} in $\mathcal{V}, \eta^{-1}(\mathcal{K})$ is a Ne -gOS (correspondingly, Ne-gCS) in \mathcal{U}, then η is known as neutrosophic g-continuous and signified by Ne-g-continuous. [17]

Remark 2.7 [17,10]: Let $\eta:(\mathcal{U}, \xi) \rightarrow(\mathcal{V}, \varrho)$ be a map, the next declarations valid and but not vice versa:
(i) For all Ne -continuous functions are $\mathrm{Ne}-\alpha$-continuous.
(ii) For all Ne-continuous functions are Ne-g-continuous.

3. Neutrosophic Generalized α g-Closed Sets

The neutrosophic generalized $\boldsymbol{\alpha g}$-closed sets and their features are studied and discussed in this part of the paper.

Definition 3.1: Let \mathcal{C} be a $N S$ in $N T S \mathcal{U}$, then it called a neutrosophic generalized αg-closed set and denoted by Ne-g $\alpha g C S$ if for any $\mathrm{Ne}-\alpha g \mathrm{OS} \mathcal{M}$ in \mathcal{U} such that $\mathcal{C} \subseteq \mathcal{M}$, then Ne - $\mathcal{C l}(\mathcal{C}) \subseteq \mathcal{M}$. We indicated the collection of all Ne-g $\alpha g C S s$ in NTS U by Ne-g $\alpha g C(U)$.
Definition 3.2: Let \mathcal{C} be a $N S$ in $T S \mathcal{U}$, then its neutrosophic gag-closure is the intersection of each $\mathrm{Ne}-\mathrm{g} \alpha \mathrm{gCS}$ in \mathcal{U} including \mathcal{C}, and we are shortly written it as $\mathrm{Ne}-\mathrm{g} \alpha \operatorname{g} c l(\mathcal{C})$. In other words, $\operatorname{Ne}-\operatorname{g} \alpha \operatorname{g} c l(\mathcal{C})=\cap\{\mathcal{D}: \mathcal{C} \subseteq \mathcal{D}, \mathcal{D}$ is a $\mathrm{Ne}-\mathrm{g} \alpha g C S\}$.

Theorem 3.3: The subsequent declarations are valid in any $T S \mathcal{U}$:
(i) for all $\mathrm{Ne}-\mathrm{CSs}$ are $\mathrm{Ne}-\mathrm{g} \alpha \mathrm{gCS}$.
(ii) for all $\mathrm{Ne}-\mathrm{g} \alpha \mathrm{gCS}$ are $\mathrm{Ne}-\mathrm{gCS}$.
(iii) for all $\mathrm{Ne}-\mathrm{g} \alpha \mathrm{gCS}$ are $\mathrm{Ne}-\alpha \mathrm{gCS}$.
(iv) for all Ne-g $\alpha g \mathrm{CS}$ s are $\mathrm{Ne}-\mathrm{g} \alpha \mathrm{CS}$.

Proof:

(i) Suppose a $\mathrm{Ne}-\mathrm{CS} \mathcal{C}$ is in $T S \mathcal{U}$. For any $\mathrm{Ne}-\alpha \mathrm{OS} \mathcal{M}$, including \mathcal{C}, we have $\mathcal{M} \supseteq \mathcal{C}=\mathrm{Ne}-\mathcal{C l}(\mathcal{C})$. Therefore, \mathcal{C} stands a Ne-g $\alpha g C S$.
(ii) Suppose Ne-gagCS \mathcal{C} is in TS \mathcal{U}. For any Ne-OS \mathcal{M}, including \mathcal{C}, we have theorem (2.5) states
 result, \mathcal{C} considers a Ne-gCS.
(iii) Assume Ne-gagCS \mathcal{C} is in $T S \mathcal{U}$. For any Ne-OS \mathcal{M}, including \mathcal{C}, we have theorem (2.5) states that \mathcal{M} remains a $\mathrm{Ne}-\alpha \mathrm{gOS}$ in \mathcal{U}. Subsequently, $\mathrm{Ne}-\mathrm{g} \alpha \mathrm{gCS} \mathcal{C}$ satisfying this statement $\mathrm{Ne}-\alpha c l(\mathcal{C}) \subseteq \mathrm{Ne}-c l(\mathcal{C}) \subseteq \mathcal{M}$. Therefore, \mathcal{C} becomes a Ne- $\alpha \mathrm{gCS}$.
(iv) Assume $\mathrm{Ne}-\mathrm{g} \alpha \mathrm{gCS} \mathcal{C}$ is in TS \mathcal{U}. For any $\mathrm{Ne}-\alpha \mathrm{OS} \mathcal{M}$ including \mathcal{C}, we have theorem (2.5) states that \mathcal{M} remains a $\mathrm{Ne}-\alpha \mathrm{gOS}$ in \mathcal{U}. Subsequently, $\mathrm{Ne}-\mathrm{g} \alpha \mathrm{gCS} \mathcal{C}$ satisfying this statement $\mathrm{Ne}-\alpha c l(\mathcal{C}) \subseteq \mathrm{Ne}-c l(\mathcal{C}) \subseteq \mathcal{M}$. Therefore, \mathcal{C} considers a Ne-g $\alpha \mathrm{CS}$.
The opposite conditions for this previous theorem do not look accurate by the next obvious examples.

Example 3.4: Suppose $\mathcal{U}=\{p, q\}$ and let $\xi=\left\{0_{N}, \mathcal{A}, \mathcal{B}, 1_{N}\right\}$, such that we have the sets $\mathcal{A}=$ $\langle u,(0.6,0.7),(0.1,0.1),(0.4,0.2)\rangle$ and $\mathcal{B}=\langle u,(0.1,0.2),(0.1,0.1),(0.8,0.8)\rangle$, so that (\mathcal{U}, ξ) is a NTS. However, the $N S \mathcal{C}=\langle u,(0.2,0.2),(0.1,0.1),(0.6,0.7)\rangle$ is a Ne-g $\alpha g C S$ but not a Ne-CS.

Example 3.5: Suppose $\mathcal{U}=\{p, q, r\}$ and let $\xi=\left\{0_{N}, \mathcal{A}, \mathcal{B}, 1_{N}\right\}$, where such that we have the sets $\mathcal{A}=\langle u,(0.5,0.5,0.4),(0.7,0.5,0.5),(0.4,0.5,0.5)\rangle \quad$ and $\mathcal{B}=\langle u,(0.3,0.4,0.4),(0.4,0.5,0.5),(0.3,0.4,0.6)\rangle$, so that (\mathcal{U}, ξ) is a $N T S$. However, the $N S \mathcal{C}=\langle u,(0.4,0.6,0.5),(0.4,0.3,0.5),(0.5,0.6,0.4)\rangle$ is a Ne-gCS but not a Ne-g $\alpha g C S$.

Example 3.6: Suppose $\mathcal{U}=\{p, q\}$ and let $\xi=\left\{0_{N}, \mathcal{A}, \mathcal{B}, 1_{N}\right\}$, where such that we have the sets $\mathcal{A}=$ $\langle u,(0.5,0.6),(0.3,0.2),(0.4,0.1)\rangle$ and $\mathcal{B}=\langle u,(0.4,0.4),(0.4,0.3),(0.5,0.4)\rangle$, so that (\mathcal{U}, ξ) is a NTS.

However, the $N S \mathcal{C}=\langle u,(0.5,0.4),(0.4,0.4),(0.4,0.5)\rangle$ is a Ne- $\alpha g C S$ and hence Ne-g $\alpha C S$ but not a Ne-g $\alpha g C S$.

Definition 3.7: Let \mathcal{C} be any $N S$ in $T S \mathcal{U}$, then it is called a neutrosophic generalized α-open set and referred to by Ne-g $\alpha g O S$ iff the set $\mathcal{U}-\mathcal{C}$ is a Ne-g $\alpha g C S$. The collection of the whole Ne-g $\alpha g \mathrm{OS}$ in NTS U indicated by Ne-g $\alpha g O(U)$.

Definition 3.8: The union of the whole Ne-g α gOSs in NTS \mathcal{U} included in $N S \mathcal{C}$ is termed neutrosophic $g \alpha g$-interior of \mathcal{C} and symbolized by Ne-gagint (\mathcal{C}). In symbolic form, we have this thing $\operatorname{Ne}-\mathrm{g} \alpha \operatorname{gint}(\mathcal{C})=\bigcup\{\mathcal{D}: \mathcal{C} \supseteq \mathcal{D}, \mathcal{D}$ is a Ne-g $\alpha \mathrm{gOS}\}$.

Proposition 3.9: For any $N S \mathcal{M}$ in $T S \mathcal{U}$, the subsequent features stand:
(i) Ne-gagint $(\mathcal{M})=\mathcal{M}$ iff \mathcal{M} is a Ne-gagOS.
(ii) $\operatorname{Ne}-\mathrm{g} \alpha \mathrm{gcl}(\mathcal{M})=\mathcal{M}$ iff \mathcal{M} is a Ne-g $\alpha g C S$.
(iii) $\mathrm{Ne}-\mathrm{g} \alpha \operatorname{gint}(\mathcal{M})$ is the biggest $\mathrm{Ne}-\mathrm{g} \alpha \mathrm{gOS}$ included in \mathcal{M}.
(iv) Ne-g $\alpha g c l(\mathcal{M})$ is the littlest Ne-g $\alpha g C S$, including \mathcal{M}.

Proof: the features (i-iv) are understandable.

Proposition 3.10: For any $N S \mathcal{M}$ in $T S \mathcal{U}$, the subsequent features stand:
(i) $\operatorname{Ne-g\alpha gint}(\overline{\mathcal{M}})=\overline{(\mathrm{Ne}-\operatorname{g\alpha gcl}(\mathcal{M}))}$,
(ii) $\mathrm{Ne}-\mathrm{g} \alpha \mathrm{gcl}(\overline{\mathcal{M}})=\overline{(\mathrm{Ne}-\operatorname{g\alpha g} \operatorname{lnt}(\mathcal{M}))}$.

Proof:

(i) The proof will be evident by symbolic definition, $\operatorname{Ne}-\operatorname{g} \alpha \operatorname{gcl}(\mathcal{M})=\cap\{\mathcal{D}: \mathcal{M} \subseteq \mathcal{D}, \mathcal{D}$ is a $\operatorname{Ne}-\mathrm{g} \alpha \mathrm{gCS}\}$

$$
\begin{aligned}
\overline{(\mathrm{Ne}-\operatorname{g\alpha gcl}(\mathcal{M}))} & =\cap\{\bar{D}: \overline{\mathcal{M}} \subseteq \bar{D}, \bar{D} \text { is a } \mathrm{Ne}-\mathrm{g} \alpha \mathrm{gCS}\} \\
& =\bigcup\{\overline{\mathcal{D}}: \overline{\mathcal{M}} \subseteq \overline{\mathcal{D}}, \overline{\mathcal{D}} \text { is a Ne-g } \alpha g \mathrm{CS}\} \\
& =\bigcup\{\mathcal{N}: \mathcal{M} \supseteq \mathcal{N}, \mathcal{N} \text { is a Ne-g } \alpha g \mathrm{OS}\} \\
& =\operatorname{Ne}-\mathrm{g} \alpha \operatorname{gint}(\overline{\mathcal{M}}) .
\end{aligned}
$$

(ii) This feature has undeniable proof analogous to feature (i).

Theorem 3.11: For any Ne-OS \mathcal{C} in $T S \mathcal{U}$, then this set is a Ne-g $\alpha g O S$.
Proof: Suppose Ne-OS \mathcal{C} in TS \mathcal{U}, so we obtain that $\overline{\mathcal{C}}$ is a Ne-CS. Therefore, $\overline{\mathcal{C}}$ is a Ne-g $\alpha g C S$ via the previous theorem (3.3), part (i). Consequently, \mathcal{C} is a Ne-g $\alpha g O S$.

Theorem 3.12: For any Ne-g $\alpha g O S \mathcal{C}$ in $T S \mathcal{U}$, then this set is a Ne-gOS.
Proof: Suppose Ne-g $\alpha g O S \mathcal{C}$ in TS \mathcal{U}, so we obtain that $\overline{\mathcal{C}}$ is a Ne-g $\alpha g C S$. Therefore, $\overline{\mathcal{C}}$ is a Ne-gCS via the previous theorem (3.3), part (ii). Consequently, \mathcal{C} is a Ne-gOS.

Lemma 3.13: For any Ne-g $\alpha g O S \mathcal{C}$ in $T S \mathcal{U}$, then this set is Ne- $\alpha g O S$ (correspondingly, Ne-g $\alpha \mathrm{OS}$). Proof: The proof of this lemma is similar to one of the previous theorem.

Proposition 3.14: For any two Ne-gagCSs \mathcal{C} and \mathcal{D} in $T S \mathcal{U}$, then the set $\mathcal{C} U \mathcal{D}$ is a Ne-gagCS.

Proof: Suppose any two Ne-gagCSs \mathcal{C} and \mathcal{D} in $N T S \mathcal{U}$ and \mathcal{M} is a Ne- $\alpha g O S$, including \mathcal{C} and \mathcal{D}. In other words, we have $\mathcal{C} \cup \mathcal{D} \subseteq \mathcal{M}$. So, $\mathcal{C}, \mathcal{D} \subseteq \mathcal{M}$. Because \mathcal{C} and \mathcal{D} are Ne - $\alpha \alpha \mathrm{gCS}$, we get that $\mathrm{Ne}-c l(\mathcal{C}), \mathrm{Ne}-c l(\mathcal{D}) \subseteq \mathcal{M}$. Therefore, $\mathrm{Ne}-c l(\mathcal{C} \cup \mathcal{D})=\mathrm{Ne}-c l(\mathcal{C}) U N e-c l(\mathcal{D}) \subseteq \mathcal{M}$. Then $\mathrm{Ne}-c l(\mathcal{C} \cup \mathcal{D}) \subseteq$ \mathcal{M}. Thus, $\mathcal{C} \cup \mathcal{D}$ stands a $\mathrm{Ne}-\mathrm{g} \alpha \mathrm{gCS}$.

Proposition 3.15: For any two Ne-g $\alpha g O S s \mathcal{C}$ and \mathcal{D} in $T S \mathcal{U}$, then the set $\mathcal{C} \cap \mathcal{D}$ is a Ne-g $\alpha g O S$.
Proof: Suppose any two Ne-gagOSs \mathcal{C} and \mathcal{D} in $T S \mathcal{U}$. Subsequently, we have that $\overline{\mathcal{C}}$ and $\overline{\mathcal{D}}$ are Ne-g $\alpha g C S$. So, we reach to this fact $\overline{\mathcal{C}} \cup \overline{\mathcal{D}}$ is a Ne-g $\alpha g C S$ by proposition (3.14). Because $\overline{\mathcal{C}} \cup \overline{\mathcal{D}}=$ $\overline{(\mathcal{C} \cap \mathcal{D})}$, we obtain to our final result $\mathcal{C} \cap \mathcal{D}$ is a $\mathrm{Ne}-\mathrm{g} \alpha \mathrm{gOS}$.

Proposition 3.16: Let $\mathrm{Ne}-\mathrm{g} \alpha \mathrm{gCS} \mathcal{C}$ be in $T S \mathcal{U}$, then $\mathrm{Ne}-\mathcal{c l}(\mathcal{C})-\mathcal{C}$ does not include non-empty Ne-CS in \mathcal{U}.

Proof: Assume we have $\mathrm{Ne}-\mathrm{g} \alpha \mathrm{gCS} \mathcal{C}$ and $\mathrm{Ne}-\mathrm{CS} \mathcal{F}$ in $N T S \mathcal{U}$ so as $\mathcal{F} \subseteq \operatorname{Ne}-\operatorname{cl}(\mathcal{C})-\mathcal{C}$. Because \mathcal{C} stands a $\mathrm{Ne}-\mathrm{g} \alpha \mathrm{gCS}$, this gives us the fact $\operatorname{Ne}-\operatorname{cl}(\mathcal{C}) \subseteq \overline{\mathcal{F}}$. The latter means $\mathcal{F} \subseteq \overline{\mathrm{Ne}-\operatorname{cl}(\mathcal{C})}$. Subsequently, we arrive to $\mathcal{F} \subseteq \operatorname{Ne}-\operatorname{cl}(\mathcal{C}) \cap(\overline{\mathrm{Ne}-\operatorname{cl}(\mathcal{C})})=0_{N}$. Therefore, $\mathcal{F}=0_{N}$ and so, we reach to our final result $\mathrm{Ne}-\operatorname{cl}(\mathcal{C})-\mathcal{C}$ does not include non-empty $\mathrm{Ne}-\mathrm{CS}$.
 Ne- $\alpha g C S$ in \mathcal{U}.
Proof: Assume we have $\mathrm{Ne}-\mathrm{g} \alpha \mathrm{gCS} \mathcal{C}$ and $\mathrm{Ne}-\alpha \mathrm{gCS} \mathcal{G}$ in $N T S \mathcal{U}$ so as $\mathcal{G} \subseteq \operatorname{Ne}-\operatorname{cl}(\mathcal{C})-\mathcal{C}$. Because \mathcal{C} considers a $\mathrm{Ne}-\mathrm{g} \alpha \mathrm{gCS}$, this gives us the fact $\mathrm{Ne}-c l(\mathcal{C}) \subseteq \overline{\mathcal{G}}$. The latter means $\mathcal{G} \subseteq \overline{\mathrm{Ne}-\operatorname{cl}(\mathcal{C})}$. Subsequently, we arrive to $\mathcal{G} \subseteq \mathrm{Ne}-c l(\mathcal{C}) \cap(\overline{\mathrm{Ne}-\operatorname{cl}(\mathcal{C})})=0_{N}$. Therefore, \mathcal{G} is empty.
On The Other Hand, let us assume that $\operatorname{Ne}-\operatorname{cl}(\mathcal{C})-\mathcal{C}$ does not include non-empty $\mathrm{Ne}-\alpha \mathrm{gCS}$ in \mathcal{U}. Suppose \mathcal{M} is $\mathrm{Ne}-\alpha \mathrm{gOS}$ so as $\mathcal{C} \subseteq \mathcal{M}$. If we have this truth $\mathrm{Ne}-c l(\mathcal{C}) \subseteq \mathcal{M}$ but then we get this fact $\mathrm{Ne}-c l(\mathcal{C}) \cap(\overline{\mathcal{M}})$ is non-empty. Meanwhile, we know that $\mathrm{Ne}-c l(\mathcal{C})$ is $\mathrm{Ne}-\mathrm{CS}$ and at the same time, we have $\overline{\mathcal{M}}$ is $\mathrm{Ne}-\alpha g \mathrm{CS}$, so $\mathrm{Ne}-c l(\mathcal{C}) \cap(\overline{\mathcal{M}})$ is non-empty $\mathrm{Ne}-\alpha g \mathrm{CS}$ included $\mathrm{Ne}-c l(\mathcal{C})-\mathcal{C}$. This leads us to a contradiction. Consequently $\operatorname{Ne}-c l(\mathcal{C}) \nsubseteq \mathcal{M}$. Therefore, \mathcal{C} considers a Ne-g $\alpha g C S$.

Theorem 3.18: Let Ne- $\alpha g O S$ and Ne-g $\alpha g C S \mathcal{C}$ be in $T S \mathcal{U}$, then \mathcal{C} considers a Ne-CS in \mathcal{U}.
 subsequently, we reach to $\mathcal{C} \subseteq \mathrm{Ne}-\operatorname{cl}(\mathcal{C})$. Consequently, $\mathrm{Ne}-\operatorname{cl}(\mathcal{C})=\mathcal{C}$. Therefore, \mathcal{C} stands a $\mathrm{Ne}-\mathrm{CS}$.

Theorem 3.19: Let Ne-gagCS \mathcal{C} be in $N T S \mathcal{U}$ so as $\mathcal{C} \subseteq \mathcal{D} \subseteq \operatorname{Ne-cl}(\mathcal{C})$, but then again \mathcal{D} considers a Ne-gagCS in \mathcal{U}.
Proof: Assume we have Ne-g $\alpha \mathrm{gCS} \mathcal{C}$ and $\mathrm{Ne}-\alpha \mathrm{gOS} \mathcal{M}$ are in $N T S \mathcal{U}$ so as $\mathcal{D} \subseteq \mathcal{M}$. Later, $\mathcal{C} \subseteq \mathcal{M}$. Subsequently, \mathcal{C} stands a Ne-g $\alpha \mathrm{gCS}$; this fact pursues $\mathrm{Ne}-c l(\mathcal{C}) \subseteq \mathcal{M}$. So, $\mathcal{D} \subseteq \mathrm{Ne}-c l(\mathcal{C})$ infers $\mathrm{Ne}-c l(\mathcal{D}) \subseteq \mathrm{Ne}-\operatorname{cl}(\mathrm{Ne}-c l(\mathcal{C}))=\mathrm{Ne}-\operatorname{cl}(\mathcal{C})$. Consequently, $\mathrm{Ne}-\operatorname{cl}(\mathcal{D}) \subseteq \mathcal{M}$. Therefore, \mathcal{D} exists a Ne-g $\alpha g C S$.

Theorem 3.20: Let Ne-g $\alpha g O S \mathcal{C}$ be in $N T S \mathcal{U}$ so as $\operatorname{Ne-int}(\mathcal{C}) \subseteq \mathcal{D} \subseteq \mathcal{C}$, but then again \mathcal{D} considers a Ne-gagOS in U.

Proof: Assume we have Ne-g $\alpha g O S \mathcal{C}$ is in $N T S \mathcal{U}$ so as $\operatorname{Ne-int}(\mathcal{C}) \subseteq \mathcal{D} \subseteq \mathcal{C}$. After that, \mathcal{U} \mathcal{C} stands a Ne-g $\alpha g C S$ as well as $\overline{\mathcal{C}} \subseteq \overline{\mathcal{D}} \subseteq \operatorname{Ne}-\operatorname{cl}(\overline{\mathcal{C}})$. But then again, we depend on theorem (3.19) to get $U-\mathcal{D}$ is a Ne-g $\alpha g C S$. Therefore, \mathcal{D} exists a Ne-g $\alpha g O S$.

Theorem 3.21: A NS \mathcal{C} is Ne-gagOS iff $\mathcal{P} \subseteq \operatorname{Ne-int}(\mathcal{C})$ so as $\mathcal{P} \subseteq \mathcal{C}$ and \mathcal{P} considers a Ne-gagCS.
Proof: Assume we have that $\mathrm{Ne}-\mathrm{g} \alpha \mathrm{gCS} \mathcal{P}$ satisfying $\mathcal{P} \subseteq \mathcal{C}$ and $\mathcal{P} \subseteq \operatorname{Ne}-i n t(\mathcal{C})$. Afterward, $\overline{\mathcal{C}} \subseteq$ $\overline{\mathcal{P}}$ and we have by lemma (3.13), $\overline{\mathcal{P}}$ remains a Ne- $\alpha g O S$. Accordingly, $\mathrm{Ne}-c l(\overline{\mathcal{C}})=\overline{\mathrm{Ne}-\operatorname{lnt}(\mathcal{C})} \subseteq$ $\overline{\mathcal{P}}$. Subsequently, $\overline{\mathcal{C}}$ stands a Ne-g $\alpha g C S$. Therefore, \mathcal{C} stands a Ne-g $\alpha g O S$.
On the contrary, we assume Ne-g α gOS \mathcal{C} and Ne-g $\alpha g C S \mathcal{P}$ is so as $\mathcal{P} \subseteq \mathcal{C}$. Subsequently, $\overline{\mathcal{C}} \subseteq \overline{\mathcal{P}}$. While $\overline{\mathcal{C}}$ exists a Ne-g $\alpha g C S$ and $\overline{\mathcal{P}}$ remains a Ne- $\alpha g \mathrm{OS}$, we reach to that $\mathrm{Ne}-c l(\overline{\mathcal{C}}) \subseteq \overline{\mathcal{P}}$. Therefore, $\mathcal{P} \subseteq \operatorname{Ne}-i n t(\mathcal{C})$.

Remark 3.22: The next illustration demonstrates the relative among the distinct kinds of $\mathrm{Ne}-\mathrm{CS}$:

Fig. 3.1

4. Neutrosophic Generalized α g-Continuous Functions

In this part of this paper, the neutrosophic generalized αg-continuous functions are performed and examined their fundamental features.

Definition 4.1: Let $\eta:(\mathcal{U}, \xi) \longrightarrow(\mathcal{V}, \varrho)$ be a map so as \mathcal{U} and \mathcal{V} are $N T S$ s, then:
(i) η is named a neutrosophic αg-continuous and signified by Ne- αg-continuous if for every $\mathrm{Ne}-\mathrm{OS}$ (correspondingly, Ne-CS) \mathcal{K} in $\mathcal{V}, \eta^{-1}(\mathcal{K})$ is a Ne- $\alpha \mathrm{gOS}$ (correspondingly, $\mathrm{Ne}-\alpha \mathrm{gCS}$) in \mathcal{U}.
(ii) η is named a neutrosophic $g \alpha$-continuous and signified by Ne-g α-continuous if for every Ne-OS (correspondingly, Ne-CS) \mathcal{K} in $\mathcal{V}, \eta^{-1}(\mathcal{K})$ is a Ne-g $\alpha \mathrm{OS}$ (correspondingly, $\mathrm{Ne}-\mathrm{g} \alpha \mathrm{CS}$) in \mathcal{U}.

Theorem 4.2: Let η be a function on NTS \mathcal{U} and valued in TS \mathcal{V}. So, we have the following:
(i) all $\mathrm{Ne}-\mathrm{g}$-continuous functions are $\mathrm{Ne}-\alpha \mathrm{g}$-continuous.
(ii) all $\mathrm{Ne}-\alpha$-continuous functions are Ne -g α-continuous.
(iii) all $\mathrm{Ne}-\mathrm{g} \alpha$-continuous functions are $\mathrm{Ne}-\alpha \mathrm{g}$-continuous.

Proof:

(i) Let Ne-CS \mathcal{K} be in NTS \mathcal{V} and Ne-g-continuous function η defined on NTS \mathcal{U} and valued in $T S \mathcal{V}$. By definition of Ne-g-continuous, $\eta^{-1}(\mathcal{K})$ remains a Ne-gCS in \mathcal{U}. So, we have $\eta^{-1}(\mathcal{K})$ is a Ne- $\alpha g C S$ in U because of theorem (2.5) part (iii). As a result, η stands a Ne- α g-continuous.
(ii) Let $\mathrm{Ne}-\mathrm{CS} \mathcal{K}$ be in NTS \mathcal{V} and $\mathrm{Ne}-\alpha$-continuous function η defined on NTS \mathcal{U} and valued in $N T S \mathcal{V}$. By definition of Ne- α-continuous, $\eta^{-1}(\mathcal{K})$ remains a Ne- $\alpha \mathrm{CS}$ in \mathcal{U}. So, we have $\eta^{-1}(\mathcal{K})$ is a Ne-g $\alpha \mathrm{CS}$ in U because of theorem (2.5) part (iv). As a result, η stands a Ne-g α-continuous.
(iii) Let Ne-CS \mathcal{K} be in NTS \mathcal{V} and Ne-g α-continuous function η defined on NTS \mathcal{U} and valued in $T S \mathcal{V}$. So, we have $\eta^{-1}(\mathcal{K})$ is a $\mathrm{Ne}-\mathrm{g} \alpha \mathrm{CS}$ and then $\eta^{-1}(\mathcal{K})$ is a $\mathrm{Ne}-\alpha g \mathrm{CS}$ in \mathcal{U} because of theorem (2.5) part (v). Therefore, η stands a Ne- αg-continuous.
The reverse of the beyond proposition does not become valid as shown in the next examples.

Example 4.3: (i) Assume $\mathcal{U}=\{p, q\}$ and $\xi=\left\{0_{N}, \mathcal{A}, \mathcal{B}, 1_{N}\right\}$ and $\varrho=\left\{0_{N}, \mathcal{B}, \mathcal{C}, 1_{N}\right\}$, where $\mathcal{A}=$ $\langle u,(0.6,0.7),(0.4,0.3),(0.5,0.2)\rangle \quad, \quad \mathcal{B}=\langle u,(0.5,0.5),(0.5,0.4),(0.6,0.5)\rangle \quad$ and $\quad \mathcal{C}=$ $\langle u,(0.5,0.5),(0.6,0.4),(0.7,0.5)\rangle$ are the neutrosophic sets, then (\mathcal{U}, ξ) and (\mathcal{U}, ϱ) are NTSs. Define $\eta:(\mathcal{U}, \xi) \rightarrow(\mathcal{U}, \varrho)$ as a $\eta(p)=q$ and $\eta(q)=p$. Then η is Ne- αg-continuous. But $\overline{\mathcal{C}}=$ $\langle u,(0.7,0.5),(0.6,0.4),(0.5,0.5)\rangle$ is a Ne-CS in $(\mathcal{U}, \varrho), \eta^{-1}(\overline{\mathcal{C}})$ is not a Ne-gCS in (\mathcal{U}, ξ). Thus η is not a Ne-g-continuous.
(ii) Let $\mathcal{U}=\{p, q\}$ and let $\xi=\left\{0_{N}, \mathcal{A}, \mathcal{B}, 1_{N}\right\}$ and $\varrho=\left\{0_{N}, \mathcal{B}, \mathcal{C}, 1_{N}\right\}$, where $\mathcal{A}=$ $\langle u,(0.6,0.7),(0.4,0.3),(0.5,0.2)\rangle \quad, \quad \mathcal{B}=\langle u,(0.5,0.5),(0.5,0.4),(0.6,0.5)\rangle \quad$ and $\quad \mathcal{C}=$ $\langle u,(0.5,0.5),(0.5,0.5),(0.4,0.5)\rangle$ are the neutrosophic sets, then (\mathcal{U}, ξ) and (\mathcal{U}, ϱ) are NTSs. Define $\eta:(\mathcal{U}, \xi) \rightarrow(\mathcal{U}, \varrho)$ as a $\eta(p)=p$ and $\eta(q)=q$. Then η is Ne- $\alpha \alpha$-continuous. But $\overline{\mathcal{C}}=$ $\langle u,(0.4,0.5),(0.5,0.5),(0.5,0.5)\rangle$ is a Ne-CS in $(\mathcal{U}, \varrho), \eta^{-1}(\overline{\mathcal{C}})$ is not a Ne- $\alpha \mathrm{CS}$ in (\mathcal{U}, ξ). Thus η is not a $\mathrm{Ne}-\alpha$-continuous.
(iii) Let $\mathcal{U}=\{p, q\}$ and let $\xi=\left\{0_{N}, \mathcal{A}, \mathcal{B}, 1_{N}\right\} \quad$ and $\varrho=\left\{0_{N}, \mathcal{B}, \mathcal{C}, 1_{N}\right\}$, where $\mathcal{A}=$ $\langle u,(0.6,0.7),(0.4,0.3),(0.5,0.2)\rangle \quad, \quad \mathcal{B}=\langle u,(0.5,0.5),(0.5,0.4),(0.6,0.5)\rangle \quad$ and $\quad \mathcal{C}=$ $\langle u,(0.5,0.5),(0.6,0.4),(0.7,0.5)\rangle$ are the neutrosophic sets, then (U, ξ) and (U, ϱ) are NTSs. Define $\eta:(\mathcal{U}, \xi) \rightarrow(U, \varrho)$ as a $\eta(p)=q$ and $\eta(q)=p$. Then η is Ne- α g-continuous. But $\overline{\mathcal{C}}=$ $\langle u,(0.5,0.5),(0.5,0.5),(0.6,0.4)\rangle$ is a Ne-CS in $(\mathcal{U}, \varrho), \eta^{-1}(\overline{\mathcal{C}})$ is not a Ne- $g \alpha \mathrm{CS}$ in (\mathcal{U}, ξ). Thus η is not a Ne-g α-continuous.

Definition 4.4: Let η be a function on NTS \mathcal{U} and valued in $T S \mathcal{V}$. Then, we named η as neutrosophic generalized αg-continuous and shortly wrote it as $\mathrm{Ne}-\mathrm{g} \alpha \mathrm{g}$-continuous if for each Ne-CS \mathcal{K} in $\mathcal{V}, \eta^{-1}(\mathcal{K})$ is a Ne-g $\alpha g C S$ in \mathcal{U}.

Theorem 4.5: Let η be a function on $N T S \mathcal{U}$ and valued in TS \mathcal{V}. Afterward, η remains a Ne-g αg-continuous function iff for each Ne-OS \mathcal{K} in $\mathcal{V}, \eta^{-1}(\mathcal{K})$ is a Ne-g $\alpha g O S$ in \mathcal{U}.
Proof: Let Ne-OS \mathcal{K} and Ne-CS $\overline{\mathcal{K}}$ are in \mathcal{V}. Therefore, $\eta^{-1}(\overline{\mathcal{K}})=\left(\overline{\left.\eta^{-1}(\mathcal{K})\right)}\right.$ remains a Ne-g $\alpha \mathrm{gCS}$ in \mathcal{U}. Consequently, $\eta^{-1}(\mathcal{K})$ exists a Ne-gagOS in \mathcal{U}. The reverse proof is evident.

Proposition 4.6: For all Ne-g αg-continuous functions are $\mathrm{Ne}-\alpha \mathrm{g}$-continuous.
Proof: Let Ne-CS \mathcal{K} be in NTS \mathcal{V} and Ne-g α g-continuous function η defined on NTS \mathcal{U} and valued in $T S \mathcal{V}$. By definition of Ne-g αg-continuous function, $\eta^{-1}(\mathcal{K})$ stands a Ne-g $\alpha g C S$ in \mathcal{U}. So, we have $\eta^{-1}(\mathcal{K})$ remains a Ne- $\alpha g C S$ in U because of theorem (3.3) part (iii). As a result, η exists a Ne- αg-continuous.

Proposition 4.7: For all Ne-g αg-continuous functions are Ne -g α-continuous.
Proof: Let Ne-CS \mathcal{K} be in NTS \mathcal{V} and Ne-g α-continuous function η defined on NTS \mathcal{U} and valued in $T S \mathcal{V}$. By definition of Ne-g αg-continuous function, $\eta^{-1}(\mathcal{K})$ stands a Ne-g $\alpha g C S$ in \mathcal{U}. So, we have $\eta^{-1}(\mathcal{K})$ remains a Ne-g $\alpha \mathrm{CS}$ in \mathcal{U} because of theorem (3.3) part (iv). As a result, η exists a $\mathrm{Ne}-\mathrm{g} \alpha$-continuous.
The reverse of the beyond proposition does not become valid as shown in the next examples.
Example 4.8: Let $\mathcal{U}=\{p, q\}$ and let $\xi=\left\{0_{N}, \mathcal{A}, \mathcal{B}, 1_{N}\right\}$ and $\varrho=\left\{0_{N}, \mathcal{C}, 1_{N}\right\}$, where $\mathcal{A}=$ $\langle u,(0.5,0.6),(0.3,0.2),(0.4,0.1)\rangle \quad, \quad \mathcal{B}=\langle u,(0.4,0.4),(0.4,0.3),(0.5,0.4)\rangle \quad$ and $\quad \mathcal{C}=$ $\langle u,(0.5,0.4),(0.4,0.4),(0.4,0.5)\rangle$ are the neutrosophic sets, then (U, ξ) and (U, ϱ) are NTSs. Define $\eta:(U, \xi) \rightarrow(U, \varrho) \quad$ as a $\eta(p)=q$ and $\eta(q)=p$. Then η is Ne- α g-continuous. But $\mathcal{C}=$ $\langle u,(0.4,0.5),(0.4,0.4),(0.5,0.4)\rangle$ is a Ne-CS in $(\mathcal{U}, \varrho), \eta^{-1}(\overline{\mathcal{C}})$ is a Ne- $\alpha g C S$ but not a Ne-g $\alpha g C S$ in (U, ξ). Thus η is not a Ne-g αg-continuous.

Example 4.9: Let $\mathcal{U}=\{p, q\}$ and let $\xi=\left\{0_{N}, \mathcal{A}, \mathcal{B}, 1_{N}\right\}$ and $\varrho=\left\{0_{N}, \mathcal{C}, 1_{N}\right\}$, where $\mathcal{A}=$ $\langle u,(0.5,0.6),(0.3,0.2),(0.4,0.1)\rangle \quad, \quad \mathcal{B}=\langle u,(0.4,0.4),(0.4,0.3),(0.5,0.4)\rangle \quad$ and $\quad \mathcal{C}=$ $\langle u,(0.5,0.4),(0.4,0.4),(0.4,0.5)\rangle$ are the neutrosophic sets, then (\mathcal{U}, ξ) and (\mathcal{U}, ϱ) are NTSs. Define $\eta:(\mathcal{U}, \xi) \longrightarrow(\mathcal{U}, \varrho)$ as a $\eta(p)=q$ and $\eta(q)=p$. Then η is Ne-g α-continuous. But $\mathcal{C}=$ $\langle u,(0.4,0.5),(0.4,0.4),(0.5,0.4)\rangle$ is a Ne-CS in $(\mathcal{U}, \varrho), \eta^{-1}(\overline{\mathcal{C}})$ is a Ne-g α CS but not a Ne-g $\alpha g C S$ in (U, ξ). Thus η is not a Ne-g αg-continuous.

Definition 4.10: Let η be a function on $N T S U$ and valued in $T S \mathcal{V}$. Then, we named η as neutrosophic generalized α g-irresolute and shortly wrote it as Ne-g α g-irresolute if for each Ne-g $\alpha g C S \mathcal{K}$ in $\mathcal{V}, \eta^{-1}(\mathcal{K})$ is a Ne-g $\alpha g C S$ in \mathcal{U}.

Theorem 4.11: Let η be a function on NTS \mathcal{U} and valued in $T S \mathcal{V}$. Afterward, η remains a Ne-g α-irresolute function iff for each Ne-g $\alpha g O S \mathcal{K}$ in $\mathcal{V}, \eta^{-1}(\mathcal{K})$ is a Ne-g $\alpha g O S$ in \mathcal{U}.
Proof: Let Ne-g α gOS \mathcal{K} and Ne-g α gCS $\overline{\mathcal{K}}$ are in \mathcal{V}. Therefore, $\eta^{-1}(\overline{\mathcal{K}})=\left(\overline{\left.\eta^{-1}(\mathcal{K})\right)}\right.$ remains a Ne-g $\alpha g C S$ in \mathcal{U}. Consequently, $\eta^{-1}(\mathcal{K})$ exists a Ne-g $\alpha g O S$ in \mathcal{U}. The reverse proof is evident.

Proposition 4.12: For all Ne-gag-irresolute functions are Ne-gag-continuous.
Proof: Let Ne-CS \mathcal{K} be in NTS \mathcal{V} and Ne-g α g-irresolute function η defined on NTS \mathcal{U} and valued in $T S \mathcal{V}$. So, we have \mathcal{K} stands a Ne-g $\alpha g C S$ in \mathcal{V} by theorem (3.3) part (i). By definition of Ne-g α g-irresolute function, $\eta^{-1}(\mathcal{K})$ stands a Ne-g α gCS in \mathcal{U}. As a result, η exists a Ne-g α-continuous.
The subsequent example explains that the inverse of the overhead proposition does not work.

Example 4.13: Suppose $\mathcal{U}=\{p, q\}$ and let $\xi=\left\{0_{N}, \mathcal{B}, 1_{N}\right\}$ and $\varrho=\left\{0_{N}, \mathcal{A}, \mathcal{B}, 1_{N}\right\}$, where $\mathcal{A}=$ $\langle u,(0.6,0.7),(0.4,0.3),(0.5,0.2)\rangle$ and $\mathcal{B}=\langle u,(0.5,0.5),(0.5,0.4),(0.6,0.5)\rangle$ are the neutrosophic sets, then (\mathcal{U}, ξ) and (\mathcal{U}, ϱ) are NTSs. Define $\eta:(\mathcal{U}, \xi) \rightarrow(\mathcal{U}, \varrho)$ as a $\eta(p)=q$ and $\eta(q)=p$. Then η is Ne-g αg-continuous. But $\mathcal{C}=\langle u,(0.5,0.5),(0.6,0.4),(0.5,0.7)\rangle$ is a Ne-g $\alpha g C S$ in $(U, \varrho), \eta^{-1}(\mathcal{C})$ is not a Ne-gagCS in (\mathcal{U}, ξ). Thus η is not a Ne-g αg-irresolute.

Definition 4.14: We called a NTS U with a neutrosophic $T_{\frac{1}{2}}$-space if for each Ne-gCS in U is a $\mathrm{Ne}-\mathrm{CS}$ and we denoted it by $\mathrm{Ne}-\mathrm{T}_{\frac{1}{2}}$-space.

Definition 4.15: We called a NTS \mathcal{U} with a neutrosophic $T_{g \alpha g}$-space if for each Ne-g $\alpha g C S$ in U is a $\mathrm{Ne}-\mathrm{CS}$ and we denoted by $\mathrm{Ne}-\mathrm{T}_{\mathrm{g} \alpha \mathrm{g}}$-space.

Proposition 4.16: Every $\mathrm{Ne}^{-1} \mathrm{~T}_{\frac{1}{2}}$-space stands a $\mathrm{Ne}-\mathrm{T}_{\mathrm{g} \alpha \mathrm{g}}$-space.

Proof: Let \mathcal{C} be a Ne-g $\alpha g C S$ in $\mathrm{Ne}_{-\frac{1}{2}}$-space \mathcal{U}. By theorem (3.3) part (ii), we obtain \mathcal{C} is a Ne -gCS.

By definition of $\mathrm{Ne}^{-} \mathrm{T}_{\frac{1}{2}}$-space, we reach to that \mathcal{C} is a $\mathrm{Ne}-\mathrm{CS}$ in \mathcal{U}. Therefore, \mathcal{U} endures a $\mathrm{Ne}-\mathrm{T}_{\mathrm{g} \alpha \mathrm{g}}$-space.

Theorem 4.17: Let η_{1} be a Ne-g α g-continuous function on $N T S \mathcal{U}$ and valued in NTS \mathcal{V} and let η_{2} be a Ne-g-continuous function on $N T S \mathcal{V}$ and valued in $T S \mathcal{W}$. If \mathcal{V} is a $\mathrm{Ne}^{-1} \frac{\mathrm{~T}_{2}-\text { space, then }}{} \eta_{2} \circ \eta_{1}$ is a $\mathrm{Ne}-\mathrm{g} \alpha \mathrm{g}$-continuous function.
Proof: Assume Ne-CS \mathcal{K} is in \mathcal{W}. Meanwhile, we have a Ne-g-continuous function η_{2} defined on a Ne-T $\mathrm{T}_{\frac{1}{2}}$-space \mathcal{V}, then $\eta_{2}^{-1}(\mathcal{K})$ stands a $\mathrm{Ne}-\mathrm{CS}$ in \mathcal{V}. Subsequently, we also see a Ne-g αg-continuous function η_{1} defined on \mathcal{U}, then $\eta_{1}^{-1}\left(\eta_{2}{ }^{-1}(\mathcal{K})\right)$ stands a Ne-g $\alpha g C S$ in \mathcal{U}. Therefore, $\eta_{2} \circ \eta_{1}$ stands a Ne-g αg-continuous.

Theorem 4.18: Let η be a function on NTS \mathcal{U} and valued in $T S \mathcal{V}$, we have the following results:
(i) If NTS \mathcal{U} stands a $\mathrm{Ne}_{-\frac{1}{2}}$-space then the function η becomes a Ne -g-continuous iff it considers a a Ne-gag-continuous.
(ii) If $N T S U$ stands a $\mathrm{Ne}^{-} \mathrm{T}_{\mathrm{g} \alpha \mathrm{g}}$-space then the function η becomes a Ne-continuous iff it considers a Ne-gag-continuous.

Proof:

(i) Let Ne-CS \mathcal{K} be in \mathcal{V} and η be a Ne-g-continuous function. By definition of Ne-g-continuous, $\eta^{-1}(\mathcal{K})$ is a Ne-gCS in \mathcal{U}. Besides, the definition of $\mathrm{Ne}-\mathrm{T}_{\frac{1}{2}}$-space states $\eta^{-1}(\mathcal{K})$ is a $\mathrm{Ne}-\mathrm{CS}$. So, $\eta^{-1}(\mathcal{K})$ is a Ne-g $\alpha g C S$ in \mathcal{U} by theorem (3.3) part (i). Therefore, η is a Ne-gag-continuous. On the contrary, let Ne-CS \mathcal{K} be in \mathcal{V} and let η be a Ne-g α g-continuous. By definition of Ne-gag-continuous, $\eta^{-1}(\mathcal{K})$ is a Ne-g $\alpha g C S$ in \mathcal{U}. Besides, we have $\eta^{-1}(\mathcal{K})$ is a Ne-gCS in \mathcal{U} by theorem (3.3) part (ii). Therefore, η is a Ne-g-continuous.

[^36](ii) Let Ne-CS \mathcal{K} be in \mathcal{V} and let η be a Ne-continuous. By definition of Ne-continuous, $\eta^{-1}(\mathcal{K})$ is a Ne-CS in \mathcal{U}. So, we have $\eta^{-1}(\mathcal{K})$ is a Ne-g $\alpha g C S$ in \mathcal{U} by theorem (3.3) part (i). Therefore, η is a Ne-g αg-continuous.
On the contrary, let Ne-CS \mathcal{K} be in \mathcal{V} and let η be a Ne-g α-continuous. Besides, we have $\eta^{-1}(\mathcal{K})$ is a Ne-g $\alpha g C S$ in \mathcal{U}. Furthermore, the definition of $\mathrm{Ne}-\mathrm{T}_{\mathrm{g} \alpha \mathrm{g}}$-space gives $\eta^{-1}(\mathcal{K})$ is a Ne-CS in \mathcal{U}. Therefore, η is a Ne-continuous.

Remark 4.19: The subsequent illustration indicates the relative among the various kinds of Ne-continuous functions:

Fig. 4.1

5. Conclusion

The class of Ne-gagCS described employing Ne- $\alpha g C S$ structures a neutrosophic topology and deceptions between the classes of $\mathrm{Ne}-\mathrm{CS}$ and $\mathrm{Ne}-\mathrm{gCS}$. We as well illustration Ne-gag-continuous functions by applying Ne-g $\alpha g C S$. The Ne-g $\alpha g C S$ know how to be developed to establish another neutrosophic homeomorphism.

Funding: This work does not obtain any external grant.
Acknowledgments: The authors are highly grateful to the Referees for their constructive suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. F. Smarandache, A unifying field in logics: neutrosophic logic, neutrosophy, neutrosophic set, neutrosophic probability. American Research Press, Rehoboth, NM, (1999).
2. F. Smarandache, Neutrosophy and neutrosophic logic, first international conference on neutrosophy, neutrosophic logic, set, probability, and statistics, University of New Mexico, Gallup, NM 87301, USA (2002).
3. Abdel-Basset, M., Mumtaz Ali and Asmaa Atef, Uncertainty assessments of linear time-cost tradeoffs using neutrosophic set. Computers \& Industrial Engineering, 141 (2020), 106286.
4. Abdel-Basset, M., Rehab Mohameda, Abd El-Nasser H. Zaieda, Abduallah Gamala and Florentin Smarandache, Solving the supply chain problem using the best-worst method based on a novel Plithogenic model. Optimization Theory Based on Neutrosophic and Plithogenic Sets. Academic Press, (2020), 1-19.
5. Abdel-Basset, M., Mumtaz Ali and Asma Atef, Resource levelling problem in construction projects under neutrosophic environment. The Journal of Supercomputing, 76(2), (2020), 964-988.
6. Abdel-Basset, M., Mohamed, M., Elhoseny, M., Chiclana, F., \& Zaied, A. E. N. H., Cosine similarity measures of bipolar neutrosophic set for diagnosis of bipolar disorder diseases. Artificial Intelligence in Medicine, 101(2019), 101735.
7. Abdel-Basset, M., Mohamed, R., Elhoseny, M., \& Chang, V., Evaluation framework for smart disaster response systems in uncertainty environment. Mechanical Systems and Signal Processing, 145(2020), 106941.
8. Abdel-Basset, M., Gamal, A., Son, L. H., \& Smarandache, F., A Bipolar Neutrosophic Multi Criteria Decision Making Framework for Professional Selection. Applied Sciences, 10(4), (2020), 1202.
9. A. Salama and S. A. Alblowi, Neutrosophic set and neutrosophic topological spaces. IOSR Journal of Mathematics, 3(2012), 31-35.
10. I. Arokiarani, R. Dhavaseelan, S. Jafari and M. Parimala, On Some New Notions and Functions in Neutrosophic Topological Spaces. Neutrosophic Sets and Systems, 16(2017), 16-19.
11. Q. H. Imran, F. Smarandache, R. K. Al-Hamido and R. Dhavaseelan, On neutrosophic semi- α-open sets. Neutrosophic Sets and Systems, 18(2017), 37-42.
12. R. Dhavaseelan and S. Jafari, Generalized Neutrosophic closed sets. New trends in Neutrosophic theory and applications, 2(2018), 261-273.
13. A. Pushpalatha and T. Nandhini, Generalized closed sets via neutrosophic topological spaces. Malaya Journal of Matematik, 7(1), (2019), 50-54.
14. D. Jayanthi, α Generalized Closed Sets in Neutrosophic Topological Spaces. International Journal of Mathematics Trends and Technology (IJMTT)- Special Issue ICRMIT March (2018), 88-91.
15. D. Sreeja and T. Sarankumar, Generalized Alpha Closed sets in Neutrosophic topological spaces. Journal of Applied Science and Computations, 5(11), (2018), 1816-1823.
16. A. Salama, F. Smarandache and V. Kroumov, Neutrosophic Closed Set and Neutrosophic Continuous Functions. Neutrosophic Sets and Systems, 4(2014), 2-8.
17. R. Dhavaseelan, R. Narmada Devi, S. Jafari and Qays Hatem Imran, Neutrosophic α^{m}-continuity. Neutrosophic Sets and Systems, 27(2019), 171-179.

Received: Apr 25, 2020. Accepted: July 52020

Generalized neutrosophic b-open sets in neutrosophic topological

Suman Das ${ }^{1}$, and Surapati Pramanik ${ }^{2, *}$
${ }^{1}$ Department of Mathematics, Tripura University, Agartala, 799022, Tripura, India. Email: suman.mathematics@tripurauniv.in
${ }^{2}$ Department of Mathematics, Nandalal Ghosh B. T. College, Narayanpur, 743126, West Bengal, India. Email: sura_pati@yahoo.co.in
* Correspondence: sura_pati@yahoo.co.in Tel.: (+91-9477035544))

space

Abstract

The purpose of the study is to introduce the notion of generalized neutrosophic b-open set in neutrosophic topological space. We define generalized neutrosophic b-open set, generalized neutrosophic b-interior, generalized neutrosophic b-closure and investigate some of their properties. By defining generalized neutrosophic b-open set, we prove some theorems on neutrosophic topological spaces. We also furnish some suitable examples.

Keywords: Neutrosophic set; neutrosophic b-open set; generalized neutrosophic b-open set; generalized neutrosophic b-interior; generalized neutrosophic b-closure

1. Introduction

Smarandache (1998) grounded the Neutrosophic Set (NS) in 1998. From then it became very popular and attracted many researchers' attention for theoretical and practical researches (Broumi et al., 2018; Khalid, 2020; Peng \& Dai, 2018; Pramanik, 2013; 2016a; 2016b; 2020; Pramanik \& Mallick, 2018; 2019; Pramanik \& Mondal, 2016; Pramanik \& Roy, 2014; Smarandache \& Pramanik, 2016; 2018, Biswas, Pramanik \& Giri, 2014; 2016a; 2016b; Dalapati et al., 2017; Dey, Pramanik, \& Giri, 2016a; 2016b; Pramanik, Mallick, \& Dasgupta, 2018; Mondal \& Pramanik, 2015; Pramanik \& Dalapati, 2018, Pramanik, Dey, \& Smarandache, 2018; Pramanik, Mondal, \& Smarandache, 2016a; 2016b).

Salama and Alblowi (2012a) grounded the "Neutrosophic Topological Space" (NTS). Salama and Alblowi (2012b) also presented generalized NS and generalized NTSs. Salama, Smarandache, \& Alblowi (2014) studied the concept of neutrosophic crisp topological space. Arokiarani, Dhavaseelan, Jafari, and Parimala (2017) defined neutrosophic semi-open functions and established relation between them. Iswaraya and Bageerathi (2016) studied neutrosophic semi-closed set and neutrosophic semi-open set. Rao and Srinivasa (2017) introduced neutrosophic pre-open set and pre-closed set. Dhavaseelan and Jafari (2018) studied generalized neutrosophic closed sets. Pushpalatha and Nandhini (2019) defined the neutrosophic generalized closed sets in NTSs. Shanthi, Chandrasekar, Safina, and Begam (2018) presented the neutrosophic generalized semi closed sets in

NTSs. Ebenanjar, Immaculate, and Wilfred (2018) studied neutrosophic b-open sets in NTSs. Maheswari, Sathyabama, and Chandrasekar (2018) studied the neutrosophic generalized b- closed sets in NTSs.

Research gap: No investigation on neutrosophic generalized b-open set has been reported in the recent literature.

Motivation: In order to fill the research gap, we introduce neutrosophic generalized b-open set. Remaining of the paper is designed as follows:
Section 2 recalls of NTS, neutrosophic b- closed sets and a theorem. Section 3 introduces neutrosophic generalized b-open set and proofs of some theorems on neutrosophic b-open sets. Section 4 presents concluding remarks.

2. Preliminaries and some properties

Definition 2.1 Assume that (W, τ) is an NTS. Then χ, an NS over W is said to be a Neutrosophic b-Open (N-b-open) set (Ebenanjar, Immaculate, \& Wilfred, 2018) if and only if (iff) $\chi \subseteq N_{\text {int }}\left(N_{c l}(\chi\right.$)) $\cup N_{c l}\left(N_{i n t}(\chi)\right)$.
Definition 2.2 In an NTS (W, τ), an NS χ is said to be a Neutrosophic b-Closed (N-b-closed) set (Ebenanjar, Immaculate, \& Wilfred, 2018) iff $\chi \supseteq N_{i n t}\left(N_{c l}(\chi)\right) \cap N_{c l}\left(N_{i n t}(\chi)\right)$.
Remark 2.1 An NS χ over W is said to be an N-b-closed set (Ebenanjar, Immaculate, \& Wilfred, 2018) in (W, τ) iff χ^{c} is a N-b-open set in (W, τ).

In 2018, Ebenanjar, Immaculate, and Wilfred (2018) studied the concept of N-b-open set in NTS but they did not check whether the union or intersection of two N - b-open sets (N - b-closed sets) is again an N - b-open set (N - b-closed set) or not. In this paper we show some results on the intersection and union of neutrosophic b-closed sets.
Theorem 2.1 The intersection of any two N - b-closed sets is again an N -b-closed set.
Proof. Assume that E, F be any two N - b-closed sets in an NTS (W, τ). Then we have

$$
\begin{align*}
& E \supseteq N_{i n t}\left(N_{c l}(E)\right) \cap N_{c l}\left(N_{i n t}(E)\right) \tag{1}\\
& \text { and } F \supseteq N_{\text {int }}\left(N_{c l}(F)\right) \cap N_{c l}\left(N_{i n t}(F)\right)
\end{align*}
$$

For any two NSs E and F We know that $E \cap F \subseteq E$ and $E \cap F \subseteq F$.
Now $E \cap F \subseteq E \Rightarrow N_{i n t}(E \cap F) \subseteq N_{\text {int }}(E) \Longrightarrow N_{c l}\left(N_{i n t}(E \cap F)\right) \subseteq N_{c l}\left(N_{i n t}(E)\right)$
$E \cap F \subseteq E \Rightarrow N_{c l}(E \cap F) \subseteq N_{c l}(E) \Longrightarrow N_{i n t}\left(N_{c l}(E \cap F)\right) \subseteq N_{i n t}\left(N_{c l}(E)\right)$
$E \cap F \subseteq F \Rightarrow N_{i n t}(E \cap F) \subseteq N_{i n t}(F) \Longrightarrow N_{c l}\left(N_{i n t}(E \cap F)\right) \subseteq N_{c l}\left(N_{i n t}(F)\right)$
$E \cap F \subseteq F \Rightarrow N_{c l}(E \cap F) \subseteq N_{c l}(F) \Longrightarrow N_{i n t}\left(N_{c l}(E \cap F)\right) \subseteq N_{i n t}\left(N_{c l}(F)\right)$
From (1) and (2) we have,

$$
\begin{aligned}
& E \cap F \supseteq N_{i n t}\left(N_{c l}(E)\right) \cap N_{c l}\left(N_{i n t}(E)\right) \cap N_{i n t}\left(N_{c l}(F)\right) \cap N_{c l}\left(N_{i n t}(F)\right) \\
& \supseteq N_{i n t}\left(N_{c l}(E \cap F)\right) \cap N_{c l}\left(N_{i n t}(E \cap F)\right) \cap N_{i n t}\left(N_{c l}(E \cap F)\right) \cap N_{c l}\left(N_{i n t}(E \cap F)\right)
\end{aligned}
$$

[by eqs (3), (4), (5) \& (6)]

$$
=N_{i n t}\left(N_{c l}(E \cap F)\right) \cap N_{c l}\left(N_{i n t}(E \cap F)\right)
$$

$$
\Rightarrow E \cap F \supseteq N_{c l}\left(N_{i n t}(E \cap F)\right) \cap N_{i n t}\left(N_{c l}(E \cap F)\right)
$$

Therefore $E \cap F$ is an N -b-closed set.

Hence the intersection of any two N - b-closed sets is again an N - b-closed set.
Remark 2.2: The union of any two N - b-closed sets may not be an N - b-closed set. This is proved as follows:
Example 2.1: Assume that $W=\left\{p_{1}, p_{2}\right\}$ and $\tau=\left\{0_{N}, 1_{N},\left\{\left(p_{1}, 0.5,0.2,0.4\right),\left(p_{2}, 0.6,0.1,0.3\right)\right\},\left\{\left(p_{1}, 0.3\right.\right.\right.$, $\left.\left.0.5,0.6),\left(p_{2}, 0.4,0.4,0.5\right)\right\}\right\}$ be the family of some NSs over W. Then τ is an NT on W. Now it can be verified that $E=\{(a, 0.6,0.5,0.6),(b, 0.5,0.6,0.7)\}, F=\{(a, 1,0,1),(b, 0.9,0.1,0.1)\}$ are two N-b-closed sets in (W, τ). But their union $E \cup F=\{(a, 1,0,0.6),(b, 0.9,0.1,0.1)\}$ is not an N - b-closed set.
Definition 2.3 Assume that (W, τ) is an NTS and χ is an NS over W. Then the Neutrosophic b-Closure ($N_{b c l}$) and Neutrosophic b-Interior ($N_{b i n t}$) (Ebenanjar, Immaculate \& Wilfred, 2018) of χ are defined by

$$
\begin{aligned}
& N_{b c l}(\chi)=\cap\{\psi: \psi \text { is an } \mathrm{N} \text { - } b \text {-closed set in }(W, \tau) \text { and } \chi \subseteq \psi\} ; \\
& \operatorname{N}_{\operatorname{bint} t}(\chi)=\cup\{\xi: \xi \text { is an } \mathrm{N} \text { - } b \text {-open set in }(W, \tau) \text { and } \xi \subseteq \chi\} .
\end{aligned}
$$

Remark 2.3 Clearly $N_{\text {bint }}(\chi)$ is the largest N-b-open set (Ebenanjar, Immaculate, \& Wilfred, 2018) in (W, τ) which is contained in χ and $N_{b c l}(\chi)$ is the smallest N - b-closed set in (W, τ) which contains χ.

Definition 2.4 Assume that (W, τ) is an NTS. A neutrosophic subset E of (W, τ) is said to be a Neutrosophic Generalized Closed Set (NGCS) (Dhavaseelan \& Jafari, 2018) if $N_{c l}(E) \subseteq F$ whenever $E \subseteq F$ and F is an NOS. A subset K of (W, τ) is called Neutrosophic Generalized Open Set (NGOS) iff K^{c} is an NGCS in (W, τ).

3. Generalized neutrosophic b-open set

Definition 3.1 Assume that (W, τ) is an NTS. An NS G over W is called a Generalized Neutrosophic b-Open (g-N-b-open) set if \exists an N - b-closed set H (except 1_{N}) with $G \subseteq H$ such that $G \subseteq N_{i n t}(H)$. A neutrosophic subset K in (W, τ) is called a Generalized Neutrosophic b-Closed ($\mathrm{g}-\mathrm{N}-b$-closed) set iff K^{c} is a g-N-b-open set in (W, τ).
Example 3.1 Assume that $W=\left\{p_{1}, p_{2}\right\}$ and $\tau=\left\{0_{N}, 1_{N},\left\{\left(p_{1}, 0.5,0.6,0.7\right),\left(p_{2}, 0.6,0.7,0.8\right)\right\},\left\{\left(p_{1}, 0.6\right.\right.\right.$, $\left.\left.0.5,0.6),\left(p_{2}, 0.7,0.6,0.7\right)\right\}\right\}$ are the collection of some NSs over W.Then (W, τ) is clearly an NTS. Here $K=\left\{\left(p_{1}, 0.6,0.7,0.8\right),\left(p_{2}, 0.5,0.8,0.8\right)\right\}$ is a g-N-b-open set, because there exists an N - b-closed set $\left.G=\left\{p_{1}, 0.7,0.3,0.4\right),\left(p_{2}, 0.8,0.3,0.4\right)\right\}$ in (W, τ) with $K \subseteq G$ such that $K \subseteq N_{\text {int }}(G)$.

Proposition 3.1 In an NTS $(W, \tau), 0_{N}$ is a g-N- b-open set but 1_{N} is not a g-N- b-open set.
Proof. Assume that (W, τ) is an NTS. Since a Neutrosophic Open Set (NOS) is an N-b-open set, so 1_{N} is an N - b-open set. Therefore, 0_{N} is an N - b-closed set (since it is the complement of N - b-open set 1_{N}). Now $0_{N} \subseteq 0_{N}$ and $0_{N} \subseteq \mathrm{Nint}\left(0_{\mathrm{N}}\right)=0_{\mathrm{N}}$.
Thus there exist an N - b-closed set $0_{\mathrm{N}}\left(\right.$ except $\left.1_{\mathrm{N}}\right)$ with $0_{\mathrm{N}} \subseteq 0_{\mathrm{N}}$ such that $0_{\mathrm{N}} \subseteq \mathrm{Nint}\left(0_{\mathrm{N}}\right)$. Hence 0_{N} is a g-N-b-open set in (W, τ).

But in case of NS 1_{N}, we cannot find any neutrosophic b-closed set H (except 1_{N}) with $1_{N} \subseteq H$ such that $1_{N} \subseteq \mathrm{~N}_{\mathrm{int}}(H)$. Hence 1_{N} is not a g-N- b-open set in (W, τ).

Proposition 3.2 Assume that ψ is a $g-N-b$-open set in an NTS (W, τ). Then, every NS contained in ψ is a g-N-b-open set.

Proof. Assume that ψ be a g-N-b-open set in an NTS (W, τ) and ξ be any arbitrary NS over W which is contained in ψ. Since ψ is a g-N-b-open set, so there exists an N - b-closed set η (except 1_{N}) with $\psi \subseteq \eta$ such that $\psi \subseteq N i n t(\eta)$.
Now ξ is contained in A, so

$$
\begin{aligned}
& \xi \subseteq \psi \\
\Rightarrow & \xi \subseteq \psi \subseteq \eta \& \xi \subseteq \psi \subseteq N_{\text {int }}(\eta) .
\end{aligned}
$$

Therefore there exists an N - b-closed set η (except 1_{N}) with $\xi \subseteq \eta$ such that $\xi \subseteq N_{\text {int }}(\eta)$. Hence ξ is a g-N-b-open set. Thus each NS contained in ψ is again a g-N-b-open set in (W, τ).
Definition 3.2 Assume that (W, τ) is an NTS and ψ be an NS over W. Then the Generalized Neutrosophic b-Interior (g-Nbint) and Generalized Neutrosophic b-Closure (g - $N_{b c l}$) of ψ are defined by

$$
\begin{aligned}
& g-N_{b i n t}(\psi)=\cup\{\xi: \xi \text { is a } g-N \text { - } b \text {-open set and } \xi \subseteq \psi\} \\
& g-N_{b c l}(\psi)=\cap\{\eta: \eta \text { is a } g-N \text {-b-closed set and } \psi \subseteq \eta\}
\end{aligned}
$$

Theorem 3.1 Assume that (W, τ) is an NTS. Then each neutrosophic open subset of (W, τ) is a g-N-b-open set.
Proof. Assume that ψ be an arbitrary NOS in an NTS (W, τ). So $\psi=\operatorname{Nint}(\psi)$. Since each neutrosophic closed set is an N - b-closed set so $N_{c l}(\psi)$ is an N -b-closed set. Also we know that $\psi \subseteq N_{c l}(\psi)$.
Now $\psi \subseteq N_{c l}(\psi)$
$\Longrightarrow N_{i n t}(\psi) \subseteq N_{i n t}\left(N_{c l}(\psi)\right)$
$\Rightarrow \psi=N_{i n t}(\psi) \subseteq N_{i n t}\left(N_{c l}(\psi)\right)$
$\Rightarrow \psi \subseteq N_{\text {int }}\left(N_{c l}(\psi)\right)$
Therefore there exists an N - b-closed set $N_{c l}(\psi)$ with $\psi \subseteq N_{c l}(\psi)$ such that $\psi \subseteq N_{i n t}\left(N_{c l}(\psi)\right)$. Hence ψ is a g-N-b-open set in (W, τ). Thus each neutrosophic open subset of (W, τ) is again a g-N-b-open set.
Remark 3.1 The converse of the theorem 3.1 is not true. This can be shown by the example 3.2.
Example 3.2 In example 3.1, it can be easily seen that $K=\{(a, 0.6,0.7,0.8),(b, 0.5,0.8,0.8)\}$ is a g-N-b-open set in (W, τ) but it is not an NOS.
Theorem 3.2 Assume that (W, τ) is an NTS. Then each Neutrosophic Pre-Open Set (NPOS) in (W, τ) is a $g-\mathrm{N}$-b-open set.
Proof. Assume that (W, τ) is an NTS and ψ is an NPOS. Then $\psi \subseteq N_{i n t}\left(N_{c l}(\psi)\right)$. Since for any NS $\psi, N_{c l}(\psi)$ is an N - b-closed set and $\psi \subseteq N_{c l}(\psi)$. Therefore there exists an N -b-closed set $N_{c l}(\psi)$ with $\psi \subseteq N_{c l}(\psi)$ such that $\psi \subseteq N_{\text {int }}\left(N_{c l}(\psi)\right)$. Hence ψ is a g-N-b-open set in (W, τ). Thus each NPOS in (W, τ) is again a g-N-b-open set.
Theorem 3.3 If ψ is both NOS and Neutrosophic Semi-Open Set (NSOS) in an NTS (W, τ) then it is a g-N-b-open set.

Proof. Assume that (W, τ) is an NTS and ψ is both NSOS and NOS. Since ψ is an NOS, so ψ $=N_{i n t}(\psi)$. Again since ψ is an NSOS, so $\psi \subseteq N_{c l}\left(N_{i n t}(\psi)\right)$. It can be verified that $N_{c l}\left(N_{i n t}(\psi)\right)$ is an N - b-closed set (since it is an NCS).
Now $\psi \subseteq N_{c l}\left(N_{i n t}(\psi)\right)$
$\Rightarrow N_{i n t}(\psi) \subseteq N_{i n t}\left(N_{c l}\left(N_{i n t}(\psi)\right)\right) \quad\left[\right.$ since $\left.\psi \subseteq \delta \Longrightarrow N_{\text {int }}(\psi) \subseteq N_{i n t}(\delta)\right]$
$\Rightarrow \psi=N_{i n t}(\psi) \subseteq N_{i n t}\left(N_{c l}\left(N_{i n t}(\psi)\right)\right) \quad\left[\right.$ since $\left.\psi=N_{i n t}(\psi)\right]$
$\Rightarrow \psi \subseteq N_{i n t}\left(N_{c l}\left(N_{i n t}(\psi)\right)\right)$
Therefore there exists an N - b-closed set $N_{c l}\left(N_{\text {int }}(\psi)\right)$ with $\psi \subseteq N_{c l}\left(N_{i n t}(\psi)\right)$ in (W, $\left.\tau\right)$ such that $\psi \subseteq N_{i n t}\left(N_{c l}\left(N_{i n t}(\psi)\right)\right)$. Hence ψ is a g-N-b-open set.
Theorem 3.4 Assume that (W, τ) is an NTS and ψ is both neutrosophic α-open and neutrosophic open set. Then ψ is again a g-N-b-open set.
Proof. Assume that ψ is an arbitrary NS which is both neutrosophic α-open set and NOS. Since ψ is an NOS so $\psi=\operatorname{Nint}(\psi)$. Again since ψ is a neutrosophic α-open set, so $\psi \subseteq \operatorname{Nint}\left(N_{c l}\left(N_{i n t}(\psi)\right)\right)$. Hence, it is clear that $N_{c l}\left(N_{i n t}(\psi)\right)$ is an N -b-closed set (since it is an NCS) in (W, τ).

Now $\psi=N_{\text {int }}(\psi)$
$\Rightarrow \psi=N_{i n t}(\psi) \subseteq N_{c l}\left(N_{i n t}(\psi)\right)$
$\Rightarrow \psi \subseteq N_{c l}\left(N_{i n t}(\psi)\right)$
Therefore there exists an N -b-closed set $N_{c l}\left(N_{i n t}(\psi)\right)$ with $\psi \subseteq N_{c l}\left(N_{i n t}(\psi)\right)$ such that $\psi \subseteq$ $N_{\text {int }}\left(N_{c l}\left(N_{i n t}(\psi)\right)\right)$. Hence ψ is a generalized N -b-open set in (W, τ).
Theorem 3.5 The intersection of any two g-N-b-open sets in an NTS (W, τ) is again a g-N-b-open set.
Proof. Let ψ and ξ be any two g-N- b-open sets in an NTS (W, τ). Then there exist two N-b-closed sets K, L with $\psi \subseteq K, \xi \subseteq L$ such that $\psi \subseteq N_{\text {int }}(K)$ and $\xi \subseteq N_{i n t}(L)$.
Here $\psi \cap \xi \subseteq K \cap L$.
We know that the intersection of two N - b-closed sets is again an $\mathrm{N}-b$-closed set. So $K \cap L$ is an N -b-closed set in (W, τ).

Now $\psi \cap \xi \subseteq N_{\text {int }}(K) \cap \operatorname{Nint}(L)\left[\right.$ since $\left.\psi \subseteq N_{i n t}(K), \xi \subseteq N_{i n t}(L)\right]$
$=N i n t(K \cap L)$
$\Rightarrow \psi \cap \xi \subseteq N_{i n t}(K \cap L)$.
Therefore there exists an N -b-closed set $K \cap L$ with $\psi \cap \xi \subseteq K \cap L$ such that $\psi \cap \xi \subseteq \operatorname{Nint}(K \cap L)$. Hence $\psi \cap \xi$ is a g-N-b-open set $\operatorname{in}(W, \tau)$. Thus the intersection of any two g-N-b-open sets in (W, τ) is again a g-N-b-open set.

Theorem 3.6 The union of two g-N-b-open sets is a g-N-b-open set if one is contained in the other.
Proof. Let ψ, ξ are any two g-N-b-open sets in (W, τ) such that $\psi \subseteq \xi$. Since ψ and ξ are g-N-b-open sets, so there exist two N-b-closed sets G_{1}, G_{2} with $\psi \subseteq G_{1}$ and $\xi \subseteq G_{2}$ such that $\psi \subseteq$ $N_{\text {int }}\left(G_{1}\right)$ and $\xi \subseteq N_{\text {int }}\left(G_{2}\right)$.
Now $\psi \cup \xi \subseteq \xi[$ since $\psi \subseteq \xi]$ $\subseteq \mathrm{G}_{2}$
$\Rightarrow \psi \cup \xi \subseteq G_{2}$
Again $\psi \cup \xi \subseteq \xi \subseteq \mathrm{Nint}\left(\mathrm{G}_{2}\right)$, where G_{2} is an N -b-closed set in (X, τ).

Therefore there exists an N - b-closed set G_{2} with $\psi \cup \xi \subseteq \mathrm{G}_{2}$ in (X, τ) such that $\psi \cup \xi \subseteq \mathrm{N}_{\text {int }}\left(\mathrm{G}_{2}\right)$.
Hence the union of two g-N-b-open sets is again a g-N-open set if one is contained in the other.
Definition 3.3 An NS χ is called a g-N-b-open set relative to an NS ψ if there exists an N-b-closed set ξ with $\chi \subseteq \psi \cap \xi$ such that $\chi \subseteq \operatorname{Nint}(\psi \cap \xi)$.
Theorem 3.7 Assume that (W, τ) is an NTS. If ξ is a g - N - b-open set relative to ψ and ψ is a $\mathrm{g}-\mathrm{N}-b$-open set relative to χ then ξ is a g-N-b-open set relative to χ.
Proof. Since ξ is a g-N-b-open set relative to ψ so there exists an N -b-closed set K with $\xi \subseteq \psi \cap K$ such that $\xi \subseteq N_{i n t}(\psi \cap K)$. Similarly, since ψ is a g-N-b-open set relative to χ then there exists an N -b-closed set L with $\psi \subseteq \chi \cap L$ such that $\psi \subseteq N_{\text {int }}(\chi \cap L)$.
We know that the intersection of two N -b-closed sets is again an N -b-closed set. So $K \cap L$ is an N -b-closed set.
Now $\xi \subseteq \psi \cap K \subseteq \chi \cap L \cap K$

$$
\begin{aligned}
& =\chi \cap(L \cap K) \\
& =\chi \cap G, \text { where } G=K \cap L \text { is an } N \text { - } b \text {-closed set. }
\end{aligned}
$$

$$
\text { Again } \begin{aligned}
\xi & \subseteq N_{\text {int }}(\psi \cap K) \\
& \subseteq N_{i n t}(\chi \cap G)
\end{aligned}
$$

Therefore there exists an N - b-closed set G with $\xi \subseteq \chi \cap G$ such that $\xi \subseteq N_{\text {int }}(\chi \cap G)$

Hence ξ is a g-N- b-open relative to χ.

4. Conclusion

In this article, we introduce generalized neutrosophic b-open set, generalized neutrosophic b-interior, generalized neutrosophic b-closure and investigate some of their properties. By defining generalized neutrosophic b-open set, we prove some theorems on NTSs and few illustrative examples are provided. In the future, we hope that based on these notions in NTSs, many new investigations can be carried out.

References

Arokiarani, I., Dhavaseelan, R., Jafari, S., \& Parimala, M. (2017). On some new notations and functions in neutrosophic topological spaces. Neutrosophic Sets and Systems, 16,16-19. doi.org/10.5281/zenodo. 831915
Biswas, P, Pramanik, S. \& Giri, B. C. (2014). A new methodology for neutrosophic multi-attribute decision-making with unknown weight information. Neutrosophic Sets and Systems, 3, 42-50. doi.org/10.5281/zenodo. 571212
Biswas, P, Pramanik, S. \& Giri, B. C. (2016a). Aggregation of triangular fuzzy neutrosophic set information and its application to multi-attribute decision making. Neutrosophic Sets and Systems, 12, 20-40. doi.org/10.5281/zenodo. 571125
Biswas, P, Pramanik, S. \& Giri, B. C. (2016b). Value and ambiguity index based ranking method of single-valued trapezoidal neutrosophic numbers and its application to multi-attribute decision making. Neutrosophic Sets and Systems, 12, 127-138. doi.org/10.5281/zenodo. 571154

Broumi, S., Bakali, A., Talea, M., Smarandache, F., Uluçay, V., Sahin, S, ..., \& Pramanik, S. (2018). Neutrosophic sets: An overview. In F. Smarandache, \& S. Pramanik (Eds., vol.2), New trends in neutrosophic theory and applications (pp. 403-434). Brussels: Pons Editions.
Dalapati, S., Pramanik, S., Alam, S., Smarandache, S., \& Roy, T. K. (2017). IN-cross entropy based MAGDM strategy under interval neutrosophic set environment. Neutrosophic Sets and Systems, 18, 43-57. http://doi.org/10.5281/zenodo. 1175162

Dey, P. P., Pramanik, S. \& Giri, B. C. (2016a). An extended grey relational analysis based multiple attribute decision making in interval neutrosophic uncertain linguistic setting. Neutrosophic Sets and Systems, 11, 21-30. doi.org/10.5281/zenodo. 571228
Dey, P. P., Pramanik, S. \& Giri, B. C. (2016b). Neutrosophic soft multi-attribute decision making based on grey relational projection method. Neutrosophic Sets and Systems, 11, 98-106. doi.org/10.5281/zenodo. 571576
Dhavaseelan, R., \& Jafari, S. (2018). Generalized neutrosophic closed sets. In F. Smarandache, \& S. Pramanik (Eds., vol.2), New trends in neutrosophic theory and applications (pp. 261-273). Brussels: Pons Editions.

Ebenanjar, E., Immaculate, J., \& Wilfred, C. B. (2018). On neutrosophic b-open sets in neutrosophic topological space. Journal of Physics Conference Series, 1139(1), 012062. doi: 10.1088/1742-6596/1139/1/012062

Iswarya, P., \& Bageerathi, K. (2016). On neutrosophic semi-open sets in neutrosophic topological spaces. International Journal of Mathematical Trends and Technology, 37(3), 214-223.
Khalid, H. E. (2020). Neutrosophic geometric programming (NGP) with (max-product) operator, an innovative model. Neutrosophic Sets and Systems, 32, 269-281. doi: 10.5281/zenodo. 3723803
Maheswari, C., Sathyabama, M., \& Chandrasekar, S. (2018). Neutrosophic generalized b-closed sets in neutrosophic topological spaces. Journal of Physics Conference Series, 1139(1),012065. doi: 10.1088/1742-6596/1139/1/012065

Mondal, K., \& Pramanik, S. (2015). Neutrosophic decision making model for clay-brick selection in construction field based on grey relational analysis. Neutrosophic Sets and Systems, 9, 64-71. doi.org/10.5281/zenodo. 34864
Mondal, K., Pramanik, S. \& Smarandache, F. (2016a). Rough neutrosophic TOPSIS for multi-attribute group decision making. Neutrosophic Sets and Systems, 13, 105-117. doi.org/10.5281/zenodo. 570845

Mondal, K., Pramanik, S. \& Smarandache, F. (2016b). Multi-attribute decision making based on rough neutrosophic variational coefficient similarity measure. Neutrosophic Sets and Systems,13, 3-17. doi.org/10.5281/zenodo. 570854
Peng, X., \& Dai, J. (2018). A bibliometric analysis of neutrosophic set: two decades review from 1998 to 2017. Artificial Intelligence Review. https://doi.org/10.1007/s10462-018-9652-0
Pramanik, S. (2013). A critical review of Vivekanada's educational thoughts for women education based on neutrosophic logic, MS Academic, 3(1), 191-198.

Pramanik, S. (2016a). Neutrosophic linear goal programming. Global Journal of Engineering Science and Research Management, 3(7), 01-11. doi:10.5281/zenodo. 57367

Suman Das, Surapati Pramanik, Generalized neutrosophic b-open sets in neutrosophic topological space

Pramanik, S. (2016b). Neutrosophic multi-objective linear programming. Global Journal of Engineering Science and Research Management, 3(8), 36-46. doi:10.5281/zenodo. 59949

Pramanik, S. (2020). Rough neutrosophic set: an overview. In F. Smarandache, \& Broumi, S. (Eds.), Neutrosophic theories in communication, management and information technology (pp.275-311). NewYork. Nova Science Publishers.

Pramanik, S., \& Dalapati, S. (2018). A revisit to NC-VIKOR based MAGDM strategy in neutrosophic cubic set environment. Neutrosophic Sets and Systems, 21, 131-141.https://doi.org/10.5281/zenodo. 1408665
Pramanik, S., Dey, P.P., \& Smarandache, F. (2018). Correlation coefficient measures of interval bipolar neutrosophic sets for solving multi-attribute decision making problems. Neutrosophic Sets and Systems, 19,70-79.http://doi.org/10.5281/zenodo. 1235151

Pramanik, S., \& Mallick, R. (2018). VIKOR based MAGDM strategy with trapezoidal neutrosophic numbers. Neutrosophic Sets and Systems, 22, 118-130. 10.5281/zenodo. 2160840
Pramanik, S., \& Mallick, R. (2019). TODIM strategy for multi-attribute group decision making in trapezoidal neutrosophic number environment. Complex E Intelligent Systems, 5 (4), 379-389 https://doi.org/10.1007/s40747-019-0110.

Pramanik, S., Mallick, R., \& Dasgupta, A. (2018). Contributions of selected Indian researchers to multi-attribute decision making in neutrosophic environment. Neutrosophic Sets and Systems, 20, 108-131. http://doi.org/10.5281/zenodo. 1284870
Pramanik, S. \& Mondal, K. (2016). Rough bipolar neutrosophic set. Global Journal of Engineering Science and Research Management, 3(6), 71-81.
Pramanik, S., \& Roy, T.K. (2014). Neutrosophic game theoretic approach to Indo-Pak conflict over Jammu-Kashmir. Neutrosophic Sets and Systems, 2, 82-101.
Pushpalatha, A., \& Nandhini, T. (2019). Generalized closed sets via neutrosophic topological spaces. Malaya Journal of Matematik,7(1), 50-54. Doi.org/10.26637/MJM0701/0010
Rao, V. V., \& Srinivasa, R. (2017). Neutrosophic pre-open sets and pre-closed sets in neutrosophic topology. International Journal of Chem Tech Research, 10(10), 449-458.
Salama, A. A., \& Alblowi, S. A. (2012a). Neutrosophic set and neutrosophic topological space. ISOR Journal of Mathematics, 3(4), 31-35.
Salama, A. A., \& Alblowi, S. A. (2012b). Generalized neutrosophic set and generalized neutrosophic topological space. Computer Science and Engineering, 2 (7), 129-132.
Salama,A. A., Smarandache, F., \& Alblowi, S. A. (2014). New neutrosophic crisp topological concepts. Neutrosophic Sets and System, 4, 50-54. doi.org/10.5281/zenodo. 571462
Shanthi, V. K., Chandrasekar, S., Safina, \& Begam, K. (2018). Neutrosophic generalized semi closed sets in neutrosophic topological spaces. International Journal of Research in Advent Technology, 67, 1739-1743.
Smarandache, F. (1998). A unifying field in logics, neutrosophy: neutrosophic probability, set and logic. Rehoboth: American Research Press.
Smarandache, F. \& Pramanik, S. (Eds.). (2016). New trends in neutrosophic theory and applications. Brussels: Pons Editions.

Smarandache, F. \& Pramanik, S. (Eds.). (2018). New trends in neutrosophic theory and applications, Vol.2. Brussels: Pons Editions.

Received: Apr 20, 2020. Accepted: July 152020

University of New Mexico

Neutrosophic Soft Fixed Points

Madad Khan ${ }^{1}$, Muhammad Zeeshan ${ }^{1}$, Saima Anis ${ }^{1}$, Abdul Sami Awan ${ }^{1}$ and Florentin Smarandache ${ }^{2}$
1 Department of Mathematics, COMSATS University Islamabad, Abbottabad Campus Pakistan
2 Department of Mathematics and Sciences, University of New Mexico, 705 Gurley Ave., Gallup, NM 87301, USA
madadkhan@cuiatd.edu, muhammadzeeshan@ciit.net.pk, saimaanis@cuiatd.edu.pk, abdulsamiawan@ciit.net.pk, smarand@unm.edu

Abstract

In a wide spectrum of mathematical issues, the presence of a fixed point (FP) is equal to the presence of a appropriate map solution. Thus in several fields of math and science, the presence of a fixed point is important. Furthermore, an interesting field of mathematics has been the study of the existence and uniqueness of common fixed point (CFP) and coincidence points of mappings fulfilling the contractive conditions. Therefore, the existence of a FP is of significant importance in several fields of mathematics and science. Results of the FP, coincidence point (CP) contribute conditions under which maps have solutions. The aim of this paper is to explore these conditions (mappings) used to obtain the FP, CP and CFP of a neutrosophic soft set. We study some of these mappings (conditions) such as contraction map, L-lipschitz map, non-expansive map, compatible map, commuting map, weakly commuting map, increasing map, dominating map, dominated map of a neutrosophic soft set. Moreover we introduce some new points like a coincidence point, common fixed point and periodic point of neutrosophic soft mapping. We establish some basic results, particular examples on these mappings and points. In these results we show the link between FP and CP . Moreover we show the importance of mappings for obtaining the FP, CP and CFP of neutrosophic soft mapping.

Keyword. Neutrosophic set, fuzzy neutrosophic soft mapping, fixed point, coincidence point.

1. Introduction

It is well known fact that fuzzy sets (FS) [1], complex fuzzy sets (CFS) [2], intuitionistic fuzzy sets (IFSs), the soft sets [3], fuzzy soft sets (FSS) and the fuzzy parameterized fuzzy soft sets (FPFS-sets) [4], [5] have been used to model the real life problems in various fields like in medical science, environments, economics, engineering, quantum physics and psychology etc.
In 1965, L. A. Zadeh [1] introduced a FS, which is the generalization of a crisp set. A grade value of a crisp set is either 1 or 0 but a grade value of fuzzy set has all the values in closed interval $[0,1]$. A FS plays a central role in modeling of real world problems. There are a lot of applications of FS theory in various branches of science such as in engineering, economics, medical science, mathematical chemistry, image processing, nonequilibrium thermodynamics etc. The concept for IFSs is provided in [3] which are generalizations of FS. An IFS P can be expressed as $P=\left\{\left\langle\nu,, \beta_{P}(v), \gamma_{P}(v)\right\rangle: v \in X\right\}$, where $\beta_{P}(v)$ represents the degree of membership, $\gamma_{P}(v)$ represents the degree of non-membership of the element $v \in X$. FPFS-sets is the extension of a FS and soft set proposed in [4], [5]. FPFS-sets maintain a proper degree of membership to both elements and parameters.
The notion of a complex CFS, the extension of the fuszy set, was introduced by Ramot et, al., [2]. A CFS membership function has all the values in the unit disk. A complex fuzzy set is used for representing two-dimensional phenomena and plays an important role in periodic phenomena. Complex fuzzy set is used in signals and systems to identify a reference signal out of large signals detected by a digital receiver. Moreover it is used for expressing complex fuzzy solar activity (solar maximum and solar minimum) through the average number
of sunspot.
Smarandache [6], [7] has given the notion of a neutrosophic set (NS). A NS is the extension of a crisp set, FS and IFS. In NS, truth membership (TM), falsity membership (FM) and indeterminacy membership (IM) are independent. In decision-making problems, the indeterminacy function is very significant. A NS and its extensions plays a vital role in many fields such as decision making problems, educational problems, image processing, medical diagnosis and conflict resolution. Moreover the field of neutrosophic probability, statistics, measures and logic have been developed in [8]. The generalization of fuzzy logic (FL) has been suggested by Smarandache in [8] and is termed as neutrosophic logic (NL). A proposition in NL is true (t), indeterminate (i) and false (f) are real values from the ranges $T, I, F . T, I, F$ and also the sum of t, i, f are not restricted. In neutrosophic logic, there is indeterminacy term, which have no other logics, such as intuitionistic logic (IL), FL, boolean logic (BL) etc. Neutrosophic probability (NP) [8] is the extension of imprecise probability and classical probability. In NP, the chance occurs by an event is $t \%$ true, $i \%$ indeterminate and $f \%$ false where t, i, f varies in the subsets T, I and F respectively. Dynamically these subsets are functions based on parameters, but they
are subsets on a static basis. In NP $n_{-} \sup \leq 3^{+}$, while in classical probability $n_{-} \sup \leq 1$. The extension of classical statistics is neutrosophic statistics [8] which is the analysis of events described by NP. There are twenty seven new definitions derived from NS, neutrosophic statistics and a neutrosophic probability. Each of these are independent. The sets derived from NS are intuitionistic set, paradoxist set, paraconsistent set, nihilist set, faillibilist set, trivialist set, and dialetheist set. Intuitionistic probability and statistics, faillibilist probability and statistics,tautological probability and statistics, dialetheist probabilityand statistics, paraconsistent probability and statistics, nihilist probability and statistics and trivialist probability and statistics are derived from neutosophic probability and statistics. N. A. Nabeeh [9] suggested a technique that would promote a personal selection process by integrating the neutrosophic analytical hierarchy process to show the ideal solution among distinct options with order preference tevhnique similar to an ideal solution (TOPSIS). M. A. Baset [10] introduced a new type of neutrosophy technique called type 2 neutrosophic numbers. By combining type 2 neutrosophic number and TOPSIS, they suggested a novel method T2NN-TOPSIS which is very useful in group decision making. They researched a multi criteria group decision making technique of the analytical network process method and Visekriterijusmska Optmzacija I Kommpromisno Resenje method under neutrosophic environment that deals high order imprecision and incomplete information [11]. M. A. Baet suggested a new strategy for estimating the smart medical device selecting process in a GDM in a vague decision environment. Neutrosophic with TOPSIS strategy is used in decision-making processes to deal with incomplete information, vagueness and uncertainty, taking into account the decision requirements in the information gathered by deci-sion-makers [12]. They suggested the robust ranking method with NS to manage supply chain management (GSCM) performance and methods that have been widely employed to promote environmental efficiency and gain competitive benefits. The NS theory was used to manage imprecise understanding, linguistic imprecision, vague data and incomplete information [13]. Moreover M. A. Baset [14] et, al., used NS for assessment technique and decision-making to determine and evaluate the factors affecting supplier selection of supply chain management. T. Bera [15] et, al., defined a neutrosophic norm on a soft linear space known as neutrosophic soft linear space. They also modified the concept of neutrosophic soft (Ns) prime ideal over a ring. They presented the notion of Ns completely semi prime ideals, Ns completely prime ideals and Ns prime K-ideals [16]. Moreover T. Bera [17] introduced the concept of compactness and connectedness on Ns topological space along with their several characteristics. R. A. Cruz [18] et, al., discussed P-intersection, P- union, P-AND and P-OR of neutrosophic cubic sets and their related properties. N. Shah [19] et, al., studied neutrosophic soft graphs. They presented a link between neutorosophic soft sets and graphs. Moreover they also discussed the notion of strong neutosophic soft graphs.
Smarandache [20] discussed the idea of a single valued neutrosophic set (SVNS). A SVNS defined as for any
space of points set U^{\prime} with u in U^{\prime}, a SVNS W in U^{\prime}, the truth membership, false memebership and indeterminac membership functions denoetd as T_{A}, F_{A} and I_{A} respectively with $T_{A}, F_{A}, I_{A} \in[0,1]$ for each U in U^{\prime}. A SVNS W is expressed as $W=\int_{X}\left\langle T_{W}(v), I_{W}(v), F_{W}(v)\right\rangle / v, v \in X$, when X is continous. For a discrete case, a SVNS can be expressed as $W=\sum_{i=1}^{n}\langle T(v i), I(v i), F(v i)\rangle / v i, v i \in X$. Later, Maji [21] gave a new concept neutrosophic soft set (NSS). For any initial universal set W and any parameters set E with $A \subset E$ and $P(W)$ represents all the NS of W. The order set (ϕ, A) is said to be the soft NS over W where $\phi: A \rightarrow P(W)$. Arockiarani et al., [22] introduced fuzzy neutrosophic soft topological space and presents main results of fuzzy neutrosophic soft topological space. Later on the researchers linked the above theories with different field of sciences.
The purpose of this paper is to study the mappings such as contraction mapping, expansive mapping, nonexpansive mapping, commuting mapping, and weakly commuting mapping used to attain the FP, CP and CFP of a neutrosophic soft set. We present some basic resultsnd particular examples of fixed points, coincidence points, common fixed points in which contraction mapping, expansive mapping, non-expansive mapping, commuting mapping, and weakly commuting mapping are used.

2. Preliminaries

We will discuss here the basic notions of NS and neutrosophic soft sets. We will also discuss some new neutrosophic soft mappings such as contraction mapping, increasing mapping, dominated mapping, dominating mapping, K-lipschitz mapping, non-expansive mapping, commuting mapping, weakly compatible mapping. Moreover we will study periodic point, common fixed point, coinciding point of neutrosophic soft-mapping. Here $N S\left(U_{E}^{\prime}\right)$ is the collection of all neutrosophic soft points.

Definition 2.1 [7] Let U be any universal set, with generic element $v \in U^{\prime}$. A NS \hat{N} is defined by $\hat{N}=\left\{\left\langle v, T_{\hat{N}}(v), I_{\hat{N}}(v), F_{\hat{N}}(v)\right\rangle, v \in U^{\prime}\right\}$, where $\left.T, I, F: U \rightarrow\right]-0,1^{+}[$and

$$
{ }^{-} 0 \leq T_{\hat{N}}(v)+I_{\hat{N}}(v)+F_{\hat{N}}(v) \leq 3^{+} .
$$

$T_{\hat{N}}(v), I_{\hat{N}}(v)$ and $F_{\hat{N}}(v)$ denote TM, IM and FM functions respectively. In $]^{-} 0,1^{+}\left[, 1^{+}=1+\varepsilon\right.$, where ε is it's non-standard part and 1 is it's standard part. Likely ${ }^{-} 0=0-\varepsilon, \varepsilon$ is it's non-standard part and 0 is it's standard part. It is difficult to employ these values in real life applications. Hence we take all the values of neutrosophic set from subset $[0,1]$.
Definition 2.2 [23] Let E and W be the set of parameters and initial universal set respectively. Let the power set of W is denoted by $P(W)$. Then a pair (β, A) is called soft set (SS) over W, where $A \subseteq E$ and $\beta: A \rightarrow P(W)$.
Definition 2.3 [21] Let E and W be the set of parameters and initial universal set respectively. Suppose that the set of all neutrosophic soft set (NSS) is denoted as $N S(W)$. Then for $\mathrm{P} \subseteq E$, a pair (β, P) is called a $N S S$ over W, where $\beta: \mathrm{P} \rightarrow \hat{N} S(W)$ is a mapping.
Definition 2.4 [24] Let E and W be the set of parameters and initial universal set respectively. Suppose that the set of all NSS is denoted as $N S(W)$. A NSS N over W is a set which defined by a set valued function $\mathbf{P}_{\bar{N}}$
representing a mapping $\mathrm{P}_{\hat{N}}: E \rightarrow \hat{N} S(W) . \mathrm{P}_{\hat{N}}$ is known as approximate function of the $\hat{N} S(W)$. The
neutrosophic soft set can be written as:

$$
N=\left\{\left(e,\left\{\left\langle v, T_{\mathrm{P}_{\hat{N}}(e)}(v), I_{\mathrm{P}_{\hat{N}}(e)}(v), F_{\mathrm{P}_{\hat{N}}(e)}(v)\right\rangle: v \in W\right\}\right): e \in E\right\}
$$

where $T_{N^{\prime}}(v), I_{N^{\prime}}(v), F_{N^{\prime}}(v)$ represents the $\quad \mathrm{TM}, \mathrm{IM}$ and FM functions of $\mathrm{P}_{\hat{N}}(e)$ respectively and has values in $[0,1]$. Also

$$
0 \leq T_{\mathrm{P}_{\hat{N}}(e)}(v), I_{\mathrm{P}_{\hat{N}}(e)}(v), F_{\mathrm{P}_{\hat{N}}(e)}(v) \leq 3
$$

Definition 2.5 [22] Let U^{\prime} be any universal set. The fuzzy neutrosophic set (fn-s) N^{\prime} is defined as

$$
N^{\prime}=\left\{\left\langle\alpha, T_{N^{\prime}}(\alpha), I_{N^{\prime}}(\alpha), F_{N^{\prime}}(\alpha)\right\rangle, \alpha \in X\right\}
$$

where $T_{N^{\prime}}(\alpha), I_{N^{\prime}}(\alpha), F_{N^{\prime}}(\alpha)$ represents the TM, IM and FM functions respectively and $T, I, F: N^{\prime} \rightarrow[0,1]$. Also $0 \leq T_{N^{\prime}}(\alpha)+I_{N^{\prime}}(\alpha)+F_{N^{\prime}}(\alpha) \leq 3$.
Definition 2.6 [22] Let E and W be the set of parameters and initial universal set respectively. Suppose that the set of all fuzzy neutrosophic soft set (FNS-set) is denoted as $F N S\left(U_{E}^{\prime}\right)$. Then for $\mathrm{P} \subseteq E$, a pair (β, P) is said to be a FNS-set over W, where $\beta: \mathrm{P} \rightarrow \hat{N} S(W)$ is a mapping.
Definition 2.7 [25] Let $\Lambda_{A^{\prime}}, \Lambda_{B^{\prime}}$ be two fuzzy neutrosophic soft set. An fuzzy neutrosophic soft (FNS) relation ξ from $\Lambda_{A^{\prime}}$ to $\Lambda_{B^{\prime}}$ is known as FNS mapping if the two conditions are fulfilled.
议 For every $\Lambda_{A_{1}^{\prime}}^{\alpha} \in \Lambda_{A^{\prime}}$, there exists $\Lambda_{B_{1}^{\prime}}^{\alpha} \in \Lambda_{B^{\prime}}$, where $\Omega_{A_{1}}^{\alpha}, \Omega_{B_{1}^{\prime}}^{\alpha}$ are FNS elements.
(i)ll For empty fuzzy FNS element in $\Lambda_{A^{\prime}}$, the $\xi\left(\Lambda_{A^{\prime}}\right)$ is also empty FNS element.

Definition 2.8 [25] Let $\Lambda_{A^{\prime}} \in F N S(W, R)$ be a FNS-set and $\phi: \Lambda_{A^{\prime}} \rightarrow \Lambda_{A^{\prime}}$ an FNS-mapping. A fuzzy neutrosophic element $\Lambda_{A^{\prime}}^{\alpha}$ is called a fixed point of ϕ if $\phi\left(\Lambda_{A^{\prime}}^{\alpha}\right)=\Lambda_{A^{\prime}}^{\alpha}$.

Criterion [26], [27] Let $N S(W)$ be the set of all neutrosophic points over (W, E). Then the neutrosophic soft metric on based of neutrosophic points is defined as $d: \hat{N} S\left(W_{E}\right) \rightarrow \hat{N} S\left(W_{E}\right)$ having the following properties.
$\left.M_{1}\right) . d\left(\Lambda_{A^{\prime}}^{\alpha}, \Lambda_{B^{\prime}}^{\alpha}\right) \geq 0$ for all $\Lambda_{A^{\prime}}^{\alpha}, \Lambda_{B^{\prime}}^{\alpha} \in \hat{N} S\left(W_{E}\right)$.
$\left.M_{2}\right) . d\left(\Lambda_{A^{\prime}}^{\alpha}, \Lambda_{B^{\prime}}^{\alpha}\right)=0 \Leftrightarrow \Lambda_{A^{\prime}}^{\alpha}=\Lambda_{B^{\prime}}^{\alpha}$.
$\left.M_{3}\right) . d\left(\Lambda_{A^{\prime}}^{\alpha}, \Lambda_{B^{\prime}}^{\alpha}\right)=d\left(\Lambda_{B^{\prime}}^{\alpha}, \Lambda_{A^{\prime}}^{\alpha}\right)$.
$\left.M_{4}\right) . d\left(\Lambda_{A^{\prime}}^{\alpha}, \Lambda_{B^{\prime}}^{\alpha}\right) \leq d\left(\Lambda_{A^{\prime}}^{\alpha}, \Lambda_{C^{\prime}}^{\alpha}\right)+d\left(\Lambda_{C^{\prime}}^{\alpha}, \Lambda_{B^{\prime}}^{\alpha}\right)$.
Then $\left(\hat{N} S\left(U_{E}^{\prime}\right), d\right)$ is said to be neutrosophic soft metric space. Here $\Lambda_{A^{\prime}}^{\alpha}=\Lambda_{B^{\prime}}^{\alpha}$ implies $T_{\Lambda_{A}^{\alpha}}=T_{\Lambda_{B^{\prime}}^{\alpha}}, I_{\Lambda_{A}^{\alpha}}=I_{\Lambda_{B^{\prime}}^{\alpha^{\prime}}}$ and $F_{\Lambda_{A}^{\alpha}}=F_{\Lambda_{\beta^{\prime}}^{\alpha}}$.

3. Mappings on Neutrosophic Soft Set

Here, we introduced some new neutrosophic soft mappings such as contraction mapping, increasing mapping, dominated mapping, dominating mapping, K-lipschitz mapping, non-expansive mapping, commuting mapping, weakly compatible mapping. Also we introduced periodic point, common fixed point, coinciding point of neutrosophic soft-mapping. Here $N S\left(U_{E}^{\prime}\right)$ is the collection of all neutrosophic soft points.

Definition 3.1 Let ${ }^{\wedge}$ be a mapping from $\hat{N} S\left(U_{E}^{\prime}\right)$ to $\hat{N} S\left(U_{E}^{\prime}\right)$. Then ϕ is called neutrosophic soft contraction if $d\left(\phi\left(\Lambda_{A^{\prime}}^{\alpha}\right), \phi\left(\Lambda_{B^{\prime}}^{\alpha}\right)\right) \leq k d\left(\Lambda_{A^{\prime}}^{\alpha}, \Lambda_{B^{\prime}}^{\alpha}\right)$ for all $\Lambda_{A^{\prime}}^{\alpha}, \Lambda_{B^{\prime}}^{\alpha} \in F \hat{N} S\left(U_{E}^{\prime}\right)$ and $k \in[0,1)$. Where k is called contraction factor.
Example 3.1 Let $U^{\prime}=\left\{\theta_{1}, \theta_{1}, \theta_{3}\right\}$ be any initial universal set and $R=A^{\prime}=B^{\prime}=\left\{\alpha_{1}, \alpha_{2}\right\}$. Define a NSS $\Lambda_{A^{\prime}}^{\alpha}$ and $\Lambda_{B^{\prime}}^{\alpha}$ as below:

$$
\begin{aligned}
\Lambda_{A^{\prime}}^{\alpha}= & \left\{\left(\alpha_{1},\left\{\left\langle\theta_{1}, 0.8,0.1,0.3\right\rangle,\left\langle\theta_{2}, 0.6,0.7,0.4\right\rangle,\left\langle\theta_{3}, 1,0.2,0.4\right\rangle\right\}\right),\right. \\
& \left.\left(\alpha_{2},\left\{\left\langle\theta_{1}, 0.3,0.7,0.6\right\rangle,\left\langle\theta_{2}, 0.1,0.9,0.3\right\rangle,\left\langle\theta_{3}, 0.1,0.8,0.7\right\rangle\right\}\right)\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
\Lambda_{B^{\prime}}^{\alpha}= & \left\{\left(\alpha_{1},\left\{\left\langle\theta_{1}, 0.9,0.7,0.1\right\rangle,\left\langle\theta_{2}, 1,0.8,0.6\right\rangle,\left\langle\theta_{3}, 1,0.2,0.4\right\rangle\right\}\right\}\right), \\
& \left.\left(\alpha_{2},\left\{\left\langle\theta_{1}, 0.1,0.3,0.6\right\rangle,\left\langle\theta_{2}, 0.2,0.3,0.9\right\rangle,\left\langle\theta_{3}, 0.1,0.8,0.7\right\rangle\right\}\right)\right\} .
\end{aligned}
$$

The distance defined [27] as
$d\left(\phi\left(\Lambda_{A^{\prime}}^{\alpha_{1}}\right), \phi\left(\Lambda_{A^{\prime}}^{\alpha_{2}}\right)\right)=\min _{\theta_{i}}\left\{\left(\left|T_{\Lambda_{B^{\prime}}^{\alpha_{1}^{\prime}}}\left(\theta_{i}\right)-T_{\Lambda_{B^{\prime}}^{\alpha_{2}^{\prime}}}\left(\theta_{i}\right)\right|^{p}+\left|I_{\Lambda_{B^{\prime}}^{\alpha_{1}^{\prime}}}\left(\theta_{i}\right)-I_{\Lambda_{B^{\prime}}^{\alpha_{2}^{\prime}}}\left(\theta_{i}\right)\right|^{p}+\left|T_{\Lambda_{B^{\prime}}^{\alpha_{1}^{\prime}}}\left(\theta_{i}\right)-T_{\Lambda_{B^{\prime}}^{\alpha_{2}^{\prime}}}\left(\theta_{i}\right)\right|^{p}\right)^{\frac{1}{p}}\right\}$
($p \geq 1$).
In this example, we take $p=1$, now

$$
\begin{aligned}
& d\left(\phi\left(\Lambda_{A_{1}}^{\alpha_{1}}\right), \phi\left(\left(\Lambda_{A_{1}}^{\alpha_{2}}\right)\right)=\min _{\theta_{i}}\left\{\left|T_{\Lambda_{B^{\prime}}^{a_{1}}}\left(\theta_{i}\right)-T_{\Lambda_{B^{\prime}}^{\alpha_{i}^{\prime}}}\left(\theta_{i}\right)\right|+\left|I_{\Lambda_{B^{\prime}}^{\alpha_{1}}}\left(\theta_{i}\right)-I_{\Lambda_{B^{\prime}}^{\alpha_{2}^{\prime}}}\left(\theta_{i}\right)\right|\right.\right. \\
& \left.+\left|F_{\Lambda_{B^{\prime}}^{\alpha_{1}}}\left(\theta_{i}\right)-F_{\Lambda_{B^{\prime}}^{\alpha_{2}^{\prime}}}\left(\theta_{i}\right)\right|\right\} \\
& =\left|T_{\Lambda_{B^{\prime}}^{\alpha_{1}}}\left(\theta_{2}\right)-T_{\Lambda_{B^{\prime}}^{\alpha_{2}}}\left(\theta_{2}\right)\right|+\left|I_{\Lambda_{B^{\prime}}^{\alpha_{1}}}\left(\theta_{2}\right)-I_{\Lambda_{B^{\prime}}^{\alpha_{2}^{\prime}}}\left(\theta_{2}\right)\right| \\
& +\left|F_{\Lambda_{B^{\prime}}^{\alpha}}\left(\theta_{2}\right)-F_{\Lambda_{B^{\prime}}^{\alpha_{2}^{2}}}\left(\theta_{2}\right)\right| \\
& =|1-0.2|+|0.8-0.3|+|0.6-0.9| \\
& =0.8+0.5+0.3 \\
& =0.16 \\
& =(0.2)(0.8) \\
& =0.2 d\left(\Lambda_{A_{1}}^{\alpha_{1}}, \Lambda_{A_{1}}^{\alpha_{2}}\right) \text {. }
\end{aligned}
$$

Here $k=0.2$, so ϕ is a contraction.
Definition 3.2 Let ${ }^{\lrcorner}$be a mapping from $N S\left(W_{E}\right)$ to $F N S\left(W_{E}\right)$. Then ϕ is called neutrosophic soft nonexpansive mapping if $d\left(\phi\left(\Lambda_{A^{\prime}}^{\alpha}\right), \phi\left(\Lambda_{B^{\prime}}^{\alpha}\right)\right) \leq k d\left(\Lambda_{A^{\prime}}^{\alpha}, \Lambda_{B^{\prime}}^{\alpha}\right)$ for all $\Lambda_{A^{\prime}}^{\alpha}, \Lambda_{B^{\prime}}^{\alpha} \in \hat{N} S\left(W_{E}\right)$ and $k=1$.
Example 3.2 Let $W=\left\{v_{1}, v_{2}, v_{3}\right\}$ and $R=A^{\prime}=B^{\prime}=\left\{\alpha_{1}, \alpha_{2}\right\}$. Define a neutrosophic soft sets $\Lambda_{A^{\prime}}^{\alpha}$ and $\Lambda_{B^{\prime}}^{\alpha}$ as follows:

$$
\begin{aligned}
\Lambda_{A^{\prime}}^{\alpha}= & \left\{\left(\alpha_{1},\left\{\left\langle v_{1}, 1,0.1,0.2\right\rangle,\left\langle v_{2}, 0.6,0.7,0.4\right\rangle,\left\langle v_{3}, 0.2,0.4,0.6\right\rangle\right\}\right)\right. \\
& \left.\left(\alpha_{2},\left\{\left\langle v_{1}, 0.3,0.7,0.6\right\rangle,\left\langle v_{2}, 0.1,0.9,0.3\right\rangle,\left\langle v_{3}, 0.4,0.6,0.7\right\rangle\right\}\right)\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
& \Lambda_{B^{\prime}}^{\alpha}=\left\{\left(\alpha_{1},\left\{\left\langle v_{1}, 1,0.5,0.2\right\rangle,\left\langle v_{2}, 1,0.5,0.6\right\rangle,\left\langle v_{3}, 0.2,0.4,0.6\right\rangle\right\}\right\}\right), \\
& \left.\left(\alpha_{2},\left\{\left\langle v_{1}, 0.1,0.3,0.6\right\rangle,\left\langle v_{2}, 0.2,0.3,0.9\right\rangle,\left\langle v_{3}, 0.4,0.6,0.7\right\rangle\right\}\right)\right\} .
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\left|F_{\Lambda_{B^{\prime}}^{a_{1}}}\left(v_{i}\right)-F_{\Lambda_{B^{\prime}}^{\alpha_{2}^{\prime}}}\left(v_{i}\right)\right|\right\} \\
& =\left|T_{\Lambda_{\beta^{\prime}}^{\alpha_{1}}}\left(v_{3}\right)-T_{\Lambda_{B^{\prime}}^{\alpha_{2}^{\prime}}}\left(v_{3}\right)\right|+\left|I_{\Lambda_{1}^{\alpha_{1}^{\prime}}}\left(v_{3}\right)-I_{\Lambda_{B^{\prime}}^{\alpha_{2}^{2}}}\left(v_{3}\right)\right| \\
& +\left|F_{\Lambda_{7}^{\alpha_{1}^{\prime}}}\left(v_{3}\right)-F_{\Lambda_{B^{\frac{\alpha}{2}}}}\left(v_{3}\right)\right| \\
& =|0.2-0.4|+|0.4-0.6|+|0.6-0.7| \\
& =0.2+0.2+0.1 \\
& =0.5 \\
& =(1)(0.5) \\
& =1 d\left(\Lambda_{A_{1}}^{\alpha_{1}}, \Lambda_{A_{1}}^{\alpha_{2}}\right) .
\end{aligned}
$$

Here $k=1$, so ϕ is non-expansive.
Definition 3.3 Let ϕ be a mapping from $N S\left(W_{E}\right)$ to $N S\left(W_{E}\right)$. Then ϕ is called neutrosophic soft k-Lipschitz mapping if $d\left(\phi\left(\Lambda_{A^{\prime}}^{\alpha}\right), \phi\left(\Lambda_{B^{\prime}}^{\alpha}\right)\right) \leq k d\left(\Lambda_{A^{\prime}}^{\alpha}, \Lambda_{B^{\prime}}^{\alpha}\right)$ for all $\Lambda_{A^{\prime}}^{\alpha}, \Lambda_{B^{\prime}}^{\alpha} \in F \hat{N} S\left(W_{E}\right)$ and $k>0$.
Example 3.3 Let $W=\left\{v_{1}, v_{2}, v_{3}\right\}$ and $R=A^{\prime}=B^{\prime}=\left\{\alpha_{1}, \alpha_{2}\right\}$. Define a NSS $\Lambda_{A^{\prime}}^{\alpha}$ and $\Lambda_{B^{\prime}}^{\alpha}$ as below:

$$
\begin{aligned}
\Lambda_{A^{\prime}}^{\alpha}= & \left\{\left(\alpha_{1},\left\{\left\langle v_{1}, 0.3,0.4,0.3\right\rangle,\left\langle v_{2}, 0.6,0.7,0.4\right\rangle,\left\langle v_{3}, 0.2,0.4,0.6\right\rangle\right\}\right),\right. \\
& \left.\left(\alpha_{2},\left\{\left\langle v_{1}, 0.5,0.6,0.4\right\rangle,\left\langle v_{2}, 0.1,0.9,0.3\right\rangle,\left\langle v_{3}, 0.4,0.6,0.7\right\rangle\right\}\right)\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
\Lambda_{B^{\prime}}^{\alpha}= & \left\{\left(\alpha_{1},\left\{\left\langle v_{1}, 1,0.4,0.3\right\rangle,\left\langle v_{2}, 1,0.6,0.3\right\rangle,\left\langle v_{3}, 0.2,0.4,0.6\right\rangle\right\}\right\}\right), \\
& \left.\left(\alpha_{2},\left\{\left\langle v_{1}, 0.5,0.7,0.5\right\rangle,\left\langle v_{2}, 0.3,0.2,0.9\right\rangle,\left\langle v_{3}, 1,0.3,0.9\right\rangle\right\}\right)\right\} .
\end{aligned}
$$

$$
\begin{aligned}
& d\left(\phi\left(\Lambda_{A_{1}}^{\alpha_{1}}\right), \phi\left(\left(\Lambda_{A_{1}}^{\alpha_{2}}\right)\right)=\min _{?_{i}}\left\{\left|T_{\Lambda_{B^{\prime}}^{\left(a_{1}\right.}}\left(v_{i}\right)-T_{\Lambda_{B^{\prime}}^{\alpha_{2}^{\prime}}}\left(v_{i}\right)\right|+\left|I_{\Lambda_{B^{\prime}}^{\alpha_{1}^{\prime}}}\left(v_{i}\right)-I_{\Lambda_{B^{\prime}}^{\alpha_{2}^{\prime}}}\left(v_{i}\right)\right|\right.\right. \\
& \left.+\left|F_{\Lambda_{B^{\prime}}^{a_{1}}}\left(v_{i}\right)-F_{\Lambda_{\beta^{\prime}}^{\alpha^{2}}}\left(v_{i}\right)\right|\right\} \\
& =\left|T_{\Lambda_{B^{\prime}}^{\alpha_{1}^{\prime}}}\left(v_{1}\right)-T_{\Lambda_{B^{\prime}}^{\alpha_{2}^{\prime}}}\left(v_{1}\right)\right|+\left|I_{\Lambda_{A_{1}^{\alpha_{1}^{\prime}}}}\left(v_{1}\right)-I_{\Lambda_{B^{\prime}}^{\alpha_{2}^{\prime}}}\left(v_{1}\right)\right| \\
& +\left|F_{\Lambda_{1}^{a_{1}^{\prime}}}\left(v_{1}\right)-F_{\Lambda_{\alpha^{\frac{\alpha}{2}}}}\left(v_{1}\right)\right| \\
& =|1-0.5|+|0.4-0.7|+|0.3-0.5| \\
& =0.5+0.3+0.2 \\
& =1 \\
& =(2)(0.5) \\
& =2 d\left(\Lambda_{A_{1}}^{\alpha_{1}}, \Lambda_{A_{1}}^{\alpha_{2}}\right) \text {. }
\end{aligned}
$$

Here $k=2$, so ϕ is k-lipschitz.
Note: Every neutrosophic soft contraction mapping is neutrosophic soft K-lipschitz mapping but its converse does not hold.

Definition 3.4 Let ${ }^{\wedge}$ be a mapping from $\hat{N} S\left(W_{E}\right)$ to $\hat{N} S\left(W_{E}\right)$. Then \emptyset is said to be neutrosophic soft kanan contraction if $d\left(\phi\left(\Lambda_{A^{\prime}}^{\alpha}\right), \phi\left(\Lambda_{B^{\prime}}^{\alpha}\right)\right) \leq k\left[d\left(\Lambda_{A^{\prime}}^{\alpha}, \phi\left(\Lambda_{A^{\prime}}^{\alpha}\right)\right)+d\left(\Lambda_{B^{\prime}}^{\alpha}, \phi\left(\Lambda_{B^{\prime}}^{\alpha}\right)\right)\right]$ for all $\Lambda_{A^{\prime}}^{\alpha}, \Lambda_{B^{\prime}}^{\alpha} \in \hat{N} S\left(W_{E}\right)$ and $k \in\left[0, \frac{1}{2}\right)$. Where k is called contraction factor.

Definition 3.5 Let ϕ and ψ be two mappings from $\hat{N} S\left(U_{E}^{\prime}\right)$ to $\hat{N} S\left(U_{E}^{\prime}\right)$. Then ϕ and ψ are called neutrosophic soft commuting mapping if $\phi\left(\psi\left(\Omega_{A^{\prime}}^{\alpha}\right)\right)=\psi\left(\phi\left(\Omega_{A^{\prime}}^{\alpha}\right)\right)$ for all $\Omega_{A^{\prime}}^{\alpha} \in \hat{N} S\left(U_{E}^{\prime}\right)$.

Definition 3.6 Let ϕ and ψ be two mappings from $N S\left(U_{E}^{\prime}\right)$ to $N S\left(U_{E}^{\prime}\right)$. Then ϕ and ψ are called neutrosophic soft weakly commuting mapping if $d\left(\phi\left(\psi\left(\Lambda_{A^{\prime}}^{\alpha}\right)\right), \psi\left(\phi\left(\Lambda_{A^{\prime}}^{\alpha}\right)\right)\right) \leq d\left(\phi\left(\Lambda_{A^{\prime}}^{\alpha}\right), \psi\left(\Lambda_{A^{\prime}}^{\alpha}\right)\right)$ for all $\Lambda_{A^{\prime}}^{\alpha} \in \hat{N} S\left(U_{E}^{\prime}\right)$.
Definition 3.7 Let ϕ and ${ }^{\star}$ be two mappings from $\hat{N} S\left(U_{E}^{\prime}\right)$ to $\hat{N} S\left(U_{E}^{\prime}\right)$. If for $\phi\left(\Omega_{A_{n}^{\prime}}^{\alpha}\right) \rightarrow \Omega_{A_{0}}^{\alpha}$ and $\psi\left(\Omega_{A_{n}}^{\alpha}\right) \rightarrow \Omega_{A_{0}}^{\alpha}$ as $n \rightarrow \infty$ and $\Omega_{A_{n}}^{\alpha}, \Omega_{A_{0}}^{\alpha} \in N S\left(U_{E}^{\prime}\right)$. Then it is called neutrosophic soft compatible mapping if $\lim _{n \rightarrow \infty} d\left(\phi\left(\psi\left(\Omega_{A^{\prime}}^{\alpha}\right)\right), \psi\left(\phi\left(\Omega_{A^{\prime}}^{\alpha}\right)\right)\right) \rightarrow 0$.

Definition 3.8 Let $\phi, \psi: N S\left(U_{E}^{\prime}\right) \rightarrow N S\left(U_{E}^{\prime}\right)$ be two mappings. If there is $\Omega_{A^{\prime}}^{\alpha} \in N S\left(U_{E}^{\prime}\right)$ such that $\phi\left(\Omega_{A^{\prime}}^{\alpha}\right)=\psi\left(\Omega_{A^{\prime}}^{\alpha}\right)=\Omega_{A^{\prime}}^{\alpha}$, then $\Omega_{A^{\prime}}^{\alpha} \in \hat{N} S\left(U_{E}^{\prime}\right)$ is called common fixed point neutrosophic soft mappings.
Definition 3.9 If $\Omega_{A^{\prime}}^{\alpha}$ is a fixed point of $\phi: \hat{N} S\left(U_{E}^{\prime}\right) \rightarrow \hat{N} S\left(U_{E}^{\prime}\right)$, then $\Omega_{A^{\prime}}^{\alpha}$ is also a fixed point ϕ^{k} that is $\phi^{k}\left(\Omega_{A^{\prime}}^{\alpha}\right)=\Omega_{A^{\prime}}^{\alpha}$ for all $\Omega_{A^{\prime}}^{\alpha} \in \hat{N} S\left(U_{E}^{\prime}\right)$. So $\Omega_{A^{\prime}}^{\alpha}$ is called periodic point of neutrosophic soft mapping ϕ and k is called period of ϕ.
Remark Every fixed point of neutrosophic soft mapping is a periodic point but every periodic point of neutrosophic soft mapping is not a fixed point.
Definition 3.9 Let ϕ, ψ be two mappings from $\hat{N} S\left(U_{E}^{\prime}\right)$ to $\hat{N} S\left(U_{E}^{\prime}\right)$. If $\phi\left(\Omega_{A^{\prime}}^{\alpha}\right)=\psi\left(\Omega_{A^{\prime}}^{\alpha}\right)=\Omega_{B^{\prime}}^{\alpha}$, for all
$\Omega_{A^{\prime}}^{\alpha}, \Omega_{B^{\prime}}^{\alpha} \in F \hat{N} S\left(U_{E}^{\prime}\right)$. Then $\Omega_{A^{\prime}}^{\alpha}$ is called coincidence point of ϕ and ψ and $\Omega_{B^{\prime}}^{\alpha}$ is called point of coincidence for ϕ and ψ.

Definition 3.10 Let $\phi: N S\left(U_{E}^{\prime}\right) \rightarrow N S\left(U_{E}^{\prime}\right)$ be a mapping. Then ϕ is said to be neutrosophic soft increasing map if for any $\Omega_{A^{\prime}}^{\alpha} \leq \Omega_{B^{\prime}}^{\alpha}$ implies $\phi\left(\Omega_{A^{\prime}}^{\alpha}\right) \leq \phi\left(\Omega_{B^{\prime}}^{\alpha}\right)$ for all $\Omega_{A^{\prime}}^{\alpha}, \Omega_{B^{\prime}}^{\alpha} \in \hat{N} S\left(U_{E}^{\prime}\right)$.

Definition 3.11 Let $\phi: \hat{N} S\left(U_{E}^{\prime}\right) \rightarrow \hat{N} S\left(U_{E}^{\prime}\right)$ be a mapping. Then ϕ is said to be neutrosophic soft dominated map if $\phi\left(\Omega_{A^{\prime}}^{\alpha}\right) \leq \Omega_{A^{\prime}}^{\alpha}$ for all $\Omega_{A^{\prime}}^{\alpha} \in \hat{N} S\left(U_{E}^{\prime}\right)$.

Definition 3.12 Let $\phi: \hat{N} S\left(U_{E}^{\prime}\right) \rightarrow \hat{N} S\left(U_{E}^{\prime}\right)$ be a mapping. Then ϕ is said to be neutrosophic soft dominating map if $\Omega_{A^{\prime}}^{\alpha} \leq \phi\left(\Omega_{A^{\prime}}^{\alpha}\right)$ for all $\Omega_{A^{\prime}}^{\alpha} \in \hat{N} S\left(U_{E}^{\prime}\right)$.

4. Main Results

Banach Contraction Theorem

Proposition 1 Let $N S\left(U_{E}^{\prime}\right)$ be a non-empty set of neutrosophic points and ($N S\left(U_{E}^{\prime}\right), d$) be a complete neutrosophic soft metric space. Suppose ϕ is a mapping from $N S\left(U_{E}^{\prime}\right)$ to $N S\left(U_{E}^{\prime}\right)$ be contraction. Then fixed point of ϕ exists and unique.

Proof Let $\Omega_{A_{0}^{\prime}}^{\alpha} \in N S\left(U_{E}^{\prime}\right)$ be arbitrary. Define $\Omega_{A_{1}^{\prime}}^{\alpha}=\phi\left(\Omega_{A_{0}^{\prime}}^{\alpha}\right)$ and by continuing we have a sequence in the form $\Omega_{A_{n+1}^{\prime}}^{\alpha}=\phi\left(\Omega_{A_{n}^{\prime}}^{\alpha}\right)$. Now

$$
\begin{aligned}
d\left(\Omega_{A_{n+1}^{\prime}}^{\alpha}, \Omega_{A_{n}^{\prime}}^{\alpha}\right)= & d\left(\phi\left(\Omega_{A_{n}^{\prime}}^{\alpha}\right), \phi\left(\Omega_{A_{n-1}^{\prime}}^{\alpha}\right)\right) \\
\leq & k d\left(\Omega_{A_{n}^{\prime}}^{\alpha}, \Omega_{A_{n-1}^{\prime}}^{\alpha}\right) \\
= & k d\left(\phi\left(\Omega_{A_{A_{n-1}}}^{\alpha}\right), \phi\left(\Omega_{A_{n-2}}^{\alpha}\right)\right) \\
\leq & k^{2} d\left(\Omega_{A_{n-1}}^{\alpha}, \Omega_{A_{n-2}}^{\alpha}\right) \\
= & k^{2} d\left(\phi\left(\Omega_{A_{n-2}^{\prime}}^{\alpha}\right), \phi\left(\Omega_{A_{n-3}}^{\alpha}\right)\right) \\
\leq & k^{3} d\left(\Omega_{A_{n-2}^{\prime}}^{\alpha} \Omega_{A_{n-3}}^{\alpha}\right) \\
& \cdot \\
& \cdot \\
& \cdot \\
\leq & k^{n} d\left(\Omega_{A_{1}^{\prime}}^{\alpha}, \Omega_{A_{0}}^{\alpha}\right) .
\end{aligned}
$$

Now for $m, n>n_{0}$, we have

$$
\begin{aligned}
d\left(\Omega_{A_{n+1}}^{\alpha}, \Omega_{A_{n}}^{\alpha}\right) & \leq d\left(\Omega_{A_{n}}^{\alpha}, \Omega_{A_{n+1}}^{\alpha}\right)+d\left(\Omega_{A_{n+1}^{\prime}}^{\alpha}, \Omega_{A_{n+2}^{\prime}}^{\alpha}\right)+\ldots+d\left(\Omega_{A_{m-1}}^{\alpha}, \Omega_{A_{A_{n}}}^{\alpha}\right) \\
& \leq k^{n} d\left(\Omega_{A_{1}}^{\alpha}, \Omega_{A_{0}}^{\alpha}\right)+k^{n+1} d\left(\Omega_{A_{1}}^{\alpha}, \Omega_{A_{0}}^{\alpha}\right)+\ldots+k^{m-1} d\left(\Omega_{A_{1}}^{\alpha}, \Omega_{A_{0}}^{\alpha}\right) \\
& =k^{n}\left[1+k+k^{2}+\ldots+k^{m-n-1}\right] d\left(\Omega_{A_{1}}^{\alpha}, \Omega_{A_{0}}^{\alpha}\right) \\
& =\frac{k^{n}}{1-k} d\left(\Omega_{A_{1}}^{\alpha}, \Omega_{A_{0}}^{\alpha}\right) \\
d\left(\Omega_{A_{n+1}^{\prime}}^{\alpha}, \Omega_{A_{n}}^{\alpha}\right) & \rightarrow 0 \text { as } n \rightarrow \infty .
\end{aligned}
$$

So $\Omega_{A_{n}^{\prime}}^{\alpha}$ is a cauchy sequence in $\left(N S\left(U_{E}^{\prime}\right), d\right)$, but ($N S\left(U_{E}^{\prime}\right), d$) is complete, so there exists
$\Omega_{A^{\prime}}^{\alpha *} \in \hat{N} S\left(U_{E}^{\prime}\right)$ such that $d\left(\Omega_{A_{n}}^{\alpha}, \Omega_{A^{\prime}}^{\alpha *}\right) \rightarrow 0$ as $n \rightarrow \infty$. Now

$$
\begin{aligned}
d\left(\Omega_{A_{n+1}}^{\alpha}, \phi\left(\Omega_{A^{\prime}}^{\alpha *}\right)\right) & =d\left(\phi\left(\Omega_{A_{n}^{\prime}}^{\alpha}\right), \phi\left(\Omega_{A^{\prime}}^{\alpha *}\right)\right) \\
& \leq k d\left(\Omega_{A_{n}^{\prime}}^{\alpha}, \Omega_{A^{\prime}}^{\alpha *}\right) .
\end{aligned}
$$

On taking limit as $n \rightarrow \infty$, we get

$$
d\left(\phi\left(\Omega_{A^{\prime}}^{\alpha *}\right), \Omega_{A^{\prime}}^{\alpha^{*}}\right) \leq 0 .
$$

But

$$
d\left(\phi\left(\Omega_{A^{\prime}}^{\alpha *}\right), \Omega_{A^{\prime}}^{\alpha *}\right) \geq 0 .
$$

So

$$
\begin{aligned}
d\left(\phi\left(\Omega_{A^{\prime}}^{\alpha *}\right), \Omega_{A^{\prime}}^{\alpha *}\right) & =0 \\
\phi\left(\Omega_{A^{\prime}}^{\alpha *}\right) & =\Omega_{A^{\prime}}^{\alpha^{*}} .
\end{aligned}
$$

So $\Omega_{A^{\prime}}^{\alpha *}$ is the FP of Ω
Now we have to show that $\Omega_{A^{\prime}}^{\alpha^{*}}$ is unique. Suppose there exists another FP $\Omega_{B^{\prime}}^{\alpha *} \in \hat{N} S\left(U_{E}^{\prime}\right)$ such that $\phi\left(\Omega_{B^{\prime}}^{\alpha^{*}}\right)=\Omega_{B^{\prime}}^{\alpha *}$. Now

$$
\begin{aligned}
d\left(\Omega_{A^{\prime}}^{\alpha *}, \Omega_{B^{\prime}}^{\alpha *}\right) & =d\left(\phi\left(\Omega_{A^{*}}^{\alpha *}\right), \phi\left(\Omega_{B^{\prime}}^{\alpha^{*}}\right)\right) \\
& \leq k d\left(\Omega_{A^{\prime}}^{\alpha *}, \Omega_{B^{\prime}}^{\alpha *}\right) \\
(1-k) d\left(\Omega_{A^{\prime}}^{\alpha *}, \Omega_{B^{\prime}}^{\alpha *}\right) & \leq 0 .
\end{aligned}
$$

Here $(1-k) \nsubseteq 0$, so

$$
d\left(\Omega_{A^{\prime}}^{\alpha ?}, \Omega_{B^{\prime}}^{\alpha ?}\right) \leq 0 .
$$

But

$$
\begin{aligned}
& d\left(\Omega_{A^{\prime}}^{\alpha *}, \Omega_{B^{\prime}}^{\alpha *}\right) \geq 0 \\
& d\left(\Omega_{A^{\prime}}^{\alpha *}, \Omega_{B^{\prime}}^{\alpha *}\right)=0 .
\end{aligned}
$$

Hence $\Omega_{A^{\prime}}^{\alpha *}=\Omega_{B^{\prime}}^{\alpha *}$, so the fixed point is unique.
Proposition 2 Let $\left(N S\left(U_{E}^{\prime}\right), d\right.$) be a complete neutrosophic soft metric space. Suppose ϕ be a mapping from $F \hat{N} S\left(U_{E}^{\prime}\right)$ to $F \hat{N} S\left(U_{E}^{\prime}\right)$ satisfies the contraction $d\left(\phi^{m}\left(\Omega_{A_{1}}^{\alpha}\right), \phi^{m}\left(\Omega_{B_{1}}^{\alpha}\right)\right) \leq k d\left(\Omega_{A_{1}}^{\alpha}, \Omega_{B_{1}^{\prime}}^{\alpha}\right)$ for all $\Omega_{A_{1}}^{\alpha}, \Omega_{B_{1}^{\prime}}^{\alpha} \in N S\left(U_{E}^{\prime}\right)$, where $k \in[0,1)$ and m is any natural number. Then ϕ has a FP.

Proof It follows from banach contraction theorem that ϕ^{m} has unique a FP that is $\phi^{m}\left(\Omega_{A_{1}}^{\alpha}\right)=\Omega_{A_{1}}^{\alpha}$. Now

$$
\begin{aligned}
\phi^{m}\left(\phi\left(\Omega_{A_{1}^{\prime}}^{\alpha}\right)\right) & =\phi^{m+1}\left(\Omega_{A_{1}^{\prime}}^{\alpha}\right) \\
& =\phi\left(\phi^{m}\left(\Omega_{A_{1}^{\prime}}^{\alpha}\right)\right) \\
& =\phi\left(\Omega_{A_{1}^{\prime}}^{\alpha}\right) .
\end{aligned}
$$

By the uniqueness of FP, we have $\phi\left(\Omega_{A_{1}}^{\alpha}\right)=\Omega_{A_{1}}^{\alpha}$.
Proposition 3 Let $\left(\hat{N} S\left(U_{E}^{\prime}\right), d\right.$) be a complete neutrosophic soft metric space. Suppose ϕ, ψ satisfy $d\left(\phi\left(\Omega_{A_{1}^{\prime}}^{\alpha}\right), \psi\left(\Omega_{B_{1}^{\prime}}^{\alpha}\right)\right) \leq \alpha d\left(\Omega_{A_{1}^{\prime}}^{\alpha}, \phi\left(\Omega_{A_{1}^{\prime}}^{\alpha}\right)\right)+\beta d\left(\Omega_{B_{1}^{\prime}}^{\alpha}, \psi\left(\Omega_{B_{1}^{\prime}}^{\alpha}\right)\right)+\gamma\left[d\left(\Omega_{A_{1}^{\prime}}^{\alpha}, \psi\left(\Omega_{B_{1}^{\prime}}^{\alpha}\right)\right)+d\left(\Omega_{B_{1}^{\prime}}^{\alpha}, \phi\left(\Omega_{A_{1}^{\prime}}^{\alpha}\right)\right]\right.$ for all $\Omega_{A_{1}^{\prime}}^{\alpha}, \Omega_{B_{1}^{\prime}}^{\alpha} \in \mathcal{F} S\left(U_{E}^{\prime}\right)$ with α, β, γ are non-negative and $\alpha+\beta+\gamma<1$. Then ϕ and ψ have a unique FP. Proof Let $\Omega_{A_{1}^{\prime}}^{\alpha} \in \hat{N} S\left(U_{E}^{\prime}\right)$ be a fixed point of ϕ that is $\phi\left(\Omega_{A_{1}}^{\alpha}\right)=\Omega_{A_{1}}^{\alpha}$. We need to show that $\psi\left(\Omega_{A_{1}}^{\alpha}\right)=\Omega_{A_{1}}^{\alpha}$. Now

$$
\begin{aligned}
& d\left(\Omega_{A_{1}}^{\alpha}, \psi\left(\Omega_{A_{1}{ }^{\prime}}^{\alpha}\right)\right)=d\left(\phi\left(\Omega_{A_{1}^{\prime}}^{\alpha}\right), \psi\left(\Omega_{A_{1}}^{\alpha}\right)\right) \\
& \leq \alpha d\left(\Omega_{A_{1}^{\prime}}^{\alpha}, \phi\left(\Omega_{A_{1}}^{\alpha}\right)\right)+\beta d\left(\Omega_{A_{1}^{\prime}}^{\alpha}, \psi\left(\Omega_{A_{1}{ }^{\prime}}^{\alpha}\right)\right)+\gamma\left[d\left(\Omega_{A_{1}^{\prime}}^{\alpha}, \psi\left(\Omega_{A_{1}{ }^{\prime}}^{\alpha}\right)\right)+d\left(\Omega_{A_{1}^{\prime}}^{\alpha}, \phi\left(\Omega_{A_{1}}^{\alpha}\right)\right)\right] \\
& =\alpha d\left(\Omega_{A_{1}^{\prime}}^{\alpha}, \Omega_{A_{1}^{\prime}}^{\alpha}\right)+\beta d\left(\Omega_{A_{1}^{\prime}}^{\alpha}, \psi\left(\Omega_{A_{1}}^{\alpha}\right)\right)+\gamma\left[d\left(\Omega_{A_{1}^{\prime}}^{\alpha}, \psi\left(\Omega_{A_{1}^{\prime}}^{\alpha}\right)\right)+d\left(\Omega_{A_{1}}^{\alpha}, \Omega_{A_{1}^{\prime}}^{\alpha}\right)\right] \\
& =\beta d\left(\Omega_{A_{1}}^{\alpha}, \psi\left(\Omega_{A_{1}}^{\alpha}\right)+\gamma d\left(\Omega_{A_{1}^{\prime}}^{\alpha}, \psi\left(\Omega_{A_{1}^{\prime}}^{\alpha}\right)\right)\right. \\
& (1-\beta-\gamma) d\left(\Omega_{A_{1}{ }^{\prime}}^{\alpha}, \psi\left(\Omega_{A_{1}}^{\alpha}\right)\right) \leq 0
\end{aligned}
$$

Since $(1-\beta-\gamma) \npreceq 0$, so

$$
d\left(\Omega_{A_{1}}^{\alpha}, \psi\left(\Omega_{A_{1}}^{\alpha}\right)\right) \leq 0
$$

But

$$
d\left(\Omega_{A_{1}}^{\alpha}, \psi\left(\Omega_{A_{1}}^{\alpha}\right)\right) \geq 0
$$

hence

$$
d\left(\Omega_{A_{1}}^{\alpha}, \psi\left(\Omega_{A_{1}}^{\alpha}\right)\right)=0 .
$$

Thus $\psi\left(\Omega_{A_{1}}^{\alpha}\right)=\Omega_{A_{1}}^{\alpha}$.
Proposition 4 Let $N S\left(U_{E}^{\prime}\right)$ be a non-empty set of neutrosophic points and ($N S\left(U_{E}^{\prime}\right), d$) be a complete neutrosophic soft metric space. Suppose ϕ is a mapping from $N S\left(U_{E}^{\prime}\right)$ to $N S\left(U_{E}^{\prime}\right)$ be kanan contraction. Then fixed point of ϕ exists and unique.

Proof Let $\Omega_{A_{0}^{\prime}}^{\alpha} \in N S\left(U_{E}^{\prime}\right)$ be arbitrary. Define $\Omega_{A_{1}^{\prime}}^{\alpha}=\phi\left(\Omega_{A_{0}^{\prime}}^{\alpha}\right)$ and by continuing we have a sequence in the form $\Omega_{A_{n+1}^{\prime}}^{\alpha}=\phi\left(\Omega_{A_{n}^{\prime}}^{\alpha}\right)$. Now

$$
\begin{aligned}
d\left(\Omega_{A_{n+1}^{\prime}}^{\alpha}, \Omega_{A_{n}}^{\alpha}\right) & =d\left(\phi\left(\Omega_{A_{n}}^{\alpha}\right), \phi\left(\Omega_{A_{n-1}^{\prime}}^{\alpha}\right)\right) \\
& \leq k\left[d\left(\Omega_{A_{n}^{\prime}}^{\alpha}, \phi\left(\Omega_{A_{n}^{\prime}-1}^{\alpha}\right)\right)+d\left(\Omega_{A_{n-1}^{\prime}}^{\alpha}, \phi\left(\Omega_{A_{n-1}^{\prime}}^{\alpha}\right)\right)\right. \\
& =k\left[d\left(\Omega_{A_{n}^{\prime}}^{\alpha}, \Omega_{A_{n+1}^{\prime}}^{\alpha}\right)+d\left(\Omega_{A_{n-1}}^{A_{n}^{\prime}}, \Omega_{A_{n}}^{\alpha}\right)\right] \\
& =k d\left(\Omega_{A_{n}}^{\alpha}, \Omega_{A_{n+1}^{\prime}}^{\alpha}\right)+k d\left(\Omega_{A_{n-1}^{\prime}}^{\alpha}, \Omega_{A_{n}}^{\alpha}\right) \\
(1-k) d\left(\Omega_{A_{n+1}}^{\alpha}, \Omega_{A_{n}}^{\alpha}\right) & \leq k d\left(\Omega_{A_{n}}^{\alpha}, \Omega_{A_{n-1}^{\prime}}^{\alpha}\right) \\
d\left(\Omega_{A_{n+1}^{\prime}}^{\alpha}, \Omega_{A_{n}}^{\alpha}\right) & \leq \frac{k}{1-k} d\left(\Omega_{A_{n}^{\prime}}^{\alpha}, \Omega_{A_{n-1}^{\prime}}^{\alpha}\right) \\
& =h d\left(\Omega_{A_{n}}^{\alpha}, \Omega_{A_{n-1}^{\prime}}^{\alpha}\right)
\end{aligned}
$$

for $h=\frac{k}{1-k}$

$$
\begin{aligned}
d\left(\Omega_{A_{n+1}^{\prime}}^{\alpha}, \Omega_{A_{n}}^{\alpha}\right) & \leq h d\left(\Omega_{A_{n}}^{\alpha}, \Omega_{A_{n-1}^{\prime}}^{\alpha}\right) \\
& \leq h^{2} d\left(\Omega_{A_{n-1}^{\prime}}^{\alpha}, \Omega_{A_{n-2}}^{\alpha}\right) \\
& \leq h^{3} d\left(\Omega_{A_{n-2}}^{\alpha-}, \Omega_{A_{n-3}}^{\alpha}\right) \\
& \cdot \\
& \cdot \\
& \leq \\
& \leq h^{n} d\left(\Omega_{A_{1}}^{\alpha}, \Omega_{A_{0}}^{\alpha}\right) .
\end{aligned}
$$

For $m>n$

$$
\begin{aligned}
d\left(\Omega_{A_{n}}^{\alpha}, \Omega_{A_{m}}^{\alpha}\right) & \leq d\left(\Omega_{A_{n}}^{\alpha}, \Omega_{A_{n+1}}^{\alpha}\right)+d\left(\Omega_{A_{n+1}}^{\alpha}, \Omega_{A_{n+2}}^{\alpha}\right)+\ldots+d\left(\Omega_{A_{m-1}}^{\alpha}, \Omega_{A_{m}}^{\alpha}\right) \\
& \leq h^{n} d\left(\Omega_{A_{1}}^{\alpha}, \Omega_{A_{0}}^{\alpha}\right)+h^{n+1} d\left(\Omega_{A_{1}}^{\alpha}, \Omega_{A_{0}}^{\alpha}\right)+\ldots+h^{m-1} d\left(\Omega_{A_{1}}^{\alpha}, \Omega_{A_{0}}^{\alpha}\right) \\
& =h^{n}\left[1+h+h^{2}+\ldots+h^{m-n-1}\right] d\left(\Omega_{A_{1}}^{\alpha}, \Omega_{A_{0}}^{\alpha}\right) \\
& =h^{n}\left(\frac{1}{1+h}\right) d\left(\Omega_{A_{1}}^{\alpha}, \Omega_{A_{0}}^{\alpha}\right) \\
d\left(\Omega_{A_{n}}^{\alpha}, \Omega_{A_{m}}^{\alpha}\right) & \rightarrow 0 \text { as } n \rightarrow \infty .
\end{aligned}
$$

The sequence $\Omega_{A_{n}^{\prime}}^{\alpha}$ is a cauchy sequence in $\left(\hat{N} S\left(U_{E}^{\prime}\right), d\right)$. Since ($\hat{N} S\left(U_{E}^{\prime}\right), d$) is complete, so $\Omega_{A_{n}^{\prime}}^{\alpha}$ converges to any $\Omega_{A^{\prime}}^{\alpha *} \in N S\left(U_{E}^{\prime}\right)$. Now

$$
\begin{aligned}
d\left(\phi\left(\Omega_{A^{\prime}}^{\alpha *}\right), \Omega_{A_{n+1}}^{\alpha}\right) & =d\left(\phi\left(\Omega_{A^{\prime}}^{\alpha *}\right), \phi\left(\Omega_{A_{n}^{\prime}}^{\alpha}\right)\right) \\
& \leq h\left[d\left(\Omega_{A^{\prime}}^{\alpha *}, \phi\left(\Omega_{A^{\prime}}^{\alpha *}\right)\right)+d\left(\Omega_{A_{n}^{\prime}}^{\alpha}, \phi\left(\Omega_{A_{n}}^{\alpha}\right)\right)\right] .
\end{aligned}
$$

Taking limit as $n \rightarrow \infty$, we have

$$
\begin{aligned}
d\left(\phi\left(\Omega_{A^{\prime}}^{\alpha *}\right), \Omega_{A^{\prime}}^{\alpha *}\right) & \leq h\left[d\left(\Omega_{A^{\prime}}^{\alpha *} \phi\left(\Omega_{A^{\prime}}^{\alpha *}\right)\right)+d\left(\Omega_{A^{\prime}}^{\alpha *}, \phi\left(\Omega_{A^{\prime}}^{\alpha *}\right)\right)\right] \\
& =2 h d\left(\Omega_{A^{\prime}}^{\alpha *}, \phi\left(\Omega_{A^{\prime}}^{\alpha *}\right)\right) \\
(1-2 h) d\left(\phi\left(\Omega_{A^{\prime}}^{\alpha *}\right), \Omega_{A^{\prime}}^{\alpha *}\right) & \leq 0
\end{aligned}
$$

As $(1-2 h) \npreceq 0$, so

$$
d\left(\phi\left(\Omega_{A^{\prime}}^{\alpha^{*}}\right), \Omega_{A^{\prime}}^{\alpha *}\right) \leq 0
$$

but

$$
d\left(\phi\left(\Omega_{A^{\prime}}^{\alpha^{*}}\right), \Omega_{A^{\prime}}^{\alpha^{*}}\right) \geq 0
$$

thus

$$
d\left(\phi\left(\Omega_{A^{\prime}}^{\alpha *}\right), \Omega_{A^{\prime}}^{\alpha *}\right)=0 .
$$

Hence $\Omega_{A^{\prime}}^{\alpha *} \in \hat{N} S\left(U_{E}^{\prime}\right)$ is a FP of ϕ.
Suppose $\Omega_{B^{\prime}}^{\alpha *} \in \hat{N} S\left(U_{E}^{\prime}\right)$ be another FP. Now

$$
\begin{align*}
d\left(\Omega_{A^{\prime}}^{\alpha *}, \Omega_{B^{\prime}}^{\alpha *}\right) & =d\left(\phi\left(\Omega_{A^{\prime}}^{\alpha *}\right), \phi\left(\Omega_{B^{\prime}}^{\alpha *}\right)\right) \\
& \leq h\left[d\left(\Omega_{A^{\prime}}^{\alpha *}, \phi\left(\Omega_{A^{\prime}}^{\alpha *}\right)\right)+d\left(\Omega_{B^{\prime}}^{\alpha *}, \phi\left(\Omega_{B^{\prime}}^{\alpha *}\right)\right)\right] \\
& \leq h\left[d\left(\Omega_{A^{\prime}}^{\alpha *}, \Omega_{A^{\prime}}^{\alpha^{*}}\right)+d\left(\Omega_{B^{\prime}}^{\alpha *}, \Omega_{B^{\prime}}^{\alpha *}\right)\right] \\
d\left(\Omega_{A^{\prime}}^{\alpha *}, \Omega_{B^{\prime}}^{\alpha *}\right) & \leq 0 \tag{1}
\end{align*}
$$

but

$$
\begin{equation*}
d\left(\Omega_{A^{\prime}}^{\alpha *}, \Omega_{B^{\prime}}^{\alpha^{*}}\right) \geq 0 . \tag{2}
\end{equation*}
$$

From (1) and (2) we have

$$
d\left(\Omega_{A^{\prime}}^{\alpha^{*}}, \Omega_{B^{\prime}}^{\alpha^{*}}\right)=0 .
$$

Hence $\Omega_{A^{\prime}}^{\alpha *}=\Omega_{B^{\prime}}^{\alpha *}$.
Proposition 5 Let $\phi, \psi: \hat{N} S\left(U_{E}^{\prime}\right) \rightarrow \hat{N} S\left(U_{E}^{\prime}\right)$ be weakly compatible maps. If ϕ and ψ have unique coincidence point. Then ϕ and ψ have unique common fixed point (CFP).

Proof Suppose there is $\Omega_{A_{1}}^{\alpha} \in N S\left(U_{E}^{\prime}\right)$ such that $\phi\left(\Omega_{A_{1}}^{\alpha}\right)=\psi\left(\Omega_{A_{1}}^{\alpha}\right)=\Omega_{B_{1}}^{\alpha}$. Since ϕ and ψ are weakly compatible, so $\phi\left(\psi\left(\Omega_{A_{1}}^{\alpha}\right)\right)=\psi\left(\phi\left(\Omega_{A_{1}}^{\alpha}\right)\right)$ for all $\Omega_{A_{1}}^{\alpha} \in \hat{N} S\left(U_{E}^{\prime}\right)$. Now

$$
\phi\left(\Omega_{B_{1}^{\prime}}^{\alpha}\right)=\phi\left(\Omega_{B_{1}^{\prime}}^{\alpha}\right)=\phi\left(\psi\left(\Omega_{A_{1}}^{\alpha}\right)\right)=\psi\left(\phi\left(\Omega_{A_{1}}^{\alpha}\right)\right) .
$$

So $\Omega_{B_{1}}^{\alpha}$ is also coincidence point (CP) of ϕ and ψ, but $\Omega_{A_{1}}^{\alpha}$ is the unique CP of ϕ and ψ, so

$$
\begin{aligned}
\phi\left(\Omega_{A_{1}^{\prime}}^{\alpha}\right) & =\psi\left(\Omega_{A_{1}^{\prime}}^{\alpha}\right)=\phi\left(\Omega_{B_{1}}^{\alpha}\right)=\psi\left(\Omega_{B_{1}}^{\alpha}\right) \\
\Omega_{B_{1}^{\prime}}^{\alpha} & =\phi\left(\Omega_{B_{1}}^{\alpha}\right)=\psi\left(\Omega_{B_{1}}^{\alpha}\right) .
\end{aligned}
$$

So $\Omega_{B_{1}^{\prime}}^{\alpha} \in N S\left(U_{E}^{\prime}\right)$ is CFP.
Proposition 6 Let $\left(\hat{N} S\left(U_{E}^{\prime}\right), d\right.$) be a complete metric space and $\phi: \hat{N} S\left(U_{E}^{\prime}\right) \rightarrow \hat{N} S\left(U_{E}^{\prime}\right)$ be a mapping satisfies $d\left(\phi^{2}\left(\Omega_{A_{1}}^{\alpha}\right), \phi\left(\Omega_{A_{1}}^{\alpha}\right)\right) \leq k d\left(\phi\left(\Omega_{A_{1}}^{\alpha}\right), \Omega_{A_{1}}^{\alpha}\right)$ for all $\Omega_{A_{1}}^{\alpha} \in \hat{N} S\left(U_{E}^{\prime}\right)$ and $k \in[0,1)$. Then fixed point of ϕ is singleton.

Proof Let $\Omega_{A_{0}}^{\alpha} \in \hat{N} S\left(U_{E}^{\prime}\right)$ be arbitrary and defines $\Omega_{A_{n+1}}^{\alpha}=\phi^{n}\left(\Omega_{A_{0}}^{\alpha}\right)=\phi\left(\Omega_{A_{n}}^{\alpha}\right)$. Now

$$
\begin{aligned}
d\left(\phi^{n+1}\left(\Omega_{A_{0}}^{\alpha}\right), \phi^{n}\left(\Omega_{A_{0}}^{\alpha}\right)\right) \leq & k d\left(\phi^{n}\left(\Omega_{A_{0}}^{\alpha}\right), \phi^{n-1}\left(\Omega_{A_{0}}^{\alpha}\right)\right) \\
\leq & \leq k^{2} d\left(\phi^{n-1}\left(\Omega_{A_{0}}^{\alpha}\right), \phi^{n-2}\left(\Omega_{A_{0}}^{\alpha}\right)\right) \\
\leq & k^{3} d\left(\phi^{n-3}\left(\Omega_{A_{0}}^{\alpha}\right), \phi^{n-4}\left(\Omega_{A_{0}}^{\alpha}\right)\right) \\
& \cdot \\
& \cdot \\
& \cdot \\
\leq & k^{n} d\left(\phi\left(\Omega_{A_{0}}^{\alpha}\right), \Omega_{A_{0}}^{\alpha}\right) .
\end{aligned}
$$

Now for $m>n$

$$
\begin{aligned}
d\left(\phi^{m}\left(\Omega_{A_{0}}^{\alpha}\right), \phi^{n}\left(\Omega_{A_{0}}^{\alpha}\right)\right) \leq & d\left(\phi^{n}\left(\Omega_{A_{0}}^{\alpha}\right), \phi^{n+1}\left(\Omega_{A_{0}}^{\alpha}\right)\right)+d\left(\phi^{n+1}\left(\Omega_{A_{0}}^{\alpha}\right), \phi^{n+2}\left(\Omega_{A_{A_{0}}}^{\alpha}\right)\right) \\
& +\ldots+d\left(\phi^{m-1}\left(\Omega_{A_{0}}^{\alpha}\right), \phi^{m}\left(\Omega_{A_{0}}^{\alpha}\right)\right) \\
\leq & k^{n} d\left(\phi\left(\Omega_{A_{0}}^{\alpha}\right), \Omega_{A_{0}}^{\alpha}\right)+k^{n+1} d\left(\phi\left(\Omega_{A_{0}}^{\alpha}\right), \Omega_{A_{0}}^{\alpha}\right) \\
& +\ldots+k^{m-1} d\left(\phi\left(\Omega_{A_{0}}^{\alpha}\right), \Omega_{A_{0}}^{\alpha}\right) \\
\leq & k^{n}\left[1+k+k^{2}+\ldots+k^{m-n-1}\right] d\left(\phi\left(\Omega_{A_{0}}^{\alpha}\right), \Omega_{A_{0}}^{\alpha}\right) \\
\leq & \frac{k^{n}}{1-k} d\left(\phi\left(\Omega_{A_{0}}^{\alpha}\right), \Omega_{A_{0}}^{\alpha}\right) \\
d\left(\phi^{m}\left(\Omega_{A_{0}}^{\alpha}\right), \phi^{n}\left(\Omega_{A_{0}}^{\alpha}\right)\right) \rightarrow & 0 \text { as } n \rightarrow \infty .
\end{aligned}
$$

So $\phi^{n}\left(\Omega_{A_{0}}^{\alpha}\right)$ is a cauchy sequence in ($\left.\hat{N} S\left(U_{E}^{\prime}\right), d\right)$, but $\left(\hat{N} S\left(U_{E}^{\prime}\right), d\right)$ is complete, so every cauchy sequence is convergent that is $\phi^{n}\left(\Omega_{A_{0}}^{\alpha}\right) \rightarrow \Omega_{A_{0}}^{\alpha *}$ as $n \rightarrow \infty$. Now

$$
d\left(\phi^{n+1}\left(\Omega_{A_{0}}^{\alpha}\right), \phi\left(\Omega_{A_{0}}^{\alpha *}\right)\right) \leq k d\left(\phi^{n}\left(\Omega_{A_{0}}^{\alpha}\right), \Omega_{A_{0}}^{\alpha *}\right)
$$

taking limit as $n \rightarrow \infty$, we have

$$
\begin{aligned}
& d\left(\Omega_{A_{0}}^{\alpha *}, \phi\left(\Omega_{A_{0}}^{\alpha *}\right)\right) \leq k d\left(\Omega_{A_{0}}^{\alpha *}, \Omega_{A_{0}}^{\alpha *}\right) \\
& d\left(\Omega_{A_{0}}^{\alpha *}, \phi\left(\Omega_{A_{0}}^{\alpha *}\right)\right) \leq 0
\end{aligned}
$$

but

$$
\begin{aligned}
d\left(\Omega_{A_{0}}^{\alpha *}, \phi\left(\Omega_{A_{0}}^{\alpha *}\right)\right) & \geq 0 \\
d\left(\Omega_{A_{0}}^{\alpha *}, \phi\left(\Omega_{A_{0}}^{\alpha *}\right)\right) & =0 \\
& \Rightarrow \phi\left(\Omega_{A_{0}}^{\alpha *}\right)=\Omega_{A_{0}}^{\alpha *} .
\end{aligned}
$$

Hence $\Omega_{A_{0}}^{\alpha *} \in \hat{N} S\left(U_{E}^{\prime}\right)$ is the FP of ϕ.
Now suppose $\Omega_{B_{0}^{\prime}}^{\alpha *} \in \hat{N} S\left(U_{E}^{\prime}\right)$ is another FP of with $\phi\left(\Omega_{B_{0}^{\prime}}^{\alpha *}\right)=\Omega_{B_{0}^{\prime}}^{\alpha *}$, then

$$
\begin{aligned}
d\left(\Omega_{B_{0}^{\prime}}^{\alpha *}, \Omega_{A_{0}}^{\alpha *}\right) & =d\left(\phi\left(\Omega_{B_{0}^{\prime}}^{\alpha *}\right), \phi\left(\Omega_{A_{0}}^{\alpha *}\right)\right) \\
& =d\left(\phi\left(\phi\left(\Omega_{B_{0}^{\prime}}^{\alpha *}\right)\right), \phi\left(\Omega_{A_{A_{2}}}^{\alpha *}\right)\right) \\
& \left.\leq k d\left(\phi\left(\Omega_{B_{0}^{\prime}}^{\alpha *}\right)\right), \phi\left(\Omega_{A_{0}}^{\alpha *}\right)\right) \\
& =k d\left(\Omega_{B_{0}^{\prime}}^{\alpha *}, \Omega_{A_{0}}^{\alpha *}\right) \\
(1-k) d\left(\Omega_{B_{0}^{\prime}}^{\alpha *}, \Omega_{A_{0}}^{\alpha *}\right) & \leq 0 .
\end{aligned}
$$

As $(1-k) \nsubseteq 0$, so

$$
\begin{equation*}
d\left(\Omega_{B_{0}^{\prime}}^{\alpha ?}, \Omega_{A_{0}}^{\alpha ?}\right) \leq 0 \tag{1}
\end{equation*}
$$

but

$$
\begin{equation*}
d\left(\Omega_{B_{0}^{\prime}}^{\alpha *}, \Omega_{A_{0}}^{\alpha_{i}^{* *}}\right) \geq 0 . \tag{2}
\end{equation*}
$$

From (1) and (2) we have

$$
\begin{aligned}
d\left(\Omega_{B_{0}^{\prime}}^{\alpha *}, \Omega_{A_{0}}^{\alpha *}\right) & =0 \\
& \Rightarrow \Omega_{B_{0}^{\prime}}^{\alpha *}=\Omega_{A_{0}}^{\alpha *} .
\end{aligned}
$$

Hence the FP is unique.
Proposition 7 Let $\phi, \psi: N S\left(U_{E}^{\prime}\right) \rightarrow N S\left(U_{E}^{\prime}\right)$ be commuting maps. If ϕ and ψ have unique coincidence point. Then ϕ and ψ have unique common fixed point.

Proof Suppose there is $\Omega_{A_{1}^{\prime}}^{\alpha} \in N S\left(U_{E}^{\prime}\right)$ such that $\phi\left(\psi\left(\Omega_{A_{1}}^{\alpha}\right)\right)=\psi\left(\phi\left(\Omega_{A_{1}}^{\alpha}\right)\right)$. Since ϕ and ψ have unique coincidence point, so let $\phi\left(\Omega_{A_{1}^{\prime}}^{\alpha}\right)=\psi\left(\Omega_{A_{1}^{\prime}}^{\alpha}\right)=\Omega_{B_{1}^{\prime}}^{\alpha}$. Now

$$
\phi\left(\Omega_{B_{1}^{\prime}}^{\alpha}\right)=\phi\left(\psi\left(\Omega_{A_{1}}^{\alpha}\right)\right)=\psi\left(\phi\left(\Omega_{A_{1}^{\prime}}^{\alpha}\right)\right)=\psi\left(\Omega_{B_{1}^{\prime}}^{\alpha}\right) .
$$

Here $\Omega_{B_{1}^{\prime}}^{\alpha} \in \hat{N} S\left(U_{E}^{\prime}\right)$ is also a coincidence point, but $\Omega_{A_{1}^{\prime}}^{\alpha} \in \hat{N} S\left(U_{E}^{\prime}\right)$ is unique coincidence point, so

$$
\phi\left(\Omega_{B_{1}^{\prime}}^{\alpha}\right)=\psi\left(\Omega_{B_{1}^{\prime}}^{\alpha}\right)=\psi\left(\Omega_{A_{1}^{\prime}}^{\alpha}\right)=\phi\left(\Omega_{A_{1}}^{\alpha}\right)=\Omega_{B_{1}^{\prime}}^{\alpha} .
$$

Hence $\Omega_{B_{1}^{\prime}}^{\alpha} \in N S\left(U_{E}^{\prime}\right)$ is also a fixed point.
Proposition 8 Every neutrosophic soft identity map is non-expansive.
Proof Suppose that I from $\hat{N} S\left(U_{E}^{\prime}\right)$ to $\hat{N} S\left(U_{E}^{\prime}\right)$ be a neutrosophic soft identity map such that $I\left(\Omega_{A_{1}{ }_{\prime}}^{\alpha}\right)=\Omega_{{ }_{A_{1}}}^{\alpha}$ for all $\Omega_{A_{1}}^{\alpha} \in N S\left(U_{E}^{\prime}\right)$. Now

$$
d\left(I\left(\Omega_{A_{1}}^{\alpha}\right), I\left(\Omega_{B_{1}}^{\alpha}\right)\right)=d\left(\Omega_{A_{1}^{\prime}}^{\alpha}, \Omega_{B_{1}}^{\alpha}\right)
$$

Here $k=1$, so I is non-expansive map.

5. Conclusion

In this paper, we have discussed some new mappings of NSS and some basic results and particular examples. Like fixed point, here also present some new concepts of points that is coincidence point, periodic point and CFP.
FP theory has a lot of applications in control and communicating system. FP theory is an important mathematical instrument used to demonstrate the existence of a solution in mathematical economics and game theory. So the notion of a neutrosophic soft fixed point can be used in these areas. For stabilization of dynamic systems, neutrosophic soft fixed point can be used. In addition, dynamic programming may employ the notion of presence and uniqueness of the common solution of neutrosophic soft set.

Refrences

[1] J. A. Goguen, "LA Zadeh. Fuzzy sets. Information and control, vol. 8 (1965), pp. 338-353.-LA Zadeh. Similarity relations and fuzzy orderings. Information sciences, vol. 3 (1971), pp. 177-200.," J. Symb. Log., vol. 38, no. 4, pp. 656-657, 1973.
[2] D. Ramot, R. Milo, M. Friedman, and A. Kandel, "Complex fuzzy sets," IEEE Trans. Fuzzy Syst., vol. 10, no. 2, pp. 171186, 2002.
[3] K. T. Atanassov, "Intuitionistic fuzzy sets," in Intuitionistic fuzzy sets, Springer, 1999, pp. 1-137.
[4] P. K. Maji and R. Biswas, "Fuzzy softs," 2001.
[5] P. K. Maji, R. Biswas, and A. R. Roy, "Intuitionistic fuzzy soft sets," J. Fuzzy Math., vol. 9, no. 3, pp. 677-692, 2001.
[6] F. Smarandache, "Neutrosophic set-a generalization of the intuitionistic fuzzy set," Int. J. Pure Appl. Math., vol. 24, no. 3, p. 287, 2005.
[7] F. Smarandache, "Neutrosophy: neutrosophic probability, set, and logic: analytic synthesis \& synthetic analysis," 1998.
[8] F. Smarandache, A Unifying Field in Logics: Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Neutrosophic Probability: Neutrosophic Logic: Neutrosophy, Neutrosophic Set, Neutrosophic Probability. Infinite Study, 2003.
[9] N. A. Nabeeh, F. Smarandache, M. Abdel-Basset, H. A. El-Ghareeb, and A. Aboelfetouh, "An Integrated NeutrosophicTOPSIS Approach and Its Application to Personnel Selection: A New Trend in Brain Processing and Analysis," IEEE Access, vol. 7, pp. 29734-29744, 2019.
[10] M. Abdel-Basset, M. Saleh, A. Gamal, and F. Smarandache, "An approach of TOPSIS technique for developing supplier selection with group decision making under type-2 neutrosophic number," Appl. Soft Comput., vol. 77, pp. 438-452, 2019.
[11] M. Abdel-Baset, V. Chang, A. Gamal, and F. Smarandache, "An integrated neutrosophic ANP and VIKOR method for achieving sustainable supplier selection: A case study in importing field," Comput. Ind., vol. 106, pp. 94-110, 2019.
[12] M. Abdel-Basset, G. Manogaran, A. Gamal, and F. Smarandache, "A group decision making framework based on neutrosophic TOPSIS approach for smart medical device selection," J. Med. Syst., vol. 43, no. 2, p. 38, 2019.
[13] M. Abdel-Baset, V. Chang, and A. Gamal, "Evaluation of the green supply chain management practices: A novel neutrosophic approach," Comput. Ind., vol. 108, pp. 210-220, 2019.
[14] M. Abdel-Basset, G. Manogaran, A. Gamal, and F. Smarandache, "A hybrid approach of neutrosophic sets and DEMATEL method for developing supplier selection criteria," Des. Autom. Embed. Syst., pp. 1-22, 2018.
[15] T. Bera and N. K. Mahapatra, "Neutrosophic Soft Normed Linear Spaces.," Neutrosophic Sets Syst., vol. 23, 2018.
[16] T. Bera and N. K. Mahapatra, On Neutrosophic Soft Prime Ideal. Infinite Study, 2018.
[17] T. Bera and N. K. Mahapatra, On Neutrosophic Soft Topological Space. Infinite Study, 2018.
[18] R. A. Cruz and F. N. Irudayam, "More on P-union and P-intersection of Neutrosophic Soft Cubic Set," Neutrosophic Sets Syst., vol. 17, pp. 74-87, 2017.
[19] N. Shah and A. Hussain, "Neutrosophic soft graphs," Neutrosophic Sets Syst., vol. 11, pp. 31-44, 2016.
[20] W. Haibin, F. Smarandache, Y. Zhang, and R. Sunderraman, Single valued neutrosophic sets. Infinite Study, 2010.
[21] P. K. Maji, Neutrosophic soft set. Infinite Study, 2013.
[22] I. Arockiarani, I. R. Sumathi, and J. M. Jency, "• FUZZY NEUTROSOPHIC SOFT TOPOLOGICAL SPACES," Int. J. Math. Arch. EISSN 2229-5046, vol. 4, no. 10, 2013.
[23] D. Molodtsov, "Soft set theory - first results," Comput. Math. Appl., vol. 37, no. 4-5, pp. 19-31, 1999.
[24] I. Deli and S. Broumi, "Neutrosophic soft matrices and NSM-decision making," J. Intell. Fuzzy Syst., vol. 28, no. 5, pp. 2233-2241, 2015.
[25] M. Riaz and M. R. Hashmi, "Fixed points of fuzzy neutrosophic soft mapping with decision-making," Fixed Point Theory Appl., vol. 2018, no. 1, p. 7, 2018.
[26] T. Bera and N. K. Mahapatra, On neutrosophic soft metric space. Infinite Study, 2018.
[27] T. Bera and N. K. Mahapatra, "Compactness and Continuity On Neutrosophic Soft Metric Space."

Selection of Alternative under the Framework of Single-Valued Neutrosophic Sets

M. Sarwar Sindhu ${ }^{1}$, Tabasam Rashid ${ }^{2, *}$ and Agha Kashif ${ }^{3}$
${ }^{1}$ Department of Mathematics University of Management and Technology, Lahore - 54770, Pakistan; sarwartajdin@gmail.com
${ }^{2}$ Department of Mathematics University of Management and Technology, Lahore - 54770, Pakistan; tabasam.rashid@umt.edu.pk
${ }^{3}$ Department of Mathematics University of Management and Technology, Lahore - 54770, Pakistan; kashif.khan@umt.edu.pk

* Correspondence: tabasam.rashid@umt.edu.pk

Abstract

The multiple criteria decision making (MCDM) problems indicate the alternatives which have more or less resemblance to each other. An important mathematical tool used by decision-makers (DMs) to quantify these resemblances is the similarity measure (SM). SM is a powerful tool that measures the resemblance more accurately. Mostly, fuzzy sets (FSs) and its extensions handle the vague and uncertain information by considering the membership, non-membership, and indeterminacy degrees whose sum always lies in the interval $[0,1]$. However, single-valued neutrosophic sets (SVNSs) and interval-valued neutrosophic sets (IVNSs) have information whose sum is bounded in [0, 3]. In the present work, we extended the SM presented by William and Steel for SVNSs and IVNSs by using the concept of Euclidean distance. The weights of criteria indicate much influence for the selection of the best alternative, sometimes DMs feel hesitation to allocate the weights to the criteria. We applied the linear programming (LP) model to evaluate the weights of the criteria to reduce the hesitancy. Later on, SM is utilized to establish an MCDM model for the selection of the best option. Moreover, the Spearman's rank correlation coefficient is implemented to analyze the ranking order. Finally, a medical diagnosis example is illustrated for the feasibility and effectiveness of the proposed model.

Keywords: picture fuzzy sets; fuzzy sets; similarity measure; neutrosophic sets; linear programming model.

1. Introduction

Most of the information provided to the experts or decision makers (DMs) are ambiguous and uncertain. DMs handle such information precisely by using the fuzzy sets (FSs) theory presented by Zadeh [31] in 1965. FSs contain a single value in its specification, called a membership degree (MDg) which is always bounded in the closed interval $[0,1]$. FSs have been broadly used in different fields, for example, medical diagnosis, image processing, etc. [12, 17.

Sindhu et al., Selection of Alternative under the Framework of SVNSs

In various ambiguous decision making problems, the $\mathrm{M} D_{g}$ is assumed not exactly as a numerical value but as an interval. Therefore, Zadeh [32 introduced the interval-valued fuzzy sets (IVFSs), an augmentation of FSs. Though, the FSs and IVFSs only have the $\mathrm{M} D_{g}$, and they cannot designate the non membership degree (NMDg) of the element belonging to the set. Consider that in a competition of university's postgraduate students, a board of seven experts evaluate the efficiency of a student. According to three experts a student can be accepted for admission, according to two experts he or she is rejected and the remaining two experts remained impartial. In such circumstances, FSs and IVFSs could not handle the vagueness and uncertainty precisely. Atanassov [6] further extended the notion of FSs into intuitionistic fuzzy sets (IFSs) to cope such problems which comprise both $\mathrm{M} D_{g}$ and $\mathrm{NM} D_{g}$ in its structure so that, $0 \leq M D_{g}+N M D_{g} \leq 1$. Most rapidly, IFSs become an important device to deal with the imprecise and ambiguous information than the FSs and IVFSs.

In spite of the fact that, IFSs have been successfully implemented in distinct fields, however, IFSs were not covering the human's attitude perfectly. Casting of vote is an excellent example of such type of attitude, we may divide the voters into four groups: vote for, vote against, neutral and refusal of voting. When a person refuses to vote, we can say that the person is not anxious about the general election. Cuong [11] focused such types of human's attitude by presenting the idea of picture fuzzy sets $P_{c} F S s$, the generalized form of IFSs. $P_{c} F S s$ have three components in its formation called, $\mathrm{M} D_{g}, \mathrm{NM} D_{g}$ and of degree refusal $\left(D_{g} \mathrm{R}\right)$ such that, $0 \leq M D_{g}+N M D_{g}+D_{g} R \leq 1$. But $P_{c} F S s$ also have some limitations to express the decision information. For instance, three groups of decision makers (DMs) assess the advantages of a new business. First group predicts that the business will be profitable is 0.7 , according to second group the possibility of loss is 0.2 and the third group is not sure whether the business will be profitable is 0.4 . In this scenario, $P_{c} F S s$ cannot handle the information because, $0.7+0.2+0.3=1.2>1$.

Therefore, to handle such situations Wang et al. 22 introduced an amazing concept of singlevalued neutrosophic sets (SVNSs) that consists of three degrees, the truth-membership $\left(T_{n}(x)\right)$ degree, indeterminacy-membership $\left(I_{n}(x)\right)$ degree, and falsity membership $\left(F_{n}(x)\right)$ degree in the closed interval $[0,1]$ so that it satisfy the condition, $0 \leq T_{n}(x)+I_{n}(x)+F_{n}(x) \leq 3$. Later on, Wang 23 described these three degrees in the form of an interval, called an intervalvalued neutrosophic sets (IVNSs). Nowadays, NSs have become the center of the eye of the researcher due to its innovation. Many researchers are trying to print it for example, AbdelBasset et.al $[1-4]$ used the score and accuracy functions of trapezoidal neutrosophic numbers to minimize the cost of projects under uncertain environmental conditions, in order to tackle the ambiguity and uncertainty present in the data for MCDM problems, utilized the plithogenic

Sindhu et al., Selection of Alternative under the Framework of SVNSs
set, a generalization of NSs, a novel hybrid neutrosophic MCDM model is presented on the basis of TOPSIS by using bipolar neutrosophic numbers and resolve the supply chain issues with the help of best-worst method (evaluating weights) and plithogenic set, respectively.

SM is one of the vital and powerful tools that measures the level of resemblance among the objects. In order to show the preference strength among the alternatives, the similarity measures have achieved more attention from the DMs since the previous few decades. Various DMs have presented a number of similarity measures for MCDM problems to select the most favorable alternative from the various options having identical features under the certain criteria. For example, Beg and Ashraf discussed the various characteristic of similarity measures under the framework of FSs 7 . Ye $[28-30]$ introduced the cosine similarity measures (vector similarity) and implemented it to pattern recognition and medical diagnosis under the environments of simplified neutrosophic sets, interval neutrosophic sets and IFSs. Intarapaiboon [14] applied two new similarity measures to pattern recognition in IFSs situations. Moreover, Song and Hu [20] established two measures of similarity between hesitant fuzzy linguistic term sets and used it for MCDM problems. Recently, Wei and Gao [26] developed the generalized Dice similarity measures for $P_{c} F S s$ and implemented for pattern recognition. Consequently, Wang et al. [24] presented the generalized Dice similarity measures for Pythagorean fuzzy sets and used it in multiple attribute group decision making.

The linear programming (LP) model introduced by Vanderbei [21], permits some target function to be minimized or maximized inside the system of given situational limitations. LP is a computational technique that enables DMs to solve the problems which they face in decisionmaking model. It encourages the DMs to deal with constrained ideal conditions which they need to make the best of their resources. Various experts utilized LP model in MCDM for different extensions of FSs [5, 10, 13, 18, 25. Recently, Sindhu et al. 19 implemented the LP methodology with extended TOPSIS (technique for order of preference by similarity to ideal solution) for picture fuzzy sets. The weights of criteria appear to specify that the DMs identify the significance of people views and its influence on attaining the objective. Sometimes DMs hesitate or confused to allocate the weights to criteria. Thereby, we applied TOPSIS to get the objective function and then find out the weights of criteria under some constraints by using LP model. The novelty of this article is concerned about proposing the SM to overcome the shortcoming present in the existing technique. The following are the major contributions of this study:

- William and Steel SM is extended on the basis of novel distance measure.
- Evaluate the objective function by using TOPSIS.
- Weights of criteria are calculated with the help of LP model.
- An MCDM model is developed on the basis of SM and implemented it for medical diagnosis under the framework of SVNSs and IVNSs.
- Spearman's rank-correlation coefficient and the critical value are applied to strength the proposed MCDM model.

Rest of the article is organized as: Section 2 encloses some preliminaries regarding SVNSs and IVNSs. Various pre-existing similarity measures of SVNSs, IVNSs and their shortcoming are elaborated in Section 3. The modified similarity measures for SVNSs and IVNSs are described in Section 4. An MCDM model is proposed in Section 5 and the developed model is then applied on an example of medical diagnosis in Section 6 to elaborate the validity and effectiveness. A comprehensive comparative analysis based on Spearman's rank correlation coefficient is penned in Section 7. Conclusions and future work are highlighted in Section 8.

2. Preliminaries

A brief introduction of the notions $F S s, P_{c} F S s, S V N S$ and $I V N S$ and the LP model is presented in this section.

Definition 2.1. 31 Let $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a discourse set. A fuzzy set (FS) A on X is represented in terms of a functions $m: X \rightarrow[0,1]$ such that

$$
A=\left\{\left\langle x_{i}, m_{A}\left(x_{i}\right)\right\rangle \mid x_{i} \in X\right\} .
$$

Definition 2.2. 11] Let $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a fixed set. A picture fuzzy set P_{c} on X is defined as:

$$
P_{c}=\left\{\left\langle x_{i}, \alpha_{P_{c}}\left(x_{i}\right), \gamma_{P_{c}}\left(x_{i}\right), \beta_{P_{c}}\left(x_{i}\right)\right\rangle \mid x_{i} \in X, i=1,2, \ldots, n\right\},
$$

where $\alpha_{P_{c}}\left(x_{i}\right), \beta_{P_{c}}\left(x_{i}\right), \gamma_{P_{c}}\left(x_{i}\right) \in[0,1]$ are called the acceptance membership, neutral and rejection membership degrees of $x_{i} \in X$ to the set P_{c}, respectively and $\alpha_{P_{c}}\left(x_{i}\right), \gamma_{P_{c}}\left(x_{i}\right)$ and $\beta_{P_{c}}\left(x_{i}\right)$ fulfil the condition: $0 \leq \alpha_{P_{c}}\left(x_{i}\right)+\gamma_{P_{c}}\left(x_{i}\right)+\beta_{P_{c}}\left(x_{i}\right) \leq 1$, for all $x_{i} \in X$. Also $\zeta_{P_{c}}\left(x_{i}\right)=1-\alpha_{P_{c}}\left(x_{i}\right)-\gamma_{P_{c}}\left(x_{i}\right)-\beta_{P_{c}}\left(x_{i}\right)$, then $\zeta_{P_{c}}\left(x_{i}\right)$ is said to be a degree of refusal membership of $x_{i} \in X$ in P_{c}. For our convenience, we can write $p_{i}=\left(\alpha_{P_{c}}\left(x_{i}\right), \beta_{P_{c}}\left(x_{i}\right), \gamma_{P_{c}}\left(x_{i}\right)\right)$ as the picture fuzzy numbers $\left(P_{c} F N s\right)$ over a set P_{c}, where $i=1,2, \ldots, n$.

Definition 2.3. 22 Let $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a fixed set. A SVNS N_{s} on X is defined as:

$$
N_{s}=\left\{\left\langle x_{i}, \alpha_{N_{s}}\left(x_{i}\right), \gamma_{N_{s}}\left(x_{i}\right), \beta_{N_{s}}\left(x_{i}\right)\right\rangle \mid x_{i} \in X, i=1,2, \ldots, n\right\},
$$

where $\alpha_{N_{s}}\left(x_{i}\right), \gamma_{N_{s}}\left(x_{i}\right), \beta_{N_{s}}\left(x_{i}\right) \in[0,1]$ are called the truth-membership, indeterminacy and falsity- membership degrees of $x_{i} \in X$ to the set N_{s}, respectively and $\alpha_{N_{s}}\left(x_{i}\right), \gamma_{N_{s}}\left(x_{i}\right)$ and Sindhu et al., Selection of Alternative under the Framework of SVNSs
$\beta_{N_{s}}\left(x_{i}\right)$ fulfil the condition:
for all $x_{i} \in X$ then, $0 \leq \alpha_{N_{s}}\left(x_{i}\right)+\gamma_{N_{s}}\left(x_{i}\right)+\beta_{N_{s}}\left(x_{i}\right) \leq 3$. Let N_{s}^{1} and N_{s}^{2} be two SVNS, then following conditions hold:
(1) $N_{s}^{1} \subseteq N_{s}^{2}$ iff $\alpha_{N_{s}^{1}}\left(x_{i}\right) \leq \alpha_{N_{s}^{2}}\left(x_{i}\right), \beta_{N_{s}^{1}}\left(x_{i}\right) \geq \beta_{N_{s}^{2}}\left(x_{i}\right)$ and $\gamma_{N_{s}^{1}}\left(x_{i}\right) \geq \gamma_{N_{s}^{2}}\left(x_{i}\right)$,
(2) $N_{s}^{1}=N_{s}^{2}$ iff $N_{s}^{1} \subseteq N_{s}^{2}$ and $N_{s}^{2} \subseteq N_{s}^{1}$.

Definition 2.4. 23 Let $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a fixed set. An ISVNS \tilde{N}_{s} on X is defined as:

$$
\tilde{N}_{s}=\left\{\left\langle x_{i}, \alpha_{\tilde{N}_{s}}\left(x_{i}\right), \gamma_{\tilde{N}_{s}}\left(x_{i}\right), \beta_{\tilde{N}_{s}}\left(x_{i}\right)\right\rangle \mid x_{i} \in X, i=1,2, \ldots, n\right\},
$$

where $\alpha_{\tilde{N}_{s}}\left(x_{i}\right)=\left[\alpha_{\tilde{N}_{s}}^{l}\left(x_{i}\right), \alpha_{\tilde{N}_{s}}^{u}\left(x_{i}\right)\right] \subseteq[0,1], \gamma_{\tilde{N}_{s}}\left(x_{i}\right)=\left[\gamma_{\tilde{N}_{s}}^{l}\left(x_{i}\right), \gamma_{\tilde{N}_{s}}^{u}\left(x_{i}\right)\right] \subseteq[0,1], \beta_{\tilde{N}_{s}}\left(x_{i}\right)=$ $\left[\beta_{\tilde{N}_{s}}^{l}\left(x_{i}\right), \beta_{\tilde{N}_{s}}^{u}\left(x_{i}\right)\right] \subseteq[0,1]$ are called the truth-membership, indeterminacy and falsity- membership degrees of $x_{i} \in X$ to the set \tilde{N}_{s}, respectively and satisfy the condition:
for all $x_{i} \in X$ then, $0 \leq \alpha_{\tilde{N}_{s}}^{u}\left(x_{i}\right)+\gamma_{\tilde{N}_{s}}^{u}\left(x_{i}\right)+\beta_{\tilde{N}_{s}}^{u}\left(x_{i}\right) \leq 3$. Let \tilde{N}_{s}^{1} and \tilde{N}_{s}^{2} be two SVNS, then following conditions hold:
(1) $\tilde{N}_{s}^{1} \subseteq \tilde{N}_{s}^{2}$ iff $\alpha_{N_{s}^{1}}^{l}\left(x_{i}\right) \leq \alpha_{N_{s}^{2}}^{l}\left(x_{i}\right), \alpha_{N_{s}^{1}}^{u}\left(x_{i}\right) \leq \alpha_{N_{s}^{2}}^{u}\left(x_{i}\right), \beta_{N_{s}^{1}}^{l}\left(x_{i}\right) \geq \beta_{N_{s}^{2}}^{l}\left(x_{i}\right), \beta_{N_{s}^{1}}^{u}\left(x_{i}\right) \geq$ $\beta_{N_{s}^{2}}^{u}\left(x_{i}\right), \gamma_{N_{s}^{1}}^{l}\left(x_{i}\right) \geq \gamma_{N_{s}^{2}}^{l}\left(x_{i}\right)$ and $\gamma_{N_{s}^{1}}^{u}\left(x_{i}\right) \geq \gamma_{N_{s}^{2}}^{u}\left(x_{i}\right)$,
(2) $\tilde{N}_{s}^{1}=\tilde{N}_{s}^{2}$ iff $\tilde{N}_{s}^{1} \subseteq \tilde{N}_{s}^{2}$ and $\tilde{N}_{s}^{2} \subseteq \tilde{N}_{s}^{1}$.

Definition 2.5. 21]. The linear programming model is constructed as:
Maximize: $\quad Z=c_{1} t_{1}+c_{2} t_{2}+c_{3} t_{3}+\ldots+c_{n} t_{n}$
Subject to: $a_{11} t_{1}+a_{12} t_{2}+a_{13} t_{3}+\ldots+a_{1 n} t_{n} \leq b_{1}$

$$
a_{21} t_{1}+a_{22} t_{2}+a_{23} t_{3}+\ldots+a_{2 n} t_{n} \leq b_{2}
$$

$$
\vdots
$$

$$
a_{m 1} t_{1}+a_{m 2} t_{2}+a_{m 3} t_{3}+\ldots+a_{m n} t_{n} \leq b_{m}
$$

$$
t_{1}, t_{2}, \ldots, t_{n} \geq 0
$$

where m and n denotes the cardinalities of the constraints and decision variables $t_{1}, t_{2}, \ldots, t_{n}$, respectively. A solution $\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ is called feasible point if it fulfils all of the restrictions. LP model is used to find the optimal solution of the decision variables to maximize or minimize the linear function Z.

3. Some existing similarity measures for SVNSs and IVNSs

Similarity measure is a most widely used tool to evaluate the relationship between two sets. Two sets are said to be perfectly similar if similarity measure between them is exactly 1 . The following are the compulsory axioms for the sets (SVNSs or IVNSs) to be perfectly similar:
Sindhu et al., Selection of Alternative under the Framework of SVNSs

Definition 3.1. Let $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a universal set and $N_{s}^{1}=\left\{<x_{i}, \alpha_{N_{s}^{1}}\left(x_{i}\right), \gamma_{N_{s}^{1}}\left(x_{i}\right)\right.$, $\left.\beta_{N_{s}^{1}}\left(x_{i}\right)\right\}$ and $\left.N_{s}^{2}=\left\{<x_{i}, \alpha_{N_{s}^{1}}\left(x_{i}\right), \gamma_{N_{s}^{2}}\left(x_{i}\right), \beta_{N_{s}^{2}}\left(x_{i}\right)\right\rangle\right\}$ be two SVNS, where, $i=1,2, \ldots, n$. Then,
(1) $0 \leq S\left(N_{s}^{1}, N_{s}^{2}\right) \leq 1$,
(2) $S\left(N_{s}^{1}, N_{s}^{2}\right)=S\left(N_{s}^{2}, N_{s}^{1}\right)$,
(3) $S\left(N_{s}^{1}, N_{s}^{2}\right)=1$ if and only if $N_{s}^{1}=N_{s}^{2}$.

A cosine similarity measure $S\left(N_{s}^{1}, N_{s}^{2}\right)$ of SVNS presented by Ye 29 is given as:
$S\left(N_{s}^{1}, N_{s}^{2}\right)=\frac{\left(\alpha_{N_{s}^{1}}\left(x_{i}\right)\right)\left(\alpha_{N_{s}^{2}}\left(x_{i}\right)\right)+\left(\gamma_{N_{s}^{1}}\left(x_{i}\right)\right)\left(\gamma_{N_{s}^{2}}\left(x_{i}\right)\right)+\left(\beta_{N_{s}^{1}}\left(x_{i}\right)\right)\left(\beta_{N_{s}^{2}}\left(x_{i}\right)\right)}{\left.\left.\left[\sqrt{\left(\alpha_{N_{s}^{1}}\left(x_{i}\right)\right)^{2}+\left(\gamma_{N_{s}^{1}}\right.} x_{i}\right)\right)^{2}+\left(\beta_{N_{s}^{1}}\left(x_{i}\right)\right)^{2}\right]\left[\sqrt{\left.\left(\alpha_{N_{s}^{2}}\left(x_{i}\right)\right)^{2}+\left(\gamma_{N_{s}^{2}}\left(x_{i}\right)\right)^{2}+\left(\beta_{N_{s}^{2}}\left(x_{i}\right)\right)^{2}\right]}\right.}$.
Suppose that $N_{s}^{1}=(x, 0.4,0.2,0.6)$ and $N_{s}^{2}=(x, 0.2,0.1,0.3)$ are two SVNSs, the Definition 2.3 shows that $N_{s}^{1} \neq N_{s}^{2}$. However, by using cosine similarity measure presented by Ye 29, we see that, $S\left(N_{s}^{1}, N_{s}^{2}\right)=1$, show the contradiction of the property 3 of Definition 3.1 which describe that $S\left(N_{s}^{1}, N_{s}^{2}\right)=1$ if and only if $N_{s}^{1}=N_{s}^{2}$. Similarly, if we take, $\alpha_{N_{s}^{1}}\left(x_{i}\right)=$ $(k+1) \alpha_{N_{s}^{2}}\left(x_{i}\right), \gamma_{N_{s}^{1}}\left(x_{i}\right)=(k+1) \gamma_{N_{s}^{2}}\left(x_{i}\right)$ and $\beta_{N_{s}^{1}}\left(x_{i}\right)=(k+1) \beta N_{s}^{2}\left(x_{i}\right)$, where $k \geq 1$, then according to cosine similarity measure, its value is:
$S\left(N_{s}^{1}, N_{s}^{2}\right)=\frac{\left(\alpha_{N_{s}^{1}}\left(x_{i}\right)\right)\left(\alpha_{N_{s}^{2}}\left(x_{i}\right)\right)+\left(\gamma_{N_{s}^{1}}\left(x_{i}\right)\right)\left(\gamma_{N_{s}^{2}}\left(x_{i}\right)\right)+\left(\beta_{N_{s}^{1}}\left(x_{i}\right)\right)\left(\beta_{N_{s}^{2}}\left(x_{i}\right)\right)}{\left[\sqrt{\left.\left.\left.\left(\alpha_{N_{s}^{1}}\left(x_{i}\right)\right)^{2}+\left(\gamma_{N_{s}^{1}}\left(x_{i}\right)\right)^{2}+\left(\beta_{N_{s}^{1}}\left(x_{i}\right)\right)^{2}\right]\left[\sqrt{\left(\alpha_{N_{s}^{2}}\left(x_{i}\right)\right)^{2}+\left(\gamma_{N_{s}^{2}}^{2}\right.} x_{i}\right)\right)^{2}+\left(\beta_{N_{s}^{2}}\left(x_{i}\right)\right)^{2}\right]}\right.}$,
$S\left(N_{s}^{1}, N_{s}^{2}\right)=\frac{\left((k+1) \alpha_{N_{s}^{2}}\left(x_{i}\right)\right)\left(\alpha_{N_{s}^{2}}\left(x_{i}\right)\right)+\left((k+1) \gamma_{N_{s}^{2}}\left(x_{i}\right)\right)\left(\gamma_{N_{s}^{2}}\left(x_{i}\right)\right)+\left((k+1) \beta_{N_{s}^{2}}\left(x_{i}\right)\right)\left(\beta_{N_{s}^{2}}\left(x_{i}\right)\right)}{\left[\sqrt{\left.\left((k+1) \alpha_{N_{s}^{2}}^{2}\left(x_{i}\right)\right)^{2}+\left((k+1) \gamma_{N_{s}^{2}}\left(x_{i}\right)\right)^{2}+\left((k+1) \beta_{N_{s}^{2}}\left(x_{i}\right)\right)^{2}\right]}\right] \sqrt{\left.\left(\alpha_{N_{s}^{2}}\left(x_{i}\right)\right)^{2}+\left(\gamma_{N_{s}^{2}}\left(x_{i}\right)\right)^{2}+\left(\beta_{N_{s}^{2}}\left(x_{i}\right)\right)^{2}\right]}}$,
$S\left(N_{s}^{1}, N_{s}^{2}\right)=\frac{\left.(k+1)\left(\alpha_{N_{s}^{2}}\left(x_{i}\right)\right)^{2}+\left(\gamma_{N_{s}^{2}}\left(x_{i}\right)\right)^{2}+\left(\beta_{N_{s}^{2}}\left(x_{i}\right)\right)^{2}\right)}{(k+1)\left(\left(\alpha_{N_{s}^{2}}\left(x_{i}\right)\right)^{2}+\left(\gamma_{N_{s}^{2}}\left(x_{i}\right)\right)^{2}+\left(\beta_{N_{s}^{2}}\left(x_{i}\right)\right)^{2}\right)}=1$, which again opposes the property 3 of Definition 3.1.
Further, if $N_{s}^{1}=(0,0,0)$ and $N_{s}^{2}=(0,0,0)$ are two SVNS then according to Jaccrd and Dice similarity measures presented in [29] become undefined or meaningless.
Same as, if $\tilde{N}_{s}^{1}=(y,[0.3,0.4],[0.2,0.3],[0.4,0.5])$ and
$\tilde{N}_{s}^{1}=(y,[0.6,0.8],[0.4,0.6],[0.8,1])$ are two IVNSs, then according to Definition 2.4, $\tilde{N}_{s}^{1} \neq \tilde{N}_{s}^{2}$, but the similarity measure presented by Ye 30 gives that, $S\left(\tilde{N}_{s}^{1}, \tilde{N}_{s}^{2}\right)=1$, that is, $\tilde{N}_{s}^{1}=\tilde{N}_{s}^{2}$ which again presents a contradiction with property 3 of Definition 3.1. Also for two IVNSs, $\tilde{N}_{s}^{1}=[0,0]$ and $\tilde{N}_{s}^{2}=[0,0]$, we get the meaningless or undefined results by using Equation 9 presented in (15. So the similarity measures presented in $15,29,30$ have a deficiency.
Hence, from the above discussion, it is clear that the existing similarity measures have some drawbacks and cannot be able to select the best alternative. Consequently, there is a need to improve the similarity measure which satisfy the axiom of Definition 3.1.

4. Proposed similarity measures for SVNSs and IVNSs

In order to overcome the deficiencies present in the above discussed similarity measures, we extend a similarity measure presented by William and Steel 27) for the SVNSs (IVNSs) based on the novel distance measure as:

Sindhu et al., Selection of Alternative under the Framework of SVNSs

$$
\begin{equation*}
D\left(N_{s}^{1}, N_{s}^{2}\right)=\frac{1}{3 n} \sum_{i=1}^{n}\binom{\left[\left|\alpha_{N_{s}^{1}}\left(x_{i}\right)-\alpha_{N_{s}^{2}}\left(x_{i}\right)\right|+\left|\gamma_{N_{s}^{1}}\left(x_{i}\right)-\gamma_{N_{s}^{2}}\left(x_{i}\right)\right|+\left|\beta_{N_{s}^{1}}\left(x_{i}\right)-\beta_{N_{s}^{2}}\left(x_{i}\right)\right|\right]+}{\max \left[\left|\alpha_{N_{s}^{1}}\left(x_{i}\right)-\alpha_{N_{s}^{2}}\left(x_{i}\right)\right|,\left|\gamma_{N_{s}^{1}}\left(x_{i}\right)-\gamma_{N_{s}^{2}}\left(x_{i}\right)\right|,\left|\beta_{N_{s}^{1}}\left(x_{i}\right)-\beta_{N_{s}^{2}}\left(x_{i}\right)\right|\right]}, \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
S_{m}^{i}\left(N_{s}^{1}, N_{s}^{2}\right)=e^{-\frac{1}{n} D\left(N_{s}^{1}, N_{s}^{2}\right)} \tag{2}
\end{equation*}
$$

where n is the number of alternatives and $1 \leq i \leq n$.
Similarly for the IVNSs the distance and similarity measures are:

$$
\begin{align*}
\tilde{D}\left(\tilde{N}_{s}^{1}, \tilde{N}_{s}^{2}\right)=\frac{1}{3 n} \sum_{i=1}^{n}\left(\begin{array}{c}
{\left[\left|\alpha_{\tilde{N}_{s}^{1}}^{l}\left(x_{i}\right)-\alpha_{\tilde{N}_{s}^{2}}^{l}\left(x_{i}\right)\right|+\left|\alpha_{\tilde{N}_{s}^{1}}^{u}\left(x_{i}\right)-\alpha_{\tilde{N}_{s}^{2}}^{u}\left(x_{i}\right)\right|+\right.} \\
\left|\gamma_{\tilde{N}_{s}^{1}}^{l}\left(x_{i}\right)-\gamma_{\tilde{N}_{s}^{2}}^{l}\left(x_{i}\right)\right|+\left|\gamma_{\tilde{N}_{s}^{1}}^{u}\left(x_{i}\right)-\gamma_{\tilde{N}_{s}^{2}}^{u}\left(x_{i}\right)\right|+ \\
\left.\left|\beta_{\tilde{N}_{s}^{1}}^{l}\left(x_{i}\right)-\beta_{\tilde{N}_{s}^{2}}^{l}\left(x_{i}\right)\right|+\left|\beta_{\tilde{N}_{s}^{1}}^{u}\left(x_{i}\right)-\beta_{\tilde{N}_{s}^{2}}^{u}\left(x_{i}\right)\right|\right]+ \\
\max \left[\left|\alpha_{\tilde{N}_{s}^{1}}^{l}\left(x_{i}\right)-\alpha_{\tilde{N}_{s}^{2}}^{l}\left(x_{i}\right)\right|,\left|\alpha_{\tilde{N}_{s}^{1}}^{u}\left(x_{i}\right)-\alpha_{\tilde{N}_{s}^{2}}^{u}\left(x_{i}\right)\right|,\right. \\
\left|\gamma_{\tilde{N}_{s}^{1}}^{l}\left(x_{i}\right)-\gamma_{\tilde{N}_{s}^{2}}^{l}\left(x_{i}\right)\right|,\left|\gamma_{\tilde{N}_{s}^{1}}^{u}\left(x_{i}\right)-\gamma_{\tilde{N}_{s}^{2}}^{u}\left(x_{i}\right)\right| \\
\left.,\left|\beta_{\tilde{N}_{s}^{1}}^{l}\left(x_{i}\right)-\beta_{\tilde{N}_{s}^{2}}^{l}\left(x_{i}\right)\right|,\left|\beta_{\tilde{N}_{s}^{1}}^{u}\left(x_{i}\right)-\beta_{\tilde{N}_{s}^{2}}^{u_{s}^{2}}\left(x_{i}\right)\right|\right]
\end{array}\right), \tag{3}\\
\tilde{S}_{m}^{i}\left(\tilde{N}_{s}^{1}, \tilde{N}_{s}^{2}\right)=e^{-\frac{1}{n} \tilde{D}\left(\tilde{N}_{s}^{1}, \tilde{N}_{s}^{2}\right)} . \tag{4}
\end{align*}
$$

Theorem 4.1. The $S M S_{m}^{i}\left(N_{s}^{1}, N_{s}^{2}\right)$ defined in Equation (2) amongst $N_{s}^{1}=$ $\left\{\left\langle x_{i}, \alpha_{N_{s}^{1}}\left(x_{i}\right), \gamma_{N_{s}^{1}}\left(x_{i}\right), \beta_{N_{s}^{1}}\left(x_{i}\right)\right\rangle\right\}$ and $N_{s}^{2}=\left\{\left\langle x_{i}, \alpha_{N_{s}^{2}}\left(x_{i}\right), \gamma_{N_{s}^{2}}\left(x_{i}\right), \beta_{N_{s}^{2}}\left(x_{i}\right)\right\rangle\right\}$ satisfies the given properties:
(1) $S_{m}^{i}\left(N_{s}^{1}, N_{s}^{2}\right)=1$ if and only if $N_{s}^{1}=N_{s}^{2}$,
(2) $S_{m}^{i}\left(N_{s}^{1}, N_{s}^{2}\right)=S_{m}^{i}\left(N_{s}^{2}, N_{s}^{1}\right)$,
(3) $0 \leq S_{m}^{i}\left(N_{s}^{1}, N_{s}^{2}\right) \leq 1$.

Proof

(1) Suppose that, $N_{s}^{1}=N_{s}^{2}$ that is, $\alpha_{N_{s}^{1}}\left(x_{i}\right)=\alpha_{N_{s}^{2}}\left(x_{i}\right), \gamma_{N_{s}^{1}}\left(x_{i}\right)=\gamma_{N_{s}^{2}}\left(x_{i}\right)$ and $\beta_{N_{s}^{1}}\left(x_{i}\right)=\beta_{N_{s}^{2}}\left(x_{i}\right)$, then by using Equation (2), we have

$$
S_{m}^{i}\left(N_{s}^{1}, N_{s}^{2}\right)=e^{0}=1 .
$$

(2) Consider $S_{m}^{i}\left(N_{s}^{1}, N_{s}^{2}\right)=e^{-\frac{1}{n} D\left(N_{s}^{1}, N_{s}^{2}\right)}$

$$
\begin{aligned}
& = \\
& e^{-\frac{1}{3 n^{2}} \sum_{i=1}^{n}\binom{\left[\left|\alpha_{N_{s}^{1}}\left(x_{i}\right)-\alpha_{N_{s}^{2}}\left(x_{i}\right)\right|+\left|\gamma_{N_{s}^{1}}\left(x_{i}\right)-\gamma_{N_{s}^{2}}\left(x_{i}\right)\right|+\left|\beta_{N_{s}^{1}}\left(x_{i}\right)-\beta_{N_{s}^{2}}\left(x_{i}\right)\right|\right]+}{\max \left[\left|\alpha_{N_{s}^{1}}\left(x_{i}\right)-\alpha_{N_{s}^{2}}\left(x_{i}\right)\right|,\left|\gamma_{N_{s}^{1}}\left(x_{i}\right)-\gamma_{N_{s}^{2}}\left(x_{i}\right)\right|,\left|\beta_{N_{s}^{1}}\left(x_{i}\right)-\beta_{N_{s}^{2}}\left(x_{i}\right)\right|\right]},} \begin{array}{l}
= \\
e^{-\frac{1}{3 n^{2}} \sum_{i=1}^{n}\binom{\left[\left|\alpha_{N_{s}^{2}}\left(x_{i}\right)-\alpha_{N_{s}^{1}}\left(x_{i}\right)\right|+\left|\gamma_{N_{s}^{2}}\left(x_{i}\right)-\gamma_{N_{s}^{1}}\left(x_{i}\right)\right|+\left|\beta_{N_{s}^{2}}\left(x_{i}\right)-\beta_{N_{s}^{1}}\left(x_{i}\right)\right|\right]+}{\max \left[\left|\alpha_{N_{s}^{2}}\left(x_{i}\right)-\alpha_{N_{s}^{1}}\left(x_{i}\right)\right|,\left|\gamma_{N_{s}^{2}}\left(x_{i}\right)-\gamma_{N_{s}^{1}}\left(x_{i}\right)\right|,\left|\beta_{N_{s}^{2}}\left(x_{i}\right)-\beta_{N_{s}^{1}}\left(x_{i}\right)\right|\right]},} \\
=e^{-\frac{1}{n} D\left(N_{s}^{2}, N_{s}^{1}\right)}=S_{m}^{i}\left(N_{s}^{2}, N_{s}^{1}\right),
\end{array}
\end{aligned}
$$

Sindhu et al., Selection of Alternative under the Framework of SVNSs
(3) From Equations (1) and (2), it is obvious that, $S_{m}^{i}\left(N_{s}^{1}, N_{s}^{2}\right) \leq 1$ and it become zero i.e., $S_{m}^{i}\left(N_{s}^{1}, N_{s}^{2}\right)=0$ only when the distance between N_{s}^{1} and N_{s}^{2} is very large.

Example 4.2. Let $N_{s}^{1}=(x, 0.4,0.2,0.6)$ and $N_{s}^{2}=(x, 0.2,0.1,0.3)$ be two SVNSs, then by using Equations (1) and (2), the similarity measure is, $S_{m}^{i}\left(N_{s}^{1}, N_{s}^{2}\right)=0.7408$.

Example 4.3. Let $\tilde{N}_{s}^{1}=(x,[0.3,0.4],[0.2,0.3],[0.4,0.5])$ and $\tilde{N}_{s}^{2}=(x,[0.6,0.8],[0.4,0.6]$, $[0.8,1])$ be two IVNSs, then by using Equations (3) and (4), the similarity measure is, $S_{m}^{i}\left(\tilde{N}_{s}^{1}\right.$, $\left.\tilde{N}_{s}^{2}\right)=0.3679$.

Theorem 4.4. The $S M \quad \tilde{S}_{m}^{i}\left(\tilde{N}_{s}^{1}, \tilde{N}_{s}^{2}\right)$ defined in Equation (4) amongst $\tilde{N}_{s}^{1}=$ $\left\{\left\langle x_{i}, \alpha_{\tilde{N}_{s}^{1}}\left(x_{i}\right), \gamma_{\tilde{N}_{s}^{1}}\left(x_{i}\right), \beta_{\tilde{N}_{s}^{1}}\left(x_{i}\right)\right\rangle\right\}$ and $\tilde{N}_{s}^{2}=\left\{\left\langle x_{i}, \alpha_{\tilde{N}_{s}^{2}}\left(x_{i}\right), \gamma_{\tilde{N}_{s}^{2}}\left(x_{i}\right), \beta_{\tilde{N}_{s}^{2}}\left(x_{i}\right)\right\rangle\right\}$ satisfies the given properties:
(1) $\tilde{S}_{m}^{i}\left(\tilde{N}_{s}^{1}, \tilde{N}_{s}^{2}\right)=1$ if and only if $\tilde{N}_{s}^{1}=\tilde{N}_{s}^{2}$,
(2) $\tilde{S}_{m}^{i}\left(\tilde{N}_{s}^{1}, \tilde{N}_{s}^{2}\right)=\tilde{S}_{m}^{i}\left(\tilde{N}_{s}^{2}, \tilde{N}_{s}^{1}\right)$,
(3) $0 \leq \tilde{S}_{m}^{i}\left(\tilde{N}_{s}^{1}, \tilde{N}_{s}^{2}\right) \leq 1$.

Proof The proof of this Theorem is obvious.

4.1. Proposed weighted similarity measures (WSM) for SVNSs and IVNSs

Since the weights of the criteria have a great impact in making decision process therefore we can further extend the proposed similarity measures into the WSM. Let $w=\left(w_{1}, w_{2}, \ldots, w_{m}\right)^{T}$ be a weight vector of the m criteria with $\sum_{j=1}^{m} w_{j}=1$. In order to get WSM $S_{m}^{i w}\left(N_{s}^{1}, N_{s}^{2}\right)$ for SVNSs, we first define the weighted distance as:

$$
\begin{equation*}
D^{w}\left(N_{s}^{1}, N_{s}^{2}\right)=\sum_{i=1}^{n} \sum_{j=1}^{m} w_{j}\binom{\left[\left|\alpha_{N_{s}^{1}}\left(x_{i}\right)-\alpha_{N_{s}^{2}}\left(x_{i}\right)\right|+\left|\gamma_{N_{s}^{1}}\left(x_{i}\right)-\gamma_{N_{s}^{2}}\left(x_{i}\right)\right|+\left|\beta_{N_{s}^{1}}\left(x_{i}\right)-\beta_{N_{s}^{2}}\left(x_{i}\right)\right|\right]+}{\max \left[\left|\alpha_{N_{s}^{1}}\left(x_{i}\right)-\alpha_{N_{s}^{2}}\left(x_{i}\right)\right|,\left|\gamma_{N_{s}^{1}}\left(x_{i}\right)-\gamma_{N_{s}^{2}}\left(x_{i}\right)\right|,\left|\beta_{N_{s}^{1}}\left(x_{i}\right)-\beta_{N_{s}^{2}}\left(x_{i}\right)\right|\right]}, \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{m}^{i w}\left(N_{s}^{1}, N_{s}^{2}\right)=e^{-\frac{1}{n} D^{w}\left(N_{s}^{1}, N_{s}^{2}\right)} . \tag{6}
\end{equation*}
$$

In the similar way, a WSM $\tilde{S}_{m}^{i w}\left(\tilde{N}_{s}^{1}, \tilde{N}_{s}^{2}\right)$ on the basis of weighted distance $\tilde{D}^{w}\left(\tilde{N}_{s}^{1}, \tilde{N}_{s}^{2}\right)$ for IVNSs is obtained as:

$$
\tilde{D}^{w}\left(\tilde{N}_{s}^{1}, \tilde{N}_{s}^{2}\right)=\sum_{i=1}^{n} \sum_{j=1}^{m} w_{j}\left(\begin{array}{c}
{\left[\left|\alpha_{\tilde{N}_{s}^{1}}^{l}\left(x_{i}\right)-\alpha_{\tilde{N}_{s}^{2}}^{l}\left(x_{i}\right)\right|+\left|\alpha_{\tilde{N}_{s}^{1}}^{u}\left(x_{i}\right)-\alpha_{\tilde{N}_{s}^{2}}^{u}\left(x_{i}\right)\right|+\right.} \tag{7}\\
\left|\gamma_{\tilde{N}_{s}^{1}}^{l}\left(x_{i}\right)-\gamma_{\tilde{N}_{s}^{2}}^{l}\left(x_{i}\right)\right|+\left|\gamma_{\tilde{N}_{s}^{1}}^{u}\left(x_{i}\right)-\gamma_{\tilde{N}_{s}^{2}}^{u}\left(x_{i}\right)\right|+ \\
\left.\left|\beta_{\tilde{N}_{s}^{1}}^{l}\left(x_{i}\right)-\beta_{\tilde{N}_{s}^{2}}^{l}\left(x_{i}\right)\right|+\left|\beta_{\tilde{N}_{s}^{1}}^{u}\left(x_{i}\right)-\beta_{\tilde{N}_{s}^{2}}^{u}\left(x_{i}\right)\right|\right]+ \\
\max \left[\left|\alpha_{\tilde{N}_{s}^{1}}^{l}\left(x_{i}\right)-\alpha_{\tilde{N}_{s}^{2}}^{l}\left(x_{i}\right)\right|,\left|\alpha_{\tilde{N}_{s}^{1}}^{u}\left(x_{i}\right)-\alpha_{\tilde{N}_{s}^{2}}^{u}\left(x_{i}\right)\right|\right. \\
\left|\gamma_{\tilde{N}_{s}^{1}}^{l}\left(x_{i}\right)-\gamma_{\tilde{N}_{s}^{2}}^{l}\left(x_{i}\right)\right|,\left|\gamma_{\tilde{N}_{s}^{1}}^{u}\left(x_{i}\right)-\gamma_{\tilde{N}_{s}^{2}}^{u}\left(x_{i}\right)\right| \\
\left.,\left|\beta_{\tilde{N}_{s}^{1}}^{l}\left(x_{i}\right)-\beta_{\tilde{N}_{s}^{2}}^{l}\left(x_{i}\right)\right|,\left|\beta_{\tilde{N}_{s}^{1}}^{u}\left(x_{i}\right)-\beta_{\tilde{N}_{s}^{2}}^{u}\left(x_{i}\right)\right|\right]
\end{array}\right)
$$

Sindhu et al., Selection of Alternative under the Framework of SVNSs
and

$$
\begin{equation*}
\tilde{S}_{m}^{i w}\left(\tilde{N}_{s}^{1}, \tilde{N}_{s}^{2}\right)=e^{-\frac{1}{n} \tilde{D}^{w}\left(\tilde{N}_{s}^{1}, \tilde{N}_{s}^{2}\right)} . \tag{8}
\end{equation*}
$$

Theorem 4.5. Let $N_{s}^{1}=\left\{<x_{i}, \alpha_{N_{s}^{1}}\left(x_{i}\right), \gamma_{N_{s}^{1}}\left(x_{i}\right), \beta_{N_{s}^{1}}\left(x_{i}\right)>\right\}$ and $N_{s}^{2}=\left\{<x_{i}, \alpha_{N_{s}^{2}}\left(x_{i}\right)\right.$, $\left.\gamma_{N_{s}^{2}}\left(x_{i}\right), \beta_{N_{s}^{2}}\left(x_{i}\right)>\right\}$ be two SVNSs (IVNSs), then the WSM presented in Equation (6) (Equation (8)) between two SVNSs (IVNSs) satisfies the following properties:
(1) $0 \leq S_{m}^{i w}\left(N_{s}^{1}, N_{s}^{2}\right) \leq 1$,
(2) $S_{m}^{i w}\left(N_{s}^{1}, N_{s}^{2}\right)=S_{m}^{i w}\left(N_{s}^{2}, N_{s}^{1}\right)$,
(3) $S_{m}^{i w}\left(N_{s}^{1}, N_{s}^{2}\right)=1$ if and only if $N_{s}^{1}=N_{s}^{2}$.

Proof It is obvious as Theorem 4.1.
Example 4.6. Let $N_{s}^{1}=\{x,(0.3,0.2,0.5),(0.4,0.6,0.0)\}$ and $N_{s}^{2}=\{x,(0.1,0.1,0.8)$, $(0.2,0.1,0.7)\}$ be two SVNSs and $w=(0.7,0.3)^{T}$ the weight vector, then the WSM for SVNSs is: $S_{m}^{i w}\left(N_{s}^{1}, N_{s}^{2}\right)=0.9162$.

Example 4.7. Let $\tilde{N}_{s}^{1}=\{x,([0.4,0.6],[0.2,0.3],[0.3,0.4]),([0.5,0.8],[0.1,0.4],[0.1,0.3])\}$ and $\tilde{N}_{s}^{2}=\{x,([0.7,0.9],[0.1,0.2],[0.1,0.2]),([0.3,0.6],[0.1,0.3],[0.4,0.7])\}$ be two IVNSs and $w=$ $(0.6,0.4)^{T}$ the weight vector, then the weighted similarity measure for IVNSs is: $S_{m}^{i w}\left(N_{s}^{1}, N_{s}^{2}\right)=$ 0.8781 .

5. Decision making model under SVNSs (IVNSs)

The model for MCDM problems is presented on the basis of proposed weighted similarity measure in this section. Suppose that $Q=\left\{Q_{1}, Q_{2}, \ldots, Q_{n}\right\}$ is a discrete set of alternatives and $G=\left\{G_{1}, G_{2}, \ldots, G_{m}\right\}$ is another discrete set of criteria. If the DMs gave the various values for the alternative $Q_{i}(i=1,2, \ldots, n)$ under the criteria $G_{j}(j=1,2, \ldots, m)$, and form a neutrosofic decision matrix $N=\left[b_{i j}\right]_{n \times m}$. The concept of optimal solution assists the DMs to identify the best alternative from the decision set in MCDM framework. In spite of the fact that the perfect option does not exist in actual, it provides a valuable paradigm to appraise alternatives. Hence, we can find the ideal options N^{\star} from the given information as $N^{\star}=\max \left(\left[b_{i j}\right]_{n \times m}\right)$. Since the weights of the criteria have an excessive impact, thereby a weighing vector of criteria is provided as $w=\left(w_{1}, w_{2}, w_{3}, \ldots, w_{m}\right)^{T}$, where $\sum_{j=1}^{m} w_{j}=1$ and $w_{j}>0$, can be evaluated by using the LP model presented in Definition 2.5. The model based on proposed weighted similarity measure described by Equation (6) (Equation (8)) has the following steps.

Step 1. Based on the information provided by DMs, form a single valued neutrosophic decision matrix (SVNDM) denoted by $N=\left[b_{i j}\right]_{n \times m}$.
Step 2. Find the optimal solution N^{\star} from the SVNDM.
Step 3. On the basis of TOPSIS, an objective function is obtained and then calculate the Sindhu et al., Selection of Alternative under the Framework of SVNSs
weights of criteria by using LP model as described in Definition 2.5.
Step 4. With the aid of weights evaluated in Step 3, calculate the similarity measures amongst the alternative $Q_{i}(i=1,2, \ldots, n)$ and the optimal alternative N^{\star} by using Equation (6) (Equation (8)).
Step 5. Rank all the alternatives $Q_{i}(i=1,2, \ldots, n)$ from highest to lowest values of similarity measures obtained in Step 4 and choose the alternative having highest value of the similarity measure.

6. Practical examples

In this section, a medical diagnosis decision problem is considered to see the validity and effectiveness of the proposed MCDM model.
Example 1. For parents, it is significant to be aware of the most updated treatment process so you can be certain about your kids are getting the superlative care possible. According to the child specialist, some common childhood sicknesses and their appropriate symptoms are listed. Suppose a collection of diagnoses, chest infections (C), malaria (M), typhoid (T), sore throat (S) and bronchitis (B) are examined on the basis of some symptoms, fever (S_{1}), headache $\left(S_{2}\right)$, breathlessness $\left(S_{3}\right)$, cough $\left(S_{4}\right)$ and chest pain $\left(S_{5}\right)$. All the information is given in the form of neutrosophic decision matrix (NDM) $N=\left[b_{i j}\right]_{n \times m}$. Assume that patient $K_{1}=N^{\star}$ has all the symptoms in the diagnosis process, all the information collected about the kids $K_{i}(i=1,2, \ldots, n)$ is provided in the form of SVNS in Table 1.
Maximize: $\quad Z=0.2175 w_{1}+0.2350 w_{2}+0.2200 w_{3}+0.1950 w_{4}+0.1850 w_{5}$
Subject to: $10 w_{1}+8 w_{2}+12 w_{3}+10 w_{4}+15 w_{5} \geq 10$,
$10 w_{1}+8 w_{2}+12 w_{3}+10 w_{4}+15 w_{5} \leq 10.5$,
$8 w_{1}+11 w_{2}+7 w_{3}+10 w_{4}+10 w_{5} \geq 8$,
$8 w_{1}+11 w_{2}+7 w_{3}+10 w_{4}+10 w_{5} \leq 8.5$,
$12 w_{1}+15 w_{2}+12 w_{3}+10 w_{4}+6 w_{5} \geq 12$,
$12 w_{1}+15 w_{2}+12 w_{3}+10 w_{4}+6 w_{5} \leq 12.5$,
$w_{1}+w_{2}+w_{3}+w_{4}+w_{5}=1$,
$w_{1}, w_{2}, \ldots, w_{5} \geq 0$.
Table 1. Neutrosophic decision matrix NDM

Daignosis	S_{1}	S_{2}	S_{3}	S_{4}	S_{5}
C	$<0.4,0.6,0.0>$	$<0.3,0.2,0.5>$	$<0.1,0.3,0.7>$	$<0.4,0.3,0.3>$	$<0.1,0.2,0.7>$
M	$<0.7,0.3,0.0>$	$<0.2,0.2,0.6>$	$<0.0,0.1,0.9>$	$<0.7,0.3,0.0>$	$<0.1,0.1,0.8>$
T	$<0.3,0.4,0.3>$	$<0.6,0.3,0.1>$	$<0.2,0.1,0.7>$	$<0.2,0.2,0.6>$	$<0.1,0.0,0.9>$
S	$<0.1,0.2,0.7>$	$<0.2,0.4,0.4>$	$<0.8,0.2,0.0>$	$<0.2,0.1,0.7>$	$<0.2,0.1,0.7>$
B	$<0.1,0.1,0.8>$	$<0.0,0.2,0.8>$	$<0.2,0.0,0.8>$	$<0.2,0.0,0.8>$	$<0.8,0.1,0.1>$

Step 1. Based on the information provided by the professional, form a SVNDM $N=\left[n_{i j}\right]_{5 \times 5}$.
Step 2. Assume that a kid $K_{1}=\{(0.8,0.2,0.1),(0.9,0.3,0.2),(0.2,0.1,0.8),(0.6,0.5,0.1)$, $(0.1,0.4,0.6)\}$ has all the symptoms in the process of diagnosis.

Sindhu et al., Selection of Alternative under the Framework of SVNSs

Step 3. By using TOPSIS an objective function is obtained and then calculate the weights of criteria by applying the LP model as described in Definition 2.5.
Step 4. The values of the weighted similarity measure calculated with the help of Equation (6) amongst the diagnoses and the kid K_{1} are: $S_{m}^{1 w}=0.7774, S_{m}^{2 w}=0.7675, S_{m}^{3 w}=0.7969$, $S_{m}^{4 w}=0.6353$ and $S_{m}^{5 w}=0.6127$.
Step 5. According to values obtained in Step 4, we get the ranking order as: $T \succ C \succ M \succ$ $B \succ S$. Figure 1 indicates the ranking order presented in [8,9, 16, 29] and the proposed model graphically.

Figure 1. Ranking order of alternatives

Example 2. Consider the same scenario as Example 1 with interval-valued data provided in Table 2. Assume that another Kid K_{2} suffers from all the symptoms, which can be expressed by the following IVNS data.
Step 1. Based on the information given by the professional form an interval-valued neutrosofic decision matrix (INDM) denoted by $\tilde{N}=\left[\tilde{n}_{i j}\right]_{5 \times 5}$.
Step 2. Assume a kid $K_{2}=\{([0.3,0.5],[0.2,0.3],[0.4,0.5]),([0.7,0.9],[0.1,0.2],[0.1,0.2])$,
$([0.4,0.6],[0.2,0.3],[0.3,0.4]),([0.3,0.6],[0.1,0.3],[0.4,0.7]),([0.5,0.8],[0.1,0.4],[0.1,0.3])\} \quad$ has all the symptoms in the process of diagnosis.
Step 3. Use the same weights for the symptoms which are evaluated in Example 1.
Step 4. The values of the weighted similarity measure calculated with the help of Equation
Sindhu et al., Selection of Alternative under the Framework of SVNSs

Table 2. Neutrosofic decision matrix NDM

Daignosis	S_{1}	S_{2}	S_{3}
C	$([0.4,0.4],[0.6,0.6],[0.0,0.0])$	$([0.3,0.3],[0.2,0.2],[0.5,0.5])$	$([0.1,0.1],[0.3,0.3],[0.7,0.7])$
M	$([0.7,0.7],[0.3,0.3],[0.0,0.0])$	$([0.2,0.2],[0.2,0.2],[0.6,0.6])$	$([0.0,0.0],[0.1,0.1],[0.9,0.9])$
T	$([0.3,0.3],[0.4,0.4],[0.3,0.3])$	$([0.6,0.6],[0.3,0.3],[0.1,0.1])$	$([0.2,0.2],[0.1,0.1],[0.7,0.7])$
S	$([0.1,0.1],[0.2,0.2],[0.7,0.7])$	$([0.2,0.2],[0.4,0.4],[0.4,0.4])$	$([0.8,0.8],[0.2,0.2],[0.0,0.0])$
B	$([0.1,0.1],[0.1,0.1],[0.8,0.8])$	$([0.0,0.0],[0.2,0.2],[0.8,0.8])$	$([0.2,0.2],[0.0,0.0],[0.8,0.8])$
Daignosis	S_{4}	S_{5}	
C	$([0.4,0.4],[0.3,0.3],[0.3,0.3])$	$([0.1,0.1],[0.2,0.2],[0.7,0.7])$	
M	$([0.7,0.7],[0.3,0.3],[0.0,0.0])$	$([0.1,0.1],[0.1,0.1],[0.8,0.8])$	
T	$([0.2,0.2],[0.2,0.2],[0.6,0.6])$	$([0.1,0.1],[0.0,0.0],[0.9,0.9])$	
S	$([0.2,0.2],[0.1,0.1],[0.7,0.7])$	$([0.2,0.2],[0.1,0.1],[0.7,0.7])$	
B	$([0.2,0.2],[0.0,0.0],[0.8,0.8])$	$([0.8,0.8],[0.1,0.1],[0.1,0.1])$	

(8) amongst the diagnoses and the kid K_{1} are: $\tilde{S}_{m}^{1 w}=0.6445, \tilde{S}_{m}^{2 w}=0.5760, \tilde{S}_{m}^{3 w}=0.7222$, $\tilde{S}_{m}^{4 w}=0.6668$ and $\tilde{S}_{m}^{5 w}=0.5884$.
Step 5. The ranking order obtained by using the values calculated in Step 4 is: $T \succ C \succ$ $M \succ B \succ S$. A graphical representation of ranking order presented in [8, 9, 16, 29] and the proposed model is shown in Figure 2.

Figure 2. Ranking order of alternatives

Sindhu et al., Selection of Alternative under the Framework of SVNSs

7. Comparative analysis with the existing techniques

Various DMs have applied the SMs for medical diagnosis in the environment of SVNSs and IVNSs $8,9,16,29]$. In order to portray the usefulness and validation of the proposed SMs, we apply it for the same problem and the results are shown in the Tables 3 and 4. According to the results obtained by applying our proposed MCDM model, we see that the Kids K_{1} and K_{2} suffered in the disease typhoid (T) under the observations of five symptoms $S_{j}(j=1,2, \ldots, 5$). The results obtained by proposed and existing methods are different because of assigning the weights to the criteria, These results are further analyzed by using Spearman's correlation coefficient.

Table 3. Results obtained by proposed SVNS's SM

SMs	C	M	T	S	B	Ranking
Proposed	0.7774	0.7675	0.7969	0.6353	0.6127	$T \succ C \succ M \succ B \succ S$
8	0.9443	0.9571	0.9264	0.8214	0.7650	$M \succ C \succ T \succ S \succ B$
9	0.7941	0.8094	0.4568	0.5851	0.5517	$M \succ C \succ S \succ B \succ T$
16	0.5385	0.6282	0.6206	0.3336	0.3154	$M \succ T \succ C \succ S \succ B$
28	0.8505	0.8661	0.8185	0.5148	0.4244	$M \succ C \succ T \succ S \succ B$

Table 4. Results obtained by proposed IVNS's SM

SMs	C	M	T	S	B	Ranking
Proposed	0.6445	0.5760	0.7222	0.6668	0.5884	$T \succ C \succ M \succ B \succ S$
8	0.9443	0.9571	0.9264	0.8214	0.7650	$M \succ C \succ T \succ S \succ B$
9	0.7941	0.8094	0.4568	0.5851	0.5517	$M \succ C \succ S \succ B \succ T$
16	0.5385	0.6282	0.6206	0.3336	0.3154	$M \succ T \succ C \succ S \succ B$
28	0.8505	0.8661	0.8185	0.5148	0.4244	$M \succ C \succ T \succ S \succ B$

7.1. Ranking analysis with Spearman's rank-correlation coefficient

. The ranking preference of the diagnosis obtained by our and existing techniques are different and presented in Tables 3 and 4. In order to compare the diagnosis further, we use the Spearman's rank-correlation coefficient $\left(\rho_{s}\right)$ and the critical value Z, where, ρ_{s} and Z can be calculated with the formulae given below:

$$
\rho_{s}=1-6 \sum_{l=1}^{i-1=k} \frac{\left(\triangle^{l}\right)^{2}}{n(n-1)},
$$

and

$$
Z=\rho_{s} \sqrt{n-1}
$$

Sindhu et al., Selection of Alternative under the Framework of SVNSs

Here, Δ^{l} is the difference between two sets of ranking. The values of ρ_{s} are always bounded in the closed interval $[-1,1]$. The values of ρ_{s} which are nearer to ± 1 show the perfect relationship amongst two ranking orders. Moreover,the critical value Z is compared with a pre-estimated degree of significance value η. The critical value Z corresponding to the degree of significance value $\eta=0.05$ for the examples $(n=5)$ is, $Z_{0.05}=0.9$. If the critical value Z more than 0.9 , it indicates that there exist a strong relationship between two rankings. On the other hand, the two rankings can be considered as dissimilar or have weaker relationship.
There are five collections of preference rankings obtained by the proposed method and [8,9, 16, 28, represented by X, Y, V, T and U, respectively and their ranking order can be seen in Tables 3 and 4. In order to compare these ranking orders, ρ_{s} and Z evaluated in Table 5. The analysis of the results is summarized in Table 5 as follows:
The results obtained by the proposed model with those obtained in [8] and [28], the critical
Table 5. Comparison with existing methods

Daignosis	X	Y	V	T	U	X-Y	X-V	X-T	X-U
C	2	2	2	3	2	0	0	-1	0
M	3	1	1	1	1	2	2	2	2
T	1	3	5	2	3	-2	-4	-1	-2
S	5	4	3	4	4	1	2	1	1
B	4	5	4	5	5	-1	0	-1	-1
Spearman's rank-correlation coefficient ρ_{s}					0.5	-0.2	0.6	0.5	
Critical value Z					1	-0.4	1.2	1	

value $Z=1>0.9$, shows that there is a positive relationship between the ranking of the proposed model (X), the ranking [8] (Y) and [28] (U). Also, the results obtained by the proposed model (X) with those obtained in [16] (T), the critical value $Z=1.2>0.9$ indicates that there is a strongly positive relationship between the ranking X and T. However, the ranking X of the proposed model is significantly dissimilar to the ranking [9] (V) because the critical value $Z=-0.4$ is smaller than 0.9 .

8. Conclusions

The similarity measures are extensively utilized in MCDM problems from the last few decades. This paper suggested a novel technique to develop the similarity measures on the basis of Euclidean distance measure for SVNSs and IVNSs, respectively. However, the similarity measures presented in [15, 29, 30 have some shortcoming. On the other hand the suggested similarity measures satisfy all the axioms of the similarity measure. Moreover, we used the suggested similarity measures to medical diagnosis decision problems. A practical example is used to exemplify the practicability and efficiency of the proposed similarity measure, which are then compared to other existing similarity measures. We will emphasize to apply the proposed Sindhu et al., Selection of Alternative under the Framework of SVNSs
similarity measure in pattern recognition and supply chain problems under the framework of SVNSs and IVNSs in future.

References

1. Abdel-Basset, M.; Ali, M.; Atef, A. Uncertainty assessments of linear time-cost tradeoffs using neutrosophic set. Computers \& Industrial Engineering. 2020, vol., 257278.
2. Abdel-Basset, M.; Mohamed, R.; Chang, V. Evaluation framework for smart disaster response systems in uncertainty environment. Mechanical Systems and Signal Processing. 2020, vol. 145, 106941.
3. Abdel-Basset, M.; Gamal, A.; Son, L. H.; Smarandache, F. A bipolar neutrosophic multi criteria decision making framework for professional selection. Applied Sciences. 2020, vol. 10, 1202.
4. Abdel-Basset, M.; Mohamed, R.; Abd El-Nasser, H.; Gamal, A.; Smarandache, F. Solving the supply chain problem using the best-worst method based on a novel Plithogenic model. Optimization Theory Based on Neutrosophic and Plithogenic Sets. 2020, DOI:10.1016/B978-0-12-819670-0.00001-9.
5. Aliyev, R. R. Interval linear programming based decision making on market allocations. Procedia Computer Science. 2017, vol. 120, pp. 47-52.
6. Atanassov, K. Intuitionistic fuzzy sets. Fuzzy Sets and Systems. 1986, vol. 22, no. 1, pp. 87-96.
7. Beg, I.; Ashraf, S. Similarity measures for fuzzy sets. Applied and Computational Mathematics. 2009, vol. 8, no. 2, pp. 192-202.
8. Broumi, S.; Smarandache, F. New distance and similarity measures of interval neutrosophic sets, in Proceedings of International Conference on Information Fusion, IEEE, Salamanca, Spain. 2014, pp. 1-7.
9. Broumi, S.; Smarandache, F. Several similarity measures of neutrosophic sets, Neutrosophic Sets and Systems. 2013, vol. 1, no. 1, pp. 54-62.
10. Chen, S. M.; Han, W. H. A new multiattribute decision making method based on multiplication operations of interval-valued intuitionistic fuzzy values and linear programming methodology. Information Sciences. 2018, vol. 429, pp. 421-432.
11. Cuong, B. C. Picture fuzzy sets, a new concept for computational intelligence problems. Published in proceedings of the third world congress on information and communication technologies. Hanoi, Vietnam. 2013, pp. 1-6.
12. De, S. K.; Biswas, R.; Roy, A. R. Multicriteria decision making using intuitionistic fuzzy set theory. Journal of Fuzzy Mathematics. 1998, vol. 6, no. 4, pp. 591-629.
13. He, P.; Ng, T. S.; Su, B. Energy-economic recovery resilience with Input-Output linear programming models. Energy Economics. 2017, vol. 68, pp. 177-191.
14. Intarapaiboon, P. New similarity measures for intuitionistic fuzzy sets. Applied Mathematical Sciences 2014, vol. 45, no. 8, pp. 2239-2250.
15. Liu, D.; Liu, G.; Liu, Z. Some similarity measures of neutrosophic sets based on the Euclidean distance and their application in medical diagnosis. Computational and Mathematical Methods in Medicine. 2018, Article ID 73259389 pages.
16. Majumdar, P.; Samanta, S. K. On similarity and entropy of neutrosophic sets. Journal of Intelligent and Fuzzy Systems. 2013, vol. 26, no.3, pp. 1245-1252.
17. Phuong, N. H.; Thang, V. V. Case based reasoning for medical diagnosis using fuzzy set theory. International Journal of Biomedical Soft Computing and Human Sciences 2000, vol. 5, pp. 1-7.
18. Sindhu, M. S.; Rashid, T.; Kashif, A. Modeling of linear programming and extended TOPSIS in decision making problem under the framework of picture fuzzy sets. PLoS ONE 2019, vol. 14, no.8, e0220957.

Sindhu et al., Selection of Alternative under the Framework of SVNSs
19. Sindhu, M. S.; Rashid, T.; Kashif, A.; Guirao, J. L. Multiple criteria decision making based on probabilistic interval-valued hesitant fuzzy sets by using LP methodology. Discrete Dynamics in Nature and Society. 2019, Article ID 1527612, 12 pages.
20. Song, Y.; Hu, J. Vector similarity measures of hesitant fuzzy linguistic term sets and their applications. Plos One. 2017, vol. 12, no. 12,: e0189579.
21. Vanderbei, R. J. Linear Programming: Foundations and extensions. Springer-Verlag, Berlin, Heidelberg. 2014.
22. Wang, H.; Smarandache, F.; Zhang, Y. Single valued neutrosophic sets, Review of the Air Force Academy. 2013, vol. 3, no. 1, pp. 33-39.
23. Wang, H. Interval neutrosophic sets and logic: theory and applications in computing, Computer Science. 2005, vol. 65, no. 4, pp. 1-99.
24. Wang, J.; Gao, H.; Wei, G. The generalized Dice similarity measures for Pythagorean fuzzy multiple attribute group decision making. International Journal of Intelligent System. 2019, pp. 1-26.
25. Wang, C. Y.; Chen, S. M. An improved multiattribute decision making method based on new score function of interval-valued intuitionistic fuzzy values and linear programming methodology. Information Sciences. 2017, vol. 411, pp. 176-184.
26. Wei, G.; Gao, H. The generalized Dice similarity measures for picture fuzzy sets and their application. Informatica. 2018, vol. 29, no. 1, pp. 107-124.
27. Williams, J.; Steele, N. Difference, distance and similarity as a basis for fuzzy decision support based on prototypical decision classes. Fuzzy Sets and System. 2002, vol. 131, pp. 35-46.
28. Ye, J. Vector similarity measures of simplified neutrosophic sets and their application in multicriteria decision making, International Journal of Fuzzy System. 2014, vol. 16, no. 2, pp. 204-211.
29. Ye, J. Similarity measures between interval neutrosophic sets and their applications in multicriteria decisionmaking, Journal of Intelligent and Fuzzy Systems. 2014, vol. 26, no. 1, pp. 165-172.
30. Ye, J. Cosine similarity measures for intuitionistic fuzzy sets and their applications. Mathematical and Computer Modelling. 2011, vol. 53, pp. 91-97.
31. Zadeh, L. A. Fuzzy sets. Information Control. 1965, vol. 8, no. 3, pp. 338-353.
32. Zadeh, L. A. The concept of a linguistic variable and its application to approximate reasoning. Information Science. 1974, vol. 8, no. 3, pp. 199-249.

Received: 23 March 2020 / Accepted: 22 May 2020

Application of Single Valued Trapezoidal Neutrosophic Numbers in Transportation Problem

Rajesh Kumar Saini* ${ }^{* 1}$ Atul Sangal ${ }^{2}$ Manisha ${ }^{3}$
${ }^{1,3}$ Deptt. of Mathematical Sciences and Computer Applications, Bundelkhand University, Jhansi, India, prof.rksaini@bujhansi.ac.in*
${ }^{2}$ Deptt. of Management Studies, Sharda University, Greater Noida, Uttar Pradesh, India atul.sangal@sharda.ac.in
* Correspondence: prof.rksaini@bujhansi.ac.in, Mob. 9412322576(091)

Abstract

In the present paper, we introduced the concept of single valued trapezoidal neutrosophic number, which is generalization of single valued neutrosophic number. A generalization of crisp, fuzzy and intuitionistic fuzzy sets represents as neutrosophic sets, which have uncertainty, inconsistent, and incompleteness information in real world problem. De-neutrosophication is a process to convert neutrosophic number into a crisp number for practical applications. For unbalanced neutrosophic transportation problem, we also use here minimum row column method and set a comparison among crisp and neutrosophic optimal solutions. Here we use two models of transportation problems to understand the applications in neutrosophic environment.

Keywords: Fuzzy Number, Single valued trapezoidal neutrosophic number, De-neutrosophication, neutrosophic transportation problem.

1. Introduction

In present scenario the classical theory of mathematics can't be handling the different kind of uncertainties, vagueness or impreciseness of mathematical problems. Many researchers around the world define many approaches to understand or define it. In 1965, Zadeh [37] first time introduce the mathematical formulation of a fuzzy set (FS) as a set with its membership function or membership grade. Sometimes the membership function in FS was not suitable one to describe the ambiguity of a problem.

After development of FS theory in various fields of uncertainty, Atanassov [1] in 1986, believe about the belongingness and non-belongingness in fuzzy set and present it's extension as intuitionistic fuzzy set (IFS) theory, which included the degree of membership and degree of non-membership function of each element in the set. More development of IFS theory in decision problems plays key role in recent scenario [17, 20]. In real life decision making problems, the theory of FS and IFS is much applicable, IFS approach in the solution of transportation problems used by many researchers [15, 22, 23].

The basic theme of a transportation problem is to find a direct connection between source and destination in minimum time with minimum cost. Hitchcock [12] was first, who originally developed the basic results of transportation problem by simplex method, which was recognized as special mathematical module. Since in early stage the transportation parameters like transportation cost, demand and supply were on the crisp values. In present time the real life transportation problems have uncertain, uncontrolled factors as the transportation cost, supply and demand are in fuzzy values.

In that period many research problems related to fuzzy transportation problem (FTP) were solved, in which some are partial fuzzy and some are fully fuzzy. A FTP in which cost demand and supply are
as fuzzy number is called fully FTP while in case of either cost, demand or supply are in fuzzy number, then it is FTP see [24, 7]. In a fuzzy solid transportation problem the parameters are trapezoidal fuzzy number (TrFN), introduced by Jim'enez and Verdegay [16] in 1999. For more research work about FTP, see [$18,19,22,25$].

In current scenario, due to uncertainty, unawareness, vagueness, ambiguity in the constraints or some poor handling of data, the indeterminacy exists in transportation problems. The IFS theory can handle the problems of incomplete information but not the indeterminate and inconsistent information exists in transportation modal.

The problems with inconsistent information or indeterminate cannot be handled by any evocation of fuzzy set, so to overpower of such problems, Smarandache [27] introduced the neutrosophic set (NS) in 1988, which was an extension of classical set, FS and IFS. The well applicable fundamentals of NS, to represent the indeterminacy and inconsistent information are truth-membership degree, indeterminacy membership degree, and falsity-membership degree. The NS becomes the IFS, if indeterminacy membership degree $\mathrm{I}(x)$ of NS is equal to hesitancy degree $\mathrm{h}(x)$ of IFS. For practical applications and some technical references in NS, Wang et. al. [31] in 2010 introduced the idea of single valued neutrosophic set (SVNS). The notion of SVNS is more suitable and effective in solving many real life problems of decision making and supply chain management. For more applications of FS, IFS and NS in some different fields see [1-10, 14, 21, 29-32, 34, 36].

Since the study of transportation models with optimal and effective cost play a key role in every real life situation. Many researchers formulated efficient mathematical models in various uncertain environments. For practical application, two models of neutrosophic transportation problem (NTP) with all entries such as cost, demand, and supply are as single valued trapezoidal neutrosophic number (SVTrNN). Here we also use minimum row column method (MRCM) for balance the unbalance crisp transportation problem (CTP) and NTP with some existing method.

The main features of the paper are obtaining the optimal solutions of CTP and NTP after balancing with different methods and to compare the results. The paper is well organized in seven sections. In section first, introduction of the present paper with some earlier research are given. In second section, the basics concepts of FS, IFS and NS are discussed and reviewed. In third section, introduce the deneutrosophication as score function to convert neutrosophic values into crisp values. Section fourth composes the classification and mathematical formulation of CTP \& NTP of type-2 \& 3. In fifth section, we introduce the procedures for solutions of CTP \& NTP. In section six, seven and eight, we introduce two models of transportation with their solutions in different tables, their comparison, result and discussion. The conclusion and future aspects of research work exhibit in last section of the paper.

2. Preliminaries

2.1. Some basic definitions and examples

Definition 2.1.1. (FS [37]): A FS \tilde{A} of a non empty set X is defined as $\tilde{A}=\left\{\left\langle x, \mu_{\tilde{A}}(x)\right\rangle / x \in X\right\}$ where $\mu_{\tilde{A}}(x)$ is called the membership function such that $\mu_{\tilde{A}}(x): X \rightarrow[0,1]$.

Definition 2.1.2. (FN): A convex, normalized fuzzy set \tilde{A} is called fuzzy number on the universal set of real numbers R , if the membership function $\mu_{\tilde{A}}$ of \tilde{A} has the following belongingness:
(i) $\mu_{\tilde{A}}: X \rightarrow[0,1]$ is continuous
(ii) $\quad \mu_{\tilde{A}}(x)=0$, for all $x \in(-\infty, a] \cup[d, \infty)$
(iii) $\quad \mu_{\tilde{A}}(x)$ is strictly increasing on $[a, b]$ and strictly decreasing on $[c, d]$
(iv) $\quad \mu_{\hat{A}}(x)=1$, for all $x \in[b, c]$, where $\mathrm{a} \leq b \leq c \leq d$.

Definition 2.1.3. (TrFN[19]): A trapezoidal fuzzy number (TrFN) denoted as $\tilde{A}=(a, b, c, d)$, with its membership function $\mu_{\tilde{A}}(x)$, on \mathbf{R}, is given by

$$
\mu_{\AA}(x)= \begin{cases}(x-a) /(b-a), & \text { for } a \leq x<b \\ 1, & \text { for } b \leq x<c \\ (d-x) /(d-c), & \text { for } c<x \leq d \\ 0, & \text { otherwise }\end{cases}
$$

Figurel: Trapezoidal Fuzzy Number
If $b=c$ in $\operatorname{TrFN} \tilde{A}=(a, b, c, d)$, then it becomes TFN $\tilde{A}=(a, b, d)$.
Definition 2.1.4. An IFS in a non-empty set X is denoted by \tilde{A}^{I} and defined as $\tilde{A}^{I}=\left\{\left\langle x, \mu_{\tilde{A}^{I}}, v_{\tilde{A}^{I}}\right\rangle: x \in X\right\}$, where $\mu_{\tilde{A}^{I}}, v_{\tilde{A}^{I}}: X \rightarrow[0,1]$, such that $0 \leq \mu_{\tilde{A}^{I}}, v_{\tilde{A}^{I}} \leq 1, \forall x \in X$. The degree of membership $\mu_{\tilde{A}^{\prime}}$ and degree of non-membership $v_{\tilde{A}^{\prime}}$ are functions from X to $[0,1]$ in \tilde{A}^{I}. The degree of hesitation is defined as $h(x)=1-\mu_{\tilde{A}^{I}}-v_{\tilde{A}^{I}} \leq 1, \forall x \in X$ in \tilde{A}^{I}.

Definition 2.1.5. (ITrFN [20]): An Intutinistic trapezoidal fuzzy number (ITrFN) is denoted by $\tilde{A}^{I}=\left(a_{1}, a_{2}, a_{3}, a_{4}\right)\left(a_{1}^{\prime}, a_{2}, a_{3}, a_{4}^{\prime}\right)$ where $a_{1}^{\prime} \leq a_{1} \leq a_{2} \leq a_{3} \leq a_{4} \leq a_{4}^{\prime}$ with membership function $\mu_{\tilde{A}^{I}}$ and nonmembership function $v_{\tilde{A}^{\prime}}$ defined by

$$
\mu_{\tilde{A}^{\prime}}(x)=\left\{\begin{array}{ll}
0, & \text { for } x<a_{1}, \\
\frac{x-a_{1}}{a_{2}-a_{1}}, & \text { for } a_{1} \leq x \leq a_{2}, \\
1, & \text { for } a_{2} \leq x \leq a_{3}, \\
\frac{a_{4}-x}{a_{4}-a_{3}}, & \text { for } a_{3} \leq x \leq a_{4}, \\
0, & \text { for } x>a_{4} .
\end{array} \quad v_{A^{\prime}}(x)= \begin{cases}1, & \text { for } x<a_{1}^{\prime}, \\
\frac{x-a_{1}^{\prime}}{a_{2}-a_{1}^{\prime}}, & \text { for } a_{1}^{\prime} \leq x \leq a_{2}, \\
0, & \text { for } a_{2} \leq x \leq a_{3}, \\
\frac{a_{4}^{\prime}-x}{a_{4}^{\prime}-a_{3},} & \text { for } a_{3} \leq x \leq a_{4}^{\prime}, \\
1, & \text { for } x>a_{4}^{\prime} .\end{cases}\right.
$$

If $a_{2}=a_{3}$ then ITrFN becomes ITFN denoted as $\tilde{A}^{I}=\left(a_{1}, a_{2}, a_{3}\right)\left(a_{1}^{\prime}, a_{2}^{\prime}, a_{3}^{\prime}\right)$ where $a_{1}^{\prime} \leq a_{1} \leq a_{2} \leq a_{3} \leq a_{3}^{\prime}$.
Definition 2.1.6. ([4]): Let x be a generic element of a non empty set X. A neutrosophic number \tilde{A}^{N} in X is defined as $\tilde{A}^{N}=\left\{\left\langle x, T_{\tilde{A}^{N}}(x), I_{\hat{A}^{N}}(x), F_{\hat{A}^{N}}(x)\right\rangle / x \in X\right\}, \forall T_{\tilde{A}^{N}}(x), \quad I_{\hat{A}^{N}}(x)$ and $\left.F_{\tilde{A}^{N}}(x) \in\right]^{-} 0,1^{+}[$where $\left.T_{\hat{A}^{N}}: X \rightarrow\right] 0^{-}, 1^{+}\left[, \quad I_{\tilde{A}^{N}}: X \rightarrow\right] 0^{-}, 1^{+}\left[\right.$and $\left.F_{\hat{A}^{N}}: X \rightarrow\right] 0^{-}, 1^{+}[\quad$ are functions of truth-membership, indeterminacy membership and falsity-membership in \tilde{A}^{N} respectively also there is no restrictions on the sum of $T_{\hat{A}^{N}}(x), I_{\tilde{A}^{N}}(x)$ and $F_{\tilde{A}^{N}}(x)$ so that $0 \leq T_{\tilde{A}^{N}}(x)+I_{\tilde{A}^{N}}(x)+F_{\tilde{A}^{N}}(x) \leq 3^{+}$.

For the practical applications it is difficult to apply directly NS theory, hence the notion of SVNS as well as single valued neutrosophic numbers [SVNN] introduced by Deli I., Ss, uba Y[8] in 2014.

Definition 2.1.7. (SVNS [8]): Let x be the generic point of a non-empty space X. A SVNS is denoted and defined as $\tilde{A}^{N}=\left\{\left\langle x, T_{\tilde{A}^{N}}(x), I_{\tilde{A}^{N}}(x), F_{\tilde{A}^{N}}(x)\right\rangle / x \in X\right\}$, where for each point x in $X, T_{\tilde{A}^{N}}(x)$, called truth membership $I_{\tilde{A}^{N}}(x)$ called indeterminacy membership and $F_{\tilde{A}^{N}}(x)$ called falsity membership function in $[0,1]$ and $0 \leq T_{\tilde{A}^{N}}(x)+I_{\tilde{A}^{N}}(x)+F_{\tilde{A}^{N}}(x) \leq 3$.
For continuous SVNS \tilde{A}^{N} can be written as

$$
\tilde{A}^{N}=\int_{\tilde{A}^{N}}\left\langle T_{\tilde{A}^{N}}(x), I_{\tilde{A}^{N}}(x), F_{\tilde{A}^{N}}(x)\right\rangle / x, \quad x \in X
$$

When X is discrete, a SVNS \tilde{A}^{N} can be written as

$$
\tilde{A}^{N}=\sum_{i=1}^{n}\left\langle T_{\tilde{A}^{N}}\left(x_{i}\right), I_{\tilde{A}^{N}}\left(x_{i}\right), F_{\tilde{A}^{N}}\left(x_{i}\right)\right\rangle / x_{i}, \quad x_{i} \in X
$$

Example 2.1.1. Let X be a space with capability x_{1}, trustworthiness x_{2} and price x_{3} in [0,1]. If expert wants "degree of good services", "degree of indeterminacy" and degree of poor services", then a SVNS \tilde{A}^{N} of X is defined as

$$
\tilde{A}^{N}=\langle 0.7,0.1,0.3\rangle / x_{1}+\langle 0.4,0.2,0.7\rangle / x_{2}+\langle 0.5,0.1,0.6\rangle / x_{3} .
$$

Definition 2.1.8. An (α, β, γ) - cut set of SVNS \tilde{A}^{N}, a crisp subset of R is defined by

$$
\tilde{A}_{\alpha, \beta, \gamma}^{N}=\left\{x: T_{\tilde{A}}(x) \geq \alpha, I_{\tilde{A}}(x) \leq \beta, F_{\tilde{A}}(x) \leq \gamma\right\}
$$

where $0 \leq \alpha \leq 1,0 \leq \beta \leq 1,0 \leq \gamma \leq 1$ and $0 \leq \alpha+\beta+\gamma \leq 3$.

Definition 2.1.9. A SVNS $\tilde{A}^{N}=\left\{\left\langle x, T_{\tilde{A}^{N}}(x), I_{\tilde{A}^{N}}(x), F_{\tilde{A}^{N}}(x)\right\rangle: x \in X\right\}$ is called neut-normal, if there exist at least three points $x_{1}, x_{2}, x_{3} \in X$ such that $T_{\tilde{A}^{N}}\left(x_{1}\right)=1, I_{\tilde{A}^{N}}\left(x_{2}\right)=1, F_{\tilde{A}^{N}}\left(x_{3}\right)=1$.

Definition 2.1.10. A SVNS $\tilde{A}^{N}=\left\{\left\langle x, T_{\tilde{A}^{N}}(x), I_{\tilde{A}^{N}}(x), F_{\tilde{A}^{N}}(x)\right\rangle: x \in X\right\}$ is called neut-convex set on the real line; if the following conditions are satisfied $\forall x_{1}, x_{2}, x_{3} \in R$ and $\lambda \in[0,1]$

$$
\begin{array}{ll}
\text { (i) } & T_{\tilde{A}^{N}}\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \geq \min \left(T_{\tilde{A}^{N}}\left(x_{1}\right), T_{\tilde{A}^{N}}\left(x_{2}\right)\right) \tag{i}\\
\text { (ii) } & I_{\tilde{A}^{N}}\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \leq \max \left(I_{\tilde{A}^{N}}\left(x_{1}\right), I_{\tilde{A}^{N}}\left(x_{2}\right)\right) \\
\text { (iii) } & F_{\tilde{A}^{N}}\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \leq \max \left(F_{\tilde{A}^{N}}\left(x_{1}\right), F_{\tilde{A}^{N}}\left(x_{2}\right)\right)
\end{array}
$$

Definition 2.1.11. (SVTrNN [8]): A single valued trapezoidal neutrosophic number (SVTrNN) $\tilde{a}^{N}=\left\langle\left(a_{1}, a_{2}, a_{3}, a_{4}\right) ; w_{\tilde{a}}, u_{\tilde{a}}, v_{\tilde{a}}\right\rangle$ is a special NS on the real line \mathbf{R}, whose truth-membership $T_{\tilde{a}^{N}}(x)$, indeterminacy-membership $I_{\tilde{a}^{N}}(x)$, and a falsity-membership $F_{\tilde{a}^{N}}(x)$ are given as follows:

$$
\begin{aligned}
& T_{\tilde{a}^{N}}(x)= \begin{cases}\frac{\left(\left(x-a_{1}\right) w_{\tilde{a}^{N}}\right.}{a_{2}-a_{1}}, & \text { for } a_{1} \leq x \leq a_{2}, \\
\frac{w_{\tilde{a}^{N}},}{} \text { for } a_{2} \leq x \leq a_{3}, \\
\frac{\left(a_{4}-x\right) w_{\tilde{a}^{N}}}{a_{4}-a_{3}}, & \text { for } a_{3} \leq x \leq a_{4}, \\
0, & \text { for } x>a_{4} \text { and } x<a_{1}\end{cases} \\
& I_{\tilde{a}^{N}}(x)= \begin{cases}\frac{a_{2}-x+\left(x-a_{1}\right) u_{\tilde{a}^{N}}}{a_{2}-a_{1}}, & \text { for } a_{1} \leq x \leq a_{2}, \\
u_{\tilde{a}^{N}}, & \text { for } a_{2} \leq x \leq a_{3}, \\
\frac{x-a_{3}+\left(a_{4}-x\right) u_{\tilde{a}^{N}}}{a_{4}-a_{3}}, & \text { for } a_{3} \leq x \leq a_{4}, \\
1, & \text { for } a_{2} \leq x \leq a_{4},\end{cases} \\
& F_{\tilde{a}^{N}}(x)= \begin{cases}\frac{a_{2}-x+\left(x-a_{1}\right) v_{\tilde{a}^{N}}}{a_{2}-a_{1}}, & \text { for } a_{1} \leq x \leq a_{2}, \\
v_{\tilde{a}^{N}}, & \text { for } x>a_{4} \text { and } x<a_{1} \\
\frac{x-a_{3}+\left(a_{4}-x\right) v_{\tilde{a}^{N}}}{a_{4}-a_{3}}, & \text { for } a_{3} \leq x \leq a_{4}, \\
1, & \end{cases}
\end{aligned}
$$

where $w_{\tilde{a}}, u_{\tilde{a}}$, and $v_{\tilde{a}}$ denotes the maximum truth-membership degree, minimum-indeterminacy membership degree and minimum falsity-membership degree in [0,1] respectively and $a_{1}, a_{2}, a_{3}, a_{4} \in \mathbf{R}$ such that $a_{1} \leq a_{2} \leq a_{3} \leq a_{4}$. When $a_{1}>0, \tilde{a}=\left\langle\left(a_{1}, a_{2}, a_{3}, a_{4}\right) ; w_{\tilde{a}}, u_{\tilde{a}}, v_{\tilde{a}}\right\rangle$ is called positive SVTrNN, denoted by $\tilde{a}>0$, and if $a_{4} \leq 0$, then $\tilde{a}=\left\langle\left(a_{1}, a_{2}, a_{3}, a_{4}\right) ; w_{\tilde{a}}, u_{\tilde{a}}, v_{\tilde{a}}\right\rangle$ becomes a negative SVTrNN, denoted by $\tilde{a}<0$.

If $0 \leq a_{1} \leq a_{2} \leq a_{3} \leq a_{4} \leq 1, \quad w_{\tilde{a}}, u_{\tilde{a}}, v_{\tilde{a}} \in[0,1]$, then \tilde{a} called a normalized SVTrNN. When $I_{\tilde{a}^{N}}=1-T_{\tilde{a}^{N}}-F_{\tilde{a}^{N}}$, then SVTrNN reduces as TIFN. If $a_{2}=a_{3}$, then SVTrNN is reduces single valued triangular neutrosophic number (SVTNN), denoted as $\tilde{a}=\left\langle\left(a_{1}, a_{3}, a_{4}\right) ; w_{\tilde{a}}, u_{\tilde{a}}, v_{\tilde{a}}\right\rangle$.

Definition 2.1.12. A single valued trapezoidal neutrosophic number (SVTrNN) with twelve components is defined and denoted as:

$$
\tilde{A}^{N}=\left\langle\left(p_{1}, p_{2}, p_{3}, p_{4}\right) ;\left(q_{1}, q_{2}, q_{3}, q_{4}\right) ;\left(r_{1}, r_{2}, r_{3}, r_{4}\right) ; w_{\tilde{A}^{N}}, u_{\tilde{A}^{N}}, v_{\tilde{A}^{N}}\right\rangle
$$

where $r_{1} \leq q_{1} \leq p_{1} \leq r_{2} \leq q_{2} \leq p_{2} \leq r_{3} \leq q_{3} \leq p_{3} \leq r_{4} \leq q_{4} \leq p_{4}$ in which the quantity of the truth membership, indeterminacy membership and falsity membership are not dependent and is defined as follows:

$$
T_{\tilde{A}^{N}}(x)= \begin{cases}\frac{\left(x-p_{1}\right) w_{\tilde{A}^{N}}}{p_{2}-p_{1}}, & \text { for } p_{1} \leq x \leq p_{2} \\ w_{\tilde{A}^{N}}, & \text { for } p_{2} \leq x \leq p_{3} \\ \frac{\left(p_{4}-x\right) w_{\tilde{A}^{N}}}{p_{4}-p_{3}}, & \text { for } p_{3} \leq x \leq p_{4} \\ 0, & \text { for } x>p_{4} \text { and } x<p_{1}\end{cases}
$$

$$
\begin{aligned}
& I_{\tilde{A}^{N}}(x)= \begin{cases}\frac{q_{2}-x+\left(x-q_{1}\right) u_{\hat{A}^{N}}}{q_{2}-q_{1}}, & \text { for } q_{1} \leq x \leq q_{2}, \\
u_{\hat{A}^{N}}, & \text { for } q_{2} \leq x \leq q_{3}, \\
\frac{x-q_{3}+\left(q_{4}-x\right) u_{A^{N}}}{q_{4}-q_{3}}, & \text { for } q_{3} \leq x \leq q_{4}, \\
1, & \text { for } x>q_{4} \text { and } x<q_{1}\end{cases} \\
& F_{\hat{A}^{N}}(x)= \begin{cases}\frac{r_{2}-x+\left(x-r_{1}\right) u_{\hat{A}^{N}}}{r_{2}-r_{1}}, & \text { for } r_{1} \leq x \leq r_{2}, \\
v_{A^{N}}, & \text { for } r_{2} \leq x \leq r_{3}, \\
\frac{x-r_{3}+\left(r_{4}-x\right) v_{\hat{A}^{N}}}{r_{4}-r_{3}}, & \text { for } r_{3} \leq x \leq r_{4}, \\
1, & \text { for } x>r_{4} \text { and } x<r_{1}\end{cases}
\end{aligned}
$$

where $0 \leq T_{\tilde{A}^{N}}(x)+I_{\tilde{A}^{N}}(x)+F_{\tilde{A}^{N}}(x) \leq 3, x \in \tilde{A}^{N}$.
Definition 2.1.13. The parametric form \tilde{A}^{N} of SVTrNN for some $0 \leq \alpha \leq 1,0 \leq \beta \leq 1,0 \leq \gamma \leq 1$ and $0 \leq \alpha+\beta+\gamma \leq 3$ is defined as $\left(\tilde{A}^{N}\right)_{\alpha, \beta, \gamma}=\left[T_{\tilde{A}^{N}}^{\prime}(\alpha), T_{\tilde{A}^{N}}^{\prime \prime}(\alpha), I_{\tilde{A}^{N}}^{\prime}(\beta), I_{\tilde{A}^{N}}^{\prime \prime}(\beta), F_{\tilde{A}^{N}}^{\prime}(\gamma), F_{\tilde{A}^{N}}^{\prime \prime}(\gamma)\right]$, where

$$
\begin{array}{ll}
T_{\hat{A}^{N}}^{\prime}(\alpha)=p_{1}+\frac{\alpha}{w_{\hat{A}^{N}}}\left(p_{2}-p_{1}\right), & T_{\hat{A}^{N}}^{\prime \prime}(\alpha)=p_{4}-\frac{\alpha}{w_{\hat{A}^{N}}}\left(p_{4}-p_{3}\right) \\
I_{\hat{A}^{N}}^{\prime}(\beta)=\frac{q_{1} u_{\hat{A}^{N}}-q_{2}+\beta\left(q_{2}-q_{1}\right)}{u_{\hat{A}^{N}}-1}, & I_{\bar{A}^{N}}^{\prime \prime}(\beta)=\frac{q_{3}-q_{4} u_{\hat{A}^{N}}+\beta\left(q_{4}-q_{3}\right)}{1-u_{\hat{A}^{N}}} \\
F_{\hat{A}^{N}}^{\prime}(\gamma)=\frac{r_{1} v_{\hat{A}^{N}}-r_{2}+\gamma\left(r_{2}-r_{1}\right)}{v_{\hat{A}^{N}}-1}, & F_{\hat{A}^{N}}^{\prime \prime}(\gamma)=\frac{r_{3}-r_{4} v_{\hat{A}^{N}}+\gamma\left(r_{4}-r_{3}\right)}{1-v_{\hat{A}^{N}}}
\end{array}
$$

Example 2.1.2. let us take $\tilde{A}^{N}=\langle(7,12,16,22),(6,11,15,20),(5,10,14,19) ; 0.4,0.6,0.6\rangle$. The parametric representation is $\quad T_{0.4}^{\prime}(\alpha)=7+12.5 \alpha, \quad T_{0.4}^{\prime \prime}(\alpha)=22-15 \alpha$,

$$
\begin{array}{ll}
I_{0.6}^{\prime}(\beta)=18.5-12.5 \beta, & I_{0.6}^{\prime \prime}(\beta)=7.5+12.5 \beta, \\
F_{0.6}^{\prime}(\gamma)=17.5-12.5 \gamma, & F_{0.6}^{\prime \prime}(\gamma)=6.5+12.5 \gamma
\end{array}
$$

For different values of α, β, γ the degree of truthfulness, degree of indeterminacy and degree of falsity shown in table 1 and their graphical representation in figure 2:

α, β, γ	$\mathbf{0}$	$\mathbf{0 . 1}$	$\mathbf{0 . 2}$	$\mathbf{0 . 3}$	$\mathbf{0 . 4}$	$\mathbf{0 . 5}$	$\mathbf{0 . 6}$	$\mathbf{0 . 7}$	$\mathbf{0 . 8}$	$\mathbf{0 . 9}$	$\mathbf{1 . 0}$
$T_{A^{N}}^{\prime}(\alpha)$	7.00	8.25	9.50	10.75	12.00	13.25	14.50	15.75	17.00	18.25	19.50
$T_{A^{N}}^{\prime \prime}(\alpha)$	22.00	20.50	19.5	17.50	16.00	14.50	13.00	11.50	10.00	8.50	7.00
$I_{A^{N}}^{\prime}(\beta)$	18.5	17.25	16.0	14.75	13.50	12.25	11.00	9.75	8.50	7.25	6
$I_{\bar{A}^{N}}^{\prime \prime}(\beta)$	7.50	8.75	10.00	11.25	12.50	13.75	15.00	16.25	17.50	18.75	20.00
$F_{\hat{A}^{N}}^{\prime}(\gamma)$	17.5	16.25	15.00	13.75	12.50	11.25	10.00	8.75	7.50	6.25	5.00
$F_{\bar{A}^{N}}^{\prime \prime}(\gamma)$	6.50	7.75	9.00	10.25	11.50	12.75	14.00	15.25	16.50	17.75	19.50

Figure 2: Graphical representation of

$$
\begin{gathered}
\tilde{A}^{N}=\left\langle\left(p_{1}, p_{2}, p_{3}, p_{4}\right) ;\left(q_{1}, q_{2}, q_{3}, q_{4}\right) ;\left(r_{1}, r_{2}, r_{3}, r_{4}\right) ; w_{\hat{A}^{N}}, u_{\hat{A}^{N}}, v_{\hat{A}^{N}}\right\rangle \\
\text { where } r_{1} \leq q_{1} \leq p_{1} \leq r_{2} \leq q_{2} \leq p_{2} \leq r_{3} \leq q_{3} \leq p_{3} \leq r_{4} \leq q_{4} \leq p_{4}
\end{gathered}
$$

2.2. Operational Laws on SVTrNN

Definition 2.2. 1. If \tilde{A}^{N} and \tilde{B}^{N} are two SVTrNN with twelve components having truth-membership $T_{\tilde{A}^{N}}^{\prime}(x), \quad T_{\tilde{B}^{N}}^{\prime \prime}(x)$, indeterminacy-membership $I_{\tilde{A}^{N}}^{\prime}(x), I_{\tilde{B}^{N}}^{\prime \prime}(x)$ and falsity-membership $F_{\tilde{A}^{N}}^{\prime}(x), F_{\tilde{B}^{N}}^{\prime \prime}(x)$ respectively and three real numbers in [0.1], such as

$$
\begin{aligned}
& \tilde{A}^{N}=\left\langle\left(p_{1}^{\prime}, p_{2}^{\prime}, p_{3}^{\prime}, p_{4}^{\prime}\right) ;\left(q_{1}^{\prime}, q_{2}^{\prime}, q_{3}^{\prime}, q_{4}^{\prime}\right) ;\left(r_{1}^{\prime}, r_{2}^{\prime}, r_{3}^{\prime}, r_{4}^{\prime}\right) ; w_{\tilde{A}^{N}}^{\prime}, u_{\tilde{A}^{N}}^{\prime}, v_{\tilde{A}^{N}}^{\prime}\right\rangle \\
& \tilde{B}^{N}=\left\langle\left(p_{1}^{\prime \prime}, p_{2}^{\prime \prime}, p_{3}^{\prime \prime}, p_{4}^{\prime \prime}\right) ;\left(q_{1}^{\prime \prime}, q_{2}^{\prime \prime}, q_{3}^{\prime \prime}, q_{4}^{\prime \prime}\right) ;\left(r_{1}^{\prime \prime}, r_{2}^{\prime \prime}, r_{3}^{\prime \prime}, r_{4}^{\prime \prime}\right) ; w_{\tilde{B}^{N}}^{\prime \prime}, u_{\tilde{B}^{N}}^{\prime \prime}, v_{\tilde{B}^{N}}^{\prime \prime}\right\rangle
\end{aligned}
$$

Addition of SVTrNN:

$$
\begin{array}{r}
\tilde{\mathrm{C}}^{N}=\tilde{A}^{N}+\tilde{B}^{N}=\left\langle\left(p_{1}^{\prime}+p_{1}^{\prime \prime}, p_{2}^{\prime}+p_{2}^{\prime \prime}, p_{3}^{\prime}+p_{3}^{\prime \prime}, p_{4}^{\prime}+p_{4}^{\prime \prime}\right)\left(q_{1}^{\prime}+q_{1}^{\prime \prime}, q_{2}^{\prime}+q_{2}^{\prime \prime}, q_{3}^{\prime}+q_{3}^{\prime \prime}, q_{4}^{\prime}+q_{4}^{\prime \prime}\right) ;\right. \\
\left.\left(r_{1}^{\prime}+r_{1}^{\prime \prime}, r_{2}^{\prime}+r_{2}^{\prime \prime}, r_{3}^{\prime}+r_{3}^{\prime \prime}, r_{4}^{\prime}+r_{4}^{\prime \prime}\right) ; w_{\tilde{A}^{N}}^{\prime} \wedge w_{\tilde{B}^{N}}^{\prime \prime}, u_{\tilde{A}^{N}}^{\prime} \vee u_{\tilde{B}^{N}}^{\prime \prime}, v_{\tilde{A}^{N}}^{\prime} \vee v_{\tilde{B}^{N}}^{\prime \prime}\right\rangle
\end{array}
$$

Negative of SVTrNN: If $\tilde{A}^{N}=\left\langle\left(p_{1}, p_{2}, p_{3}, p_{4}\right) ;\left(q_{1}, q_{2}, q_{3}, q_{4}\right) ;\left(r_{1}, r_{2}, r_{3}, r_{4}\right) ; w_{\tilde{A}^{N}}, u_{\tilde{A}^{N}}, v_{\tilde{A}^{N}}\right\rangle$, then

$$
-\tilde{A}^{N}=\left\langle\left(-p_{4},-p_{3},-p_{2},-p_{1}\right) ;\left(-q_{4},-q_{3},-q_{2},-q_{1}\right) ;\left(-r_{4},-r_{3},-r_{2},-r_{1}\right) ; w_{\tilde{A}^{N}}, u_{\tilde{A}^{N}}, v_{\tilde{A}^{N}}\right\rangle
$$

Subtraction of SVTrNN:

$$
\begin{array}{r}
\tilde{A}^{N}-\tilde{B}^{N}=\left\langle\left(p_{1}^{\prime}-p_{4}^{\prime \prime}, p_{2}^{\prime}-p_{3}^{\prime \prime}, p_{3}^{\prime}-p_{2}^{\prime \prime}, p_{4}^{\prime}-p_{1}^{\prime \prime}\right)\left(q_{1}^{\prime}-q_{4}^{\prime \prime}, q_{2}^{\prime}-q_{3}^{\prime \prime}, q_{3}^{\prime}-q_{2}^{\prime \prime}, q_{4}^{\prime}-q_{1}^{\prime \prime}\right) ;\right. \\
\left.\quad\left(r_{1}^{\prime}-r_{4}^{\prime \prime}, r_{2}^{\prime}-r_{3}^{\prime \prime}, r_{3}^{\prime}-r_{2}^{\prime \prime}, r_{4}^{\prime}-r_{1}^{\prime \prime}\right) ; w_{\tilde{A}^{N}}^{\prime} \wedge w_{\tilde{B}^{N}}^{\prime \prime}, u_{\tilde{A}^{N}}^{\prime} \vee u_{\tilde{B}^{N}}^{\prime \prime}, v_{\tilde{A}^{N}}^{\prime} \vee v_{\tilde{B}^{N}}^{\prime \prime}\right\rangle
\end{array}
$$

Multiplication of SVTrNN:

$$
\tilde{A}^{N} \cdot \tilde{B}^{N}=\left\{\begin{array}{r}
\left\langle\left(p_{1}^{\prime} \cdot p_{1}^{\prime \prime}, p_{2}^{\prime} \cdot p_{2}^{\prime \prime}, p_{3}^{\prime} \cdot p_{3}^{\prime \prime}, p_{4}^{\prime} \cdot p_{4}^{\prime \prime}\right) ;\left(q_{1}^{\prime} \cdot q_{1}^{\prime \prime}, q_{2}^{\prime} \cdot q_{2}^{\prime \prime}, q_{3}^{\prime} \cdot q_{3}^{\prime \prime}, q_{4}^{\prime} \cdot q_{4}^{\prime \prime}\right) ;\right. \\
\left.\left(r_{1}^{\prime} \cdot r_{1}^{\prime \prime}, r_{2}^{\prime} \cdot r_{2}^{\prime \prime}, r_{3}^{\prime} \cdot r_{3}^{\prime \prime}, r_{4}^{\prime} \cdot r_{4}^{\prime \prime}\right) ; w_{\tilde{A}^{N}}^{\prime} \wedge w_{\tilde{B}^{N}}^{\prime \prime}, u_{\tilde{A}^{N}}^{\prime} \vee u_{\tilde{B}^{N}}^{\prime \prime}, v_{\tilde{A}^{N}}^{\prime} \vee v_{\tilde{B}^{N}}^{\prime \prime}\right\rangle \\
\text { if } p_{4}^{\prime}>0, p_{4}^{\prime \prime}>0 ; q_{4}^{\prime}>0, q_{4}^{\prime \prime}>0 ; r_{4}^{\prime}>0, r_{4}^{\prime \prime}>0 \\
\left\langle\left(p_{1}^{\prime} \cdot p_{4}^{\prime \prime}, p_{2}^{\prime} \cdot p_{3}^{\prime \prime}, p_{3}^{\prime} \cdot p_{2}^{\prime \prime}, p_{4}^{\prime} \cdot p_{1}^{\prime \prime}\right) ;\left(q_{1}^{\prime} \cdot q_{4}^{\prime \prime}, q_{2}^{\prime} \cdot q_{3}^{\prime \prime}, q_{3}^{\prime} \cdot q_{2}^{\prime \prime}, q_{4}^{\prime} \cdot q_{1}^{\prime \prime}\right) ;\right. \\
\left.\left(r_{1}^{\prime} \cdot r_{4}^{\prime \prime}, r_{2}^{\prime} \cdot r_{3}^{\prime \prime}, r_{3}^{\prime} \cdot r_{2}^{\prime \prime}, r_{4}^{\prime} \cdot r_{1}^{\prime \prime}\right) ; w_{\tilde{A}^{N}}^{\prime} \wedge w_{\tilde{B}^{N}}^{\prime \prime}, u_{\tilde{A}^{N}}^{\prime} \vee u_{\tilde{B}^{N}}^{\prime \prime}, v_{\tilde{A}^{N}}^{\prime} \vee v_{\tilde{B}^{N}}^{\prime \prime}\right\rangle \\
\text { if } p_{4}^{\prime}<0, p_{4}^{\prime \prime}>0 ; q_{4}^{\prime}<0, q_{4}^{\prime \prime}>0 ; r_{4}^{\prime}<0, r_{4}^{\prime \prime}>0 \\
\left\langle\left(p_{4}^{\prime} \cdot p_{4}^{\prime \prime}, p_{3}^{\prime} \cdot p_{3}^{\prime \prime}, p_{2}^{\prime} \cdot p_{2}^{\prime \prime}, p_{1}^{\prime} \cdot p_{1}^{\prime \prime}\right) ;\left(q_{4}^{\prime} \cdot q_{4}^{\prime \prime}, q_{3}^{\prime} \cdot q_{3}^{\prime \prime}, q_{2}^{\prime} \cdot q_{2}^{\prime \prime}, q_{1}^{\prime} \cdot q_{1}^{\prime \prime}\right) ;\right. \\
\left.\left(r_{4}^{\prime} \cdot r_{4}^{\prime \prime}, r_{3}^{\prime} \cdot r_{3}^{\prime \prime}, r_{2}^{\prime} \cdot r_{2}^{\prime \prime}, r_{1}^{\prime} \cdot r_{1}^{\prime \prime}\right) ; w_{\tilde{A}^{N}}^{\prime} \wedge w_{\tilde{B}^{N}}^{\prime \prime}, u_{\tilde{A}^{N}}^{\prime} \vee u_{\tilde{B}^{N}}^{\prime \prime}, v_{\tilde{A}^{N}}^{\prime} \vee v_{\tilde{B}^{N}}^{\prime \prime}\right\rangle \\
\text { if } p_{4}^{\prime}<0, p_{4}^{\prime \prime}<0 ; q_{4}^{\prime}<0, q_{4}^{\prime \prime}<0 ; r_{4}^{\prime}<0, r_{4}^{\prime \prime}<0
\end{array}\right.
$$

Rajesh Kumar Saini* ${ }^{1}$ Atul Sangal ${ }^{2}$ and Manisha ${ }^{3}$, Application of Single Valued Trapezoidal Neutrosophic Numbers

Scalar multiplication of SVTrNN:

$$
k \tilde{A}^{N}=\left\{\begin{array}{l}
\left\langle\left(k p_{1}, k p_{2}, k p_{3}, k p_{4}\right) ;\left(k q_{1}, k q_{2}, k q_{3}, k q_{4}\right) ;\left(k r_{1}, k r_{2}, k r_{3}, k r_{4}\right) ; w_{\tilde{A}^{N}}, u_{\tilde{A}^{N}}, v_{\tilde{A}^{N}}\right\rangle, \text { if } k>0, \\
\left\langle\left(k p_{4}, k p_{3}, k p_{2}, k p_{1}\right) ;\left(k q_{4}, k q_{3}, k q_{2}, k q_{1}\right) ;\left(k r_{4}, k r_{3}, k r_{2}, k r_{1}\right) ; w_{\tilde{A}^{N}}, u_{\tilde{A}^{N}}, v_{\tilde{A}^{N}}\right\rangle, \text { if } k<0 .
\end{array}\right.
$$

Inverse of SVTrNN:

$$
\left(\tilde{A}^{N}\right)^{-1}=\frac{1}{\tilde{A}^{N}}=\left\{\begin{array}{l}
\left\langle\left(\frac{1}{p_{4}}, \frac{1}{p_{3}}, \frac{1}{p_{2}}, \frac{1}{p_{1}}\right) ;\left(\frac{1}{q_{4}}, \frac{1}{q_{3}}, \frac{1}{q_{2}}, \frac{1}{q_{1}}\right) ;\left(\frac{1}{r_{4}}, \frac{1}{r_{3}}, \frac{1}{r_{2}}, \frac{1}{r_{1}}\right) ; w_{\tilde{A}^{N}}, u_{\tilde{A}^{N}}, v_{\tilde{A}^{N}}\right\rangle \\
\quad \text { if } p_{s_{s}}>0, q_{s}>0, r_{s}>0 \\
\left\langle\left(\frac{1}{p_{1}}, \frac{1}{p_{2}}, \frac{1}{p_{3}}, \frac{1}{p_{4}}\right) ;\left(\frac{1}{q_{1}}, \frac{1}{q_{2}}, \frac{1}{q_{3}}, \frac{1}{q_{4}}\right) ;\left(\frac{1}{r_{1}}, \frac{1}{r_{2}}, \frac{1}{r_{3}}, \frac{1}{r_{4}}\right) ; w_{\tilde{A}^{N}}, u_{\tilde{A}^{N}}, v_{\tilde{A}^{N}}\right\rangle \\
\text { if } p_{r_{s}}<0, q_{r_{s}}<0, r_{r_{s}}<0 .
\end{array}\right.
$$

Division of SVTrNN:

$$
\begin{aligned}
& \left\{\left\langle\left(\frac{p_{1}^{\prime}}{p_{4}^{\prime \prime}}, \frac{p_{2}^{\prime}}{p_{3}^{\prime \prime}}, \frac{p_{3}^{\prime}}{p_{2}^{\prime \prime}}, \frac{p_{4}^{\prime}}{p_{1}^{\prime \prime}}\right) ;\left(\frac{q_{1}^{\prime}}{q_{4}^{\prime \prime}}, \frac{q_{2}^{\prime}}{q_{3}^{\prime \prime}}, \frac{q_{3}^{\prime}}{q_{2}^{\prime \prime}}, \frac{q_{4}^{\prime}}{q_{1}^{\prime \prime}}\right) ;\left(\frac{r_{1}^{\prime}}{r_{4}^{\prime \prime}}, \frac{r_{2}^{\prime}}{r_{3}^{\prime \prime}}, \frac{r_{3}^{\prime}}{r_{2}^{\prime \prime}}, \frac{r_{4}^{\prime \prime}}{r_{1}^{\prime \prime}}\right) ; w_{\tilde{A}^{N}}^{\prime} \wedge w_{\tilde{B}^{N}}^{\prime \prime}, u_{\tilde{A}^{N}}^{\prime} \vee u_{\tilde{B}^{N}}^{\prime \prime}, v_{\tilde{A}^{N}}^{\prime} \vee v_{\tilde{B}^{N}}^{\prime \prime}\right\rangle\right. \\
& \text { if } p_{4}^{\prime}>0, p_{4}^{\prime \prime}>0 ; q_{4}^{\prime}>0, q_{4}^{\prime \prime}>0 ; r_{4}^{\prime}>0, r_{4}^{\prime \prime}>0 \\
& \frac{\tilde{A}^{N}}{\tilde{B}^{N}}=\left\{\begin{array}{r}
\left\langle\left(\frac{p_{4}^{\prime}}{p_{4}^{\prime \prime}}, \frac{p_{3}^{\prime}}{p_{3}^{\prime \prime}}, \frac{p_{2}^{\prime}}{p_{2}^{\prime \prime}}, \frac{p_{1}^{\prime}}{p_{1}^{\prime \prime}}\right) ;\left(\frac{q_{4}^{\prime}}{q_{4}^{\prime \prime}}, \frac{q_{3}^{\prime}}{q_{3}^{\prime \prime}}, \frac{q_{2}^{\prime}}{q_{2}^{\prime \prime}}, \frac{q_{1}^{\prime}}{q_{1}^{\prime \prime}}\right) ;\left(\frac{r_{4}^{\prime}}{r_{4}^{\prime \prime}}, \frac{r_{3}^{\prime}}{r_{3}^{\prime \prime}}, \frac{r_{2}^{\prime}}{r_{2}^{\prime \prime}}, \frac{r_{1}^{\prime \prime}}{r_{1}^{\prime \prime}}\right) ; w_{\tilde{A}^{N}}^{\prime} \wedge w_{\tilde{B}^{N}}^{\prime \prime}, u_{\tilde{A}^{N}}^{\prime} \vee u_{\tilde{B}^{N}}^{\prime \prime}, v_{\tilde{A}^{N}}^{\prime} \vee v_{\tilde{B}^{N}}^{\prime \prime}\right\rangle \\
\text { if } p_{4}^{\prime}<0, p_{4}^{\prime \prime}>0 ; q_{4}^{\prime}<0, q_{4}^{\prime \prime}>0 ; r_{4}^{\prime}<0, r_{4}^{\prime \prime}>0
\end{array} \quad \begin{array}{r}
\left\langle\left(\frac{p_{4}^{\prime}}{p_{1}^{\prime \prime}, \frac{p_{3}^{\prime}}{\left.\left.p_{2}^{\prime \prime}, \frac{p_{2}^{\prime}}{p_{3}^{\prime \prime}}, \frac{p_{1}^{\prime}}{p_{4}^{\prime \prime}}\right) ;\left(\frac{q_{4}^{\prime}}{q_{1}^{\prime \prime}}, \frac{q_{3}^{\prime}}{q_{2}^{\prime \prime}}, \frac{q_{2}^{\prime}}{q_{3}^{\prime \prime}}, \frac{q_{1}^{\prime}}{q_{4}^{\prime \prime}}\right) ;\left(\frac{r_{4}^{\prime}}{r_{1}^{\prime \prime}}, \frac{r_{3}^{\prime}}{r_{2}^{\prime \prime},}, \frac{r_{2}^{\prime}}{r_{3}^{\prime \prime}}, \frac{r_{1}^{\prime \prime}}{r_{4}^{\prime \prime}}\right) ; w_{\tilde{A}^{N}}^{\prime} \wedge w_{\tilde{B}^{N}}^{\prime \prime}, u_{\tilde{A}^{N}}^{\prime} \vee u_{\tilde{B}^{N}}^{\prime \prime}, v_{\tilde{A}^{N}}^{\prime} \vee v_{\tilde{B}^{N}}^{\prime \prime}\right\rangle}} \begin{array}{r}
\text { if } p_{4}^{\prime}<0, p_{4}^{\prime \prime}<0 ; q_{4}^{\prime}<0, q_{4}^{\prime \prime}<0 ; r_{4}^{\prime}<0, r_{4}^{\prime \prime}<0
\end{array}\right.\right.
\end{array}\right.
\end{aligned}
$$

Example 2.2.1. let $\tilde{A}^{N}=\langle(7,11,16,21),(6,10,15,20),(5,9,14,19) ; 0.4,0.6,0.6\rangle$ and

$$
\begin{aligned}
& \tilde{B}^{N}=\langle(6,11,13,20),(5,10,12,18),(3,8,11,16) ; 0.3,0.6,0.7\rangle \text { be two SVTrNN, then } \\
& \tilde{A}^{N}+\tilde{B}^{N}=\langle(13,22,29,41),(11,20,27,38),(8,17,25,35) ; 0.4,0.6,0.6\rangle \\
& \tilde{A}^{N}-\tilde{B}^{N}=\langle(-13,-2,5,15),(-12,-2,5,15),(-11,-2,6,16) ; 0.4,0.6,0.6\rangle \\
& \tilde{A}^{N} \cdot \tilde{B}^{N}=\langle(42,121,208,420),(30,100,180,360),(15,72,154,304) ; 0.4,0.6,0.6\rangle \\
& \tilde{A}^{N} / \tilde{B}^{N}=\langle(0.35,0.85,1.45,3.50),(0.33,0.83,1.50,4.00,(0.31,0.81,1.75,6.33) ; 0.4,0.6,0.6\rangle \\
& 5 \tilde{A}^{N}=\langle(35,55,80,105),(30,50,75,100),(25,45,70,95) ; 0.4,0.6,0.6\rangle
\end{aligned}
$$

3. De-Neutrosophication by using score function

We use the score and accuracy functions of a SVTrNN, is defined by an expert [31] to compare any two SVTrNN. So that the score function is defined as

$$
S\left(\tilde{A}^{N}\right)=\left(\frac{p_{1}+p_{2}+p_{3}+p_{4}-q_{1}-q_{2}-q_{3}-q_{4}-r_{1}-r_{2}-r_{3}-r_{4}}{12}\right) \times\left(2+w_{\tilde{A}^{N}}-u_{\tilde{A}^{N}}-v_{\tilde{A}^{N}}\right)
$$

and accuracy function is

$$
A\left(\tilde{A}^{N}\right)=\left(\frac{p_{1}+p_{2}+p_{3}+p_{4}-q_{1}-q_{2}-q_{3}-q_{4}}{4}\right) \times\left(2+w_{\tilde{A}^{N}}-u_{\tilde{A}^{N}}+v_{\tilde{A}^{N}}\right)
$$

Example 3.1. Let $\tilde{A}^{N}=\langle(7,11,16,21),(6,10,15,20),(5,10,14,19) ; 0.4,0.6,0.6\rangle$ then $S\left(\tilde{A}^{N}\right)=-4.4$ and $A\left(\tilde{A}^{N}\right)=-0.7$

Definition 3.1. (Comparison of SVTrNN). Let \tilde{A}^{N} and \tilde{B}^{N} be any two SVTrNN, then one has the following:
(a) $S\left(\tilde{A}^{N}\right)<S\left(\tilde{B}^{N}\right) \Rightarrow \tilde{A}^{N}<\tilde{B}^{N}$
(b) If $S\left(\tilde{A}_{s}^{N}\right)=S\left(\tilde{B}_{s}^{N}\right)$ and if
(i) $A\left(\tilde{A}^{N}\right)<A\left(\tilde{B}^{N}\right)$ then $\tilde{A}^{N}<\tilde{B}^{N}$
(ii) $A\left(\tilde{A}^{N}\right)>A\left(\tilde{B}^{N}\right)$ then $\tilde{A}^{N}>\tilde{B}^{N}$
(iii) $A\left(\tilde{A}^{N}\right)=A\left(\tilde{B}^{N}\right)$ then $\tilde{A}^{N}=\tilde{B}^{N}$

Example 3.2. Let $\tilde{A}^{N}=\langle(6,10,16,20),(5,9,14,19),(3,8,12,18) ; 0.3,0.6,0.7\rangle$ and
$\tilde{B}^{N}=\langle(7,11,16,21),(6,15,14,20),(5,10,14,19) ; 0.3,0.6,0.7\rangle$
$\tilde{C}^{N}=\langle(8,11,16,22),(6,15,14,21),(5,10,14,20) ; 0.3,0.6,0.7\rangle$ be two SVTrNN, then
$S\left(\tilde{A}^{N}\right)=-3.00, A\left(\tilde{A}^{N}\right)=1.25, S\left(\tilde{B}^{N}\right)=-0.4, A\left(\tilde{B}^{N}\right)=0.0$, and $S\left(\tilde{C}^{N}\right)=-0.4, A\left(\tilde{C}^{N}\right)=0.25$,
which implies that if $S\left(\tilde{A}^{N}\right)<S\left(\tilde{B}^{N}\right)$ then $\tilde{A}^{N}<\tilde{B}^{N}$
Also $\quad S\left(\tilde{B}^{N}\right)=S\left(\tilde{C}^{N}\right)$ and $A\left(\tilde{B}^{N}\right)<A\left(\tilde{C}^{N}\right)$ then $\tilde{B}^{N}<\tilde{C}^{N}$.

4. Neutrosophic Transportation Problem (NTP) and its Mathematical formulation

4.1. Classification of NTP

Definition 4.1.1. In a TP, if atleast one parameter such as cost, demand or supply is in form of neutrosophic numbers, the TP is termed as NTP.

Definition 4.1.2. A NTP having neutrosophic availabilities and neutrosophic demand but crisp cost, is classified as NTP of type-1.

Definition 4.1.3. The NTP having crisp availabilities and crisp demand but neutrosophic cost, is classified as NTP of type-2.

Definition 4.1.4. If all the specifications of TP such as cost, demand and availabilities are combination of crisp, triangular or trapezoidal neutrosophic numbers, then NTP classified as NTP of type-3.

Definition 4.1.5. If all the specifications of TP must be in neutrosophic numbers form, then TP is said to be NTP of type-4 or fully NTP.

4.2. Mathematical Formulation of NTP

The TP is very important for transporting goods from one source to another destination. In TP if ambiguity occurs in cost, demand or supply then it is more difficult to solve it. To handle this type of impreciseness in cost to transferred product from $i^{\text {th }}$ sources to $j^{\text {th }}$ destination or uncertainty in supply and demand the decision maker introduce NTP of SVTrNN.

Here we consider two models in which the decision maker is unsettled about the specific values i.e. cost from $i^{\text {th }}$ sources to $j^{\text {th }}$ destination and also certainty or uncertainty in supply or demand of the product, so that a new type of TP is introduced namely NTP with parameters like cost, demand and supply as SVTrNN. The NTP with assumptions and constraints is defined as the number of unites $x_{i j}^{N}$

Rajesh Kumar Saini* ${ }^{*}$ Atul Sangal ${ }^{2}$ and Manisha ${ }^{3}$, Application of Single Valued Trapezoidal Neutrosophic Numbers A* in Transportation Problem
and the neutrosophic cost $\tilde{c}_{i j}^{N}$ are transported from $i^{\text {th }}$ sources to $j^{\text {th }}$ destination. For balance NTP $\sum_{i=0}^{m} a_{i}^{N}=\sum_{j=0}^{n} b_{j}^{N}$ i.e. total supply is equal to total demand.

For the formulation of NTP the following assumptions and constraints are required:
$m \quad$ Total number of source point
$n \quad$ Total number of destination point
$i \quad$ Table of source (for all m)
$j \quad$ Table of destination (for all n)
$\tilde{x}_{i j}^{N} \quad$ Number of transported neutrosophic unites from $i^{\text {th }}$ source to $j^{\text {th }}$ destination
$\tilde{c}_{i j}^{N} \quad$ Neutrosophic cost of one unit transported from $i^{\text {th }}$ source to $j^{\text {th }}$ destination
$\tilde{a}_{i}^{N} \quad$ Available neutrosophic supply quantity from $i^{\text {th }}$ source
$\tilde{b}_{j}^{N} \quad$ Required neutrosophic demand quantity to $j^{\text {th }}$ destination
$c_{i j} \quad$ Crisp cost of one unit quantity
$x_{i j} \quad$ Number of transported crisp unites from $i^{\text {th }}$ source to $j^{\text {th }}$ destination
$a_{i} \quad$ Available crisp supply quantity from $i^{\text {th }}$ source
$b_{j} \quad$ Required crisp demand quantity to $j^{\text {th }}$ destination

Modal I

In NTP the objective is to minimize the cost of transported product from source to destination. The mathematical formulation of NTP with uncertain transported units and transportation cost, demand and supply is:
(P_{1})

$$
\begin{aligned}
& \text { Minimum } \tilde{Z}^{N}=\sum_{i=0}^{m} \sum_{j=0}^{n} \tilde{x}_{i j}^{N} \tilde{c}_{i j}^{N} \\
& \text { Subject to } \sum_{j=0}^{n} \tilde{x}_{i j}^{N}=\tilde{a}_{i}^{N}, \forall i(\text { sources })=1,2,3, \ldots, m, \\
& \qquad \sum_{i=0}^{m} \tilde{x}_{i j}^{N}=\tilde{b}_{j}^{N}, \forall j(\text { destination })=1,2,3, \ldots, n, \\
& \quad \tilde{x}_{i j}^{N} \geq 0, \forall i=1,2,3, \ldots, m, j=1,2,3, \ldots, n .
\end{aligned}
$$

Modal II

The mathematical formulation of NTP with uncertain transported units and transportation cost but curtained about demand and supply is termed a NTP of type-2 is:

$$
\begin{aligned}
& \text { Minimum } \quad \tilde{Z}^{N}=\sum_{i=0}^{m} \sum_{j=0}^{n} x_{i j} \tilde{c}_{i j}^{N} \\
& \text { Subject to } \sum_{j=0}^{n} x_{i j}=a_{i}, \forall i(\text { sources })=1,2,3, \ldots, m, \\
& \\
& \quad \sum_{i=0}^{m} x_{i j}=b_{j}, \forall j(\text { destination })=1,2,3, \ldots, n, \\
& \\
& x_{i j} \geq 0, \forall i=1,2,3, \ldots, m, j=1,2,3, \ldots, n .
\end{aligned}
$$

5. Procedure for Proposed Algorithms for solution of CTP and NTP

5.1. Basic Assumptions of the Proposed Algorithms

The total transportation cost does not depends on the mode of transportation and distance, also the framework of the problem will be denoted by either crisp or SVTrNN.

$$
\text { If } \sum_{i=0}^{m} \tilde{a}_{i}^{N}<\text { or }>\sum_{j=0}^{n} \tilde{b}_{j}^{N}, \forall i, j, \text { then first one can make sure to balance the TP as } \sum_{i=0}^{m} \tilde{a}_{i}^{N}=\sum_{j=0}^{n} \tilde{b}_{j}^{N}, \forall i, j,
$$

5.2. Steps for solution of CTP after balancing by existing method

Step5.2.1. To change the each neutrosophic cost $\tilde{c}_{i j}^{N}$, neutrosophic supply \tilde{a}_{i}^{N} and neutrosophic demand \tilde{b}_{j}^{N} of NTP in cost matrix to crisp values, we use here score function method i.e. we convert these by using $S\left(\tilde{A}^{N}\right)$.
Step5.2.2. For balance TP, verify that the sum of demands is equal to the sum of supply i.e. $\sum_{i=0}^{m} \tilde{a}_{i}=\sum_{j=0}^{n} \tilde{b}_{j}, \forall i, j$. If $\sum_{i=0}^{m} \tilde{a}_{i}<$ or $>\sum_{j=0}^{n} \tilde{b}_{j}, \forall i, j$, then first one can make sure to balance the TP by adding a row or column with zero entries in cost matrix [30].
Step5.2.3. After conversion of NTP into TP, choose the minimum entry in each row and subtract it to all other entries in that row. The same way is applicable in each column to find minimum one zero in each row and each column in TP matrix. For better (see table 4 and table 6).
Step5.2.4. Verify that the sum of demands is greater than the supply in each row and the sum of supplies are greater than the demand in each column, if ok go on step 5.2.6, otherwise go on step 5.2.5.
Step5.2.5. Draw the horizontal and vertical lines that cover all the zeros and equal to minimum number of order of matrix or reduced table. Now if number of lines is less than to the minimum number, revise table by choose the least element which is not under horizontal or vertical line and add it to the entry at the cross point of the lines. Again go to step 5.2.3 to check the condition.
Step5.2.6. To allot the maximum possible units of supply or demand in the cost cell, choose a cell of maximum cost in the reduced cost matrix. If the maximum cost exists more than one place, choose any one cell of maximum supply or demand.
Step5.2.7. If none cell occur for the maximum cost then go for next maximum. If such cell does not occur for any value, then choose any cell at random, whose reduced cost is zero.
Step5.2.8. From the reduced table omit the row which are fully exhausted or column which are fully satisfied, then repeats steps and again. Repeat the procedure until all the demand units and all the supply units are fully received respectively.

The procedure for the solution of NTP by using existing method is same as steps in 5.2 , while the cost, demand, supply and solution vales are in SVTrNN.

5.3. Steps for solution of CTP after balancing by MRCM

For balance the unbalance CTP, we use MRCM which is generalization of method in [27]. We use the following steps for solution of CTP by MRCM:

Rajesh Kumar Saini* ${ }^{*}$ Atul Sangal ${ }^{2}$ and Manisha ${ }^{3}$, Application of Single Valued Trapezoidal Neutrosophic Numbers ** in Transportation Problem

Step5.3.1. Convert neutrosophic cost $\tilde{c}_{i j}^{N}$, neutrosophic supply \tilde{a}_{i}^{N} and neutrosophic demand \tilde{b}_{j}^{N} of NTP in cost matrix to crisp values by using score function $S\left(\tilde{A}^{N}\right)$ i.e NTP convert into CTP.
Step5.3.2 If CTP is unbalance then to make it balance one by applying the steps of MRCM that is if sum of supply is less then to the sum of demand, then add a row of minimum costs in each row with a supply equal to sum of supplies and add a column of minimum costs in each column with demand equal to the difference value from sum of all supplies differ to sum of demand. The same is applicable when sum of demand is less than the sum of supply. i.e.

$$
\begin{aligned}
& \tilde{a}_{m+1}=\sum_{i=0}^{m} \tilde{a}_{i} \text { and } \tilde{b}_{n+1}=\sum_{j=0}^{n} \tilde{a}_{j} \oplus \text { excess supply } \\
& \tilde{b}_{n+1}=\sum_{j=0}^{n} \tilde{b}_{j} \text { and } \tilde{a}_{m+1}=\sum_{i=1}^{m} \tilde{b}_{i} \oplus \text { excess demand. }
\end{aligned}
$$

The unit transportation costs are taken as follows:

$$
\begin{aligned}
& \tilde{c}_{i(n+1)}=\min _{1 \leq j \leq n} \tilde{c}_{i j}, 1 \leq i \leq m, \quad \tilde{c}_{(m+1) j}=\min _{1 \leq i \leq m} \tilde{c}_{i j}, 1 \leq j \leq n, \\
& \tilde{c}_{i j}=\tilde{c}_{j i}, 1 \leq i \leq m, 1 \leq j \leq n, \text { and } \tilde{c}_{(m+1)(n+1)}=0 .
\end{aligned}
$$

Step5.3.3 Obtain optimal solution of converted CTP after balance it by existing method using excel solver. Let the crisp optimal solution be $\tilde{x}_{i j}, 1 \leq i \leq m+1,1 \leq j \leq n+1$.
Step5.3.4 By assuming $\tilde{\omega}_{m+1}^{\prime}=0$ and using the relation $\tilde{\omega}_{i}^{\prime} \oplus \tilde{v}_{j}^{\prime}=\tilde{\sigma}_{i j}^{\prime}$ for basic variables, find the values of all the dual variables $\tilde{\omega}_{i}^{\prime}, 1 \leq i \leq m$ and $\tilde{v}_{j}^{\prime}, 1 \leq j \leq n+1$,
Step5.3.5. According to $\operatorname{MRCM}, \tilde{\omega}_{i}^{\prime}=\tilde{\omega}_{i}$ and $\tilde{v}_{j}^{\prime}=\tilde{v}_{j}$ for $1 \leq i \leq m, 1 \leq j \leq n$, obtain only central rank zero duals. After that in terms of original supply S_{i} and demand M_{j} find the neutrosophic optimal solution of the problem.

5.4. Steps for solution of NTP after balancing by MRCM

Step5.4.1. Convert neutrosophic cost $\tilde{c}_{i j}^{N}$, neutrosophic supply \tilde{a}_{i}^{N} and neutrosophic demand \tilde{b}_{j}^{N} of NTP in cost matrix to crisp values by using score function $S\left(\tilde{A}^{N}\right)$ to check either it is balance or unbalance.
Step5.4.2 If NTP is unbalance than same procedure as in 5.3 is applicable. i.e.
or

$$
\begin{aligned}
& \tilde{a}_{m+1}^{N}=\sum_{i=0}^{m} \tilde{a}_{i}^{N} \text { and } \tilde{b}_{n+1}^{N}=\sum_{j=0}^{n} \tilde{a}_{j}^{N} \oplus \text { excess supply } \\
& \tilde{b}_{n+1}^{N}=\sum_{j=0}^{n} \tilde{b}_{j}^{N} \text { and } \tilde{a}_{m+1}^{N}=\sum_{i=1}^{m} \tilde{b}_{i}^{N} \oplus \text { excess demand. }
\end{aligned}
$$

The unit transportation costs are taken as follows:

$$
\begin{aligned}
& \tilde{c}_{i(n+1)}^{N}=\min _{1 \leq j \leq n} \tilde{c}_{i j}^{N}, 1 \leq i \leq m, \quad \tilde{c}_{(m+1) j}^{N}=\min _{1 \leq i \leq m} \tilde{c}_{i j}^{N}, 1 \leq j \leq n, \\
& \tilde{c}_{i j}^{N}=\tilde{c}_{j i}^{N}, 1 \leq i \leq m, 1 \leq j \leq n, \quad \text { and } \quad \tilde{c}_{(m+1)(n+1)}^{N}=0
\end{aligned}
$$

Step5.4.3 Obtain optimal solution of NTP by excel solver. Let the neutrosophic optimal solution obtained be $\tilde{x}_{i j}^{N}, 1 \leq i \leq m+1,1 \leq j \leq n+1$.
Step5.4.4 By assuming $\tilde{\omega}_{m+1}^{\prime N}=0$ and using the relation $\tilde{\omega}_{i}^{\prime N} \oplus \tilde{v}_{j}^{\prime N}=\tilde{\sigma}_{i j}^{\prime N}$ for basic variables, find the values of all the dual variables $\tilde{\omega}_{i}^{\prime N}, 1 \leq i \leq m$ and $\tilde{v}_{j}^{\prime N}, 1 \leq j \leq n+1$,

Step5.4.5. According to MRCM, $\tilde{\omega}_{i}^{\prime N}=\tilde{\omega}_{i}^{N}$ and $\tilde{v}_{j}^{N}=\tilde{v}_{j}^{N}$ for $1 \leq i \leq m, 1 \leq j \leq n$, obtain only central rank zero duals.

6. Numerical Example

6.1. Modal I (NTP of type-3)

Let us consider a NTP with three sources say S_{1}, S_{2}, S_{3} in which wheat are initially stored and ready to transport in three flour mills namely M_{1}, M_{2}, M_{3} with unit transportation cost, demand and supply are as SVTrNN. The input data of SVTrNN -TP given in table 2 as follows:

Table 2

	M_{1}	M_{2}	M_{3}	Supply
S_{1}	$\left\langle\left(\begin{array}{l}(3,5,7.5,11) \\ (2,4,7,10) \\ \hline(1,3.5,6,9)\end{array}\right) ; 0.4\right.$	$\left\langle\left(\begin{array}{l}(2,4.5,10,15) \\ (0.5,3.5,8,14) \\ (0,2.3 \\ \hline 0.5,5,5 \\ 0.5 \\ 0.8\end{array}\right\rangle\right.$	$\left\langle\left(\begin{array}{l}(1,5,9,14.5) \\ (-3,3.5,8,12) \\ (-4,2,7,11)\end{array}\right) ; 00.50\right.$	
S_{2}	$\left\langle\left(\begin{array}{ll}(1,7,11.5,16) & 0.4 \\ (-1,5,10,14) & ; 0.5 \\ (-3,3,8.5,12) & 0.7\end{array}\right\rangle\right.$	$\left\langle\left(\begin{array}{l}(1,6,9.5,12) \\ (-1,4,8.5,11) \\ (-2,2,8,10)\end{array}\right) \begin{array}{c}0.5 \\ \hline 0.7 \\ 0.8\end{array}\right\rangle$	$\left\langle\left(\begin{array}{cc}(-1,4,8,15) & 0.3 \\ (-2,3,6,12) & ; 0.6 \\ (-3,2,5,11) & 0.6\end{array}\right\rangle\right.$	$\left.\left\langle\begin{array}{l}(7,17,25,31) \\ (3,12,22.5,29) \\ (1,10,19.5,27)\end{array}\right) ; 0.30 .6\right\rangle$
S_{3}	$\left\langle\left(\begin{array}{ll}(3,6,9,12) & 0.2 \\ (2,5,8,11) & ; 0.4 \\ (1,4,7,10) & 0.8\end{array}\right\rangle\right.$	$\left\langle\left(\begin{array}{l}(-1,3.5,9,12) \\ (-2,2.5,7,11) \\ \hline\end{array} 0 \cdot 0.2\right.\right.$	$\left\langle\binom{(0,5,8,14)}{(-2,3,7,12)} \begin{array}{c}0.2 \\ (-4,1,6,10)\end{array}\right)$	$\left\langle\begin{array}{l}\left(\begin{array}{c}(9,16,22,31)\end{array}\right. \\ (5,14,20,27) \\ \hline(1,12,18,23)\end{array}\right) ; 0.6$
Demand	$\left\langle\left(\begin{array}{l}(12,21,30,37) \\ (9,19,28,34) \\ (6,16,25,33)\end{array}\right) ; 0.301\right\rangle$	$\left\langle\left(\begin{array}{l}(10,16,22,27) \\ (5,14,20,25) \\ (0.12,18,23)\end{array}\right) ; 0.7{ }_{0} 0.7\right\rangle$	$\left\langle\left(\begin{array}{c}(7,12,19,27) \\ (4,11,18,24) \\ (1,9,15,21)\end{array}\right) ; 0.2{ }_{0} 0.6\right.$	

6.2. Neutrosophic optimal solution with score function method

One can use score function to convert SVTrNN cost, demand and supply to obtain the crisp numbers in TP of table 2 as follows:

$$
\begin{aligned}
& S\left(\tilde{A}^{N}\right)=\left(\frac{p_{1}+p_{2}+p_{3}+p_{4}-q_{1}-q_{2}-q_{3}-q_{4}-r_{1}-r_{2}-r_{3}-r_{4}}{12}\right) \times\left(2+w_{\tilde{A}^{N}}-u_{\tilde{A}^{N}}-v_{\tilde{A}^{N}}\right) \\
& S\left(\tilde{c}_{11}^{N}\right)=\left\langle\left(\begin{array}{l|c}
(3,5,7.5,11) & 0.2 \\
(2,4,7,10) & ; 0.4 \\
(1,3.5,6,9) & 0.8
\end{array}\right\rangle=\left(\frac{3+5+7.5+11-2-4-7-10-1-3.5-6-9}{12}\right) \times(0.2+0.6+0.2)=-1.33\right. \\
& S\left(\tilde{c}_{12}^{N}\right)=-1.25, \quad S\left(\tilde{c}_{13}^{N}\right)=-0.58, \quad S\left(\tilde{c}_{21}^{N}\right)=-1.08, \quad S\left(\tilde{c}_{22}^{N}\right)=-1.00, \quad S\left(\tilde{c}_{23}^{N}\right)=-0.67, \quad S\left(\tilde{c}_{31}^{N}\right)=-1.50 \text {, } \\
& S\left(\tilde{c}_{32}^{N}\right)=-0.50, \quad S\left(\tilde{c}_{33}^{N}\right)=-0.50, \quad S\left(\tilde{a}_{1}^{N}\right)=-4.33, \quad S\left(\tilde{a}_{2}^{N}\right)=-3.67, \quad S\left(\tilde{a}_{3}^{N}\right)=-3.50, \quad S\left(\tilde{b}_{1}^{N}\right)=-5.83, \\
& S\left(\tilde{b}_{2}^{N}\right)=-3.50, S\left(\tilde{b}_{3}^{N}\right)=-3.17 .
\end{aligned}
$$

After converting cost, demand and supply of NTP from SVTrNN to the crisp numbers by using score function method, the unbalance CTP cost matrix is given in table 3:

Table 3

	M_{1}	M_{2}	M_{3}	Supply
S_{1}	-1.33	-1.25	-0.58	-4.33
$\mathrm{~S}_{2}$	-1.08	-1.00	-0.67	-3.67
$\mathrm{~S}_{3}$	-1.50	-0.50	-0.50	-3.50
Demand	-5.83	-3.50	-3.17	

By using the steps in 5.2, the optimal crisp solution of CTP and their allotment of demand and supply in cost matrix shown in table 4:

Table 4

	M_{1}	M_{2}	M_{3}	Supply
S_{1}	$-1.33(-2.16)$	$-1.25(-2.17)$	-0.58	-4.33
$\mathrm{~S}_{2}$	$-1.08(-3.67)$	-1.00	-0.67	-3.67
$\mathrm{~S}_{3}$	-1.50	$-0.50(-0.33)$	$-0.50(-3.17)$	-3.50
$\mathrm{~S}_{4}$	0	$0(-1.00)$	0	-1.00
Demand	-5.83	-3.50	-3.17	

The complete solution of CTP is $x_{11}=-2.16, x_{12}=-2.17, x_{21}=-3.67, x_{32}=-0.33, x_{33}=-3.17, x_{42}=-1.00$, and $\tilde{Z}=11.30$. The corresponding optimal solution of NTP with allotment of SVTrNN is shown in table 5 as follows:

Table 5

	M_{1}	M_{2}	M_{3}	Supply
S_{1}	$\left\langle\left(\begin{array}{ll}(-19,-4,13,30) & 0 \\ 0.3 \\ (-20,-3.5,16,31) & ; 0.6 \\ (-21,-3.5,15,32) & 0.7\end{array}\right\rangle\right.$	$\left\langle\left(\begin{array}{ll}(-21,4,30,55) & \\ (-25,-2,26.5,53) & 0.3 \\ (0.6 \\ (-29,-4,23.5,51) & 0.7\end{array}\right\rangle\right.$	-	-
S_{2}	$\left\langle\begin{array}{l}\left(\begin{array}{l}\text { (7,17,25,31) }\end{array}\right. \\ (3,12,22.5,29)\end{array}\right) ; 0.30 .6$	-	-	-
S_{3}	-	$\left\langle\left(\begin{array}{l}(-18,-3,10,24) \\ \left(\begin{array}{c}09,-4,9,23) \\ \hline 0.2 \\ (-20,-3,9,22)\end{array}\right) \\ 0.6\end{array}\right\rangle\right.$	$\left\langle\begin{array}{l}\left(\begin{array}{l}\text { (}, 12,19,27) \\ (4,11,18,24)\end{array}\right. \\ \hline 0.2 \\ (1,9,15,21)\end{array}\right)$	-
S_{4}	-	$\left\langle\left(\begin{array}{l}(-69,-24,21,66) \\ (-71,-21.5,26,69) \\ (-73,-20.5,25,72)\end{array}\right) ; 0.30 .6\right.$	-	-
Demand	-	-	-	-

$$
\tilde{Z}^{N}=\left\langle\left(\begin{array}{ll}
(3,5,7.5,11) & 0.2 \\
(2,4,7,10) & ; 0.4 \\
(1,3.5,6,9) & 0.8
\end{array}\right\rangle\left\langle\left(\begin{array}{l}
(-19,-4,13,30) \\
(-20,-3.5,16,31) \\
(-21,-3.5,15,32)
\end{array}\right) \begin{array}{c}
0.3 \\
0.6 \\
0.7
\end{array}\right\rangle+\left\langle\left(\begin{array}{l}
(2,4.5,10,15) \\
(0.5,3.5,8,14) \\
0.3 \\
(0,2.5,6,12)
\end{array}\right) ; \begin{array}{l}
0.5 \\
0.8
\end{array}\right\rangle\left\langle\binom{(-21,4,30,55)}{(-25,-2,26.5,53)} ; 0.0 .6\right.\right.
$$

i.e.

$$
\tilde{Z}^{N}=\left\langle\begin{array}{ll}
(-74,187.5,927,2317) & 0.4 \\
(-25.5,62,738,1999) & ; 0.4 \\
(52,13.75,531.75,1654) & 0.6
\end{array}\right\rangle=-194.54
$$

Now for application of MRCM, we use steps in 5.3 to balance the unbalance CTP of table 2 as follows in table 6:

Table 6

	M_{1}	M_{2}	M_{3}	M_{4}	Supply
S_{1}	$\left\langle\left(\begin{array}{ll}(3,5,7.5,11) & 0.2 \\ (2,4,7,10) & ; 0.4 \\ (1,3.5,6,9) & 0.8\end{array}\right\rangle\right.$	$\left\langle\left(\begin{array}{l}(2,4.5,10,15) \\ (0.5,3.5,8,14) \\ \hline 0.3 \\ (0,2.5 \\ \hline 0.5 \\ 0.6,12)\end{array}\right)\right.$	$\left.\left\langle\begin{array}{l}(1,5,9,14.5) \\ (-3,3.5,8,12) \\ (-4,2,7,11)\end{array}\right) ; \begin{array}{c}0.2 \\ 0.5 \\ 0.7\end{array}\right\rangle$	$\left\langle\begin{array}{l}\left.\left(\begin{array}{l}(1,5,9,14.5) \\ (-3,3.5,8,12) \\ (-4,2,7,11)\end{array}\right) \begin{array}{l}0.2 \\ 0.5 \\ 0.7\end{array}\right\rangle\end{array}\right.$	$\left\langle\begin{array}{l}\left(\begin{array}{l}(9,17,26,36) \\ (6,14,23,33) \\ (3,11,20,30)\end{array} \begin{array}{c}0.7 \\ 0.7 \\ 0.7\end{array}\right\rangle\end{array}\right.$
S_{2}	$\left\langle\left(\begin{array}{ll}(1,7,11.5,16) & 0.4 \\ (-1,5,10,14) & ; 0.5 \\ (-3,3,8.5,12) & 0.7\end{array}\right\rangle\right.$	$\left\langle\left(\begin{array}{l}(1,6,9.5,12) \\ (-1,4,8.5,11) \\ (-2,2,8,10)\end{array}\right)_{0.5}^{0.7} 0\right.$		$\left\langle\begin{array}{l}\left(\begin{array}{l}(-1,4,8,15) \\ (-2,3,6,12)\end{array}\right. \\ \left.\begin{array}{l}0.3 \\ \hline 0.6 \\ (-3,2,5,11) \\ 0.6\end{array}\right\rangle\end{array}\right.$	$\left\langle\left(\begin{array}{ll}(7,17,25,31) & 0 \\ (3,12,22.5,29) & 0.3 \\ (1,10,19.5,27)\end{array}\right)_{0.7}\right\rangle$
S_{3}	$\left.\left\langle\left(\begin{array}{c}(3,6,9,12) \\ (2,5,8,11) \\ (1,4,7,10)\end{array}\right) ; 0.4\right)_{0.4}^{0.8}\right\rangle$	$\left\langle\begin{array}{l}\left(\begin{array}{l}(-1,3.5,9,12) \\ (-2,2.5,7,11) \\ \hline\end{array} 0 \cdot 0.2\right. \\ (-4,1,5,10)\end{array}\right)$	$\left\langle\begin{array}{l}(0,5,8,14) \\ (-2,3,7,12) \\ \hline 0.2 \\ \hline 0.6 \\ (-4,1,6,10)\end{array} 0.0 .6\right.$	$\left\langle\left(\begin{array}{l}(0,5,8,14) \\ (-2,3,7,12) \\ (1-4,1,6,10)\end{array}\right)_{0}^{0.2} \begin{array}{l}j 0.6 \\ 0.6\end{array}\right\rangle$	$\left\langle\left(\begin{array}{ll}(9,16,22,31) & 0.3 \\ (5,14,20,27) & ; 0.6 \\ (1,12,18,23) &)_{0.7}\end{array}\right\rangle\right.$
S_{4}	$\left\langle\left(\begin{array}{ll}(1,7,11.5,16) & 0.4 \\ (-1,5,10,14) & 0 \\ (-3,3,8.5,12) & 0.5 \\ 0.7\end{array}\right\rangle\right.$	$\left\langle\left(\begin{array}{l}(-1,3.5,9,12) \\ (-2,2.5,7,11) \\ \hline 0.2 \\ \hline 0.4 \\ (-4,1,5,10)\end{array}\right)\right.$	$\left.\left\langle\begin{array}{l}(0,5,8,14) \\ (-2,3,7,12) \\ (-4,1,6,10)\end{array}\right) \begin{array}{c}0.2 \\ \hline 0.6 \\ 0.6\end{array}\right\rangle$	$\left\langle\binom{(0,0,0,0)}{(0,0,0,0)} ; 0.2\right.$	
D e e \boldsymbol{a} n d d	$\left\langle\begin{array}{l}\left(\begin{array}{l}(12,21,30,37) \\ (9,19,28,34) \\ (6,16,25,33)\end{array}\right. \\ \hline 0.0 \\ \hline 0.6 \\ 0.7\end{array}\right\rangle$	$\left\langle\left(\begin{array}{l}(10,16,22,27) \\ (5,14,20,25) \\ \hline 0.4 \\ (0,12,18,23)\end{array}\right)\right.$	$\left\langle\begin{array}{l}\left(\begin{array}{c}(7,12,19,27) \\ (4,11,18,24) \\ (1,9,15,21)\end{array}\right)\end{array} \begin{array}{l}0.2 \\ 0.6 \\ 0.6\end{array}\right\rangle$	$\left\langle\left(\begin{array}{l}(-41,29,97,167) \\ (-55,14,87,160) \\ (-67,8,78,153)\end{array}\right)^{0.3} 0.64\right.$	

After converting cost, demand and supply of NTP in table 6 from SVTrNN to the crisp numbers by using score function method, the balance CTP cost matrix is given in table 7:

Table 7

	M_{1}	M_{2}	M_{3}	M_{4}	Supply
S_{1}	-1.33	-1.25	-0.58	-0.58	-4.33
$\mathrm{~S}_{2}$	-1.08	-1.00	-0.67	-0.67	-3.67
$\mathrm{~S}_{3}$	-1.50	-0.50	-0.50	-0.50	-3.50
$\mathrm{~S}_{4}$	-1.08	-0.50	-0.50	0	-11.50
Demand	-5.83	-3.50	-3.17	-10.50	

The complete allotment of demand and supply in cost matrix of CTP shown in table 8:

Table 8

	M_{1}	M_{2}	M_{3}	M_{4}	Supply
S_{1}	$-1.33(-\mathbf{1 . 1 6)}$	-1.25	$-0.58(-3.17)$	-0.58	-4.33
$\mathrm{~S}_{2}$	$-1.08(-3.67)$	-1.00	-0.67	-0.67	-3.67
$\mathrm{~S}_{3}$	-1.50	$-0.50(-3.50)$	-0.50	-0.50	-3.50
$\mathrm{~S}_{4}$	$-1.08(-1.00)$	-0.50	-0.50	$0(-10.50)$	-11.50
Demand	-5.83	-3.50	-3.17	-10.50	

Rajesh Kumar Saini* ${ }^{1}$ Atul Sangal ${ }^{2}$ and Manisha ${ }^{3}$, Application of Single Valued Trapezoidal Neutrosophic Numbers

The optimal crisp solution and minimum cost of balance CTP of table 8 is $x_{11}=-1.16, x_{13}=-3.17$, $x_{21}=-3.67, x_{32}=-3.50, x_{41}=-1.00, x_{44}=-10.50$ and $Z=10.18$.

Similarly after balance the unbalance NTP by MRCM, the corresponding optimal solution of balance NTP with allotment of SVTrNN is shown in table 9 as follows:

Table 9

	M	M_{2}	M_{3}	M_{4}	Supply
S_{1}	$\left\langle\left(\begin{array}{ccc}(-18,-2,14,29) & 0.4 \\ (-18,-4,12,29) & ; 0.6 \\ (-18,-4,11,29) & 0.6\end{array}\right\rangle\right.$	-	$\left(\begin{array}{ll}\left(\begin{array}{l}(7,12,19,27) \\ (4,11,18,24) \\ \hline\end{array}\right. & 0.2 \\ (1,9,15,21) \\ 0.6\end{array}\right)$	-	-
S_{2}	$\left\langle\begin{array}{l}\left(\begin{array}{l}(7,17,25,31) \\ (3,12,22.5,29) \\ (1,10,19.5,27)\end{array} 0.0 .6\right. \\ 0.7\end{array}\right\rangle$	-	-	-	-
S_{3}	-	$\left\langle\left(\begin{array}{l}(9,16,22,31) \\ (5,14,20,27) \\ (1,12,18,23)\end{array}\right) ; 0.6\right.$	-	-	-
S_{4}		-	-	$\left\langle\begin{array}{l}\left(\begin{array}{l}(-41,29,97,167) \\ (-55,14,87,160) \\ 0\end{array}\right) \\ \hline(-37,8,78,153) \\ \hline 0.6 \\ 0.7\end{array}\right\rangle$	-
Demand		-	-	-	-

this implies $\quad \tilde{Z}^{N}=\left\langle\left(\begin{array}{l}(-191,-104,1267.5,3802.5) \\ (85,-117.5,1108,3297) \\ (415,-89,847.5,2810)\end{array}\right) ; 0.4\right.$

6.3. Model II (NTP of type-2)

For solution of NTP of type-2 i.e. a problem in which costs are in SVTrNN while demand and supply are given in crisp numbers. Here we are taking the problem in table 2 in which costs are in SVTrNN while demand and supply are as crisp numbers given as follows in table 10:

Table 10

	M_{1}	M_{2}	M_{3}	Supply
S_{1}	$\left\langle\begin{array}{l}(3,5,7.5,11) \\ (2,4,7,10) \\ (1,3.5,6,9)\end{array}\right) ; 0.0 .4$	$\left\langle\left(\begin{array}{l}(2,4.5,10,15) \\ (0.5,3.5,8,14) \\ \hline 0.3 \\ \hline 0.5 \\ (0,2.5,6,12)\end{array}\right)\right.$	$\left\langle\begin{array}{l}\left(\begin{array}{l}(1,5,9,14.5) \\ (-3,3.5,8,12)\end{array}\right. \\ \left(\begin{array}{c}0.2 \\ \hline 0.2 \\ \hline(4,2,7,11)\end{array}\right) \\ 0.7\end{array}\right\rangle$	-4.33
S_{2}	$\left\langle\left(\begin{array}{l}(1,7,11.5,16) \\ (-1,5,10,14) \\ \hline(-3,3,8.5,12)\end{array}\right) 00.50\right.$	$\left\langle\left(\begin{array}{l}(1,6,9.5,12) \\ (-1,4,8.5,11) \\ (-2,2,8,10)\end{array}\right) \begin{array}{c}0.5 \\ ; 0.7 \\ 0.8\end{array}\right\rangle$	$\left\langle\binom{(-1,4,8,15)}{(-2,3,6,12)} ; 0.3\right.$	-3.67
S_{3}	$\left\langle\left(\begin{array}{ll}(3,6,9,12) & 0.2 \\ (2,5,8,11) & ; 0.4 \\ (1,4,7,10) & 0.8\end{array}\right\rangle\right.$	$\left\langle\begin{array}{l}\left(\begin{array}{l}(-1,3.5,9,12) \\ (-2,2.5,7,11)\end{array}\right. \\ \hline\end{array} 0.20 .4\right\rangle$	$\left\langle\left(\begin{array}{l}(0,5,8,14) \\ (-2,3,7,12) \\ \hline\end{array}\right) ; 0.0 .6\right.$	-3.50
Demand	-5.83	-3.50	-3.17	

The optimal crisp solution of NTP type-2 is shown in table 11 as follows:
Table 11

	M_{1}	M_{2}	M_{3}	Supply
S_{1}	-2.16	-2.17	-	-4.33
$\mathrm{~S}_{2}$	-3.67	-	-	-3.67
$\mathrm{~S}_{3}$	-	-0.33	-3.17	-3.50
$\mathrm{~S}_{4}$	-	-1.00	-	-3.50
Demand	-5.83	-3.50	-3.17	

The corresponding neutrosophic solution of NTP type-2 is:

Similarly after balance the unbalance NTP of type-2 by MRCM, the corresponding optimal neutrosophic solution of balance NTP of type-2 with allotment is as follows:

$$
\begin{aligned}
& -1.00 \times\left\langle\left(\begin{array}{l}
(1,7,11.5,16) \\
(-1,5,10,14) \\
(-3,3,8.5,12)
\end{array}\right) ; 0.4\right)-10.50 \times\left\langle\left(\begin{array}{lc}
(0,0,0,0) & 0.2 \\
(0,0,0,0) & ; 0.6 \\
(0,0,0,0)
\end{array}\right)=\left\langle\begin{array}{l}
0.6
\end{array}\right)=\left\langle\begin{array}{l}
7.82,65.59,121.85,174.70 \\
-19.86,47.09,103.68,152.52 \\
-40.03,27.41,85.60,135.85
\end{array}\right) ; 0.0 .6\right.
\end{aligned}
$$

7. Comparative Study

Real life application of single valued trapezoidal neutrosophic numbers in transportation problem have been solved by some existing and proposed MRCM methods. In present paper, the minimum cost obtained through proposed method with some existing method discussed in [30] have been summarized in table 12. From the table it is clear that minimum cost obtained by using MRCM is better than to the existing method in both either crisp or in neutrosophic environment. Figure 3 shows the graphical representation of the minimum crisp or neutrosophic cost degree of satisfaction by different approaches.

Comparison				
Model I	Balance by existing method		Balance by MRCM	
	$\begin{aligned} & \text { Crisp cost of } \\ & \text { CTP } \\ & Z=11.30 \end{aligned}$	The neutrosophic cost of NTP $\left.\tilde{Z}^{N}=\left\langle\begin{array}{l} (-74,187.5,927,2317) \\ (-25.5,62,738,1999) \\ (52,13.75,531.75,1654) \end{array}\right) \begin{aligned} & 0.4 \\ & 0.4 \\ & 0.6 \end{aligned} \right\rvert\,$ corresponding Crisp cost of NTP $\tilde{Z}^{N}=-194.54$	$\begin{aligned} & \text { Crisp cost of } \\ & \text { CTP } \\ & Z=10.18 \end{aligned}$	The neutrosophic cost of NTP $\tilde{Z}^{N}=\left\{\left.\begin{array}{ll} (-191,-104,1267.5,3802.5) & 0.4 \\ (85,-117.5,1108,3297) & ; 0.4 \\ (415,-89,847.52810) & ; 0.6 \end{array} \right\rvert\,\right.$ corresponding Crisp cost of NTP $\tilde{Z}^{N}=-417.77$
$\begin{gathered} \text { Model } \\ \text { II } \end{gathered}$	The neutrosophic cost of NTP$\left.\tilde{Z}_{\hbar_{2}}^{N}=\left\langle\begin{array}{l} (-14.16,-63.27,-108.44,-163.37) \\ (5.26,-44.93,-93.68,-145.07) \\ (22.85,-27.5,-77.87,-124.52) \end{array}\right) ; 0.6\right\rangle$		The neutrosophic cost of NTP$\tilde{Z}_{t_{2}}^{N}=\left\langle\left(\begin{array}{ll} 7.82,65.59,121.85,174.70 \\ -19.86,47.09,103.68,152.52 & 0.2 \\ -40.03,27.41,85.60,135.85 \end{array}\right)\right.$	
	corresponding Crisp cost of NTP$\tilde{Z}_{t_{2}}^{N}=15.89$		corresponding Crisp cost of NTP$\tilde{Z}_{t_{2}}^{N}=14.35$	

Figure 3: Comparision of results with proposed MRCM and existing method

8. Result and discussion

In this present study the optimal transportation crisp cost and optimal transportation neutrosophic cost of unbalanced NTP using MRCM is minimum than the existing method in [30]. It is also verified that in de-neutrosophication, the crisp values before and after conversion from neutrosophic to crisp and crisp to neutrosophic are different in score function method.

For the real life applications one can find the degree of result. The best of minimum neutrosophic cost of unbalanced NTP is $\tilde{Z}^{N}=\left\langle\left(\begin{array}{ll}(-191,-104,1267.5,3802.5) \\ (85,-117.5,1108,3297) \\ (415,-89,847.5,2810)\end{array}\right) \begin{array}{c}0.4 \\ ; 0.4 \\ 0.6\end{array}\right\rangle$ i.e. total minimum transportation cost
lies between -191 to 3802.5 for level of truthfulness or acceptance, 85 to 3297 for level of indeterminacy and 415 to 2810 for level of falsity. The degree of truthfulness or acceptance, degree of indeterminacy and degree of falsity is defined as $w_{T_{\bar{z}^{N}}}(x) \times 100, u_{I_{\bar{z}^{N}}}(x) \times 100$ and $v_{F_{\tilde{z}^{N}}}(x) \times 100$ respectively, where x denotes the total cost and

$$
\begin{aligned}
& w_{T_{\bar{Z}^{N}}}(x)= \begin{cases}\frac{0.4(x+191)}{191-104}, & \text { for }-191 \leq x \leq-104, \\
0.4, & \text { for }-104 \leq x \leq 1267.5, \\
\frac{0.4(3802.5-x)}{3802.5-1267.5}, & \text { for } 1267.5 \leq x \leq 3802.5, \\
0, & \text { for otherwise. }\end{cases} \\
& u_{I_{Z^{N}}}(x)=\left\{\begin{array}{lc}
\frac{(-117.5-x)+0.4(x-85)}{62+25.5}, & \text { for }-117.5 \leq x \leq 85, \\
0.4, & \text { for }-117.5 \leq x \leq 1108, \\
\frac{(x-1108)+0.4(3297-x)}{3297-1108}, & \text { for } 1108 \leq x \leq 3297, \\
0, & \text { for otherwise. }
\end{array}\right. \\
& v_{F_{\bar{Z}^{N}}}(x)=\left\{\begin{array}{lc}
\frac{(-89-x)+0.6(x-415)}{13.75-52}, & \text { for }-89 \leq x \leq 415, \\
0.6, & \text { for }-89 \leq x \leq 847, \\
\frac{(x-847)+0.6(2810-x)}{2810-847}, & \text { for } 847 \leq x \leq 2810, \\
0, & \text { for otherwise. }
\end{array}\right.
\end{aligned}
$$

With the help of degree of truthfulness, degree of indeterminacy and degree of falsity, we can conclude the total neutrosophic cost from the range of -191 to 3802.5 for truthfulness, 85 to 3297 for indeterminacy and 415 to 2810 for falsity to scheduled the transportation and budget allocation.

9. Conclusions

In recent scenario the applied mathematical modeling with uncertainty or vagueness is necessity of the society. Nowadays the concept of neutrosophic number is very popular to handle such type of problems. In this research paper, we study of unbalance NTP and introduced a new approach MRCM for optimal solution with the concept of single valued trapezoidal neutrosophic number of twelve components from different viewpoints. Also the optimal neutrosophic solution and minimum cost obtained by using MRCM is better than by using some existing methods. The proposed method provides the more practical structure and considers the various characteristics of transportation problems in neutrosophic environment. In future the proposed MRCM is applied to the unbalance multi-attribute transportation problem, assignment problems and multilevel programming problem in neutrosophic environment. The present research will be a mile stone for transportation problems with generalization of the pick value of truth, indeterminacy and falsity functions by considering, which are very important for uncertainty theory.

Acknowledgement : Prof. Yanhui Guo, University of Illinois at Springfield, One University Plaza, Springfield, IL 62703, United States,

References

1. Atanassov K. T., "Intuitionistic fuzzy sets," Fuzzy Sets and Systems, vol. 20, no. 1, (1986), 87-96.
2. Atanassov K. T., Intuitionistic Fuzzy Sets: Theory and Applications, Physica, Heidelberg, Germany (1999).
3. Broumi S, Deli I. and Smarandache F., Relations on Interval Valued Neutrosophic Soft Sets, Journal of New Results in Science, 5 (2014), 01-20.
4. Broumi S, Deli I. and Smarandache F., Interval valued neutrosophic parameterized soft set theory and its decision making, Journal of New Results in Science, 7 (2014), 58-71.
5. Cagman N. and Deli I., Product of FP-Soft Sets and its Applications, Hacettepe Journal of Mathematics and Statistics 41/3 (2012), 365-374.
6. Cagman N. and Deli I., Means of FP-Soft Sets and its Applications, Hacettepe Journal of Mathematics and Statistics, 41/5 (2012), 615-625.
7. Chanas S and Kuchta D., "A concept of the optimal solution of the transportation problem with fuzzy cost coefficients," Fuzzy Sets and Systems, vol. 82, no. 3, (1996), 299-305.
8. Deli I., Ss, uba Y., Single valued neutrosophic numbers and their applications to multicriteria decision making problem, Nural Computing \& Applications, October 31, (2014), 1-13.
9. Deli I., Aman N., Intuitionistic fuzzy parameterized soft set theory and its decision making, Applied Soft Computing 28 (2015), 109-113.
10. Deli I., and Broumi S., Neutrosophic soft relations and some properties, Annals of Fuzzy Mathematics and Informatics 9(1) (2015), 169-182.
11. Guo H., Wang W. and Zhou S., "A transportation with uncertain costs and random supplies," International Journal of e- Navigation and Maritime Economy, vol. 2,(2015), 1-11.
12. Hitchcock F. L., "The distribution of a product from several sources to numerous localities," Journal of Mathematics and Physics, vol. 20, (1941), 224-230.
13. Hanine, M.; Boutkhoum, O.; Tikniouine, A., Agouti T., A new web-based framework development for fuzzy multi-criteria group decision-making, Springer Plus, 5-601, (2016), 1-18.
14. Herrera F., Viedma E. H., Linguistic decision analysis: steps for solving decision problems under linguistic information, Fuzzy Sets and Systems 115 (2000), 67-82.
15. Hussain R. J. and Senthil Kumar P., "Algorithmic approach for solving intuitionistic fuzzy transportation problem," Applied Mathematical Sciences, vol. 6, no. 80, (2012), 3981-3989.
16. Jim'enez F. and Verdegay J. L., "Solving fuzzy solid transportation problems by an evolutionary algorithm based parametric approach," European Journal of Operational Research, vol. 117, no. 3, (1999), 485-510.
17. Jianqiang W. and Zhong Z., "Aggregation operators on intuitionistic trapezoidal fuzzy number and its application to multi-criteria decision making problems," Journal of Systems Engineering and Electronics, vol. 20, no. 2, (2009), 321-326.
18. Kaur A. and Kumar A., "A new method for solving fuzzy transportation problems using ranking function," Applied Mathematical Modelling, vol. 35, no. 12, (2011), 5652-5661.
19. Kaur A. and Kumar A., "A new approach for solving fuzzy transportation problems using generalized trapezoidal fuzzy numbers," Applied Soft Computing, vol. 12, no. 3, (2012), 1201-1213.
20. Li D.-F., "A ratio ranking method of triangular intuitionistic fuzzy numbers and its application to MADM problems," Computers \mathcal{E} Mathematics with Applications, vol. 60, no. 6, (2010), 1557- 1570.
21. Li, D. F., Decision and Game Theory in Management with Intuitionistic Fuzzy Sets, Studies in Fuzziness and Soft Computing Volume 308, Springer, 2014.
22. Nagoor Gani A. and Abdul Razak K., Two stage fuzzy transportation problem, Jl. of Physical Sci., Vol. 10, (2006), 63-69.
23. Nagoor A. Gani and Abbas S., "Solving intuitionistic fuzzy transportation problem using zero suffix algorithm," International Journal of Mathematical Sciences \& Engineering Applications, vol. 6,(2012), 73-82.
24. Oh'Eigeartaigh M., "A fuzzy transportation algorithm" Fuzzy Sets and Systems, vol. 8, no. 3(1982), 235-243.
25. Pandian P. and Natarajan G., A New Algorithm for Finding a Fuzzy Optimal Solution for Fuzzy Transportation Problems, Applied Math. Sci., Vol. 4, no. 2, (2010), 79 - 90.
26. Saini R. K., Sangal A and Prakash O, A Comparative Study of Transportation Problem for Trapezoidal Fuzzy Numbers, International Journal of Applied Engineering Research, Vol. 10, 24 (2015), 44105-44111.
27. Smarandache F., A Unifying Field in Logics. Neutrosophy: Neutrosophic Probability, Set and Logic, American Research Press, Rehoboth, NM, USA, 1998.
28. Smarandache F., "Neutrosophic set, a generalization of the intuitionistic fuzzy set," International Journal of Pure and Applied Mathematics, vol. 24, no. 3, (2005) 287-297.
29. Thamaraiselvi A and Santhi R., "A New Approach for Optimization of Real Life Transportation Problem in Neutrosophic Environment", Mathematical Problems in Engineering, Vol. 9 (2016), pp. 1-9.
30. Wang J., Nie R., Zhang H., and Chen X., "New operators on triangular intuitionistic fuzzy numbers and their applications in system fault analysis," Information Sciences, vol. 251, (2014), 79-95.
31. Wang H, Smarandache F., Zhang Y. Q. and Sunderraman R., "Single valued neutrosophic sets," multi-space and multi-structure, vol. 4, (2010), 410-413.
32. Yu V. F., Hu K.-J and Chang A.-Y, "An interactive approach for the multi-objective transportation problem with interval parameters," International Journal of Production Research, vol. 53, no. 4, (2015), 1051-1064.
33. Xu Z., Cai X., Group Decision Making with Incomplete Interval-Valued Intuitionistic Preference Relations, Group Decision and Negotiation (2015) 24(2), 193-215.
34. Ye J., "Similarity measures between interval neutrosophic sets and their applications in multicriteria decisionmaking," Journal of Intelligent and Fuzzy Systems, vol. 26, no. 1, (2014), 165-172.
35. Ye J., Single-Valued Neutrosophic Minimum Spanning Tree and Its Clustering Method, Journal of Intelligent Systems 23/3 (2014) 311-324.
36. Zhang H.-Y., Wang J.-Q, and Chen X.-H., "Interval neutrosophic sets and their application in multicriteria decision making problems," The Scientific World Journal, vol. (2014), 15 pages.
37. Zadeh L. A., "Fuzzy sets," Information and Control, vol. 8, no. 3, (1965), 338-353.

Received: July 26, 2020. Accepted: Jun 24, 2020

Neutrosophic Sets and Systems (NSS) is an academic journal, published quarterly online and on paper, that has been created for publications of advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics etc. and their applications in any field.

All submitted papers should be professional, in good English, containing a brief review of a problem and obtained results.

It is an open access journal distributed under the Creative Commons Attribution License that permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ISSN (print): 2331-6055, ISSN (online): 2331-608X
Impact Factor: 1.739
NSS has been accepted by SCOPUS. Starting with Vol. 19, 2018, all NSS articles are indexed in Scopus.

NSS is also indexed by Google Scholar, Google Plus, Google Books, EBSCO, Cengage Thompson Gale (USA), Cengage Learning, ProQuest, Amazon Kindle, DOAJ (Sweden), University Grants Commission (UGC) - India, International Society for Research Activity (ISRA), Scientific Index Services (SIS), Academic Research Index (ResearchBib), Index Copernicus (European Union),CNKI (Tongfang Knowledge Network Technology Co., Beijing, China), etc.

Google Dictionary has translated the neologisms "neutrosophy" (1) and "neutrosophic" (2), coined in 1995 for the first time, into about 100 languages.
FOLDOC Dictionary of Computing (1, 2), Webster Dictionary (1, 2), Wordnik (1), Dictionary.com, The Free Dictionary (1),Wiktionary (2), YourDictionary (1, 2), OneLook Dictionary (1, 2), Dictionary / Thesaurus (1), Online Medical Dictionary (1, 2), and Encyclopedia (1, 2) have included these scientific neologisms.
DOI numbers are assigned to all published articles.
Registered by the Library of Congress, Washington DC, United States, https://lcen.loc.gov/2013203857.
Recently, NSS was also approved for Emerging Sources Citation Index (ESCI) available on the Web of Science platform, starting with Vol. 15, 2017.

Editors-in-Chief:

Prof. Dr. Florentin Smarandache
Department of Mathematics and Science
University of New Mexico
705 Gurley Avenue
Gallup, NM 87301, USA
E-mail: smarans@unm.edu

Dr. Mohamed Abdel-Basset

Department of Operations Research Faculty of Computers and Informatics Zagazig University Zagazig, Ash Sharqia 44519, Egypt E-mail:mohamed.abdelbasset@fci.zu.edu

[^0]: I. Yasser; A. Twakol; A. A. Abd El-Khalek; A. Samrah; A.A.Salama. COVID-X: Novel Health-Fog Framework Based on

[^1]: I. Yasser; A. Twakol; A. A. Abd El-Khalek; A. Samrah; A. A. Salama. COVID-X: Novel Health-Fog Framework Based on

[^2]: I. Yasser; A. Twakol; A. A. Abd El-Khalek; A. Samrah; A. A. Salama. COVID-X: Novel Health-Fog Framework Based on

[^3]: I. Yasser; A. Twakol; A. A. Abd El-Khalek; A. Samrah; A. A. Salama. COVID-X: Novel Health-Fog Framework Based on

[^4]: I. Yasser; A. Twakol; A. A. Abd El-Khalek; A. Samrah; A. A. Salama. COVID-X: Novel Health-Fog Framework Based on

[^5]: I. Yasser; A. Twakol; A. A. Abd El-Khalek; A. Samrah; A. A. Salama. COVID-X: Novel Health-Fog Framework Based on Neutrosophic Classifier for Confrontation Covid-19

[^6]: I. Yasser; A. Twakol; A. A. Abd El-Khalek; A. Samrah; A. A. Salama. COVID-X: Novel Health-Fog Framework Based on

[^7]: I. Yasser; A. Twakol; A. A. Abd El-Khalek; A. Samrah; A. A. Salama. COVID-X: Novel Health-Fog Framework Based on

[^8]: I. Yasser; A. Twakol; A. A. Abd El-Khalek; A. Samrah; A. A. Salama. COVID-X: Novel Health-Fog Framework Based on

[^9]: I. Yasser; A. Twakol; A. A. Abd El-Khalek; A. Samrah; A. A. Salama. COVID-X: Novel Health-Fog Framework Based on Neutrosophic Classifier for Confrontation Covid-19

[^10]: I. Yasser; A. Twakol; A. A. Abd El-Khalek; A. Samrah; A. A. Salama. COVID-X: Novel Health-Fog Framework Based on

[^11]: I. Yasser; A. Twakol; A. A. Abd El-Khalek; A. Samrah; A. A. Salama. COVID-X: Novel Health-Fog Framework Based on

[^12]: I. Yasser; A. Twakol; A. A. Abd El-Khalek; A. Samrah; A. A. Salama. COVID-X: Novel Health-Fog Framework Based on

[^13]: I. Yasser; A. Twakol; A. A. Abd El-Khalek; A. Samrah; A. A. Salama. COVID-X: Novel Health-Fog Framework Based on

[^14]: I. Yasser; A. Twakol; A. A. Abd El-Khalek; A. Samrah; A. A. Salama. COVID-X: Novel Health-Fog Framework Based on

[^15]: A.A. Salama, Ahmed Sharaf Al-Din, Issam Abu Al-Qasim, Rafif Alhabib, Magdy Badran, Introduction to Decision

[^16]: A. Sahaya Sudha, Luiz Flavio Autran Monteiro Gomes and K.R. Vijayalakshmi, Assessment of MCDM problems by TODIM using aggregated weights

[^17]: $\overline{\text { A. Sahaya Sudha, Luiz Flavio Autran Monteiro Gomes and K.R. Vijayalakshmi, Assessment of MCDM problems by }}$ TODIM using aggregated weights

[^18]: A. Sahaya Sudha, Luiz Flavio Autran

 Monteiro Gomes and K.R. Vijayalakshmi, Assessment of MCDM problems by TODIM using aggregated weights

[^19]: $\overline{\text { A. Sahaya Sudha, Luiz Flavio Autran Monteiro Gomes and K.R. Vijayalakshmi, Assessment of MCDM problems by }}$ TODIM using aggregated weights

[^20]: A. Sahaya Sudha, Luiz Flavio Autran

 Monteiro Gomes and K.R. Vijayalakshmi, Assessment of MCDM problems by TODIM using aggregated weights

[^21]: Nidhi Singh, Avishek Chakraborty, Soma Bose Biswas, Malini Majumdar; A Study of Social Media linked MCGDM Skill under Pentagonal

[^22]: Nidhi Singh, Avishek Chakraborty, Soma Bose Biswas, Malini Majumdar; A Study of Social Media linked MCGDM Skill under Pentagonal

[^23]: Nidhi Singh, Avishek Chakraborty, Soma Bose Biswas, Malini Majumdar; A Study of Social Media linked MCGDM Skill under Pentagonal

[^24]: Fatimah M. Mohammed and Sarah W. Raheem, Generalized b Closed Sets and Generalized b Open Sets in Fuzzy

[^25]: Abhijit Saha, Florentin Smarandache, Jhulaneswar Baidya and Debjit Dutta, MADM USING m-GENERALIZED q-NEUTROSOPHIC SETS

[^26]: Abhijit Saha, Florentin Smarandache, Jhulaneswar Baidya and Debjit Dutta, MADM USING m-GENERALIZED q-NEUTROSOPHIC SETS

[^27]: Abhijit Saha, Florentin Smarandache, Jhulaneswar Baidya and Debjit Dutta, MADM USING m-GENERALIZED q-NEUTROSOPHIC SETS

[^28]: Abhijit Saha, Irfan Deli, and Said Broumi, HESITANT Triangular Neutrosophic Numbers and Their Applications to MADM

[^29]: Mohsin khalid,Florentin Smarandache,Neha Andaleeb khalid and Said Broumi, Translative And Multiplicative Interpretation of Neutrosophic Cubic Set

[^30]: Mohsin khalid,Florentin Smarandache,Neha Andaleeb khalid and Said Broumi, Translative And Multiplicative Interpretation of Neutrosophic Cubic Set

[^31]: Mohsin khalid,Florentin Smarandache,Neha Andaleeb khalid and Said Broumi, Translative And Multiplicative Interpretation of Neutrosophic Cubic Set

[^32]: Chinnadurai V and Sindhu M P, A Novel Approach for Pairwise Separation Axioms on Bi-Soft Topology Using Neutrosophic Sets and An Output Validation in Real Life Application

[^33]: $\overline{\text { Chinnadurai } V \text { and Sindhu } M \text { P, A Novel Approach for Pairwise Separation Axioms on Bi-Soft Topology Using }}$ Neutrosophic Sets and An Output Validation in Real Life Application

[^34]: $\overline{\text { Chinnadurai } V \text { and Sindhu M P, A Novel Approach for Pairwise Separation Axioms on Bi-Soft Topology Using }}$ Neutrosophic Sets and An Output Validation in Real Life Application

[^35]: Said Broumi, Malayalan Lathamaheswari, Ruipu Tan, Deivanayagampillai Nagarajan, Talea Mohamed, Florentin Smarandache and Assia Bakali, A new distance measure for trapezoidal fuzzy neutrosophic numbers based on the centroids

[^36]: Qays Hatem Imran, R. Dhavaseelan, Ali Hussein Mahmood and Md. Hanif PAGE, On Neutrosophic Generalized Alpha Generalized Continuity

